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Abstract— Promoting a robot agent’s autonomy level, which 
allows it to understand the human operator’s intent and 
provide motion assistance to achieve it, has demonstrated great 
advantages to the operator’s intent in teleoperation. However, 
the research has been limited to the target approaching 
process. We advance the shared control technique one step 
further to deal with the more challenging object manipulation 
task. Appropriately manipulating an object is challenging as it 
requires fine motion constraints for a certain manipulation 
task. Although these motion constraints are critical for task 
success, they are subtle to observe from ambiguous human 
motion. The disembodiment problem and physical discrepancy 
between the human and robot hands bring additional 
uncertainty, make the object manipulation task more 
challenging. Moreover, there is a lack of modeling and planning 
techniques that can effectively combine the human motion 
input and robot agent’s motion input while accounting for the 
ambiguity of the human intent. To overcome this challenge, we 
built a multi-task robot grasping model and developed an 
intent-uncertainty-aware grasp planner to generate robust 
grasp poses given the ambiguous human intent inference 
inputs. With this validated modeling and planning techniques, 
it is expected to extend teleoperated robots’ functionality and 
adoption in practical telemanipulation scenarios.  

I. INTRODUCTION 

A. Need of Robot Assistance in Telemanipulation 
Teleoperating a robot allows operators to carry out tasks 
remotely with the robot as a medium. This indirect 
interaction brings in many advantages including increased 
motion precision and strength, and remote access to work 
fields that might be inaccessible or hazardous to the 
operator. However, successfully teleoperating the robot for a 
task is often difficult and complex due to indirect 
manipulation and physical discrepancy between a human 
hand and robot hand[1][2]. To reduce the control difficulty 
of teleoperated robots and the operation workload of the 
operators, the robot agent is being designed to have more 
intelligence and autonomy, thus, to understand the operator’s 
intent and assist in achieving it. Research has demonstrated 
that in a target approaching process, the robot agent can infer 
the target location by observing the operator’s motion 
trajectory and provide motion assistance in approaching the 
 

Michael Bowman is a Ph.D. student in the Department of Mechanical 
Engineering at Colorado School of Mines, Golden, CO 80401 USA (e-mail: 
mibowman@mines.edu 

Songpo Li is a Postdoctor in the Department of Mechanical Engineering 
and Material Science at Duke University, Durham, NC 27705 USA (e-mail: 
songpo.li@duke.edu 

*Xiaoli Zhang is an Assistant Professor in the Department of Mechanical 
Engineering at Colorado School of Mines, Golden, CO 80401 USA 
(∗corresponding author, phone: 303-384-2343; fax: 303-273-3602; email: 

xlzhang@mines.edu) 

target [3][4]. Much research has been documented on how to 
precisely infer the target location and how to effectively 
blend the human input trajectory and robot agent’s input. 
Even though the approaching process is one of the major 
components that consist of the teleoperation, the object 
manipulation task after approaching is essential and 
challenging but has not received enough research attention. 
Successfully manipulating an object requires fine motions 
(i.e., motion constraints for task success [17]), such as 
approaching the object in a specific angle, grasping the 
object at a particular part, and applying the force in a certain 
manner [18]. To satisfy the certain constraints for a task, the 
operator has to use his/her own mental and physical 
capability to adjust the robot hand, beyond suffering from 
the general disembodiment problem and physical 
discrepancy of teleoperation. Thus, there is a great need of 
technologies that can enable the robot agents to proactively 
assist the operator in successfully tele-manipulating objects 
for various tasks.  

B. Influence of Uncertainty in Robot-Assisted 
Telemanipulation 
One of the main barriers in intent-based robot assistance is 
the uncertainty of intent inference could cause inappropriate 
robot assistance. If the robot’s modeling and planning 
process does not consider the uncertainty of intent inference, 
it can cause incorrect assistance, or task failure [9]. 
Uncertainty exists due to natural ambiguity of human 
motion. For instance, when a human grabs the body of a cup 
with a specific grasp pose in teleoperation, it is difficult to 
determine the manipulation intent for the grasp pose, 
although the pose itself could be for drinking for one user or 
for transferring the cup to another location for another user. 
In addition, indirect interaction of human hands with remote 
objects further increase the ambiguity of human motion and 
increase the uncertainty in intent inference.  
For those ambiguous human motions, there are indeed subtle 
unique differences for different tasks, which could provide 
better context to humans in predicting the intended action 
[11]. These subtle differences are critical to ensure the 
success of the task such as 1) a “drinking” task requires 
sufficient room on the top and grasping poses may dominate 
the handle, 2) a “transfer to another location” task requires 
sufficient room on the bottom to place the object safely, and 
3) a “handover” task requires sufficient room for another 
person to grab which tends to create a finger dominated 
grasp. These subtleties vary between different people; 
however, they are still key components to discern the task. 
Usually, these subtle differences are difficult to observe, 
which makes it hard for models to infer the appropriate 
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classification for a task, and consequently provide 
inappropriate assistance.  
To solve these open issues, an intent-uncertainty-aware grasp 
planning method is developed for robot-assisted 
telemanipulation. This approach enables robot-assisted 
telemanipulation in which the robot infers the human 
operator’s manipulation intent and provides grasping motion 
assistance to achieve the operator’s intended task. The 
contributions of this work are two-fold: 

1) Multi-Task Grasp Modeling. The modeling considers 
the ambiguity of human motion. Instead of building 
independent task models, some grasp poses share 
common features which result in satisfying multiple 
tasks. The models, therefore, contain overlap between 
features and poses. Additionally, non-overlapping 
areas are of special interest since they carry 
fundamentally different features from other tasks. 
Although these fundamental differences are often 
subtle, they are of critical need for the robust grasp 
planning model. Therefore, we developed a multi-task 
grasp modeling method to allow robots to understand 
the common features as well as subtle unique features 
which distinguish tasks. 

2) Intent-Uncertainty-Aware Grasp Planning. We 
developed an intent-uncertainty-aware planner to 
handle the uncertainty in human intent inference. 
Given the intent inference probability input, the 
planner first interprets the ambiguity level of human 
motion, then generates the grasp based on this 
ambiguity level. Highly ambiguous input may need a 

grasp pose that compromises features from all possible 
tasks. Input with low ambiguity generate a grasp pose 
that emphasize features for the higher inferred task.  

II. METHODS 

A. Framework Overview 
The overall framework process to handle this can be seen in 
Fig. 2. The three main components discussed in this section 
will be the multi-task robot model, the human intent 
ambiguity interpreter, and the intent-uncertainty-aware grasp 
planner. The multi-task robot model will consider the 
overlapping nature of different tasks due to common motion 
features shared by their grasp poses and allows the robot to 
understand the fundamental different features of these tasks. 
Grasping objects is ambiguous without a clear discrete 
difference between satisfying specific tasks because of the 
inherent nature of the manipulation problem where this varies 
between users. So, the interpretation of human intent 
inference provides a descriptor for the ambiguity level among 
the tasks the robot can satisfy. The planner will attempt to find 
a robot pose which will pull characteristics from different 
tasks depending upon the ambiguity levels among tasks.    

B. Multi-Task Robot Modeling 
Unlike more traditional models the model structure we 
propose uses common poses in conjunction with probability 
distribution. Traditional Bayesian structures [5][6], as shown 
on the left in Fig. 3, do not consider ambiguity[12] of task 
distinctions, where our method on the right shows the 
consideration for overlapping tasks. Current robot models 

 
Figure 2: This overview demonstrates the framework used to achieve an intent-uncertainty-aware grasp planning. The initial human grasp creates a 
probability for each principle task, w. To account for ambiguity the intersection of each principle task is considered, v. The robot model will also account 
for the intersection of tasks by using common poses. Both of these produce probability vectors which are used for the intent-uncertainty-aware grasp 
planning. A final grasp pose is then obtained from the planning process.  
 

 
Figure 1:  Intent interpretation from an ambiguous grasp lead to different solutions based upon the planning procedure. If the ambiguity in the intent is not 
considered it can lead to unsuccessful grasp configurations which result in the failure of the task. Considering ambiguity allows for subtle adjustments to 
be made to the grasp configuration to accommodate the task requirements which are close in intent and ensure the robustness of motion planning. 
Interpretation of ambiguous inputs, and uncertainty in model outputs is crucial for the planning procedures success. 
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create task models separately from one another—to create 
clear, independent distinctions between tasks—and lack 
consideration of common poses. This causes difficulties to 
find continuous features between poses. Common poses have 
a unique ability to satisfy multiple tasks, however, they may 
be sub-optimal to satisfying a single principle task and less 
transparent to independent models. However, traditional 
Bayesian structures can obtain probability rather easily [10]. 
To ensure the probability obtained for our model is correct it 
is imperative the training data is labeled appropriately and 
reflects the right side of Fig. 3.  
1)  Inclusive Task Labeling 
Common poses do add a degree of ambiguity compared to 
those of independent model strategies. Although, our 
approach takes into consideration the ambiguity by creating a 
multi-class Bayesian structure [13][14]. Our model considers 
this by giving an inclusive aspect where poses which satisfy 
more specific situations should be included in the more 
general cases. For instance, in Fig. 3, all tasks within the Task 
1 circle should  be considered within the Task 1 class. The 
example model created was for grasping a cup—as shown in 
Table I in conjunction with Fig. 3—for principle tasks which 
include: task 1, usage or drinking from a cup, task 2, transfer 
of a cup to another location, and task 3, handover of the cup 
to a person.  
Compared with traditional grasp modeling techniques, the  

TABLE II. INCLUSIVE LABELING FOR PRINCIPLE TASKS WITH 
CONSIDERATION OF COMMON POSES 

 
classes and labeling of our modeling method will not be the 
three principle tasks, exclusively, rather they will contain 
seven classes in which the robot can satisfy. To label these 
classes correctly, the assumption made is a robot pose which 
satisfies more principle tasks than necessary is admissible to 
a more general class because it satisfies the necessary 
principle task. By creating an inclusive class structure, the 
model can begin to understand the subtle and unique 
differences among tasks. For instance, when looking at Table 
I, we observe a group labeled for the class “Usage and 
Transfer”. Poses falling under this label satisfy not only the 
class “Usage and Transfer”, but also “Usage” and “Transfer”, 
thus the pose should be considered into the training sets for 
“Usage” and “Transfer” tasks.  This duplication, or 
information sharing, of training sets allows the more inclusive 
class (such as Task 1, Task 2, and Task 3) to identify the 
distinctions between unique and common features. Table II 
shows how to appropriately label and consider the training set 
for the model created by the right of Fig. 3 in conjunction with 
Table I. The letters U, T, and H stands for the principle tasks, 
“Usage”, “Transfer”, and “Handover” respectively. The 
columns represent each class the robot model knows, while 
the rows are the strict subset of events which make up each 
class. A pose which is used for “Usage and Transfer only” 
(row 4), can satisfy both “Usage”(column 1) and 
“Transfer”(column 2) alone as well as “Usage and 
Transfer”(column 4). Additionally, for instance, all poses 
which could be used to satisfy a “Usage” task (column 1) 
include, “Usage only”(row 1), “Usage and Transfer 
only”(row 4), “Usage and Handover only”(row 5), and “All 
Tasks”(row 7). 

 
Figure 3: Robot models need to consider task ambiguity. Current 
models(left) do not consider ambiguity or where multiple tasks may be 
satisfied simultaneously. An alternative model(right) considers tasks 
being concurrently fulfilled by common poses.  
 

TABLE I. SUBTLE FEATURE COMPARISON OF DIFFERENT COMMON POSES WITHIN A MULTI-TASK MODEL 

Task Usage Transfer Handover Usage and 
Transfer 

Usage and 
Handover 

Transfer and 
Handover All 

Top 
View 

 
 

Left 
View 

       

Subtle 
Detail 

More fingers to 
dominate handle 

space. Lower 
palm to leave 

sufficient room 
on top to drink. 

Prefers to be 
perpendicular to 
table and higher 
on cup to ensure 
space on bottom 

to place cup. 

Lower palm, 
leaves room for 
another user to 
grasp handle 

(180 ̊ rotation of 
wrist). 

Fingers 
dominate the 
handle. Palm 

position allows 
room to drink 
and place cup. 

Few fingers in 
handle space but 
occupies more 

of it. Lower 
palm to leave 
room to drink. 

Few fingers in 
the handle space 
for user. Higher 
palm to ensure 

space on bottom. 

Few fingers in 
the handle space 
for user. Enough 

space to drink 
and place. 
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When observing Table I, we notice between the classes the 
pose features are subtle, yet they are critical. By labeling the 
training poses in this manner, we train the model to identify 
subtle differences and common poses for the principle tasks 
as well as unique specific cases within the principle tasks. 
Subtle features can be difficult to observe and determine, 
however, they provide better context to a human user. Table I 
includes the subtle features used for our model including high 
level concepts such as palm contact, clearance from the top of 
the cup, and sufficient room for a user to grasp. These 
subtleties are further discussed in the table. 
2)  Multi-Task Modeling 
The goal of the Bayesian model is to obtain the posterior 
probability, or the probability of each class given a continuous 
pose[15][16]. Each pose contains continuous features, x, 
which can include position, orientation, force, and object 
features. Our model included palm center, and palm 
orientation as well as finger force. The model is a Naïve Bayes 
classifier (NB), but uses the features to create a multivariate 
normal distribution as shown in (1).  The key parameters from 
the model for each classification zone, k, include: the mean 
value of each feature, µk, the covariance matrix, ∑k, and the 
prior probability, P(k). These parameters are learned from the 
training set by using the Expectation Maximization 
Algorithm. In (1), it shows the conditional probability of x 
given k, where d is the length of x. 

P(𝐱|k) =  ଵ

ටୢୣ୲ (∑ౡ)∗(ଶ஠)ౚ
eିభ

మ∗(𝐱ିµౡ)౐∗∑ౡ
షభ∗(𝐱ିµౡ) (1) 

With this equation, Bayesian models obtain the posterior 
probability of the class k given x with (2), where the class with 
the highest probability is the label for x.  

P(k|𝐱) = ୔(𝐱|୩)∗୔(୩)
∑ ୔(𝐱|୩)∗୔(୩)ే

ౡ
    (2) 

Each probability of a class is then put into what is referred to 
as the robot probability vector, Pk. The model we created 
from Fig. 3 and Tables I and II, mean there are seven classes 
and the probability for one pose to satisfy all seven classes 
must sum to one. 

C.   Intent Ambiguity Interpretation 
To handle the ambiguity, the modeling of human 
manipulation intent follows a concept of multi-label 
classification, where two, three, or m principle task 
classification model outputs could be satisfied at the same 
time, shown in Fig. 1. Each classification model produces a 
probability and is put into a vector of mx1 size, where this is 
referred as the classification input vector, w.  Since each 
model output is independently obtained, we can identify each 
joint probability case. This will generate a vector of size 2m 
where m is the number of principle tasks. This vector of 
possible events with their subsequent probability will be 
referred to as the human probability vector, u, shown in (3), 
where ѱ(m) is the power set from 1 to m task classification 
models, and Y is each subset of ѱ(m). 
𝑃൫⋂ 𝑤௜௜∈௒ ⋂ ¬𝑤௝௝∉௒,௝∈௠ ൯ = ∏ 𝑃(𝑤௜)௜∈௒ ∏ 1 −௝∉௒,௝∈௠   
 𝑃(𝑤௝), 𝑌 ⊂ ѱ(𝑚)                                                                      (3) 
For example, consider when m=3 as shown in Fig. 1. The 
classification probability vector (0.88,0.9,0.2) produces a 
vector where each combination of the principle tasks is 

considered true and false. So when event U∩¬T∩¬H occurs, 
the probability is 0.88*(1-0.9)*(1-0.2) = 0.07, while when the 
event U∩T∩¬H occurs, the probability is 0.88*0.9*(1-
0.2)=0.63. 
Since the robot model is unaware of the event where inaction 
should be taken(¬U∩¬T∩¬H), it is important to eliminate 
this action and normalize the rest of the probability vector 
where at least one principle task m is satisfied. This is to 
ensure the robot classes, k, is equal to 2m-1. This new vector 
is known as the target probability vector, v, and is shown in 
(4). The target probability vector now has a scenario 
associated with each class of the robot model previously 
discussed in Table I and II.  

𝑣௜ = ௨೔
∑ ห௨ೕหమ೘షభ

ೕ
 ∀ 𝑖 < 2௠   (4) 

Alternatively, a designer could force the robot to ask for 
clarification if the inaction task is sufficiently high. The 
human probability vector has a distinct advantage over using 
the classification intent by allowing more descriptive 
behavior of the type of features the robot model should use. 
For instance, Fig. 1 shows if the classification intents for 
grasping a cup for Usage and Transfer are similar and high 
while the Handover task is low, then the decision process 
should carry features which demonstrate and use features 
from both higher intents. Additionally, the human probability 
vector inherently accounts for uncertainty in human intent by 
allowing for the system to consider multiple classes at once 
as well as the varying degree the multiple classes may 
influence the outcome of chosen features. 

D.    Intent-Uncertainty-Aware Grasp Planning  
The planning process involves taking the ambiguity levels 
developed in the intent interpretation section and using them 
as a basis for the determining characteristics needed. Whether 
the ambiguity levels are high or low will determine which set 
of features should predominantly be used from the robot 
model classes developed earlier. The planning process will 
start from a known pose, which is closest to the ambiguity 
levels, then continue to refine the features of the pose until a 
more reflective pose is created. The refining step is iterative 
and will attempt to use both unique and subtle characteristics 
from all classes as it needs until convergence.  
The planning process includes using a Bayesian structure to 
best fit the target probability vector. Traditional Bayesian 
models attempt to maximize the probability of one region or 
class over all others, since these models are based on 
independent model strategies, rather than minimize the 
difference between the current and target probability vectors. 
By matching the probability vectors, the subtle and unique 
features of the robot model should reflect the best 
combination of intent to make it predictable to the user. The 
first step is to identify the grasp class out of the defined 7 and 
select an initial grasp pose from the training set of this class, 
since this is currently the best approximation the robot model 
can make. This best approximation is done by taking the 
highest class of the human probability vector and choosing 
the best pose which is reflected in the class of the robot model. 
Determining the best pose within the class can be done by 
using the objective function as shown in (5). The objective 
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function is a least square regression which will attempt to 
match the robot probability vector to the target probability 
vector. 

 𝑚𝑖𝑛 ଵ
ଶ

∑ (𝑣௞ −௞ 𝑃௞)ଶ    (5) 
By mimicking the probability, the unique and subtle features 
of the robot model will reflect those most similarly to the 
human intent. This is due to the robot model classes 
containing both the unique and subtle features which the 
planner takes characteristics. The next step is to refine this 
initial approximation and determine how the features need to 
be adjusted. To determine the amount of adjustments the 
planner will take, from a unique feature to a more common 
feature or vice versa, a gradient descent method was applied 
as shown in (6).  

ങುೖ
ങೣ (𝑣௞ − 𝑃௞) ∀𝑘            (6) 

This can be solved using finite-difference methods [7] or 
analytically using matrix calculus [8]. This approach will use 
the ambiguity levels as a guide to determine which subtle or 
unique features are more critical, or influential in ensuring a 
successful grasp pose. Afterwards, constraint equations will 
be applied—which are robot and case dependent based upon 
features selected thus will be left to the reader’s 
discrepancy—and the objective function will be evaluated 
once again. The overall algorithm can be seen in Algorithm 1. 
All together these pieces will provide the best features to 
match the human intent.  

 
III. EXPERIMENT AND RESULTS 

A. Experimental Setup 
The experimental setup included using a Kinova Mico arm as 
well as a mug for the object of interaction. The robot model 
was gathered for three tasks: drinking/using the cup, handing 
the cup over to a person, and transferring the cup to another 
location. The robot model only considered features for the 
final grasp configuration and did not include trajectory or 
temporal features, however, the force in which the fingers 
applied was considered. The robot model was created by 
developing expert analysis of rules to determine which task 
could be satisfied. The rules developed express extreme cases 
where there are certain cases of no overlap between principle 
tasks. The robot was then manually moved to obtain the 
training data. Additionally, the optimization algorithm used 

was fmincon [7] available in MATLAB, however, other 
optimization algorithms may be used to achieve quicker 
convergence. The classification intent was simulated for the 
experiment to represent where one task is dominant, two tasks 
are codominant, and all three tasks are equal. Two different 
types of analysis were done to verify the method. The first 
was an objective result by comparing the initial intent 
inference and probability distribution with those created by 
the final pose configuration. The other analysis was the 
subjectivity and predictability of the pose by a human user.  

B. Objective Results    
Due to the planning framework, the resulting poses and 
solutions are deterministic. The results shown are for three 
separate cases which include: a single task where the target 
intent is for usage, a task which holds two likely intents for 
usage and transfer, and lastly a task where the intent for all 
tasks are equally likely. Table III shows the comparison of the 
target probability vector, v, and robot probability vector, Pk. 
These results show when the individual task is the target task 
it primarily takes features from this population, while mostly 
disregarding other populations. This coincides to how 
independent model strategies exist. It is shown the more 
ambiguity, or the closer the task intents are to one another, the 
better the optimization can handle pulling features from the 
separate populations to achieve a solution. We can also 
observe how close the final intent inference of the three 
principle tasks we get to compared to the initial intent 
inference, w, in Table IV below. 

TABLE III. POSTERIOR PROBABILITY VECTOR COMPARISON 

 

TABLE IV. PRINCIPLE INTENT INFERENCE COMPARISON 

 

Table IV shows the comparison of the initial target intent and 
the final intent given by the final pose. This shows the more 
ambiguous the initial intent the better the pose can satisfy it. 
In addition to checking the objective posterior probability and 
intent of the poses, it is also imperative to observe the grasp 
pose to determine if it could satisfy the given tasks. 

C. Subjective Results 
For the subjective analysis, there are two main properties to 
identify. The first, is to determine if poses can satisfy true 
tasks, while the second is observe the subtle features of the 
final pose configurations. To analyze both properties, observe 
Fig. 5. It shows the comparison between two ambiguous 

Algorithm 1: Intent-Uncertainty-Aware Grasp Planning 
Input: Multi-task Robot Model NB, Classification 
Intent Vector w 
Output: x, Pk 
1: Evaluate w to find ambiguity levels, v 
2:  Obtain starting pose x, by choosing closest to known 
level to v from NB 
3:  while iter < iteration_max or obj < tolerance do 
4:  𝑷𝒌 = 𝑁𝐵(𝒙) 
5:  obj = భ

మ ∑ (𝒗௞ − 𝑷𝒌)ଶ
௞   

6:  dobj = ങ𝑷𝒌
ങೣ (𝒗𝒌 − 𝑷𝒌) 

7:  x = updateVariables(x,BN,obj,dobj) 
8:  𝑖𝑡𝑒𝑟 Å 𝑖𝑡𝑒𝑟 +  1 
9: end while 
10: Return x, Pk  
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intents between the transfer and usage task. This figure shows 
the issues where independent models may fail or possibly be 
lucky to succeed. The intent for grasp pose b) is (0.9,0.9,0.1), 
so it is difficult to determine which to task to follow. For 
instance, if the true task is usage and the independent model 
method incorrectly infers the task is transfer, it will produce 
the grasp pose a) shown on the left. This grasp has subtle 
differences which fails for usage, such as a finger covering 
the top of the cup and leaving insufficient room to drink. 
While grasp c) appears to be an optimal grasp for drinking a 
cup, although it is not optimal for transferring the object 
because it lacks palm contact with the cup and is a finger 
dominated grab which may not be a stable hand configuration 
for a transfer task. Grasp b) takes features from both usage 
and transfer populations, which generate poses a) and c), to 
produce a pose which is better equipped to handle both tasks. 
The palm is close to the cup, which can satisfy a stable grasp, 
while also leaving sufficient room on the top to drink from. 
The subtle differences allow a change in the finger placement, 
sufficient room to drink, and palm contact for a more stable 
grasp. These subtle differences of features within a pose allow 
for a smoother transition of tasks which reduce the risk for 
inferring the wrong intent. Humans are keen on picking up 
these subtle differences, so it is critical to account for the 
vagueness of intent and create models which are more flexible 
towards it.  
Additionally, human predictability was also an important 
factor to consider when analyzing the poses the robot 
distinguished. The human expert was to identify 50 poses 
generated by the model and correctly label the pose for which 
tasks it could satisfy. The expert was able to distinguish 80% 
of the poses as the correctly labeled ones. The human subject 
often appeared to believe the pose could satisfy more tasks 
than it could which may be a result of the user seeing features 
from the other minor tasks which the optimization may have 
incorporated as part of the posterior probability vector. This 
shows the importance of creating continuous models since it 
is difficult to determine the vague intent presented by grasp 
configurations.   

IV. DISCUSSION 

The ambiguity of distinctions between the different grasp 
configurations requires robot models to become continuous 
rather than discrete models. The methods provided 
demonstrate an effective way to consider and convert the 
robot models into a more appropriate framework. It is 
important to understand there are optimal poses which can 
satisfy a specific task, and there are also sub optimal poses 
which can satisfy all tasks. The goal of this work is to find sub 
optimal poses which are better solutions than a default 
preplanned grasps which can satisfy all tasks by transforming 
the problem into a continuous system. This is done by 
interpreting the human intent as independent and 
transforming the probability to a more descriptive 
representation. The results also show the subtle feature 
changes can have an impact in influencing predictability. 
Obtaining human intent and creating effective human 
inferencing models creates uncertainty which needs to be 
accounted for when having a robot system make decisions. 
This makes it difficult to confidently use independent model 
strategies compared to probability distribution strategies. All 
together this system accounts for uncertainty by creating a 
continuous Bayesian structure from which the final intent 
distribution can closely mimic the human intent.  

V. CONCLUSION 
The overall method proves effective due its practicability 
compared to other modeling methods. However, it can still be 
improved before being used for true telemanipulation. The 
evaluation for different levels of overlap between principle 
tasks is a necessary next step. It is also critical to analyze 
models for other objects. Lastly, more human subjects are 
needed to further validate the predictability.  
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Figure 5: There are three separate grasp poses a) represents the pose which satisfies the transfer task and not the other two tasks as seen by the intent 
provided on the top. This grasp dominates the top of the cup to leave room to place and it is unsuitable for usage. b) is the pose which our model generated 
which carries the subtleties to satisfy both usage and transfer while not satisfying handover. The robot hand dominates the handle by having a majority of 
fingers around it, while leaving sufficient room to drink from the top. The palm is higher on the cup. c) is the pose for which satisfies the usage task. The 
fingers dominate the handle space by having a majority of fingers near the handle, sufficient room on the top for drinking.  
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