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Abstract— Promoting a robot agent’s autonomy level, which
allows it to understand the human operator’s intent and
provide motion assistance to achieve it, has demonstrated great
advantages to the operator’s intent in teleoperation. However,
the research has been limited to the target approaching
process. We advance the shared control technique one step
further to deal with the more challenging object manipulation
task. Appropriately manipulating an object is challenging as it
requires fine motion constraints for a certain manipulation
task. Although these motion constraints are critical for task
success, they are subtle to observe from ambiguous human
motion. The disembodiment problem and physical discrepancy
between the human and robot hands bring additional
uncertainty, make the object manipulation task more
challenging. Moreover, there is a lack of modeling and planning
techniques that can effectively combine the human motion
input and robot agent’s motion input while accounting for the
ambiguity of the human intent. To overcome this challenge, we
built a multi-task robot grasping model and developed an
intent-uncertainty-aware grasp planner to generate robust
grasp poses given the ambiguous human intent inference
inputs. With this validated modeling and planning techniques,
it is expected to extend teleoperated robots’ functionality and
adoption in practical telemanipulation scenarios.

1. INTRODUCTION

A. Need of Robot Assistance in Telemanipulation

Teleoperating a robot allows operators to carry out tasks
remotely with the robot as a medium. This indirect
interaction brings in many advantages including increased
motion precision and strength, and remote access to work
fields that might be inaccessible or hazardous to the
operator. However, successfully teleoperating the robot for a
task is often difficult and complex due to indirect
manipulation and physical discrepancy between a human
hand and robot hand[1][2]. To reduce the control difficulty
of teleoperated robots and the operation workload of the
operators, the robot agent is being designed to have more
intelligence and autonomy, thus, to understand the operator’s
intent and assist in achieving it. Research has demonstrated
that in a target approaching process, the robot agent can infer
the target location by observing the operator’s motion
trajectory and provide motion assistance in approaching the
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target [3][4]. Much research has been documented on how to
precisely infer the target location and how to effectively
blend the human input trajectory and robot agent’s input.
Even though the approaching process is one of the major
components that consist of the teleoperation, the object
manipulation task after approaching is essential and
challenging but has not received enough research attention.
Successfully manipulating an object requires fine motions
(i.e., motion constraints for task success [17]), such as
approaching the object in a specific angle, grasping the
object at a particular part, and applying the force in a certain
manner [18]. To satisfy the certain constraints for a task, the
operator has to use his/her own mental and physical
capability to adjust the robot hand, beyond suffering from
the general disembodiment problem and physical
discrepancy of teleoperation. Thus, there is a great need of
technologies that can enable the robot agents to proactively
assist the operator in successfully tele-manipulating objects
for various tasks.

B. Influence of Uncertainty in Robot-Assisted
Telemanipulation

One of the main barriers in intent-based robot assistance is
the uncertainty of intent inference could cause inappropriate
robot assistance. If the robot’s modeling and planning
process does not consider the uncertainty of intent inference,
it can cause incorrect assistance, or task failure [9].
Uncertainty exists due to natural ambiguity of human
motion. For instance, when a human grabs the body of a cup
with a specific grasp pose in teleoperation, it is difficult to
determine the manipulation intent for the grasp pose,
although the pose itself could be for drinking for one user or
for transferring the cup to another location for another user.
In addition, indirect interaction of human hands with remote
objects further increase the ambiguity of human motion and
increase the uncertainty in intent inference.

For those ambiguous human motions, there are indeed subtle
unique differences for different tasks, which could provide
better context to humans in predicting the intended action
[11]. These subtle differences are critical to ensure the
success of the task such as 1) a “drinking” task requires
sufficient room on the top and grasping poses may dominate
the handle, 2) a “transfer to another location” task requires
sufficient room on the bottom to place the object safely, and
3) a “handover” task requires sufficient room for another
person to grab which tends to create a finger dominated
grasp. These subtleties vary between different people;
however, they are still key components to discern the task.
Usually, these subtle differences are difficult to observe,
which makes it hard for models to infer the appropriate
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Figure 1: Intent interpretation from an ambiguous grasp lead to different solutions based upon the planning procedure. If the ambiguity in the intent is not
considered it can lead to unsuccessful grasp configurations which result in the failure of the task. Considering ambiguity allows for subtle adjustments to
be made to the grasp configuration to accommodate the task requirements which are close in intent and ensure the robustness of motion planning.
Interpretation of ambiguous inputs, and uncertainty in model outputs is crucial for the planning procedures success.

classification for a task, and
inappropriate assistance.

To solve these open issues, an intent-uncertainty-aware grasp
planning method is developed for robot-assisted
telemanipulation. This approach enables robot-assisted
telemanipulation in which the robot infers the human
operator’s manipulation intent and provides grasping motion
assistance to achieve the operator’s intended task. The
contributions of this work are two-fold:

1) Multi-Task Grasp Modeling. The modeling considers
the ambiguity of human motion. Instead of building
independent task models, some grasp poses share
common features which result in satisfying multiple
tasks. The models, therefore, contain overlap between
features and poses. Additionally, non-overlapping
areas are of special interest since they carry
fundamentally different features from other tasks.
Although these fundamental differences are often
subtle, they are of critical need for the robust grasp
planning model. Therefore, we developed a multi-task
grasp modeling method to allow robots to understand
the common features as well as subtle unique features
which distinguish tasks.

2) Intent-Uncertainty-Aware Grasp Planning. We
developed an intent-uncertainty-aware planner to
handle the uncertainty in human intent inference.
Given the intent inference probability input, the
planner first interprets the ambiguity level of human
motion, then generates the grasp based on this
ambiguity level. Highly ambiguous input may need a

consequently provide

grasp pose that compromises features from all possible
tasks. Input with low ambiguity generate a grasp pose
that emphasize features for the higher inferred task.

II. METHODS

A. Framework Overview

The overall framework process to handle this can be seen in
Fig. 2. The three main components discussed in this section
will be the multi-task robot model, the human intent
ambiguity interpreter, and the intent-uncertainty-aware grasp
planner. The multi-task robot model will consider the
overlapping nature of different tasks due to common motion
features shared by their grasp poses and allows the robot to
understand the fundamental different features of these tasks.
Grasping objects is ambiguous without a clear discrete
difference between satisfying specific tasks because of the
inherent nature of the manipulation problem where this varies
between users. So, the interpretation of human intent
inference provides a descriptor for the ambiguity level among
the tasks the robot can satisfy. The planner will attempt to find
a robot pose which will pull characteristics from different
tasks depending upon the ambiguity levels among tasks.

B. Multi-Task Robot Modeling

Unlike more traditional models the model structure we
propose uses common poses in conjunction with probability
distribution. Traditional Bayesian structures [5][6], as shown
on the left in Fig. 3, do not consider ambiguity[12] of task
distinctions, where our method on the right shows the
consideration for overlapping tasks. Current robot models
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Figure 2: This overview demonstrates the framework used to achieve an intent-uncertainty-aware grasp planning. The initial human grasp creates a
probability for each principle task, w. To account for ambiguity the intersection of each principle task is considered, v. The robot model will also account
for the intersection of tasks by using common poses. Both of these produce probability vectors which are used for the intent-uncertainty-aware grasp

planning. A final grasp pose is then obtained from the planning process.
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Figure 3: Robot models need to consider task ambiguity. Current
models(left) do not consider ambiguity or where multiple tasks may be
satisfied simultaneously. An alternative model(right) considers tasks
being concurrently fulfilled by common poses.

create task models separately from one another—to create
clear, independent distinctions between tasks—and lack
consideration of common poses. This causes difficulties to
find continuous features between poses. Common poses have
a unique ability to satisfy multiple tasks, however, they may
be sub-optimal to satisfying a single principle task and less
transparent to independent models. However, traditional
Bayesian structures can obtain probability rather easily [10].
To ensure the probability obtained for our model is correct it
is imperative the training data is labeled appropriately and
reflects the right side of Fig. 3.

1) Inclusive Task Labeling

Common poses do add a degree of ambiguity compared to
those of independent model strategies. Although, our
approach takes into consideration the ambiguity by creating a
multi-class Bayesian structure [13][14]. Our model considers
this by giving an inclusive aspect where poses which satisfy
more specific situations should be included in the more
general cases. For instance, in Fig. 3, all tasks within the Task
1 circle should be considered within the Task 1 class. The
example model created was for grasping a cup—as shown in
Table I in conjunction with Fig. 3—for principle tasks which
include: task 1, usage or drinking from a cup, task 2, transfer
of a cup to another location, and task 3, handover of the cup
to a person.

Compared with traditional grasp modeling techniques, the

TABLE II. INCLUSIVE LABELING FOR PRINCIPLE TASKS WITH

CONSIDERATION OF COMMON POSES

HTU Class 1t 2: 3: 4: 5: 6: a:
k U T H unT UNH TNH UNTNH
0 0 1 1 0 0 0 0 0 0
010 0 1 0 0 0 0 0
100 0 0 1 0 0 0 0
011 1 1 0 1 0 0 0
1 01 1 0 1 0 1 0 0
110 0 1 1 0 0 1 0
111 1 1 1 1 1 1 1

Principle Tasks: U = Usage, T = Transfer, H = Handover

classes and labeling of our modeling method will not be the
three principle tasks, exclusively, rather they will contain
seven classes in which the robot can satisfy. To label these
classes correctly, the assumption made is a robot pose which
satisfies more principle tasks than necessary is admissible to
a more general class because it satisfies the necessary
principle task. By creating an inclusive class structure, the
model can begin to understand the subtle and unique
differences among tasks. For instance, when looking at Table
I, we observe a group labeled for the class “Usage and
Transfer”. Poses falling under this label satisfy not only the
class “Usage and Transfer”, but also “Usage” and “Transfer”,
thus the pose should be considered into the training sets for
“Usage” and “Transfer” tasks.  This duplication, or
information sharing, of training sets allows the more inclusive
class (such as Task 1, Task 2, and Task 3) to identify the
distinctions between unique and common features. Table II
shows how to appropriately label and consider the training set
for the model created by the right of Fig. 3 in conjunction with
Table I. The letters U, T, and H stands for the principle tasks,
“Usage”, “Transfer”, and “Handover” respectively. The
columns represent each class the robot model knows, while
the rows are the strict subset of events which make up each
class. A pose which is used for “Usage and Transfer only”
(row 4), can satisfy both “Usage”(column 1) and
“Transfer’(column 2) alone as well as “Usage and
Transfer”(column 4). Additionally, for instance, all poses
which could be used to satisfy a “Usage” task (column 1)
include, “Usage only”’(row 1), “Usage and Transfer
only”’(row 4), “Usage and Handover only”(row 5), and “All
Tasks”(row 7).

TABLE L SUBTLE FEATURE COMPARISON OF DIFFERENT COMMON POSES WITHIN A MULTI-TASK MODEL
Usage and Usage and Transfer and
Task Usage Transfer Handover Transfer Handover Handover All
Top -~ »
View ; ]
]
& 2 &d ad
Left y v 4 = oy
More fingers to Prefers to be Lower palm, Fingers Few fingers in . .
. . . Few fingers in Few fingers in
dominate handle | perpendicularto | leaves room for dominate the handle space but
. . the handle space | the handle space
Subtle space. Lower table and higher another user to handle. Palm occupies more .
) .. . for user. Higher for user. Enough
Detail palm to leave on cup to ensure grasp handle position allows of it. Lower .
. N . . palm to ensure space to drink
sufficient room space on bottom | (180 °rotation of room to drink palm to leave
. . . space on bottom. and place.
on top to drink. to place cup. wrist). and place cup. room to drink.
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When observing Table I, we notice between the classes the
pose features are subtle, yet they are critical. By labeling the
training poses in this manner, we train the model to identify
subtle differences and common poses for the principle tasks
as well as unique specific cases within the principle tasks.
Subtle features can be difficult to observe and determine,
however, they provide better context to a human user. Table [
includes the subtle features used for our model including high
level concepts such as palm contact, clearance from the top of
the cup, and sufficient room for a user to grasp. These
subtleties are further discussed in the table.
2) Multi-Task Modeling
The goal of the Bayesian model is to obtain the posterior
probability, or the probability of each class given a continuous
pose[15][16]. Each pose contains continuous features, x,
which can include position, orientation, force, and object
features. Our model included palm center, and palm
orientation as well as finger force. The model is a Naive Bayes
classifier (NB), but uses the features to create a multivariate
normal distribution as shown in (1). The key parameters from
the model for each classification zone, k, include: the mean
value of each feature, i, the covariance matrix, Y, and the
prior probability, P(k). These parameters are learned from the
training set by wusing the Expectation Maximization
Algorithm. In (1), it shows the conditional probability of x
given k, where d is the length of x.

P(x|k) = L e_%*(X—Hk)T*Zk_l*(X—Nk) (1)

JdetCp+emd

With this equation, Bayesian models obtain the posterior
probability of the class k given x with (2), where the class with
the highest probability is the label for x.

T
P(KIX) = SKpaiopao 2)

Each probability of a class is then put into what is referred to
as the robot probability vector, Pr. The model we created
from Fig. 3 and Tables I and II, mean there are seven classes
and the probability for one pose to satisfy all seven classes
must sum to one.

C. Intent Ambiguity Interpretation

To handle the ambiguity, the modeling of human
manipulation intent follows a concept of multi-label
classification, where two, three, or m principle task
classification model outputs could be satisfied at the same
time, shown in Fig. 1. Each classification model produces a
probability and is put into a vector of mx1 size, where this is
referred as the classification input vector, w. Since each
model output is independently obtained, we can identify each
joint probability case. This will generate a vector of size 2”
where m is the number of principle tasks. This vector of
possible events with their subsequent probability will be
referred to as the human probability vector, u, shown in (3),
where P(m) is the power set from 1 to m task classification
models, and Y is each subset of y(m).

P(Niey Wi Njey jem —W;) = [liey PW) Tjgy jem 1 —
P(w;),Y c y(m) 3
For example, consider when m=3 as shown in Fig. 1. The
classification probability vector (0.88,0.9,0.2) produces a
vector where each combination of the principle tasks is
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considered true and false. So when event UN—=TN—=H occurs,
the probability is 0.88*(1-0.9)*(1-0.2) = 0.07, while when the
event UNTN—H occurs, the probability is 0.88*0.9*(1-
0.2)=0.63.
Since the robot model is unaware of the event where inaction
should be taken(=UN—=TN=H), it is important to eliminate
this action and normalize the rest of the probability vector
where at least one principle task m is satisfied. This is to
ensure the robot classes, k, is equal to 2™-1. This new vector
is known as the target probability vector, v, and is shown in
(4). The target probability vector now has a scenario
associated with each class of the robot model previously
discussed in Table I and II.

_ i
Alternatively, a designer could force the robot to ask for
clarification if the inaction task is sufficiently high. The
human probability vector has a distinct advantage over using
the classification intent by allowing more descriptive
behavior of the type of features the robot model should use.
For instance, Fig. 1 shows if the classification intents for
grasping a cup for Usage and Transfer are similar and high
while the Handover task is low, then the decision process
should carry features which demonstrate and use features
from both higher intents. Additionally, the human probability
vector inherently accounts for uncertainty in human intent by
allowing for the system to consider multiple classes at once
as well as the varying degree the multiple classes may
influence the outcome of chosen features.

Vi<2m 4)

D.  Intent-Uncertainty-Aware Grasp Planning

The planning process involves taking the ambiguity levels
developed in the intent interpretation section and using them
as a basis for the determining characteristics needed. Whether
the ambiguity levels are high or low will determine which set
of features should predominantly be used from the robot
model classes developed earlier. The planning process will
start from a known pose, which is closest to the ambiguity
levels, then continue to refine the features of the pose until a
more reflective pose is created. The refining step is iterative
and will attempt to use both unique and subtle characteristics
from all classes as it needs until convergence.

The planning process includes using a Bayesian structure to
best fit the target probability vector. Traditional Bayesian
models attempt to maximize the probability of one region or
class over all others, since these models are based on
independent model strategies, rather than minimize the
difference between the current and target probability vectors.
By matching the probability vectors, the subtle and unique
features of the robot model should reflect the best
combination of intent to make it predictable to the user. The
first step is to identify the grasp class out of the defined 7 and
select an initial grasp pose from the training set of this class,
since this is currently the best approximation the robot model
can make. This best approximation is done by taking the
highest class of the human probability vector and choosing
the best pose which is reflected in the class of the robot model.
Determining the best pose within the class can be done by
using the objective function as shown in (5). The objective



function is a least square regression which will attempt to
match the robot probability vector to the target probability
vector.
min%Zk(vk - P)? (5)

By mimicking the probability, the unique and subtle features
of the robot model will reflect those most similarly to the
human intent. This is due to the robot model classes
containing both the unique and subtle features which the
planner takes characteristics. The next step is to refine this
initial approximation and determine how the features need to
be adjusted. To determine the amount of adjustments the
planner will take, from a unique feature to a more common
feature or vice versa, a gradient descent method was applied
as shown in (6).

(v = Po) Vk ©)
This can be solved using finite-difference methods [7] or
analytically using matrix calculus [8]. This approach will use
the ambiguity levels as a guide to determine which subtle or
unique features are more critical, or influential in ensuring a
successful grasp pose. Afterwards, constraint equations will
be applied—which are robot and case dependent based upon
features selected thus will be left to the reader’s
discrepancy—and the objective function will be evaluated
once again. The overall algorithm can be seen in Algorithm 1.
All together these pieces will provide the best features to
match the human intent.

Algorithm 1: Intent-Uncertainty-Aware Grasp Planning
Input: Multi-task Robot Model NB, Classification

Intent Vector w

Output: x, P«

1: Evaluate w to find ambiguity levels, v

2: Obtain starting pose x, by choosing closest to known
level to v from NB

3: while iter < iteration _max or obj < tolerance do

4. P, = NB(x)

5: obj =¥, (v — P)?

6: dobj = Xk(v;, — Py)

7: x = updateVariables(x, BN,0bj,dobj)
8: iter €iter + 1

9: end while

10: Return x, P«

III. EXPERIMENT AND RESULTS

A. Experimental Setup

The experimental setup included using a Kinova Mico arm as
well as a mug for the object of interaction. The robot model
was gathered for three tasks: drinking/using the cup, handing
the cup over to a person, and transferring the cup to another
location. The robot model only considered features for the
final grasp configuration and did not include trajectory or
temporal features, however, the force in which the fingers
applied was considered. The robot model was created by
developing expert analysis of rules to determine which task
could be satisfied. The rules developed express extreme cases
where there are certain cases of no overlap between principle
tasks. The robot was then manually moved to obtain the
training data. Additionally, the optimization algorithm used
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was fmincon [7] available in MATLAB, however, other
optimization algorithms may be used to achieve quicker
convergence. The classification intent was simulated for the
experiment to represent where one task is dominant, two tasks
are codominant, and all three tasks are equal. Two different
types of analysis were done to verify the method. The first
was an objective result by comparing the initial intent
inference and probability distribution with those created by
the final pose configuration. The other analysis was the
subjectivity and predictability of the pose by a human user.

B. Objective Results

Due to the planning framework, the resulting poses and
solutions are deterministic. The results shown are for three
separate cases which include: a single task where the target
intent is for usage, a task which holds two likely intents for
usage and transfer, and lastly a task where the intent for all
tasks are equally likely. Table I1I shows the comparison of the
target probability vector, v, and robot probability vector, P;.
These results show when the individual task is the target task
it primarily takes features from this population, while mostly
disregarding other populations. This coincides to how
independent model strategies exist. It is shown the more
ambiguity, or the closer the task intents are to one another, the
better the optimization can handle pulling features from the
separate populations to achieve a solution. We can also
observe how close the final intent inference of the three
principle tasks we get to compared to the initial intent
inference, w, in Table IV below.

TABLE III. POSTERIOR PROBABILITY VECTOR COMPARISON

Single Task Single Task Two Task Two Task Three Task Three Task

HTU Target Final Target Final Target Final
001 0.7933 0.8156 0.0817 0.0998 0.0090 0.0143
010 0.0098 0.0336 0.0817 0.1003 0.0090 0.0102
100 0.0098 0.0347 0.0010 0.0197 0.0090 0.0044
011 0.0881 0.1108 0.7356 0.7533 0.0811 0.0801
101 0.0881 0.0000 0.0091 0.0000 0.0811 0.0809
110 0.0011 0.0053 0.0091 0.0269 0.0811 0.0805
111 0.0098 0.0000 0.0817 0.0000 0.7297 0.7295
TABLE IV. PRINCIPLE INTENT INFERENCE COMPARISON

Initial Single Single Two Two Three Three
Intent Task Task Task Task Task Task

Target Final Target Final Target Final
Usage 0.9 0.9265 0.9 0.8531 0.9 0.9049
Transfer 0.1 0.1497 0.9 0.8805 0.9 0.9004
Handover 0.1 0.04 0.1 0.0465 0.9 0.8953

Table IV shows the comparison of the initial target intent and
the final intent given by the final pose. This shows the more
ambiguous the initial intent the better the pose can satisfy it.
In addition to checking the objective posterior probability and
intent of the poses, it is also imperative to observe the grasp
pose to determine if it could satisfy the given tasks.

C. Subjective Results

For the subjective analysis, there are two main properties to
identify. The first, is to determine if poses can satisfy true
tasks, while the second is observe the subtle features of the
final pose configurations. To analyze both properties, observe
Fig. 5. It shows the comparison between two ambiguous
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Figure 5: There are three separate grasp poses a) represents the pose which satisfies the transfer task and not the other two tasks as seen by the intent
provided on the top. This grasp dominates the top of the cup to leave room to place and it is unsuitable for usage. b) is the pose which our model generated
which carries the subtleties to satisfy both usage and transfer while not satisfying handover. The robot hand dominates the handle by having a majority of
fingers around it, while leaving sufficient room to drink from the top. The palm is higher on the cup. c) is the pose for which satisfies the usage task. The
fingers dominate the handle space by having a majority of fingers near the handle, sufficient room on the top for drinking.

intents between the transfer and usage task. This figure shows
the issues where independent models may fail or possibly be
lucky to succeed. The intent for grasp pose b) is (0.9,0.9,0.1),
so it is difficult to determine which to task to follow. For
instance, if the true task is usage and the independent model
method incorrectly infers the task is transfer, it will produce
the grasp pose a) shown on the left. This grasp has subtle
differences which fails for usage, such as a finger covering
the top of the cup and leaving insufficient room to drink.
While grasp c) appears to be an optimal grasp for drinking a
cup, although it is not optimal for transferring the object
because it lacks palm contact with the cup and is a finger
dominated grab which may not be a stable hand configuration
for a transfer task. Grasp b) takes features from both usage
and transfer populations, which generate poses a) and c¢), to
produce a pose which is better equipped to handle both tasks.
The palm is close to the cup, which can satisfy a stable grasp,
while also leaving sufficient room on the top to drink from.
The subtle differences allow a change in the finger placement,
sufficient room to drink, and palm contact for a more stable
grasp. These subtle differences of features within a pose allow
for a smoother transition of tasks which reduce the risk for
inferring the wrong intent. Humans are keen on picking up
these subtle differences, so it is critical to account for the
vagueness of intent and create models which are more flexible
towards it.

Additionally, human predictability was also an important
factor to consider when analyzing the poses the robot
distinguished. The human expert was to identify 50 poses
generated by the model and correctly label the pose for which
tasks it could satisfy. The expert was able to distinguish 80%
of the poses as the correctly labeled ones. The human subject
often appeared to believe the pose could satisfy more tasks
than it could which may be a result of the user seeing features
from the other minor tasks which the optimization may have
incorporated as part of the posterior probability vector. This
shows the importance of creating continuous models since it
is difficult to determine the vague intent presented by grasp
configurations.
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IV. DISCUSSION

The ambiguity of distinctions between the different grasp
configurations requires robot models to become continuous
rather than discrete models. The methods provided
demonstrate an effective way to consider and convert the
robot models into a more appropriate framework. It is
important to understand there are optimal poses which can
satisfy a specific task, and there are also sub optimal poses
which can satisfy all tasks. The goal of this work is to find sub
optimal poses which are better solutions than a default
preplanned grasps which can satisfy all tasks by transforming
the problem into a continuous system. This is done by
interpreting the human intent as independent and
transforming the probability to a more descriptive
representation. The results also show the subtle feature
changes can have an impact in influencing predictability.
Obtaining human intent and creating effective human
inferencing models creates uncertainty which needs to be
accounted for when having a robot system make decisions.
This makes it difficult to confidently use independent model
strategies compared to probability distribution strategies. All
together this system accounts for uncertainty by creating a
continuous Bayesian structure from which the final intent
distribution can closely mimic the human intent.

V. CONCLUSION

The overall method proves effective due its practicability
compared to other modeling methods. However, it can still be
improved before being used for true telemanipulation. The
evaluation for different levels of overlap between principle
tasks is a necessary next step. It is also critical to analyze
models for other objects. Lastly, more human subjects are
needed to further validate the predictability.
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