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Modeling of Soft Robots Actuated by
Twisted-and-Coiled Actuators

Ben Pawlowski, Jiefeng Sun, Jing Xu, Yingxiang Liu, and Jianguo Zhao∗

Abstract—Soft robots made from soft materials outperform
traditional rigid robots in safety, maneuverability, and adaptabil-
ity. Various methods have been proposed to actuate soft robots
such as cables, pneumatic, or smart materials (e.g., shape memory
alloys, dielectric elastomer, or ionic polymer-metal composites,
etc.). In this paper, we propose to leverage a recently discovered
artificial muscle—Twisted-and-Coiled Actuators (TCAs)—to ac-
tuate soft robots. Compared with existing actuation methods,
TCAs can be actuated electronically, can be embedded inside
soft materials to enable distributed actuation, and are easy
and low-cost to manufacture. We establish a general modeling
framework for TCAs and TCA-actuated soft robots, including
a physics-based model for TCAs as well as both the forward
and inverse kinetostatics for TCA-actuated soft robots, where
the coupling between TCA actuation and deformation of soft
robots exists. Extensive experiments are conducted to verify
the proposed models. The presented work will not only lay a
theoretical foundation for using TCAs to actuate soft robots but
also enable wider application for TCA-actuated soft robots (e.g.,
manipulation or locomotion).

I. INTRODUCTION

SOFT robots made from soft materials have been an active
and expanding area of research recently because these

robots can leverage the inherent softness to accomplish tasks
(e.g., locomotion or manipulation) that cannot be achieved
with traditional rigid robots [1]–[4]. For instance, soft ma-
nipulators are safer than conventional rigid ones for humans
to interact with and be around [2], making them beneficial
for applications in medical devices, industry environments,
or in more personal settings (e.g., home). Soft manipulators
can also deal with uncertain or difficult environments as their
compliance allows for more adaptive motion and deformation
when contacting, grasping, or avoiding objects [2]. Due to their
advantages, many manipulators resembling biological struc-
tures have been developed recently (e.g., elephant trunks [5]
and octopus arms [6]–[9]).

For soft manipulators, or more generally soft robots, the
actuation is critical as it should be inherently soft to enable the
flexibility of the robots. Two major types of actuator are used:
tendons/cables [6], [8], [10]–[12] and pneumatics [7], [9],
[13], [14]. Both types are simple to implement, can generate
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large motion, and are inherently compliant. The drawbacks
for both actuation strategies are that they require bulky rigid
components to function. For instance, the cables need motors
to control the length for actuation, while pneumatics require
a compressor and valves, all of which can take up substantial
space, add weight, and decrease flexibility. Therefore, it is
desirable to use actuators that require less external components
for their functionality.

To address this problem, artificial muscles have recently
been leveraged for actuating soft robots. Three prominent
types are Shape Memory Alloys (SMAs), Dielectric Elas-
tomer Actuators (DEAs), and Ionic Polymer-Metal Compos-
ites (IPMCs). SMAs can generate large actuations and forces,
but have significant hysteresis and slow actuation rates [15],
[16]. DEAs can actuate fast and accurately, but they require
extremely high voltages and generate small forces [17]–[19].
IPMCs can generate large bending motion, but have large
hysteresis and limited force generation [20], [21].

Besides existing artificial muscles, a recently discovered
muscle, twisted-and-coiled actuator (TCA) [22], provides an-
other viable actuation for soft robots. A TCA can actuate
linearly if its temperature increases because of the thermal
expansion and its twisted and coiled structure. TCAs can be
conveniently fabricated from low-cost and commercially avail-
able polymer fibers (e.g., fishing lines, sewing threads) [22].
To fabricate a TCA, polymer threads are twisted together,
and then the twisted threads are coiled into a helix, which
is finally annealed to maintain the configuration. In general,
TCAs are capable of producing 2.48 kJ/kg of specific work
(∼50 times that of human muscle) and can provide 30%
reversible stroke [23].

TCAs have two major advantages over typical actuation
strategies (e.g., cables and pneumatics). First, they can be
actuated electronically through Joule/resistive heating, can be
embedded inside soft materials to enable distributed actuation,
and are easy and low-cost to manufacture. Therefore, they are
cost-effective actuators and will not need bulky components
to actuate a soft robot. Second, TCAs can sense their own
deformations through the change of their electrical resistance,
allowing for feedback of the geometry with simple current
sensors [24], [25]. TCAs also have distinctive advantages
compared with the most relevant actuator—coiled actuators
made from SMA wires called SMA coils [26]. In particular,
TCAs can be fabricated to contract or extend, while SMA coils
can only contract, which requires pre-stretch for actuation,
unnecessarily making the host soft structure stiffer [22].

Owing to the advantages of TCAs, we have recently in-
vestigated soft robots actuated by TCAs [27]. Fig. 1a depicts
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a TCA-actuated soft gripper with two soft fingers, each of
them actuated by an extension TCA placed at the side of the
finger. Although currently soft robots with only one TCA are
demonstrated with bending, we can embed multiple TCAs at
specific spatial locations inside soft materials to enable three-
dimensional motion. An illustrative example with three TCAs
placed in parallel inside a soft cylinder is shown in Fig. 1b.
Further, since TCAs can be driven by electricity, we can apply
different voltages to different segments of each TCA (e.g., the
leftmost TCA in Fig. 1b) to enable distributed actuation, which
can be leveraged for biologically inspired robot locomotion
such as crawling, walking, or swimming.
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Fig. 1. (a) The soft gripper prototype used in our application for grasping in
section V-D. (b) An illustrative example of a soft manipulator using multiple
TCAs and voltages to enable versatile three-dimensional motion.

Enabling TCA-actuated soft robots requires a modeling
framework to relate the deformation of soft body and the
actuation from TCAs. Such a framework, however, faces two
challenges. First, mathematical models for TCAs are cur-
rently under-explored. Most of existing models rely on system
identifications, which require extensive experiments and the
results are only valid for a specific TCA [28]–[30]. Since
TCAs’ performances vary with fabrication conditions [22], it
is critical to establish a general model for any TCA. Second,
for TCA-actuated soft robots, we cannot separate the modeling
for the body deformation from the actuation of TCAs since
the deformation is coupled with actuation, which is uncommon
and, to the best of our knowledge, is not discussed before.

There are three main contributions for this paper to ad-
dress the previous challenges. First, TCAs have been adopted
for many traditional robotic applications, e.g., robotic hand,
orthosis, etc. [28], [31]–[33], but directly leveraging TCAs
for soft robots is under-explored. Some preliminary research
investigates soft skin [34] with contraction TCAs. In this paper,
we show that extension TCAs are promising to actuate soft
robots as they eliminate the required pre-stretch for contrac-
tion TCAs. Second, we establish a physics-based model for
extension TCAs based on our previous research on contraction
TCAs [35] so that the models can be applied to any TCA
if the physical parameters (e.g., length, diameter, Young’s
modulus, etc.) are given. Compared with existing models, the
proposed models will be general enough to model TCAs for
other applications. Third, with the developed model for TCAs,
we establish kinetostatics (both forward and inverse) models
to capture the coupling between TCAs and soft bodies for

TCA-actuated soft robots. Since the coupling exists for any
embedded actuator, such a model can be applied to other soft
manipulators with couplings.

The rest of this paper is organized as follows. In section
II, we discuss the model of contraction TCAs developed
in our previous work [35] and adjust it to accommodate
extension TCAs. In section III, we develop the general forward
kinetostatic model for soft robots with embedded artificial
muscles and demonstrate the model with TCA actuation. In
section IV, we discuss a numerical method for the inverse
kinetostatics which uses the forward model to approximate
the local inverse, making it more computationally efficient
than direct inverse computations. In section V, we validate
the proposed models by comparing experimental results with
simulation results. We also apply the proposed models to
calculate the required temperature to successfully grasp objects
using a TCA-actuated soft gripper.

II. MODELING OF EXTENSION TCAS

In order to model TCA-actuated soft robots, we first es-
tablish a physics-based model for TCAs, which is currently
only available through system identifications. We have already
developed a model for contraction TCAs and experimentally
verified it [35]. In this paper, we will modify the model for
extension TCAs, which are more effective in actuating soft
robots since they do not require prestrech. For contraction
TCAs, we need to pre-stretch them to generate an initial
tension for actuation. The pre-tension causes the body to
immediately be deformed if a single contraction TCA is
embedded into soft material. Although we can choose stiffer
body material to limit the deformation, then the TCA needs to
generate a larger force to bend the body. We can also place a
pair of contraction TCAs antagonistically to cancel out the pre-
tension. In this case, however, one TCA also needs to generate
a larger force to overcome the pre-tension from the other TCA
to bend the body. Without pre-stretch, extension TCAs can
bend a softer body with a smaller force, making them more
effective in actuating soft robots.

Before introducing the models, we briefly describe the
fabrication process to distinguish contraction and extension
TCAs (detailed procedure in section V-A). The fabrication
process can be divided into three steps: twisting, coiling, and
annealing [22]. 1) twisting: one end of one or multiple polymer
fiber threads (fishing line or sewing thread) is twisted by a DC
motor, while the other end is constrained from rotation and an
appropriate hanging weight is also attached to it to keep the
fiber taut during the twisting process. 2) coiling: after a critical
amount of twists is inserted into the fiber, coils will start to
form automatically along the fiber if the motor keeps rotating.
Besides self-coiling, we can also coil the twisted fiber by
wrapping it around a mandrel in the same or opposite direction
of twisting. If the twisting and coiling directions are the same,
then we will obtain a contraction TCA, or an extension TCA
if they are opposite. 3) annealing: after coils are formed, the
twisted-and-coiled fiber is put into an oven to stabilize the
structure so that it permanently attains the coiled configuration
after being taken out of the oven. Eventually, we can obtain
either contraction or extension TCAs.
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The working principle for TCAs can be illustrated in Fig. 2
with extension TCAs as an example. With an extension TCA
shown in the left of Fig. 2 subject to an external force, if
the TCA’s temperature is increased, the twisted fiber will
tend to untwist due to radial thermal expansions, generating
an untwisting torque acting along the cross section of the
fiber. We do not consider the axial thermal expansion as the
materials typically used for TCAs have a much smaller axial
expansion (∼4% [22]) relative to their radial expansion. Such
untwisting torques will push the coils apart to generate the
extension motion due to the coiled structure of the TCA (right
of Fig. 2). For contraction TCAs, the temperature-induced
untwisting torque will be in the opposite direction, pulling
the coils together for contraction. This all allows for the TCA
to generate an axial force and deformation when a heat source
is applied. If electrically conductive fibers are used, then the
temperature can be increased via Joule heating of the TCAs.
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Fig. 2. Working principle of extension TCAs: They extend due to an internal
untwisting torque, coming from the radial thermal expansion. The larger
helices represent the coils of the TCAs and the smaller helices (two threads are
used for an example) wrapped around each other represent the twisted threads
inside the coil. The forces shown are applied and would be considered in the
negative direction.

The physics-based model will establish the relationship be-
tween the temperature, the applied force, and the displacement
of a given TCA. First, the untwisting torque in the twisted
fiber resulted from an increase of temperature can be obtained
as [35]:

τ =
GTJTφ0(1− d0/d)

l
(1)

where GT is the shear modulus, l is the length, and JT is
the polar second moment of area of the twisted fiber. φ is the
number of twists of the fiber, d is the outer diameter of the
twisted fiber, and the 0 subscript denotes the initial value. d
can be obtained from d0 through the coefficient of thermal
expansion ρ: d = d0(1 + ρ∆T ), where ∆T is the change in
the temperature from the reference value.

With the untwisting torque, we can establish the relationship
between the applied force, the displacement, and the torque
using Castigliano’s Second Theorem [35]. For this, the only
torque is the internally generated one and the force is from an
axial load at the end of the TCA. The resulting equation is

δ = f11F + f12τ (2)

where δ is the linear displacement of the TCA, F is the
applied force, and f11 and f12 are coefficients derived from
Castigliano’s Second Theorem [35] and are based on both the
geometry and the material properties of the fiber used in the
TCA. A positive δ corresponds to an increase in length and
a positive F acts in the direction of extension. The specific
forms of f11 and f12 are

f11 =
8n

π3d4

(
l

n

)3(
cos4α

GT
+

2sin2α cos2 α

ET

)
+

8n

πd2

(
l

n

)(
cos2α

2GT
+
sin2α

2ET

) (3)

f12 =
8n

π2d4

(
l

n

)2
cos2α

GT
(4)

where ET is the elastic modulus of the twisted fiber, while n is
the number of coils and α the pitch angle of the TCA. All the
parameters in Eqs. (3) and (4) are known physical parameters
for TCA except α. But α is a function of the displacement δ
through the following geometric relationship

δ = l(sinα− sinα0) (5)

where α0 is the initial pitch angle (Fig. 2). Therefore, given
any two parameters from δ, τ , and F , we can solve the other
parameter through Eq. (2).

To integrate the TCA model in Eq. (2) with the model of
TCA-actuated soft robots in the following section, we rewrite
the force exerted by a TCA in a vector form

F =
δ − f12τ
f11

ta (6)

to include the force’s direction using ta as the unit vector
tangent to the TCA. Here we assume that the force generated
by a TCA acts purely axially, which is reasonable due to TCAs
being radially symmetric and causing all the torque to result
in forces in the same direction. Eq. (6) will be used later for
the model of TCA-actuated soft robots.

We can derive the variables used in the modeling from
measurable parameters of a TCA: the twisted fiber length, l,
the final coiled length, L, the outer diameter of the TCA, D,
and the number of twists, N . To convert these to variables
in the model, we use the following geometric relationships:
α0 = asin(L/l), n = 2cos(α0)l/(πD), φ0 = 2πN , and
d0 = 2DL/l [22]. The d0 equation assumes that the TCA
is fully compressed (the coils touch) to start.

The material properties of the polymer thread we used
have been observed to change with temperature [30], [36].
We consider the relationships to be linear and use the values
from [30] for ρ and ET (we change the polynomial fit for ET
to a linear one).

III. FORWARD KINETOSTATICS OF TCA-ACTUATED SOFT
ROBOTS

Based on the modeling of TCA, we can establish models
for TCA-actuated soft robots. As our first step, we aim to
establish the kinetostatic model, which will serve as a basis
for dynamics modeling in the future. Since TCAs are driven
by temperature change, the forward kinetostatic problem for
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Fig. 3. The conceptual models for a TCA-actuated soft robot. a) Diagram for
a Cosserat Rod. p and R describe the position and rotation of the centerline
from the fixed frame. n and m represent the internal force and moment,
while f and l are the distributed force and moment, respectively. s is the
distance along the centerline from the base and varies from 0 at the base to L
at the tip. b) Schematic for the modeling of TCA-actuated soft robot. A TCA
extends if its temperature increases, deforming the robot from the reference
configuration.

a TCA-actuated soft robot is to determine the robot’s shape
given the temperature for each of the embedded TCAs. In this
case, we assume that the robot body be slender and thus can
be considered as a rod/beam. To model the kinetostatics of a
soft robot with embedded actuators, we combine the model for
the robot body and the actuation model. For the modeling of
robot body, we will leverage the Cosserat Rod model [11] to
formulate the kinematic equations to describe the positions and
rotations as well as static equations to establish the relationship
between internal forces and moments and the distributed forces
and moments. The actuation model will be the TCA model
presented in section II.

First, equations from the Cosserat Rod [11] can be used
to model a soft body: the transformation of the position
(Eq. (7)), the rotation of the centerline (Eq. (8)), the internal
and distributed force balance (Eq. (9)), and the internal and
distributed moment balance (Eq. (10)):

ṗ = Rν (7)

Ṙ = Rω̂ (8)
ṅ+ f = 0 (9)

ṁ+ ṗ× n+ l = 0 (10)

where the operator ˙ is the derivative with respect to s ∈
R, which is the distance along the centerline from the base
and varies from 0 to L, with L the length of the centerline
in the reference configuration (Fig. 3). The centerline is the
curve that passes through all the centroids of the cross sections
making up the body. p ∈ R3 is the position vector of the cross-
section relative to the fixed frame, R ∈ R3×3 the rotation
matrix from the body frame to the fixed frame, ν ∈ R3 the
linear strain, ω ∈ R3 the angular strain, n ∈ R3 the internal
force, f ∈ R3 the distributed force, m ∈ R3 the internal
moment, and l ∈ R3 the distributed moment. The operator ·̂ is
the transformation from R3 to se(3). Another operator, ·∧, will
also be used later to represent the transformation from se(3)
to R3. Both ·̂ and ·∧ can also represent the transformations
between SE(3) and R6 [37].

The internal force and moment, dependent on the material

properties and the strains, can be written as:

n = RKν(ν − ν∗) (11)
m = RKω(ω − ω∗) (12)

where Kν ∈ R3×3 and Kω ∈ R3×3 are the linear and angular
stiffness, respectively. For a homogeneous material, Kν =
diag(GBA,GBA,EBA) and Kω = diag(EBI, EBI,GBJB)
where EB is the elastic modulus of the body, GB is the shear
modulus. A, I , JB is the area, the second moment of inertia,
and the polar second moment of inertia of the cross section,
respectively. The values with ∗’s are the values in the initial
or reference configuration. In the case of a straight rod, these
values are ν∗ = [0, 0, 1]T and ω∗ = [0, 0, 0]T .

The distributed force and moment come from the forces
in the embedded actuators. For TCAs, we assume that all
forces are exerted axially and that there is no resistance to
moments. These assumptions allow TCAs to be modeled as
strings, which means they only need to be modeled with the
force equilibrium. Therefore, the force in a TCA is determined
from Eq. (6). The only modification is to add an index, i, to
the forces and other parameters to indicate the i-th TCA when
multiple TCAs are used. In this case, the force can be written
as:

F i =
δi − f12(δi, Ti)τ(Ti)

f11(δi, Ti)
ta,i (13)

The dependencies on the temperature, Ti, and the displace-
ment, δi, are made explicit in Eq. (13) for emphasis. The
dependence on δi is important as it indicates the coupling
between the body deformation and TCAs’ actuation.

With F i, the distributed force for a system with N actuators
can be written using the force equilibrium as:

f = fe +
d

ds

N∑
i=1

F i (14)

where fe is an external distributed force. An example of an
external force is the gravitational force and can be represented
as fe = ψARg where ψ is the density of the material, A the
cross sectional area, and g the gravitational acceleration vector.

The distributed moment can then be computed from the
distributed forces and the distance from the centerline(Fig. 3):

l = le +
N∑
i=1

(R̂ri)
d

ds
F i (15)

where le is an external distributed moment, ri is the distance
of the actuator from the centerline in the fixed frame, and the
inclusion of R is to rotate it into the body frame.

It is then necessary to know the forms of ta,i and δi to
compute the derivatives in the distributed terms. Both of them
will depend on the position of the actuator, pa,i:

pa,i = p+Rri (16)

ta,i =
ṗa,i
‖ṗa,i‖

(17)

δi(s) =

∫ s

0

‖ṗa,i(u)‖du− Lis (18)
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where Li is the ratio of the actuator’s length to the centerline’s
length in the reference configuration. In the case when the
actuator is aligned with the centerline and the reference
configuration is straight, we have Li = 1. The inclusion of
Li will allow us to investigate more general cases when the
actuators do not align with the centerline. The value for δi is
obtained through the current arc length minus the original arc
length of the actuator up to the current position of s.

The derivatives of pa,i, ta,i, and δi with respect to s can
then be computed as:

ṗa,i = R(ν + ω̂ri + ṙi) (19)

ṫa,i = −
̂̇p2a,i
‖ṗa,i‖3

p̈a,i (20)

δ̇i = ‖ṗa,i‖ − Li (21)

With that, we can get a system of ODEs in a common form
for Cosserat models with the state variables as p, R, ν, and ω.
However, due to coupling between the body deformation and
actuator’s displacement, the common form cannot be separated
from δi. To address this problem, we can incorporate the δi
as a state variable into the system since a differential form of
it exists (Eq. (21)). In this case, the new system of ODEs can
be written as:

ṗ = Rν (22)

Ṙ = Rω̂ (23)

δ̇i = ‖ṗa,i(s)‖ − Li (24)[
a b
c d

] [
ν̇
ω̇

]
=

[
e
f

]
(25)

where a, b, c, d, e, and f come from manipulating the
previously developed system of equations.

a = RKν −
∑

Fi
̂̇p2a,i
‖ṗa,i‖3

R (26)

b = −
∑

Fi
̂̇p2a,i
‖ṗa,i‖3

(−Rr̂i) (27)

c = −
∑

R̂riFi
̂̇p2a,i
‖ṗa,i‖3

R (28)

d = RKω −
∑

R̂riFi
̂̇p2a,i
‖ṗa,i‖3

(−Rr̂i) (29)

e = R(Kν ν̇
∗ − (ω̂Kν + K̇ν)(ν − ν∗))− fe

−
∑

(−Fi
̂̇p2a,i
‖ṗa,i‖3

R(ω̂(ν + ω̂ri + 2ṙi) + r̈i))
(30)

f = R(Kωω̇
∗ + ν̂Kν(ν − ν∗)− (ω̂Kω + K̇ω)(ω − ω∗))

− le +
∑

R̂riFi
̂̇p2a,i
‖ṗa,i‖3

R(ω̂(ν + ω̂ri + 2ṙi) + r̈i))

(31)

Eqs. (22)-(25) form a system of ODEs with state variables: p,
R, ν, ω, and δi with (i = 1, . . . , N ). The equations are in a
general form independent of the actual form of Fi so that they
can be applied for any string-like actuator. The initial values

of the system (s = 0) will be p = 0, R = I3×3, and δi = 0
most of the time. However, we cannot determine the value
of the initial strains prior to solving the system. Therefore,
to fully constrain the system, boundary values for the strains
must be determined. The boundary values for the strains can
be solved for at the tip; however, they are not trivial since the
force varies with the state variables.

To solve the strains, we need to use the force and moment
balance equations. The only place the force and moment equa-
tions can be solved is at the tip cross section due to moments
accumulating over the body. Taking the force and moment
balance at the tip (includes the TCA forces, the internal strain
force, and an arbitrary external load) and rearranging, we get:

ν = ν∗ −K−1ν (Fe +
N∑
i=0

Fi
ν + ω̂ri + ṙi
‖ν + ω̂ri + ṙi‖

) (32)

ω = ω∗ −K−1ω (Me +
N∑
i=0

R̂riFi
ν + ω̂ri + ṙi
‖ν + ω̂ri + ṙi‖

) (33)

the value Fe and Me are an external force and moment applied
at the tip of the rod, respectively. For example, it is important
to consider these tip forces in the case of grasping.

It can be seen that Eqs. (32) and (33) cannot be solved
analytically without simplifications. Also, Fi can depend on
the final values for the state variables, which are unknown
prior to solving the system. To address this problem, we can
leverage a boundary value problem (BVP) solver to numeri-
cally solve a system of ODEs with some initial conditions and
some final conditions. The simplest BVP solver is the shooting
method, which combines an initial value problem (IVP) solver
and a root finding method to solve the BVP. An IVP solver
requires either all initial conditions or all final conditions to
be specified to solve the system of ODEs. Using an initial
guess at the unknown initial conditions, the shooting method
first solves the ODEs with the IVP solver, and then updates
the guess using a root finding method if the final boundary
conditions are not met.

Using the shooting method for BVP solver, we solve the
forward kinetostatics as follows: guess the values for ν(0) and
ω(0), use an IVP solver (e.g., 4th order Runge-Kutta method)
to solve the state variables for s ∈ [0, L], check that there is
a force balance at the tip and that the displacements match. If
they do not match, update the guessed values and repeat the
process until they do. The execution speed is roughly 0.05 s
for the BVP solver and 0.001 s for the IVP solver when ran
on a laptop with an i7-U4600 CPU with 8G of RAM. The
proposed computation scheme is stable since the only times
the solution will not converge is when intentionally bad initial
guesses are provided.

IV. INVERSE KINETOSTATICS OF TCA-ACTUATED SOFT
ROBOTS

In order to control a TCA-actuated soft robot, it is necessary
to compute the required temperatures to achieve a desired
configuration. Again, as our initial step, we ignore the dynamic
effect. In this case, the problem is to solve the inverse kine-
tostatics of a TCA-actuated soft robot. A straightforward so-
lution is to leverage forward kinetostatics to iteratively update
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the guess for the temperatures until the desired configuration is
achieved (brute-force optimization); however, such a process
is very time-consuming as running many iterations of the
forward solver is inefficient. In this case, we will leverage
a more efficient method of finite difference [38]. This method
approximates the necessary change in actuation values to
move towards a desired configuration by posing the forward
kinetostatics as an IVP rather than a BVP, solving it several
times to approximate the local inverse kinetostatics, which
greatly speed up the computation.

Similar to [38], we first rearrange the forward kinetostatics
equations to contain a description of the kinematics, g, a sys-
tem of ODEs for state variables, y, and a boundary condition,
b = 0:

ġ = gξ̂(y) (34)
ẏ = f(s,y, g, q,W ) (35)

b(y(L), g(L), q,W ) = 0 (36)

where g =

[
R p
0 1

]
is the homogeneous transformation matrix

describing the shape of the centerline curve, ξ = [ν,ω]T is the
strain vector, q are the actuation parameters (the changes in
temperature), and W is the external wrench applied to the tip
of the manipulator. The function b is comprised of the force
Eq. (32) and moment Eq. (33) balance equations at the tip and
the agreement of the guessed value and the computed value
of δi in the solver.

Since we do not have all the initial conditions for the
state variables, y, we separate the initial conditions of the
state variables into known, yk(0) and unknown, yu(0). The
unknown initial conditions make it necessary to use the BVP
solver discussed in the prior section. However, if we know
the values for yu(0), we could use the a much more efficient
IVP solver for the computation. Therefore, if we have a known
solution for the unknown initial conditions, we can change the
BVP to an IVP.

Changing the forward model from a BVP to an IVP via
a known solution enables us to see how small perturbations
in the initial conditions, actuation values, and tip wrench
will influence the system. The results of small perturbations
on the system can then allow us to approximate the inverse
kinetostatics near the known solution used. Then, we may use
repeated applications of the approximated inverse to converge
to a desired configuration. How to construct the approximate
inverse kinetostatics from the perturbations follows from [38]
and is described in the rest of the section.

First, we describe how the shape of the robot changes
in space and time, (i.e., the strain and velocity along the
centerline) using the following two equations [38]

ġ = gξ̂ (37)
g′ = gη̂ (38)

where η is the twist vector representing the linear and angular
velocities. The operator ·′ represents the derivative with respect
to time, and the operator ˙ still represents the derivative with
respect to s.

Then, the twist vector can be written as [38]:

η = (g−1g′)

∧

= Jq′ + CW ′ (39)

where J is the Jacobian associated with the change in actuation
values, and C, called the compliance matrix, is the Jacobian
associated with changes in the tip wrench.

Discretizing Eq. (39) can be leveraged to compute the
inverse kinetostatics. After eliminating time terms from both
sides, the discretization is:

∆x = J∆q + C∆W (40)

where x is the configuration value we want to control (e.g.,
tip position).

The J and C matrices can then be written in terms of
submatrices that can be computed via the IVP solver and the
perturbations [38]:

J = Eq − EuB−1u Bq (41)

C = EW − EuB−1u BW (42)

where the E and B are submatrices obtained by differentiation
Ez = d(g−1g)

∧

dz and Bz = db
dz , where z ∈ {q, u,W}

represents the differentiation variable. These are the matrices
approximated via the perturbation and IVP solutions.

Equations for J and C can be approximated with any
method for approximating first derivatives (e.g., 1st-order
forward finite differences). The approximations are specifically
for the E and B matrices which are then used to form J and
C. With the approximations, the inverse kinetostatics can be
iteratively approximated to reach a particular configuration.

We show that the finite difference approach is more com-
putationally efficient by comparing its computation speed
with the brute force optimization approach. Both codes use
the same forward model for the computations. The finite
difference scheme converges roughly 8 times faster than the
optimization scheme. One iteration of the finite difference
scheme runs the forward integration (IVP solver) 12 + 2N
times with N the number of actuators, and one iteration of
the BVP solver for the resulting configuration. Since most
of the computations are with the forward model, the finite
difference scheme can finish one computation in roughly
0.001(12 + 2N) + 0.05 s.

The inverse kinetostatics can be applied to solve the required
temperature for grasping objects with two TCA-actuated fin-
gers, which will be experimentally verified in the next section.
In this case, we can slightly modify the inverse kinetostatics
by rewriting Eq. (40) using the simplification of ∆x = 0 to
determine the required temperature:

∆q = −J−1C∆W (43)

This will allow us to incrementally determine the temperature
necessary to exert a particular force for the manipulator.

V. SIMULATION AND EXPERIMENTAL RESULTS

We conduct a series of experiments to verify the proposed
models. We first validate the model for extension TCAs by
fixing the force applied to a TCA, varying the temperature,
and recording the associated displacements. To validate both
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the forward and inverse kinetostatics, we leverage a soft

manipulator actuated by a single TCA since this allows us

to validate the simplest form of the proposed models. For

forward kinetostatics, we increase the temperature applied to

the TCA and obtain the resulting shape of the manipulator to

compare with simulation results. For inverse kinetostatics, we

fix the end of the soft manipulator and record the generated

tip force when the temperature of TCA increases. Finally, we

demonstrate an application in the form of a miniature gripper

with two TCA-actuated fingers.

To demonstrate the advantages of physics-based modeling,

we fabricate TCAs with different number of threads and soft

manipulators with different cross-sections. The material prop-

erties for the EcoFlex body will remain constant throughout

the experiments. These properties are: ψ = 1040kg/m3,

EB = 37.8kPa, and ν = 0.5, which are found in or can

be computed from [39]. The TCAs will all be constructed

from Shieldex Trading silver coated nylon sewing threads

with a diameter of 0.2mm (235/35 4ply Silver Thread, PN#

260151023534oz). The TCA parameters are obtained from

fabrication and will be detailed in specific discussions.

For the simulations, we always use the following initial

conditions: p = 0, R = I3×3, and δi = 0. The tip boundary

condition is as discussed before, defined by the tip force and

moment balance (Eqs. (32) and (33)) and the condition that the

guessed and computed δi equal each other. The initial guess is

always the value for the reference configuration. We note that

the initial guesses do not seem to influence the final answer

unless the initial guess is intentionally poor.

A. Validating the Model for Extension TCAs

The model for extension TCAs establishes the relationship

between temperature, applied force, and displacement. To

validate the model, we choose to fix the applied force by

attaching a weight to a TCA, then increasing the temperature

and measuring the corresponding displacement.

For simulations, we predict the displacement δ using the

TCA model given an attached weight and a temperature. To

compute δ, we set Eqs. (5) and (2) equal to each other. Then,

the resulting equation, l(sinα − sinα0) = f11F + f12τ , is

solved for α since all other parameters are known. Once α is

computed, we can obtain the displacement, δ, which can then

be compared with the experimental results.

The fabrication process of TCAs used in our experiments is

similar to the method in [22]. The only difference is that the

mandrel we used to coil the TCA is a taut copper wire instead

of a rigid rod. The benefit of this is that we can decrease the

spring index of TCAs by using wires with smaller diameters,

and the wire does not need to be rigid. We twist 3 threads

together by hanging a weight 600 g, and the process ends

after inserting N = 300 rotations before self-coiling. By our

experience, a weight heavier than 600 g may easily break

the threads and a lighter weight will not allow for enough

twisting of the threads. Two motors hold the two ends of

a copper wire and keep it taut. Both motors rotate in the

same direction to coil the twisted threads in heterochirality

(i.e., coiling and twisting have opposite chirality) to generate

an extension TCA [22]. The actuator is then annealed in an

oven (Quincy Lab 10GCE, accuracy 0.5°C) for 2 hours at a

temperature of 160°C, and after that the actuator is stabilized

and does not untwist when the copper wire is removed. The

resulting TCA has the following parameters: l = 110 mm,

L = 497 mm, D = 2 mm. To better verify the proposed

model, we fabricated another TCA with 4 threads: l = 110
mm, L = 471 mm, N = 259 rotations, D = 2.13 mm.

In contrast to contraction TCAs, which can stay straight

by contracting force when actuated [35], extension TCAs will

buckle when actuated if no mechanism is used to constrain

sideway movements. In this experiment (the setup is shown

in Fig. 4), we fold the fabricated TCA into two segments

(55 mm for each segment) that can cancel untwisting force

with each other, and insert a rigid carbon rod into the TCA’s

center. A weight is hung at the middle of connection between

two TCA segments to apply a constant force. The extending

displacement, indicated by a marker raised out of the oven

from a vent hole, is recorded by a laser displacement sensor

(OPT2006, Wenglor sensoric GmbH) mounted at the top of the

oven. A 3D printed frame that can withstand high temperature

keeps all carbon rods vertical to minimize errors. For each

TCA (with 3 or 4 threads), we use two different weights:

5 g and 10 g. For each TCA and weight, we conduct three

experiments by increasing the temperature inside the oven with

a step size of 5°C, starting from 25°C and ending at 160°C.

Fig. 4. Experimental setup for verifying models of extension TCAs. The
detailed setup inside the dashed rectangle in the left figure is enlarged on the
right.

The displacement of the TCA is plotted against the tem-

peratures and compared with simulation results in Fig. 5. To

quantify the error between the model and the experimental

data, we report the root-mean-squared (RMS) value between

the averaged experimental results and the simulated results.

This value quantifies the total error across the tested domain.

A small value implies that the model is accurate across the

entire test data, but larger values imply either a large error

across the entire domain or over a small region. To locate the

error, we plot a region within one standard deviation of the

experimental data and the simulated data for a visual check.

The comparisons for both forward and inverse kinetostatics

are illustrated using the same approach in the next two sub

sections.
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Fig. 5. Simulation vs experimental results for extension TCAs with 3 threads
and 4 threads with different hanging weights. The shaded regions represent
the experimental data (average ± standard deviation), and the RMS values
are derived from the simulation and the average experimental value.

From Fig. 5, the simulations have relatively low RMS values
and generally agree with experimental results. However, we
note that there are some friction effects between TCAs and the
guide rod during experiments. We compensate the friction by
applying an additional equivalent hanging mass of 2.5 g for the
5 g case and 5 g for the 10 g case to the actuator and they are
assumed constant throughout the experiment. The equivalent
weights are approximated by first observing the relative angle
of the thread connected to the hanging weight to the guide rod
and using a friction coefficient to approximate the normal and
friction forces. The most noticeable discrepancy is for the TCA
with 4 threads, especially the point at which extension begins.
This could be due to the friction not being properly accounted
for (e.g., it varies with displacement or temperature), or when
the TCA is fully compressed the threads will still expand due
to changes in temperature and this expansion will cause small
displacements upwards even though the coils still contact with
each other. This effect is not modeled in our simulations and
could lead to discrepancies at lower temperatures.

B. Validating the Forward Kinetostatics

To validate the forward kinetostatics for TCA-actuated soft
robots, we fabricate soft manipulators with a single embedded
TCA but with two different cross section shapes: circular and
square. With these two manipulators, we aim to compare the
predicted bending shape with the experimental one for a given
temperature of the TCA. All the TCAs used in the manipulator
have the following parameters: D = 1.7 mm, α0 = 15° and
N = 76.4 rotations, the only difference is the TCA length L.

To quantify the shape for comparison, we assume the soft
manipulator will have a circular bending shape after the TCA
is actuated. In this case, we use three sample points along
the body for both experiments and simulations to calculate
the radius for comparisons, as three points are the minimal
number to determine a circle. The sample points are located
at the base, the tip, and the center of the manipulator and
are along the inner edge of the manipulator with respect to
the bending direction. The radius can be obtained by fitting a
circle to the three sampled points. Note that such a simplified

Fig. 6. Radius approximations comparing the prediction and the experimen-
tally measured radii for a manipulator with a circular cross section (upper)
and square cross section (lower). The gray region is the experimental average
± the standard deviation. RMS is computed from the simulation results and
the average experimental results.

quantification of the shape can make reasonable comparisons
between simulations and experiments.

The soft manipulator with an embedded TCA is fabricated
as follows. The TCA is fabricated using the same procedure for
the TCAs in section V-A. For the manipulator of a square cross
section, EcoFlex10 is poured into a 3D printed mold, in which
a TCA is arranged in a U-shape, essentially acting like two
parallel TCAs with the same temperature in order to generate
enough force. After curing, the copper wires inside the TCA
are pulled out and additional EcoFlex is used to seal the tip of
the manipulator. The resulting manipulator has a side length
of 10 mm and a usable length of 40 mm. Then, if we consider
the two halves of the U-shaped TCA as separate TCAs, they
both have a lengths of L = 40 mm, and are located 3 mm
from the neutral layer of the body. The fabrication procedure
of the soft manipulator of a circular cross section is the same
as above and the resulting manipulator has a diameter of 8
mm and a length of 40 mm. A single TCA is placed 3 mm
from the center axis of the manipulator.

To perform the experiments we embed a thermistor (EPCOS
B57540G0503F000) close to the base of the TCA and fix
the bottom of the body to a stand. Then, we place the
manipulator inside the same oven for the TCA experiment,
use the thermistor to measure the internal temperature, and
position a camera outside the oven to capture an image of the
manipulator through the oven’s transparent door at increasing
temperatures with a step size of 5°C. Then, we calculate
the radius for the inner edge of the body to quantify the
manipulator’s bending shape in each image, using the three
sample points as discussed prior. In simulations, we derive
the curvature in the same manner. The simulation is run at a
given temperature and then the radius is calculated from the
three sample points.

The comparison between model prediction and experiments
are plotted in Fig. 6. We note that the manipulator with
a circular cross section has some initial bending while the
square one does not. This causes the circular manipulator’s
curvature to be more linear and smaller at the beginning
of the experiments. In the simulations, the initial bending is
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considered in the value for ξ∗.
The predictions match the experimental results quite well.

The exception being that the RMS value is slightly high for the

square cross section. This is likely due to the wide variance

observed at the beginning of the experiments. Nevertheless,

the simulation results fall well within the experimental range,

indicating it is still a reasonable fit.

C. Validating the Inverse Kinetostatics
To validate the inverse kinetostatics for TCA-actuated soft

robots, we also use a soft manipulator actuated by a single

extension TCA. Different from experiments for validating

the forward kinetostatics, we fix the tip position of the

manipulator, increase the temperature, and then measure the

force generated at the end of the manipulator. To do this in

simulation, we run the finite difference approach discussed in

section IV to predict the required temperature from measured

force (Eq. (43)).
A similar fabrication approach is used to manufacture the

soft manipulator with a square cross-section actuated by a U-

shaped TCA for this experiment. The fabricated manipulator

has a side length of 10 mm and a usable length of 26 mm. If

we consider the two halves of the U-shaped TCA as separate

TCAs, their parameters are: L = 40 mm, D = 1.7 mm, and

are located 3 mm from the center.

Fig. 7. Experimental setup for measuring the force exerted when the
manipulator bends to a fixed position.

In this experiment, the soft manipulator is again placed

inside the oven. One end of a flexible copper wire with a

diameter of 0.1 mm is attached to the tip of the manipulator,

while the other end connects to a force gauge (MARK-10-M3-

012, Mark-10 Corporation) through a vent hole of the oven to

measure force generated by the soft manipulator. The copper

wire is loosely arranged to make sure the soft body can have a

specific and fixed bending, after which the wire becomes taut

and the generated forces can be measured by the force gauge.

A thermistor, embedded in the soft manipulator touching the

TCA, indicates the time when the TCA reaches the desired

temperature. The temperature of the oven is controlled to

increase the TCA’s temperature by a step size of 5°C from

the room temperature. Fig. 7 shows the experimental setup

with a detailed view where the initial state and the final state

of the soft manipulator are overlapped.

Three experiments are conducted and the results are plotted

in Fig. 8 to compare with the simulation results. During

experiments, we observe an obvious extension of the soft

manipulator due to a lack of a limiting layer. Also, from

25°C to about 55°C the copper wire is still loose, and therefore

no force shown in the force gauge. Then the force raises as the

temperature increases. Some discrepancies exist between the

individual experiments, which might be caused by the slightly

different final locations for the manipulator’s tip.

Fig. 8. Comparisons for the predicted and the experimental temperature. The
RMS value between the average experimental force and the predictions is
0.74 mN

We can see from Fig. 8 that the simulation predictions match

quite well with the experimental results. We note that there is

slight motion from 0-10 mN due to small deformations of

the copper wire as it straightens out, and we incorporate this

motion into the simulation.

D. Application: Grasping Objects

As an application of the proposed models, we fabricate a

soft gripper with two fingers, each of which is actuated by

one TCA. By controlling the temperature of TCA, we can

tune contact forces applied onto an object to grasp and lift

different objects with the same size but different weights. In

this experiment, we demonstrate that the developed model can

predict the required temperature to generate sufficient forces

for grasping.

The fabrication process for the gripper is as follows. First,

two soft fingers with a length of 20 mm and the same size of

the cross section for the manipulator used in section V-C are

fabricated separately. Then these two fingers are connected

together on a 3D-printed rigid base with extra EcoFlex 10.

Three different weights (1 g, 2 g, and 3 g) are used to test the

required temperatures for successful grasping.

Given a weight of an object, the minimum required grasping

force is determined through

μnF (T ) = mg (44)

where μ is friction coefficient between the finger and the

weight, n is the number of fingers, and m is mass of the

weight. In order to keep μ the same, the size and the outer

material of the weights (VeroClear RGD810 printing material)

that contact with the gripper are kept the same and the mass

of weight is changed by adding metal nuts and screws. The

value of μ = 1.1 is experimentally obtained by dragging the
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RGD810 material on the surface of Ecoflex 10 and measuring

the drag force.

With the minimum required force, we calculate the required

temperature for grasping using the inverse kinetostatic model.

To experimentally obtain the required temperature, we place

the whole system inside the oven and increase the oven’s

temperature with a step size of 5°C. At each temperature,

we pull the wire attached to the gripper to see if the weight

can be lifted up. The required temperature is recorded if the

weight can be lifted up for at least 10 trials, and we term this

temperature as a “firm grip” (Table I). An example of grasping

can be seen in Fig. 9.

Fig. 9. An example of the grasper picking up an object.

Table I shows the firm grip temperatures and the predicted

values using simulations. The results suggest the predictions

are in rough correspondence with the experimental results.

Discrepancies may come from the relative large step size of

temperature: 5 °C. Also, the value of the friction coefficient,

μ, might be influenced by temperature. Finally, the fingers

bend slightly asymmetrical during experiments, leading to

discrepancies as the simulation predicts them being identical.

Grasping Weight 1 g 2 g 3 g
Firm grip temperature (°C) 95 120 135
Simulation Prediction (°C) 93.7 114.8 136.3

TABLE I
TEMPERATURES AT WHICH DIFFERENT WEIGHTS CAN BE GRASPED AND

LIFTED USING A GRIPPER WITH TWO TCA-ACTUATED FINGERS.

VI. CONCLUSIONS

Twisted-and-Coiled Actuator (TCA) is a newly discovered

artificial muscle. With its unique characteristics (e.g., low-

cost, easy-to-fabricate, and can generate extension motion)

compared with existing actuation methods, it is a promis-

ing candidate for actuating soft robots. In this paper, we

establish a modeling framework for TCA-actuated soft robots

and experimentally verify the proposed models. The models

include a physics-based model for TCAs and the kinetostatic

model for TCA-actuated soft robots. The physics-based model

can be leveraged for predicating the motion of any TCA

if the physical parameters are given, while the kinetostatic

model is general enough to describe the kinetostatics for

soft robots with embedded actuations when coupling exists

between the actuation and body deformation. Experimental

results in general match with the modeling results, with

some discrepancy that may come from the imperfection of

experiments, imprecise value for some physical parameters,

or non-ideal way of quantifying the results. The developed

model can lay a foundation for the application of TCAs in or

beyond soft robots.
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