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Abstract In this paper, methods for developing iso-
parametric tetrahedral finite elements (FE) based on
the absolute nodal coordinate formulation (ANCF) are
presented. The proposed ANCF tetrahedral elements
have twelve coordinates per node that include three
position and nine gradient coordinates. The fundamen-
tal differences between the coordinate parametriza-
tions used for conventional finite elements and the
coordinate parametrizations employed for the proposed
ANCF tetrahedral elements are discussed. Two dif-
ferent parametric definitions are introduced: a volume
parametrization based on coordinate lines along the
sides of the tetrahedral element in the straight (un-
deformed) configuration and a Cartesian parametriza-
tion based on coordinate lines directed along the global
axes. The volume parametrization facilitates the devel-
opment of a concise set of shape functions in a closed
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form, and the Cartesian parametrization serves as a
unique standard for the element assembly. A lin-
ear mapping based on the Bezier geometry is used
to systematically define the cubic position fields of
ANCF tetrahedral elements: the complete polynomial-
based eight-nodemixed-coordinate and the incomplete
polynomial-based four-node ANCF tetrahedral ele-
ments. An element transformation matrix that defines
the relationship between the volume and Cartesian
parametrizations is developed and used to convert the
parametric gradients to structure gradients, thereby
allowing for the use of a standard FE assembly proce-
dure. A general computational approach is employed
to formulate the generalized inertia, external, and elas-
tic forces. The performance of the proposed ANCF
tetrahedral elements is evaluated by comparison with
the conventional linear and quadratic tetrahedral ele-
ments and also with the ANCF brick element. In
the case of small deformations, the numerical results
obtained show that all the tetrahedral elements con-
sidered can correctly produce rigid body motion. In
the case of large deformations, on the other hand, the
solutions of all the elements considered are in good
agreement, provided that appropriate mesh sizes are
used.

Keywords Flexible multibody system dynamics ·
Absolute nodal coordinate formulation · Bezier
tetrahedral patch · Isoparametric ANCF tetrahedral
finite elements · Position and gradient continuity
conditions
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1 Introduction

The goal of this investigation is the development of
ANCF tetrahedral finite elements (FE) for the non-
linear dynamics and vibration analysis of multibody
system (MBS) applications. The development of these
new elements is necessary in order to correctly capture
large finite rotations and large deformations of flexi-
ble system components with complex geometries. In
the past three decades, MBS dynamics has emerged as
an independent research field which has its own chal-
lenges including modeling complex engineering and
physics systems that consist of interconnected bodies
and joints. The bodies and the joints in a MBS applica-
tion can be rigid and/or flexible [1–11]. For such com-
plex systems, it is necessary to adopt a general anal-
ysis approach which can correctly capture geometric
nonlinearities and allows for efficient formulation of
the algebraic constraint equations that define mechan-
ical joints. The absolute nodal coordinate formulation
(ANCF), which can be used with a non-incremental
solution procedure, can correctly describe finite rota-
tions and large deformations, and therefore, it is suited
for implementation in general MBS algorithms [12–
14]. In recent years, ANCF elements have been vali-
dated numerically and experimentally and successfully
used inmodeling complex applications [15–26].ANCF
elements have a constant mass matrix, a constant gen-
eralized gravity force vector, and zero Coriolis and cen-
trifugal forces regardless of the magnitude of displace-
ment. Because the ANCF mass matrix is constant, a
Cholesky transformation can be used at a preprocess-
ing stage to obtain an identity inertia matrix associated
with the ANCF Cholesky coordinates, leading to an
optimum sparse matrix structure of the MBS equations
of motion [27].

In structural mechanics, conventional tetrahedral
elements are widely used because of their simplic-
ity, versatility, and ability to describe complex geome-
tries. Furthermore, the availability of several tetrahe-
dral automatic meshing algorithms, including algo-
rithms based on the Delaunay triangulation method,
allows for automatic construction of complex tetra-
hedral meshes that can represent almost any three-
dimensional geometry with high fidelity. In the FE
literature, three types of tetrahedral elements that are
of interest in this investigation can be distinguished
according to the order of the interpolation used in the
definition of the element shape functions: the four-

node linear tetrahedral element (FNL), the ten-node
quadratic (TNQ) tetrahedral element, and the twenty-
node cubic (TNC) tetrahedral element. An interesting
property of the tetrahedral elements is the fact that their
kinematic representation allows for the use of a com-
plete set of monomials for the polynomial expansion
of the basis functions. This feature makes the number
of the monomial terms used in the polynomial expan-
sion based on the Pascal tetrahedron always the same
as the number of the tetrahedral nodes [28]. That is,
for a given order of interpolation, a linear mapping
between a Bezier tetrahedral patch basis functions and
the shape functions of the tetrahedral element always
exists [29]. Therefore, for a givenorder of interpolation,
the shape functions of the tetrahedral elements can be
directly constructed starting with a Bezier tetrahedral
patch using a set of volume coordinates. This simple
idea is one of the key geometry concepts employed in
this investigation to develop two newANCF tetrahedral
elements.

In the last two decades, while a large amount of
research has been devoted to the development of new
ANCF beams, plate, and shell elements, very few
ANCF hexahedral and tetrahedral elements have been
proposed. Because the conventional hexahedral and
tetrahedral elements do not use position vector gradi-
ents as nodal coordinates, the continuity of the gradient
and rotation fields at the nodal points is not ensured.
On the other hand, ANCF elements ensure the conti-
nuity of the rotation, strain, and stress fields [30].While
ANCF solid (brick) elements were proposed [31,32],
only recentlyOlshevskiy et al. [32] proposed new cubic
ANCF hexahedral and tetrahedral elements. While the
ANCFbrick element proposed byOlshevskiy et al. [32]
uses a complete set of position vector gradients as nodal
coordinates and ensures the continuity of the gradi-
ents at the nodes, Olshevskiy et al. did not address the
development of the ANCF tetrahedral element in their
paper. Subsequently, two eight-node ANCF brick ele-
ments were used in order to simulate the liquid slosh-
ing phenomenon by Wei et al. [33]. The first ANCF
brick element is obtained using an incomplete cubic
polynomial representation, while the second element
is obtained directly from a cubic B-spline volume rep-
resentation. More recently, a new ANCF tetrahedral
element was proposed by Mohamed [34] who used
Cartesian gradients from the outset to define a cubic
set of polynomials. Nonetheless, efficient quadrature
rules based on the Gauss integration method for tetra-
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hedral elements were not employed for this type of
ANCF tetrahedral element, and the volume integra-
tion of the system mass matrix, the vector of gener-
alized elastic forces, and the generalized gravity force
vector were performed using conventional numerical
quadrature procedures based on Newton–Cotes for-
mulas, such as the trapezoidal rule or the Simpson
method [35]. For these reasons, the ANCF tetrahedral
element proposed by Mohamed [34] requires expen-
sive computations for the evaluation of the general-
ized elastic forces and exhibits a slow convergence
rate.

The goal of this investigation is to address geom-
etry challenges associated with the description of the
tetrahedral element kinematics and propose approaches
for developing ANCF tetrahedral elements that differ
from the ones presented in the literature. As shown
in this paper, complete cubic tetrahedral polynomials
have sixty coefficients, or equivalently twenty Bezier
control points. Therefore, an ANCF tetrahedral ele-
ment based on a complete polynomial representa-
tion requires the use of mixed coordinates, some of
which can be located on the element faces, or the
use of curvature coordinates in addition to the posi-
tion and gradient coordinates. Nonetheless, a lower-
order element that employs only position and gradient
coordinates at the tetrahedral nodes can be systemat-
ically developed by imposing set of algebraic equa-
tions that automatically reduce the element dimension
[36]. This systematic approach is used in this investi-
gation to develop a new lower-order ANCF tetrahe-
dral element from another new higher-order ANCF
tetrahedral element obtained using Bezier geometry.
Specifically, the use of the approaches proposed in
this study is demonstrated by developing two three-
dimensional ANCF tetrahedral elements, an eight-
node mixed-coordinate (ENMC) and a four-node (FN)
ANCF tetrahedral elements. The new ANCF tetrahe-
dral elements employ as nodal coordinates global nodal
positions and gradient coordinates and have displace-
ment fields that ensure the gradient and rotation field
continuity and are consistent with the Bezier geom-
etry widely used to construct tetrahedral patches in
computer-aided design (CAD) programs. Therefore,
this investigation also contributes to the integration
of computer-aided design and analysis (I-CAD-A)
and is an important step in the development of new
mechanics-based CAD/analysis system that will allow
the use of a unified geometry and analysis mesh from

the outset. The performance of the new ANCF tetra-
hedral elements is evaluated by comparing their solu-
tions with the solutions obtained using the conven-
tional linear and quadratic tetrahedral elements and
with the solutions obtained using the ANCF brick
element implemented in the general-purpose MBS
program SIGMA/SAMS (Systematic Integration of
Geometric Modeling and Analysis for the Simulation
of Articulated Mechanical Systems). As shown in the
paper, if appropriate mesh sizes are used, a good agree-
ment is obtained, in general, between the numeri-
cal results of the conventional tetrahedral, the ANCF
brick, and the proposed ANCF tetrahedral element
models.

The algebraic constraint equation method used in
this investigation to obtain a lower-order tetrahedral
element can be used in the design of new ANCF ele-
ments that require the use of incomplete polynomi-
als. This method can be applied from the outset to
convert complete polynomials to incomplete polyno-
mials that have symmetric structure and suited for
ANCF elements with certain number and type of nodal
coordinates that require the use of smaller number of
basis functions. In order to avoid trials and errors in
identifying such incomplete polynomials, the method
of algebraic constraint equations used in developing
the FN element presented in this investigation can be
systematically used from the outset by imposing the
algebraic constraint equations to reduce the number
of each complete cubic polynomial basis functions
from 20 to 16 and to systematically define the incom-
plete polynomial as discussed in the appendix of this
paper.

This paper is organized as follows: In Sect. 2, the
tetrahedral element parametrization used in this inves-
tigation is introduced. In particular, the volume gra-
dient vectors used to obtain compact and closed form
expressions of the element shape functions are intro-
duced. The Cartesian gradients used to assemble the
new ANCF tetrahedral elements are also defined in
this section. In Sect. 3, the transformation between the
volume and Cartesian gradients is defined. In Sect. 4,
the position field of the new ANCF/ENMC tetrahe-
dral elements is obtained, while in Sect. 5, the lower-
order ANCF/FN element shape functions are derived
by imposing constraints on some nodes of the element.
The isoparametric properties of the two new ANCF
finite elements are discussed in Sect. 6. In Sect. 7,
the procedure for developing the element equations
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of motion is described. In Sect. 8, numerical results
obtained using different models based on different
tetrahedral elements are analyzed in order to perform a
comparative study and evaluate the dynamic behavior
and convergence characteristics of the proposed ele-
ments. In Sect. 9, summary and conclusions drawn
from this investigation are provided.

2 Tetrahedral element parametrization

In general, the position vector gradients are determined
by differentiation of the position vector with respect to
coordinate lines or parameters. Therefore, the gradient
vectors are tangent to these coordinate lines which are
discussed in this section when tetrahedral elements are
used. As shown in this section, proper understanding
of the element parametrization is necessary in order
to develop the new ANCF tetrahedral elements which
require the use of parametrization that conceptually dif-
fers from the parametrization used in the conventional
FE literature. In order to understand the fundamental
differences between the parametrization used in the
development of the new ANCF tetrahedral elements
and the parametrization used in the conventional FE
literature, the latter is first reviewed in this section. The
position field of a three-dimensional continuum body

r = [
r1 r2 r3

]T
can always be written in terms of an

assumed set of coordinate lines defined by the Carte-

sian parameters x = [
x y z

]T
as follows:

r = r(x, y, z) = [
r1(x, y, z) r2(x, y, z) r3(x, y, z)

]T

(1)

In the case of tetrahedral elements, the use of the
Cartesian parametrization is necessary when assem-
bling elements which have gradient vectors as nodal
coordinates. However, it is more convenient to use
other parameters for describing the tetrahedral element
geometry. Consider an arbitrary tetrahedronwhose cor-
ner nodes are ordered counterclockwise following the
right-hand rule and are labelled as 1, 2, 3, and 4, as
shown in Fig. 1. The positions of the tetrahedron ver-
tices are defined in the global reference system by the

vectors vk = [
xk yk zk

]T
, k = 1, 2, 3, 4, where xk ,

yk , and zk represent the Cartesian coordinates of the
tetrahedron vertex k. The vector of Cartesian coordi-
nates x is associated with the global reference system
in which the position vectors of the tetrahedron cor-
ner nodes vk , k = 1, 2, 3, 4 are defined. The Cartesian

Fig. 1 Tetrahedral element geometry

parameter vector x can be expressed in terms of four

dimensionless volume coordinates ξ = [
ξ η ζ χ

]T
as

x=x(ξ) = [
x(ξ, η, ζ, χ) y(ξ, η, ζ, χ) z(ξ, η, ζ, χ)

]T

(2)

The set of volume coordinates ξ, η, ζ , and χ , shown in
Fig. 1, are not independent parameters and are related
by the following algebraic equation:

ξ + η + ζ + χ = 1 (3)

The volume coordinates whose sum is unity range from
zero to one in the manner shown in Fig. 2 [29,37].
Because gradient vectors are used in the kinematics
of the ANCF tetrahedral elements, it is important to
understand the geometric meaning of the volume coor-
dinates which form straight lines normal to the faces
of the tetrahedral element, as shown in Fig. 2. On the
other hand, for a general tetrahedral element, the con-
tour planes or isoplanes are orthogonal to the directions
of the coordinate lines. For example, the equation ξ = c
represents a set of straight planes parallel to the tetrahe-
dron face identified by the vertices 2, 3, and 4. Similar
comments apply to η, ζ , and χ , as shown in Fig. 3.
Relabelling the element vertices, for convenience, as
A, B, C , and D, which correspond, respectively, to the
tetrahedron vertices 1, 2, 3, and 4, as shown in Fig. 4, an
arbitrary point P inside the tetrahedron ABCD divides
the tetrahedron into four sub-tetrahedrons PBCD,
PCDA, PDAB, and PABC . Let � be the volume of
the tetrahedral element, and�1,�2,�3, and�4 are the
volumes of the four sub-tetrahedrons PBCD, PCDA,
PDAB, and PABC , respectively. It follows that the
volume coordinates can be written as ξ = �1/�,
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Development of ANCF tetrahedral finite elements 2909

Fig. 2 Tetrahedral element coordinate lines. a ξ , b η, c ζ , d χ

η = �2/�, ζ = �3/�, and χ = �4/�. Using the
definition of the volume coordinates, a linear mapping

between the Cartesian coordinates x = [
x y z

]T
and

the volume coordinates ξ = [
ξ η ζ χ

]T
can be writ-

ten as x = ξv1 + ηv2 + ζv3 + χv4, or equivalently:

x = ξ x1 + ηx2 + ζ x3 + χx4
y = ξ y1 + ηy2 + ζ y3 + χy4
z = ξ z1 + ηz2 + ζ z3 + χ z4

⎫
⎬

⎭
(4)

where xk , yk , and zk represent the Cartesian coor-
dinates of the tetrahedron vertex k. These equations
define a direct relationship between the three indepen-
dent Cartesian coordinates x , y, and z and the four
dependent volume coordinates ξ , η, ζ , and χ . From
these equations, it is clear that the four corner nodes
(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and (x4, y4, z4)
of the tetrahedral element correspond to the volume
coordinates (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and
(0, 0, 0, 1), respectively. Combining the preceding two
equations, one has

⎡

⎢⎢
⎣

1
x
y
z

⎤

⎥⎥
⎦ = x̄ =

⎡

⎢⎢
⎣

1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

ξ

η

ζ

χ

⎤

⎥⎥
⎦ = Vξ (5)

where x̄ = [
1 x y z

]T
and the vertex matrix V is

defined as:

V =

⎡

⎢⎢
⎣

1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

⎤

⎥⎥
⎦ (6)

The inverse representation is ξ = V−1x̄, where

V−1 = 1

6V

⎡

⎢⎢
⎣

6V1 L1,1 L1,2 L1,3

6V2 L2,1 L2,2 L2,3

6V3 L3,1 L3,2 L3,3

6V4 L4,1 L4,2 L4,3

⎤

⎥⎥
⎦ (7)
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Fig. 3 Tetrahedral element isoplanes. a Tetrahedral element isoplanes ξ , b tetrahedral element isoplanes η, c tetrahedral element
isoplanes ζ , d tetrahedral element isoplanes χ

Fig. 4 Tetrahedral element volume coordinates

where V = � denotes the volume of the tetrahedral
element which can be simply obtained from the deter-
minant of the vertex matrix V as V = |V|/6 and the
constants V1, V2, V3, V4, L1,1, L1,2, L1,3, L2,1, L2,2,
L2,3, L3,1, L3,2, L3,3, L4,1, L4,2, and L4,3 are defined
in Appendix A of the paper. The equation ξ = V−1x̄
can be written explicitly as

⎡

⎢⎢
⎣

ξ

η

ζ

χ

⎤

⎥⎥
⎦ = 1

6V

⎡

⎢⎢
⎣

6V1 L1,1 L1,2 L1,3

6V2 L2,1 L2,2 L2,3

6V3 L3,1 L3,2 L3,3

6V4 L4,1 L4,2 L4,3

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1
x
y
z

⎤

⎥⎥
⎦ (8)

Or equivalently as

ξ = 1
6V

(
6V1 + L1,1x + L1,2y + L1,3z

)

η = 1
6V

(
6V2 + L2,1x + L2,2y + L2,3z

)

ζ = 1
6V

(
6V3 + L3,1x + L3,2y + L3,3z

)

χ = 1
6V

(
6V4 + L4,1x + L4,2y + L4,3z

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(9)

It follows that

rx = ∂r
∂x = ∂r

∂ξ
∂ξ
∂x + ∂r

∂η
∂η
∂x + ∂r

∂ζ
∂ζ
∂x + ∂r

∂χ
∂χ
∂x

= 1
6V

(
rξ L1,1 + rηL2,1 + rζ L3,1 + rχ L4,1

)

ry = ∂r
∂y = ∂r

∂ξ
∂ξ
∂y + ∂r

∂η
∂η
∂y + ∂r

∂ζ
∂ζ
∂y + ∂r

∂χ
∂χ
∂y

= 1
6V

(
rξ L1,2 + rηL2,2 + rζ L3,2 + rχ L4,2

)

rz = ∂r
∂z = ∂r

∂ξ
∂ξ
∂z + ∂r

∂η
∂η
∂z + ∂r

∂ζ
∂ζ
∂z + ∂r

∂χ
∂χ
∂z

= 1
6V

(
rξ L1,3 + rηL2,3 + rζ L3,3 + rχ L4,3

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)
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This equation can be rewritten in a matrix form as fol-
lows:

[
rx ry rz

] = [
rξ rη rζ rχ

] 1

6V

⎡

⎢
⎢
⎣

L1,1 L1,2 L1,3
L2,1 L2,2 L2,3
L3,1 L3,2 L3,3
L4,1 L4,2 L4,3

⎤

⎥
⎥
⎦

= [
rξ rη rζ rχ

] 1

6V
N (11)

where N is a 4 × 3 matrix defined as:

N =

⎡

⎢⎢
⎣

L1,1 L1,2 L1,3

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

L4,1 L4,2 L4,3

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢
⎣

nT1
nT2
nT3
nT4

⎤

⎥⎥⎥
⎦

(12)

It can be shown that, in the straight (un-deformed)

configuration, the vectors n1 = [
L1,1 L1,2 L1,3

]T
,

n2 = [
L2,1 L2,2 L2,3

]T
, n3 = [

L3,1 L3,2 L3,3
]T
,

and n4 = [
L4,1 L4,2 L4,3

]T
are vectors normal to

the tetrahedral faces opposite to the tetrahedral ver-
tices 1, 2, 3, and 4, respectively. It is important to note
that the coordinate lines associated with the depen-
dent volume parameters ξ, η, ζ , and χ are normal
to the faces of the tetrahedron as it is clear from
Eq. (9). For example, using Eq. (9) one can write dξ =(
L1,1dx + L1,2dy + L1,3dz

)
/(6V ) = nT1 dx/(6V ),

which shows that dξ is the projection of the Carte-

sian vector dx = [
dx dy dz

]T
along the vector

n1 = [
L1,1 L1,2 L1,3

]T
normal to the face of the

tetrahedron defined by the vertices 2, 3, and 4. Sim-
ilar comments apply to η, ζ , and χ since from Eq. (9),
dξ = Ndx/(6V ) which shows that dξ can be obtained
from the product of the matrixN and dx. It is important
to note that the geometric interpretation of the direc-
tions of the coordinate lines does not conflict with the
equation x = ξv1 + ηv2 + ζv3 + χv4 since Eq. (9) is
obtained from Eq. (5). Therefore, an arbitrary change
in the volume coordinates dξ consistent with the alge-
braic equation ξ + η + ζ + χ = 1 yields an arbitrary
change in the Cartesian coordinates dx according to
x = ξv1 + ηv2 + ζv3 + χv4. Because the vectors n1,
n2, n3, and n4 that form the matrix N are normal to
the faces of the tetrahedral element, the volume coor-
dinate lines are normal to the faces of the tetrahedral
element, as previously mentioned. It follows that the
position vector gradients rξ , rη, rζ , and rχ are tan-
gent to the coordinate lines ξ, η, ζ , and χ , and there-

fore, these gradient vectors are normal to the tetrahedral
faces if ξ, η, ζ , and χ remain dependent. In order to be
able to assemble the elements with gradient vectors as
nodal coordinates, special definitions of the coordinate
lines are employed for the corner nodes of the ANCF
tetrahedral elements, as discussed in the following sec-
tion.

3 Position vector gradient transformations

In order to create an ANCF tetrahedral mesh using a
standard FE assembly procedure, a particular set of
parametric gradients at the nodes defined by differenti-
ationwith respect to the volumecoordinates is used. For
a given node of the tetrahedral element, these special
volume gradients define directions parallel to the tetra-
hedral sides and not normal to the tetrahedral faces as
the ones used in the FE literature. To this end, a different
definition of the tetrahedron coordinate lines is used for
each node of the tetrahedral element by properly defin-
ing the dependent volume coordinate using the con-
straint equation ξ + η + ζ + χ = 1. Consequently, the
geometric interpretation of the coordinate lines associ-
ated with the volume coordinates ξ, η, ζ , and χ , pre-
viously introduced in the preceding section, changes
according to the particular parametrization used for
each of the four nodes.

3.1 Node parametrization

Consider the first node of the tetrahedral element,
denoted as node 1, shown in Fig. 1. The first volume
coordinate ξ can be expressed as a linear function of
the other three independent volume coordinates ηi , ζi ,
and χi as ξ = 1−ηi − ζi −χi , where the subscript i is
used to refer to independent volume parameters. This
equation can be used to eliminate ξ from Eq. (4) and
write

x = v1 + ηi (v2 − v1) + ζi (v3 − v1) + χi (v4 − v1)

= v1 + ηiv2,1 + ζiv3,1 + χiv4,1 (13)

Or equivalently:

x = x1 + ηi a2,1 + ζi a3,1 + χi a4,1

y = y1 + ηi b2,1 + ζi b3,1 + χi b4,1

z = z1 + ηi c2,1 + ζi c3,1 + χi c4,1

⎫
⎪⎬

⎪⎭
(14)
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2912 C. M. Pappalardo et al.

Fig. 5 Tetrahedral volume and Cartesian nodal gradients. aVol-
ume and Cartesian gradients of the tetrahedral element first node,
b volume and Cartesian gradients of the tetrahedral element sec-

ond node, c volume and Cartesian gradients of the tetrahedral
element third node,d volume andCartesian gradients of the tetra-
hedral element fourth node

where

a2,1 = x2 − x1, a3,1 = x3 − x1, a4,1 = x4 − x1
b2,1 = y2 − y1, b3,1 = y3 − y1, b4,1 = y4 − y1
c2,1 = z2 − z1, c3,1 = z3 − z1, c4,1 = z4 − z1

⎫
⎬

⎭

(15)

and v2,1 = v2 − v1, v3,1 = v3 − v1, and v4,1 =
v4 − v1. It is important to note that, when the first
homogeneous coordinate ξ is eliminated using the con-
straint equation between the tetrahedral volume coor-
dinates, the geometric interpretation of the coordinate
lines associated with the independent volume param-
eters ηi , ζi , and χi changes accordingly, as shown
in Fig. 5a, and this is also clear from the equation
x = v1 + ηiv2,1 + ζiv3,1 + χiv4,1. In this case the
coordinate lines associated with the volume coordinate
ηi are a set of straight lines parallel to the tetrahedron

side defined by the vertices 2 and 1 (2–1 side); the coor-
dinate lines associated with the volume coordinate ζi
are a set of straight lines parallel to the tetrahedron 3–1
side, whereas the coordinate lines associated with the
volume coordinate χi are a set of straight lines parallel
to the 4–1 side. A change in the Cartesian parame-
ter vector x, therefore, is the result of a change in the
ηi , ζi , and χi parameters along, respectively, the tetra-
hedron sides defined by the vectors v2,1, v3,1, and v4,1
which can also be made unit vectors. Consequently, in
this case, the parametric gradients rηi , rζi , and rχi are
vectors tangent to the tetrahedron sides 1–2, 1–3, and
1–4, respectively. Using this definition of the coordi-
nate lines for the first node of the ANCF tetrahedron
element, a linear transformation between the volume
gradient vectors rηi , rζi , and rχi defined with respect
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to the independent set of volume parameters and the
Cartesian nodal gradient vectors rx , ry , and rz can be
written as

rηi = ∂r
∂ηi

= ∂r
∂x

∂x
∂ηi

+ ∂r
∂y

∂y
∂ηi

+ ∂r
∂z

∂z
∂ηi

= rxa2,1 + ryb2,1 + rzc2,1

rζi = ∂r
∂ζi

= ∂r
∂x

∂x
∂ζi

+ ∂r
∂y

∂y
∂ζi

+ ∂r
∂z

∂z
∂ζi

= rxa3,1 + ryb3,1 + rzc3,1

rχi = ∂r
∂χi

= ∂r
∂x

∂x
∂χi

+ ∂r
∂y

∂y
∂χi

+ ∂r
∂z

∂z
∂χi

= rxa4,1 + ryb4,1 + rzc4,1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

This equation can be rewritten, by adding an identity
transformation for the position vector of the first node
of the ANCF tetrahedron element, as:

r = r
rηi = rxa2,1 + ryb2,1 + rzc2,1
rζi = rxa3,1 + ryb3,1 + rzc3,1
rχi = rxa4,1 + ryb4,1 + rzc4,1

⎫
⎪⎪⎬

⎪⎪⎭
(17)

For the first node of the ANCF tetrahedral
element, the nodal coordinate vector e1

=
[

(
r1

)T (
r1ηi

)T (
r1ζi

)T (
r1χi

)T
]T

, with gradients

defined by differentiation with respect to the inde-
pendent volume gradients, can be written in terms of
another nodal coordinate vector p1

=
[

(
r1

)T (
r1x

)T (
r1y

)T (
r1z

)T
]T

, with gradients

defined by differentiation with respect to the Cartesian
parameters, as e1 = T1p1, where the transformation
matrix T1 is defined as

T1 =

⎡

⎢⎢
⎣

I O O O
O a2,1I b2,1I c2,1I
O a3,1I b3,1I c3,1I
O a4,1I b4,1I c4,1I

⎤

⎥⎥
⎦ (18)

where I is the 3 × 3 identity matrix. The nodal coor-
dinates expressed using the Cartesian parametrization
allow for using a standard FE assembly procedure. As
previously mentioned, using the independent volume
parametrization, one can write x = v1 + η̄i v̂2,1 +
ζ̄i v̂3,1 + χ̄i v̂4,1, where η̄i = ηi

∣
∣v2,1

∣
∣, ζ̄i = ζi

∣
∣v3,1

∣
∣,

χ̄i = χi
∣∣v4,1

∣∣, v̂2,1 = v2,1/
∣∣v2,1

∣∣, v̂3,1 = v3,1/
∣∣v3,1

∣∣,
and v̂4,1 = v4,1/

∣∣v4,1
∣∣. This equation shows that a

change in the Cartesian coordinate x is the result of
changes in the independent volume coordinates η̄i ,

ζ̄i , and χ̄i along, respectively, the three unit vectors
v̂2,1, v̂3,1, and v̂4,1 that are not necessarily orthog-
onal unit vectors. Furthermore, since in the straight
(un-deformed) configuration the Cartesian gradients

can be written as rx = [
1 0 0

]T
, ry = [

0 1 0
]T
,

and rz = [
0 0 1

]T
, one can show that rη̄i = v̂2,1,

rζ̄i
= v̂3,1, and rχ̄i = v̂4,1, that is,

[
rη̄i rζ̄i

rχ̄i

] =
[
∂x/∂η̄i ∂x/∂ζ̄i ∂x/∂χ̄i

] = [
v̂2,1 v̂3,1 v̂4,1

]
, which

shows that, in the straight (un-deformed) configura-
tion, the volume gradients, when independent volume
parameters are used, are tangent to the three sides of the
tetrahedral element that intersect at node 1, as shown
in Fig. 5a. It is important to note that, since the inde-
pendent volume parameters defined in this section are
associated with straight lines tangent to the sides of
the tetrahedral element, they have different geomet-
ric meaning when compared to the redundant volume
parameters used in the FE literature. Furthermore, fol-
lowing the same procedure for nodes 2, 3, and 4, by
writing η = 1 − ζi − χi − ξi , ζ = 1 − χi − ξi − ηi ,
and χ = 1− ξi − ηi − ζi , respectively, one can define
a set of transformation matrices at nodes 2, 3, and 4, as
shown in Fig. 5b–d, given by:

T2 =

⎡

⎢⎢
⎣

I O O O
O a3,2I b3,2I c3,2I
O a4,2I b4,2I c4,2I
O a1,2I b1,2I c1,2I

⎤

⎥⎥
⎦ ,

T3 =

⎡

⎢⎢
⎣

I O O O
O a4,3I b4,3I c4,3I
O a1,3I b1,3I c1,3I
O a2,3I b2,3I c2,3I

⎤

⎥⎥
⎦ ,

T4 =

⎡

⎢
⎢
⎣

I O O O
O a1,4I b1,4I c1,4I
O a2,4I b2,4I c2,4I
O a3,4I b3,4I c3,4I

⎤

⎥
⎥
⎦ , (19)

where

ai, j = xi − x j , bi, j = yi − y j , ci, j = zi − z j ,

i = 1, 2, . . . , 4, j = 1, 2, . . . , 4, i �= j (20)

The transformations obtained in this section allow for
expressing the independent volume gradient vectors in
terms of the Cartesian gradient vectors. Such transfor-
mations will facilitate the derivation of the shape func-
tions for the ANCF tetrahedral element in closed and
compact forms. These transformations also make the
physical meaning of the gradient vectors used more
obvious.
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Fig. 6 ANCF tetrahedral finite elements. a ANCF/ENMC tetrahedral element, b ANCF/FN tetrahedral element

3.2 Element transformation matrix

Using the four transformation matrices developed in
the previous subsection, the total vector of nodal coor-
dinates for the ANCF tetrahedral element is defined

as e =
[ (

e1
)T (

e2
)T (

e3
)T (

e4
)T

]T
. The vector of

nodal coordinates e includes volume gradients and
can be expressed in terms of the vector of element

coordinates p =
[ (

p1
)T (

p2
)T (

p3
)T (

p4
)T

]T
which

includes the Cartesian gradients. The vector of element
coordinates e based on the volume gradients and the
vector of element coordinates p based on the Cartesian
gradients are related by a linear transformation e = Tp
in which the transformation matrixT is a 48×48 block
diagonal matrix that is defined as

T =

⎡

⎢⎢
⎣

T1 O O O
O T2 O O
O O T3 O
O O O T4

⎤

⎥⎥
⎦ (21)

The use of the coordinate vector p allows for conve-
niently assembling the tetrahedral element mesh using
a standard FE assembly procedure.

In the following section, the cubic Bezier tetrahe-
dron geometry is used to develop the shape functions
of the ANCF eight-node mixed-coordinate (ENMC)
tetrahedral element. Using the ENMC tetrahedral ele-
ment shape functions, the shape functions of the four-
node (FN) ANCF tetrahedral element can be derived
by employing a set of linear constraint equations on the

global position of the tetrahedral center nodes. It can
be shown that both the proposed ENMC and FN tetra-
hedral elements are isoparametric elements and lead to
an exact representation of the rigid body motion.

4 Eight-node mixed-coordinate (ENMC) element

In order to develop the shape functions of the ENMC
tetrahedral element shown in Fig. 6a, a special type
of Bezier tetrahedron which is defined using a cubic
interpolation and a set of control points is consid-
ered. The global position vector of an arbitrary point
located on the cubic Bezier tetrahedral patch can be
written as r = ∑m̄

k=1 gkq
k , where m̄ = 20, gk are the

basis or blending functions of the cubic Bezier tetrahe-
dron defined in terms of the set of volume coordinates
ξ, η, ζ , and χ , and qk are the control points associ-
ated with the control net of the Bezier tetrahedron. The
polynomial terms used for the interpolation of the cubic
Bezier tetrahedral patch can be directly defined using
the terms in the expansion of (ξ + η + ζ + χ)3. The
Bezier basis functions used in this investigation are

g1 = ξ3, g2 = η3, g3 = ζ 3, g4 = χ3

g5 = 3ξ2η, g6 = 3ξη2, g7 = 3η2ζ, g8 = 3ηζ 2

g9 = 3ξ2ζ, g10 = 3ξζ 2, g11 = 3ξ2χ, g12 = 3ξχ2

g13 = 3η2χ, g14 = 3ηχ2, g15 = 3ζ 2χ, g16 = 3ζχ2

g17 = 6ξηζ, g18 = 6ξηχ, g19 = 6ηζχ, g20 = 6ξζχ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(22)

The polynomial interpolation of the Bezier tetrahe-
dral patch can be used as the assumed displacement
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field for the ENMC tetrahedral element, and the corre-
sponding set of shape functions can be obtained using a
linear transformation of coordinates. The relationship
between the Bezier control points and the ENMC ele-
ment nodal coordinates can be written as

r1 = q1, r1η = 3
(
q5 − q1

)
, r1ζ = 3

(
q9 − q1

)
,

r1χ = 3
(
q11 − q1

)
, r2 = q2, r2ζ = 3

(
q7 − q2

)
,

r2χ = 3
(
q13 − q2

)
, r2ξ = 3

(
q6 − q2

)
, r3 = q3,

r3χ = 3
(
q15 − q3

)
, r3ξ = 3

(
q10 − q3

)
,

r3η = 3
(
q8 − q3

)
, r4 = q4, r4ξ = 3

(
q12 − q4

)
,

r4η = 3
(
q14 − q4

)
, r4ζ = 3

(
q16 − q4

)
,

r5 = 1
27

(
q1 + q2 + q3 + 3q5

+ 3q6 + 3q7 + 3q8 + 3q9 + 3q10 + 6q17
)

r6 = 1
27

(
q1 + q2 + q4 + 3q5

+ 3q6 + 3q11 + 3q12 + 3q13 + 3q14 + 6q18
)

r7 = 1
27

(
q2 + q3 + q4 + 3q7

+ 3q8 + 3q13 + 3q14 + 3q15 + 3q16 + 6q19
)

r8 = 1
27

(
q1 + q3 + q4 + 3q9

+3q10 + 3q11 + 3q12 + 3q15 + 3q16 + 6q20
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)

Using these linear algebraic relationships, the cubic
Bezier tetrahedral patch can be converted into the
ANCF/ENMC tetrahedral element position field which
can be expressed as r = S̄ē, where S̄ is the shape func-
tion matrix of the ENMC tetrahedral element and ē
is the vector of the element nodal coordinates given,
respectively, by

S̄ = [
s̄1I s̄2I s̄3I s̄4I s̄5I s̄6I s̄7I s̄8I s̄9I s̄10I

s̄11I s̄12I s̄13I s̄14I s̄15I s̄16I s̄17I s̄18I s̄19I s̄20I
]

(24)

and

ē =
[

(
r1

)T (
r1η

)T (
r1ζ

)T (
r1χ

)T (
r2

)T (
r2ζ

)T (
r2χ

)T (
r2ξ

)T

(
r3

)T (
r3χ

)T (
r3ξ

)T (
r3η

)T (
r4

)T (
r4ξ

)T (
r4η

)T (
r4ζ

)T

(
r5

)T (
r6

)T (
r7

)T (
r8

)T
]T

(25)

where I is the 3 × 3 identity matrix and rξ = ∂r/∂ξ ,
rη = ∂r/∂η, rζ = ∂r/∂ζ , and rχ = ∂r/∂χ are
the position vector gradients defined by differentiation
with respect to independent volume parameters along
the element sides as previously discussed. The ENMC
shape functions s̄k, k = 1, 2, . . . , 20, are

s̄1 = ξ
(
ξ2 + 3ξ (η + ζ + χ) − 7 (ηζ + χ (η + ζ ))

)

s̄2 = ξη (ξ − ζ − χ) , s̄3 = ξζ (ξ − χ − η) ,

s̄4 = ξχ (ξ − η − ζ ) ,

s̄5 = η
(
η2 + 3η (ζ + χ + ξ) − 7 (ζχ + ξ (ζ + χ))

)
,

s̄6 = ηζ (η − χ − ξ) , s̄7 = ηχ (η − ξ − ζ ) ,

s̄8 = ηξ (η − ζ − χ) ,

s̄9 = ζ
(
ζ 2 + 3ζ (χ + ξ + η) − 7 (χξ + η (χ + ξ))

)
,

s̄10 = ζχ (ζ − ξ − η) , s̄11 = ζ ξ (ζ − η − χ) ,

s̄12 = ζη (ζ − χ − ξ) ,

s̄13 = χ
(
χ2 + 3χ (ξ + η + ζ ) − 7 (ξη + ζ (ξ + η))

)
,

s̄14 = χξ (χ − η − ζ ) , s̄15 = χη (χ − ζ − ξ) ,

s̄16 = χζ (χ − ξ − η) ,

s̄17 = 27ξηζ, s̄18 = 27ξηχ, s̄19 = 27ηζχ, s̄20 = 27ξζχ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

The element shape function matrix S̄ contains a set of
interpolating functions which allow for expressing the
position of an arbitrary point on the ANCF tetrahedral
element as a linear combination of the element nodal
coordinates ē. In the definition of the nodal coordinate
vector ē, superscripts 1, 2, 3, and 4 refer to the element
corner nodes ordered counterclockwise and following
the right-hand rule, while superscripts 5, 6, 7, and 8
refer to the center nodes of the ENMC tetrahedral ele-
ment as shown in Fig. 6a. TheENMCnodal coordinates
are defined as

r1 = r(1, 0, 0, 0), r1η = rη
∣
∣
ξ=1−η−ζ−χ

(1, 0, 0, 0),

r1ζ = rζ
∣
∣
ξ=1−η−ζ−χ

(1, 0, 0, 0),

r1χ = rχ
∣
∣
ξ=1−η−ζ−χ

(1, 0, 0, 0)

r2 = r(0, 1, 0, 0), r2ζ = rζ
∣∣
η=1−ζ−χ−ξ

(0, 1, 0, 0),

r2χ = rχ
∣
∣
η=1−ζ−χ−ξ

(0, 1, 0, 0),

r2ξ = rξ
∣
∣
η=1−ζ−χ−ξ

(0, 1, 0, 0)

r3 = r(0, 0, 1, 0), r3χ = rχ
∣
∣
ζ=1−χ−ξ−η

(0, 0, 1, 0),

r3ξ = rξ
∣
∣
ζ=1−χ−ξ−η

(0, 0, 1, 0),

r3η = rη
∣∣
ζ=1−χ−ξ−η

(0, 0, 1, 0)

r4 = r(0, 0, 0, 1), r4ξ = rξ
∣
∣
χ=1−ξ−η−ζ

(0, 0, 0, 1),

r4η = rη
∣
∣
χ=1−ξ−η−ζ

(0, 0, 0, 1),

r4ζ = rζ
∣
∣
χ=1−ξ−η−ζ

(0, 0, 0, 1)

r5 = r(1/3, 1/3, 1/3, 0), r6 = r(1/3, 1/3, 0, 1/3),
r7 = r(0, 1/3, 1/3, 1/3), r8 = r(1/3, 0, 1/3, 1/3)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

In this equation, the computation of the partial deriva-
tives that define the volume gradients is performed by
substituting the constraint equations between the vol-
ume coordinates in the displacement field of the cubic
Bezier tetrahedral patch. Since in the nodal coordi-
nate vector ē, absolute positions and volume gradients
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at the nodes are used as generalized coordinates, an
exact representation of rigid body motion is achieved
by the shape functions of the ENMC tetrahedral ele-
ment. Therefore, the proposed ENMC tetrahedral ele-
ment is isoparametric and describes correctly rigid
body motion.

The relationship between the ENMC shape func-
tions and Bezier basis functions is presented in
Appendix A of this paper. The ENMC tetrahedral ele-
ment has 60 nodal coordinates which consist of 24
position coordinates and 36 gradient coordinates. As
explained in the preceding section, a linear transfor-
mation can be used for the ENMC tetrahedral element
to write the coordinate vector ē and the element vector
of structural coordinates p̄ that contain the Cartesian
gradients rx , ry , and rz as ē = T̄p̄, where the trans-
formation matrix T̄ is a 60× 60 block diagonal matrix
defined as

T̄ =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

T̄1 O O O O O O O
O T̄2 O O O O O O
O O T̄3 O O O O O
O O O T̄4 O O O O
O O O O T̄5 O O O
O O O O O T̄6 O O
O O O O O O T̄7 O
O O O O O O O T̄8

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

(28)

In this equation, the nodal transformation matrices are
defined as T̄1 = T1, T̄2 = T2, T̄3 = T3, T̄4 = T4,
T̄5 = I, T̄6 = I, T̄7 = I, T̄8 = I, where I is the 3 × 3
identity matrix, as shown in the preceding section. It is
important to note that, when the Cartesian gradients are
used in a way consistent with the tetrahedral element
geometry as explained in the paper, the shape functions
of the ENMC tetrahedral finite element can be obtained
in a compact closed form.

5 Four-node (FN) tetrahedral element

The development presented in the preceding section
demonstrates that complete cubic tetrahedral polyno-
mials have sixty coefficients, or equivalently twenty
control points. Therefore, an ANCF tetrahedral ele-
ment having four corner nodes and based on a complete
polynomial representation requires the use of mixed
coordinates, some of which can be located on the ele-
ment faces, or the use of curvature coordinates in addi-
tion to the position and gradient coordinates. Nonethe-
less, a lower-order element that employs only position

and gradient coordinates at the tetrahedral nodes can
be systematically developed by imposing set of alge-
braic equations that automatically reduce the element
dimension. This is the procedure used in this section to
develop the new lower-order ANCF/FN element pro-
posed in this investigation.

The shape functions of the FN tetrahedral element
shown in Fig. 6b can be obtained from the shape func-
tions of the ENMC tetrahedral element by imposing
a set of linear constraint equations between the cen-
ter nodes on the tetrahedral faces and a set of material
points distributed on the sides of the tetrahedral ele-
ment. These linear constraint equations can be written
as

r5 = 1
9

(
r15 + r25 + r35 + r45 + r55 + r65 + r75 + r85 + r95

)

r6 = 1
9

(
r16 + r26 + r36 + r46 + r56 + r66 + r76 + r86 + r96

)

r7 = 1
9

(
r17 + r27 + r37 + r47 + r57 + r67 + r77 + r87 + r97

)

r8 = 1
9

(
r18 + r28 + r38 + r48 + r58 + r68 + r78 + r88 + r98

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(29)

where rhk , k = 5, 6, 7, 8, h = 1, 2, . . . , 9 are global
positions of material points located on the sides of the
ENMC tetrahedral element and are defined as

r15 = r (1, 0, 0, 0) , r25 = r (0, 1, 0, 0) ,

r35 = r (0, 0, 1, 0) ,

r45 = r (2/3, 1/3, 0, 0) , r55 = r (1/3, 2/3, 0, 0) ,

r65 = r (0, 2/3, 1/3, 0) , r75 = r (0, 1/3, 2/3, 0) ,

r85 = r (2/3, 0, 1/3, 0) , r95 = r (1/3, 0, 2/3, 0) ,

r16 = r (1, 0, 0, 0) , r26 = r (0, 1, 0, 0) ,

r36 = r (0, 0, 0, 1) ,

r46 = r (2/3, 1/3, 0, 0) , r56 = r (1/3, 2/3, 0, 0) ,

r66 = r (0, 2/3, 0, 1/3) , r76 = r (0, 1/3, 0, 2/3) ,

r86 = r (2/3, 0, 0, 1/3) , r96 = r (1/3, 0, 0, 2/3) ,

r17 = r (0, 1, 0, 0) , r27 = r (0, 0, 1, 0) ,

r37 = r (0, 0, 0, 1) ,

r47 = r (0, 2/3, 1/3, 0) , r57 = r (0, 1/3, 2/3, 0) ,

r67 = r (0, 0, 2/3, 1/3) , r77 = r (0, 0, 1/3, 2/3) ,

r87 = r (0, 2/3, 0, 1/3) , r97 = r (0, 1/3, 0, 2/3) ,

r18 = r (1, 0, 0, 0) , r28 = r (0, 0, 1, 0) ,

r38 = r (0, 0, 0, 1) ,

r48 = r (2/3, 0, 1/3, 0) , r58 = r (1/3, 0, 2/3, 0) ,

r68 = r (0, 0, 2/3, 1/3) , r78 = r (0, 0, 1/3, 2/3) ,

r88 = r (2/3, 0, 0, 1/3) , r98 = r (1/3, 0, 0, 2/3)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)
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Using these linear algebraic constraint equations for
the center nodes of the ENMC tetrahedral element, a
linear transformation can be obtained andused to define
the shape functions of the FN tetrahedral element. The
position field of the FN tetrahedral element can then
be written as r = Se, where S is the FN element shape
function matrix and e is the vector of the element nodal
coordinates given, respectively, by:

S = [
s1I s2I s3I s4I s5I s6I s7I s8I

s9I s10I s11I s12I s13I s14I s15I s16I
] (31)

and

e =
[

(
r1

)T (
r1η

)T (
r1ζ

)T (
r1χ

)T (
r2

)T (
r2ζ

)T (
r2χ

)T (
r2ξ

)T

(
r3

)T (
r3χ

)T (
r3ξ

)T (
r3η

)T (
r4

)T (
r4ξ

)T (
r4η

)T (
r4ζ

)T
]T

(32)

where I is the 3 × 3 identity matrix, rξ = ∂r/∂ξ ,
rη = ∂r/∂η, rζ = ∂r/∂ζ , and rχ = ∂r/∂χ are
the position vector gradients defined using the volume
parametrization in which the coordinate lines are paral-
lel to the tetrahedral element sides. The shape functions
sk, k = 1, 2, . . . , 16, of the FN tetrahedral element are
defined in a closed form as

s1 = ξ
(
ξ2 + 3ξ (η + ζ + χ) + 2 (ηζ + χ (η + ζ ))

)
,

s2 = 1
3 ξη (3ξ − ζ − χ) , s3 = 1

3 ξζ (3ξ − χ − η) ,

s4 = 1
3 ξχ (3ξ − η − ζ ) ,

s5 = η
(
η2 + 3η (ζ + χ + ξ) + 2 (ζχ + ξ (ζ + χ))

)
,

s6 = 1
3ηζ (3η − χ − ξ) ,

s7 = 1
3ηχ (3η − ξ − ζ ) , s8 = 1

3ηξ (3η − ζ − χ) ,

s9 = ζ
(
ζ 2 + 3ζ (χ + ξ + η) + 2 (χξ + η (χ + ξ))

)
,

s10 = 1
3 ζχ (3ζ − ξ − η) , s11 = 1

3 ζ ξ (3ζ − η − χ) ,

s12 = 1
3 ζη (3ζ − χ − ξ) ,

s13 = χ
(
χ2 + 3χ (ξ + η + ζ ) + 2 (ξη + ζ (ξ + η))

)
,

s14 = 1
3χξ (3χ − η − ζ ) , s15 = 1

3χη (3χ − ζ − ξ) ,

s16 = 1
3χζ (3χ − ξ − η)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(33)

The FN tetrahedral element has 48 nodal coordinates
which consist of 12 position coordinates and 36 gra-
dient coordinates. The vector of element coordinates e
and the vector of structural coordinates pwhich has the
Cartesian gradients rx , ry , and rz are related by a lin-
ear transformation e = Tp in which the transformation
matrix T is previously defined in the paper. The shape
functions of the FN and ENMC elements associated

with the Cartesian gradients are presented in Appendix
A of the paper.

The procedure described in this section can be used
from the outset to obtain incomplete polynomials that
have symmetric structure and designed for new ANCF
elements with certain number and type of nodal coor-
dinates that require the use of incomplete polynomi-
als. In order to avoid trials and errors in identifying
such incomplete polynomials, the method of algebraic
constraint equations used in developing the FN ele-
ment presented in this section can be systematically
employed from the outset by imposing the algebraic
constraint equations to reduce the number of each com-
plete cubic polynomial basis functions from 20 to 16
and to systematically define an incomplete polynomial
symmetric in the Cartesian coordinates x, y, and z as
discussed in the appendix of this paper.

6 Isoparametric property

It can be shown that the ENMC and FN elements pro-
posed in this investigation are isoparametric elements
that correctly describe rigid body motion and can be
effectively used in a non-incremental solution frame-
work for the numerical solution of the equations of
motion. In general, a finite element can be considered
as isoparametric if the same shape functions can be
used to describe the element geometry and displace-
ment. Therefore, the shape functions of an isoparamet-
ric finite element can be used to represent the geom-
etry of the element in the straight (un-deformed) con-
figuration, in the reference (curved) configuration, and
in the current (deformed) configuration, as shown in
Fig. 7. The current configuration of a continuum body
is a general deformed configuration in which the ele-
ment position field can be written as r = Se = STp,
where e and p are, respectively, the vectors of vol-
ume and Cartesian nodal coordinates which define the
element current configuration. In the reference con-
figuration, the element position field can be written
as r0 = Se0 = STp0, where e0 and p0 are, respec-
tively, appropriate vectors of volume and Cartesian
nodal coordinates which define the stress-free refer-
ence configuration and allow for describing a general
curved geometry. In the straight (un-deformed) config-
uration, one can write x = Ses = STps , where es and
ps are, respectively, vectors of volume and Cartesian
nodal coordinates that define the geometry of the ele-
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Fig. 7 General
configurations of a
continuum body

ment in the straight (un-deformed) configuration. The
straight configuration is used to conveniently compute
the volume or area integrals involved in the formulation
of the element generalized elastic forces. To this end,
one can write J = (∂r/∂r0) = (∂r/∂x) (∂x/∂r0) =
(∂r/∂x) (∂r0/∂x)−1 = JeJ

−1
0 , where J is the position

vector gradient matrix, Je = ∂r/∂x is the matrix of
the position vector gradients in the current configu-
ration computed with respect to the coordinate lines
of the straight configuration, and J0 = ∂r0/∂x is
the Jacobian matrix of the position vector gradients
in the reference configuration computed with respect
to the coordinate lines of the straight configuration
as shown in Fig. 7. It can be shown, using a sim-
ple example, that both the ANCF tetrahedral elements
proposed in this paper are isoparametric elements. To
this end, consider the straight (un-deformed) config-
uration of the FN tetrahedral element. The vectors of
structural or body nodal coordinates can be written as

ps =
[ (

p1s
)T (

p2s
)T (

p3s
)T (

p4s
)T

]T
, where

p1s = [
x1 y1 z1 1 0 0 0 1 0 0 0 1

]T

p2s = [
x2 y2 z2 1 0 0 0 1 0 0 0 1

]T

p3s = [
x3 y3 z3 1 0 0 0 1 0 0 0 1

]T

p4s = [
x4 y4 z4 1 0 0 0 1 0 0 0 1

]T

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(34)

In these equations, xk , yk , and zk represent the Carte-
sian coordinates of the tetrahedron vertex k associated

with the element straight (un-deformed) configuration.
Using the shape functions of the FN tetrahedral ele-
ment, the expression of the transformation matrix T,
and considering the constraint between the tetrahedral
coordinates ξ + η + ζ + χ = 1, one can show that

x = STps =
⎡

⎣
ξ x1 + ηx2 + ζ x3 + χx4
ξ y1 + ηy2 + ζ y3 + χy4
ξ z1 + ηz2 + ζ z3 + χ z4

⎤

⎦ (35)

This equation demonstrates that the straight (un-
deformed) configuration of a tetrahedral element can
be captured by the shape functions of the FN tetrahe-
dral element.

7 Element equations of motion

The equations of motion of the ANCF tetrahedral
elements are derived in this investigation using the
d’Alembert–Lagrange principle of virtual work based
on a total Lagrangian formulation that allows for the
use of a non-incremental solution procedure [14,38].

7.1 Element kinematics

The displacement field of the two ANCF tetrahedral
elements developed in this investigation can be written
as r = Se. The nodal coordinate vector e includes vol-
ume gradients which define position vector gradients

123



Development of ANCF tetrahedral finite elements 2919

parallel to the element sides.While the use of these vol-
ume gradients facilitates obtaining closed form expres-
sions of the tetrahedral element shape functions, these
volume gradients are not suitable for using a stan-
dard FE assembly procedure. In order to overcome this
problem and be able to impose the connectivity condi-
tions between different tetrahedral elements using sim-
ple linear constraint equations, the Cartesian or body
parametrization of the gradient coordinates can be used
using the linear coordinate transformation e = Tp, as
previously discussed in this paper. Because the trans-
formation matrix T is constant, one has δe = Tδp and
δr = STδp. The virtual change in the Cartesian gra-
dients of the FN tetrahedral element can be written as

δrx = 1
6V

(
L1,1δrξ + L2,1δrη + L3,1δrζ + L4,1δrχ

)

= 1
6V

(
L1,1Sξ + L2,1Sη + L3,1Sζ + L4,1Sχ

)
Tδp

δry = 1
6V

(
L1,2δrξ + L2,2δrη + L3,2δrζ + L4,2δrχ

)

= 1
6V

(
L1,2Sξ + L2,2Sη + L3,2Sζ + L4,2Sχ

)
Tδp

δrz = 1
6V

(
L1,3δrξ + L2,3δrη + L3,3δrζ + L4,3δrχ

)

= 1
6V

(
L1,3Sξ + L2,3Sη + L3,3Sζ + L4,3Sχ

)
Tδp

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(36)

or equivalently δrx = SxTδp, δry = SyTδp, and
δrz = SzTδp, where

Sx = 1
6V

(
L1,1Sξ + L2,1Sη + L3,1Sζ + L4,1Sχ

)

Sy = 1
6V

(
L1,2Sξ + L2,2Sη + L3,2Sζ + L4,2Sχ

)

Sz = 1
6V

(
L1,3Sξ + L2,3Sη + L3,3Sζ + L4,3Sχ

)

⎫
⎪⎬

⎪⎭

(37)

In these equations, Sx , Sy , and Sz are the spatial deriva-
tives of the shape function matrix with respect to the
Cartesian coordinates x , y, and z, respectively. The
evaluation of the Cartesian derivatives of the shape
function matrix Sx , Sy , and Sz of the tetrahedral ele-
ment is necessary in the formulation of the element
generalized elastic forces.

7.2 Element mass matrix

The virtual work of the inertia forces of the ANCF ele-
ments can be written as δWi = − ∫

V ρr̈T δr |J0| dV ,
where ρ is the mass density in the reference configu-
ration, r̈ is the absolute acceleration vector of a mate-
rial point on the element, |J0| is the determinant of

the matrix of position vector gradients in the reference
configuration obtained by differentiation with respect
to the coordinate lines of the straight configuration, and
V is the element volume in the straight (un-deformed)
configuration. Using the element kinematic equations,
the virtual work of the inertia forces can be rewritten
as

δWi = −
∫

V
ρr̈T δr |J0| dV

= −p̈TTT
(∫

V
ρSTS |J0| dV

)
Tδp

= − (Mp̈)T δp (38)

where the elementmassmatrixM = TT
(∫

V ρSTS |J0|
dV )T is constant, symmetric, and positive definite
regardless of the amount of element displacement and
rotation. It follows that the centrifugal and Coriolis
inertial forces are identically zero. By using the Carte-
sian gradients in the vector p, a standard FE assembly
can be used to define the body mass matrix.

7.3 Element external forces

The virtual work of the external forces δWe =∫
V fTe δr |J0| dV , where fe is vector of distributed exter-
nal forces such as the gravity and magnetic forces, can
be written as

δWe =
∫

V
fTe δr |J0| dV

=
(∫

V
fTe S |J0| dV

)
Tδp = QT

e δp (39)

where Qe = TT
(∫

V ST fe |J0| dV
)
is the generalized

external force vector associated with the element nodal
coordinates. By using the Cartesian gradients as nodal
coordinates in the coordinate vector p, a standard FE
assembly can be used to obtain the body generalized
external forces.

7.4 Element elastic forces

The virtual work of the element elastic forces is δWs =
− ∫

V σ : δε |J0| dV , where σ is the symmetric sec-
ond Piola–Kirchhoff stress tensor, ε is the symmetric
Green–Lagrange strain tensor, and the symbol : refers
to tensor double contraction. In the formulation of the
elastic forces, general constitutive models can be used
with the ANCF tetrahedral elements developed in this
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investigation. Using the element kinematic equations,
the virtual work of the elastic forces can be rewritten
as

δWs = −
∫

V
σ : δε |J0| dV

= −
(∫

V
σ : ∂ε

∂e
|J0| dV

)
Tδp = QT

s δp (40)

where Qs = −TT
(∫

V

(
σ : ∂ε

∂e

)T |J0| dV
)
is vector of

the element generalized elastic forces. Because this
vector is a highly nonlinear function of the nodal coor-
dinates, the integral must be calculated using a numer-
ical integration procedure based on the Gauss quadra-
ture rules. By using the Cartesian gradients as nodal
coordinates in the vector p, a standard FE assembly
procedure can be used to obtain the body elastic forces.

7.5 Equations of motion

The system equations of motion of the ANCF tetrahe-
dral mesh can be obtained using the virtual work prin-
ciple, which can be written as δWi + δWe + δWs = 0,
where δWi is the virtual work of the element inertia
forces, δWe is the virtual work of the element external
forces, and δWs is the virtual work of the element elas-
tic forces. Using this approach, the element equations

of motion can be obtained asMp̈ = Qe + Qs . As pre-
viously mentioned, because Cartesian gradients rx , ry ,
and rz are used in the generalized coordinate vector p,
the vectors andmatrices that appear in this equation can
be assembled using a standard FE assembly process in
order to obtain the equations of motion of the ANCF
tetrahedral element mesh.

8 Numerical results and discussion

In this section, several tetrahedral element models are
developed in order to evaluate the performance and
demonstrate the use of the proposed ANCF four-node
(FN) and eight-node mixed-coordinate (ENMC) tetra-
hedral elements. The numerical results obtained using
these cubic ANCF tetrahedral elements, which ensure
continuity of the positions and gradients at the nodes,
are compared with the results obtained using the con-
ventional four-node linear (FNL) and the ten-node
quadratic (TNQ) tetrahedral elements, which guaran-
tee only the position continuity at the nodes. In order
to perform a consistent comparative study, the conven-
tional FNL and TNQ tetrahedral elements are imple-
mented using a total Lagrangian non-incremental solu-
tion procedure [14,38]. Furthermore, for the purpose

Fig. 8 Prismatic pendulum

Fig. 9 Prismatic pendulum mesh
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Fig. 10 Tetrahedral
asymmetric
macro-elements. a
Macro-element of the first
type, b macro-element of
the second type

Fig. 11 Tetrahedral symmetric macro-element
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Fig. 12 Vertical displacement of the rigid pendulum tip (circle
FNL tetrahedral element, square TNQ tetrahedral element, dia-
mondANCF/FN tetrahedral element, vertical lineANCF/ENMC
tetrahedral element, cross rigid body)

of validating the results obtained by using the pro-
posed ANCF tetrahedral elements, these results are
compared with the results of the ANCF brick element
implemented in the general-purpose MBS computer
program SIGMA/SAMS (Systematic Integration of
Geometric Modeling and Analysis for the Simulation
ofArticulatedMechanical Systems). This comparative
study shows, for themost part, a good agreement for the
displacements, while slight differences in the strains
between the conventional tetrahedral and the ANCF
tetrahedral element models are observed. The linear
and quadratic conventional tetrahedral elements do not

ensure continuity of the rotations, strains, and stresses
at the nodal points. Furthermore, the curvatures within
these elements are either constant or identically zero.
Therefore, the conventional tetrahedral elements are
not well suited for bending problems. The numerical
results presented in this section are obtained using a
MATLAB computer program. A continuum mechan-
ics approach and nonlinear displacement–strain rela-
tionships are used to evaluate the generalized elastic
forces, and as a result, geometric nonlinearities are
taken into account. The material model assumed is the
Saint Venant–Kirchhoff hyperelastic constitutive law.
The generalized elastic forces are numerically calcu-
lated by using the standardGauss quadrature procedure
with full integration [37].

8.1 Rigid body motion

The rectangular pendulum example, shown in Fig. 8, is
used to demonstrate that the proposed ANCF tetrahe-
dral elements are capable of correctly describing rigid
body motion. The pendulum used in this example is
assumed to be initially horizontal and to fall under the
effect of its own weight. The pendulum has length L =
1.0 m, width H = 0.001 m, thickness W = 1.0 m,
density ρ = 7860 kg/m3, Poisson ratio ν = 0.27, and
Young’s modulus E = 2.1 × 109 N/m2. The grav-
itational acceleration considered is g = 9.81 m/s2.
Based on the assumed properties, the rigid pendulum
has a mass m = 7.86 kg and principal moments of

Table 1 FNL tetrahedral
element convergence
analysis

Number of
elements

Displacement normalized
root-mean-square error

Normal strain εxx
normalized root-mean-
square error

Normal strain εzz
normalized root-mean-
square error

160 5.735 × 10−2 1.448 × 10−1 1.724 × 10−1

240 2.664 × 10−2 1.066 × 10−1 1.328 × 10−1

320 1.370 × 10−2 6.942 × 10−2 8.790 × 10−2

400 7.419 × 10−3 4.189 × 10−2 5.308 × 10−2

480 4.098 × 10−3 2.495 × 10−2 3.203 × 10−2

560 2.244 × 10−3 1.459 × 10−2 1.898 × 10−2

640 1.174 × 10−3 8.339 × 10−3 1.067 × 10−2

720 5.646 × 10−4 4.599 × 10−3 5.749 × 10−3

800 2.437 × 10−4 2.413 × 10−3 2.944 × 10−3

880 1.101 × 10−4 1.247 × 10−3 1.481 × 10−3

960 6.088 × 10−5 5.864 × 10−4 6.951 × 10−4
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Table 2 TNQ tetrahedral
element convergence
analysis

Number of
elements

Displacement normalized
root-mean-square error

Normal strain εxx
normalized root-mean-
square error

Normal strain εzz
normalized root-mean-
square error

160 3.687 × 10−3 2.739 × 10−2 3.588 × 10−2

240 2.359 × 10−3 1.688 × 10−2 1.895 × 10−2

320 1.656 × 10−3 1.135 × 10−2 1.312 × 10−2

400 1.191 × 10−3 7.895 × 10−3 9.106 × 10−3

480 8.589 × 10−4 5.563 × 10−3 6.355 × 10−3

560 6.086 × 10−4 3.876 × 10−3 4.406 × 10−3

640 4.121 × 10−4 2.592 × 10−3 2.956 × 10−3

720 2.518 × 10−4 1.567 × 10−3 1.816 × 10−3

800 1.168 × 10−4 7.230 × 10−3 8.704 × 10−4

Table 3 ANCF/FN
tetrahedral element
convergence analysis

Number of
elements

Displacement normalized
root-mean-square error

Normal strain εxx
normalized root-mean-
square error

Normal strain εzz
normalized root-mean-
square error

160 6.552 × 10−2 1.535 × 10−1 2.080 × 10−1

240 2.304 × 10−2 1.122 × 10−1 1.464 × 10−1

320 9.757 × 10−3 6.548 × 10−2 7.844 × 10−2

400 4.803 × 10−3 3.699 × 10−2 4.641 × 10−2

480 2.530 × 10−3 2.144 × 10−2 2.718 × 10−2

560 1.355 × 10−3 1.241 × 10−2 1.605 × 10−2

640 7.037 × 10−4 7.068 × 10−3 9.083 × 10−3

720 3.300 × 10−4 3.751 × 10−3 4.730 × 10−3

800 1.164 × 10−4 1.561 × 10−3 2.049 × 10−3

inertia of Ixx = 0.655 kgm2, Iyy = 1.31 kgm2, and

Izz = 0.655 kgm2. In this numerical example, a large
modulus of elasticity is used in order to ensure small
deformations, allowing for comparison with the results
obtained using a rigid pendulummodel. The symmetric
mesh of the flexible pendulum is shown in Fig. 9. To
construct a symmetric tetrahedral mesh for the flexible
pendulum, two types of asymmetric macro-elements
made of 5 tetrahedral elements are used, as shown in
Fig. 10. Figure 11 shows the complete prismaticmacro-
element composed of 40 tetrahedral elements which is
employed as a building block for creating the tetra-
hedral element mesh. Since the elastic modulus used
in this test is large, only one prismatic module com-
posed of 40 tetrahedral elements is used to create the
FEmodel of the stiff pendulum. The flexible pendulum
is constrained to the ground with three spherical joints
located at points A1, A2, and A3, while the rigid pen-

dulum is constrained to the ground with only one revo-
lute joint located at point A2, as shown in Fig. 8. In this
numerical example, the constraint equations are linear
algebraic equations, systematically eliminated at a pre-
processing stage leading to a set of ordinary differential
equations of motion. In addition to the FN and ENMC
tetrahedral element models, two other models based on
the conventional FNL and TNQ tetrahedral elements
are developed. The numerical integration method used
to solve the resulting ordinary differential equations of
motion is the Gear algorithm, which is a sixth-order
implicit linear multistep scheme with a constant step
size [35]. The time interval considered for the numer-
ical simulations is T = 2.0 s, whereas the minimum
time step used is �t = 5 × 10−6 s. Figure 12 shows
the vertical displacement of the pendulum tip point B
obtained using the stiff flexible and rigid body models.
The results obtained using the stiff and rigid pendu-

123



2924 C. M. Pappalardo et al.

Table 4 ANCF/ENMC
tetrahedral element
convergence analysis

Number of
elements

Displacement normalized
root-mean-square error

Normal strain εxx
normalized root-mean-
square error

Normal strain εzz
normalized root-mean-
square error

160 2.786 × 10−3 6.739 × 10−2 8.312 × 10−2

240 1.859 × 10−3 3.822 × 10−2 4.703 × 10−2

320 1.304 × 10−3 2.382 × 10−2 2.953 × 10−2

400 9.071 × 10−3 1.525 × 10−2 1.905 × 10−2

480 6.019 × 10−4 9.551 × 10−3 1.200 × 10−2

560 3.592 × 10−4 5.469 × 10−3 6.894 × 10−3

640 1.624 × 10−4 2.398 × 10−3 3.037 × 10−3

Fig. 13 FNL tetrahedral element convergence (circle vertical
displacement normalized root-mean-square error, square normal
strain εxx normalized root-mean-square error, diamond normal
strain εzz normalized root-mean-square error)

lummodels are in good agreement,which demonstrates
that the proposed ANCF tetrahedral elements correctly
describe rigid body motion and yield consistent mass
distribution.

8.2 Flexible body motion

The straight rectangular pendulum example, shown in
Fig. 8, is used to assess the performance of the FN
and ENMC tetrahedral elements in the case of large
finite rotations and large deformations. In this numeri-
cal example, themodel data are as previously presented
except for the pendulum width, thickness, and modu-
lus of elasticity which are, respectively, assumed to be
H = 0.1 m, W = 0.1 m, and E = 2.1 × 106 N/m2.

Fig. 14 TNQ tetrahedral element convergence (circle vertical
displacement normalized root-mean-square error, square normal
strain εxx normalized root-mean-square error, diamond normal
strain εzz normalized root-mean-square error)

The time interval considered for the numerical simu-
lations is T = 1.0 s, whereas the minimum time step
used is�t = 6.25×10−6 s. The numerical integration
method used to solve the resulting ordinary differen-
tial equations of motion is the Adams–Bashforth algo-
rithm, which is a sixth-order explicit linear multistep
scheme with a constant step size [35]. First, a con-
vergence analysis and a comparative study with con-
ventional tetrahedral elements are carried out. To this
end, FE models based on the FNL, TNQ, ANCF/FN,
and ANCF/ENMC tetrahedral elements are developed
using a symmetric mesh made of prismatic macro-
elements as shown in Figs. 9, 10, and 11. If Nm is
the number of modules constructed using 40 tetrahe-
dral elements and employed to create symmetric tetra-
hedral meshes, the total number of tetrahedral ele-
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Fig. 15 ANCF/FN tetrahedral element convergence (circle ver-
tical displacement normalized root-mean-square error, square
normal strain εxx normalized root-mean-square error, diamond
normal strain εzz normalized root-mean-square error)

Fig. 16 ANCF/ENMC tetrahedral element convergence (circle
vertical displacement normalized root-mean-square error, square
normal strain εxx normalized root-mean-square error, diamond
normal strain εzz normalized root-mean-square error)

ments is Ne = 40Nm . Since, as expected, the con-
vergence rate is not the same for the four types of
tetrahedral elements considered, different numbers of
elements are used to achieve convergence for differ-
ent tetrahedral models. It was found that displacement
and strain convergence is achieved for the FNL ele-
ment model with a 26-macro-element mesh that cor-
responds to Ne = 40 × 26 = 1040 elements; for
the TNQ tetrahedral element model, convergence is
achieved with a 22-macro-element mesh that corre-

Fig. 17 Vertical displacement of the flexible pendulum tip (cir-
cle ANCF brick element, square FNL tetrahedral element, dia-
mond TNQ tetrahedral element)

sponds to Ne = 40 × 22 = 880 elements; for the
ANCF/FN tetrahedral element model, convergence is
achieved with a 22-macro-element mesh that corre-
sponds to Ne = 40 × 22 = 880 elements; and for the
ANCF/ENMC tetrahedral elementmodel, convergence
is achieved with an 18-macro-element mesh that corre-
sponds to Ne = 40× 18 = 720 elements. However, in
the case of the conventional FNL and TNQ tetrahedral
element models, finer meshes cannot achieve geom-
etry convergence because of the gradient discontinu-
ities at the element nodes that lead to strain and stress
discontinuities. In order to provide a quantitative mea-
sure of the convergence rate of the tetrahedral elements
considered, the normalized root-mean-square errors of
the numerical solutions are computed with respect to
a set of reference solutions and the resulting values
are reported in Tables 1, 2, 3, and 4. Figures 13, 14,
15, and 16 are logarithmic-scale graphical representa-
tions of the convergence analysis reported in Tables 1,
2, 3, and 4, respectively. The normalized root-mean-
square errors are evaluated for the complete simulation
interval, for the displacement and normal strains εxx
and εzz . These quantitative metrics refer to the FNL,
TNQ, ANCF/FN, and ANCF/ENMC tetrahedral ele-
ment models. For the FNL tetrahedral element, the ref-
erence solution corresponds to the 26-macro-element
mesh; for the TNQ tetrahedral element, the reference
solution corresponds to the 22-macro-element mesh;
for the ANCF/FN tetrahedral element, the reference
solution corresponds to a 22-macro-element mesh; and
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for the ANCF/ENMC tetrahedral element, the ref-
erence solution corresponds to an 18-macro-element
mesh. As expected, for all the tetrahedral elements used
in the convergence analysis, the normalized root-mean-
square errors of the numerical solutions decrease when
increasing the number of elements, demonstrating the
convergence of the ANCF tetrahedral elements pro-
posed in this investigation. In particular, the FNL tetra-
hedral element has the slowest convergence rate. The
proposed ANCF/FN tetrahedral element has a conver-
gence rate comparable with the convergence rate of
the TNQ tetrahedral element and shows slightly differ-
ent trends in the strain results when compared to the
ANCF/ENMC tetrahedral element. On the other hand,
the ANCF/ENMC tetrahedral element has the fastest
convergence rate. The explanation of this behavior is
due to the fact that the constraint equations, which are
used for deriving the shape functions of the proposed
ANCF/FN tetrahedral element, lead to an incomplete
set of cubic polynomials, whereas the ANCF/ENMC
tetrahedral element is based on a complete cubic poly-
nomial representation. The results obtained using the
proposed elements are also compared with the results
obtained using the ANCF brick element. To this end,
a 36 × 2 × 2, a 38 × 2 × 2, and a 40 × 2 × 2 ANCF
brick element models are developed and it was found
that displacement and strain convergence are achieved
for this element using the 40×2×2 mesh. Figures 17,
18, and 19 show, respectively, the vertical displacement
of the pendulum tip point B under the effect of grav-
ity, the normal strain εxx at the pendulum center point
C , and the normal strain εzz at the pendulum center
point C when convergence is achieved for the ANCF
brick, and the FNL and TNQ tetrahedral element mod-
els. In order to improve the accuracy of the strain results
obtained using the conventional tetrahedral elements
which do not ensure strain continuity at the nodes, sim-
ple strain-averaging techniques were used. Figures 20,
21, and 22 show, respectively, the vertical displacement
of the pendulum tip point B under the effect of grav-
ity, the normal strain εxx at the pendulum center point
C , and the normal strain εzz at the pendulum center
point C when convergence is achieved for the ANCF
brick, and the ANCF/FN and ANCF/ENMC tetrahe-
dral element models. Since the ANCF tetrahedral ele-
ments ensure the continuity of the strain at the nodes, no
strain-averaging techniques are required to improve the
quality of the numerical results. The numerical results
presented demonstrate that there is, in general, a good

Fig. 18 Normal strain εxx at the flexible pendulum center (circle
ANCF brick element, square FNL tetrahedral element, diamond
TNQ tetrahedral element)

Fig. 19 Normal strain εzz at the flexible pendulum center (circle
ANCF brick element, square FNL tetrahedral element, diamond
TNQ tetrahedral element)

agreement between the solutions obtained using differ-
ent tetrahedral element models. However, although the
general trend is the same, the strain results obtained
using the FNL and TNQ tetrahedral element mod-
els show slightly different trends when compared to
the ANCF/FN and ANCF/ENMC tetrahedral element
models and with the ANCF brick element models. This
can be attributed to the geometry assumptions used for
the conventional FNL and TNQ tetrahedral elements
which do not ensure the continuity of the strain and
stress fields at the nodal points.
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Fig. 20 Vertical displacement of the flexible pendulum tip (cir-
cle ANCF brick element, square ANCF/FN tetrahedral element,
diamond ANCF/ENMC tetrahedral element)

Fig. 21 Normal strain εxx at the flexible pendulum center (cir-
cle ANCF brick element, square ANCF/FN tetrahedral element,
diamond ANCF/ENMC tetrahedral element)

9 Summary and conclusions

In this investigation, two new ANCF tetrahedral ele-
ments: eight-nodemixed-coordinate (ENMC)and four-
node (FN) tetrahedral elements, are developed and their
performance is numerically evaluated. Both tetrahe-
dral elements are based on a cubic polynomial inter-
polation obtained using the linear relationship between
the ANCF nodal coordinates and the Bezier control
points that define a cubic Bezier tetrahedral patch. As
explained in the paper, the ANCF tetrahedral elements
developed are isoparametric elements, can consistently
describe arbitrary rigid body motion, allow for repre-

Fig. 22 Normal strain εzz at the flexible pendulum center (cir-
cle ANCF brick element, square ANCF/FN tetrahedral element,
diamond ANCF/ENMC tetrahedral element

senting large finite rotations, and impose no restric-
tions on the amount of deformation within the finite
element. Unlike the conventional tetrahedral elements
used in the FE literature, the proposed ANCF tetrahe-
dral elements ensure the continuity of the gradients,
rotations, strains, and stresses at the nodal points at the
element corners. The position vector gradients based on
the volume parametrization are used to obtain compact
and closed form expressions of the element shape func-
tions. These volume gradients are systematically con-
verted into Cartesian position vector gradients in order
to allow for the use of a standard FE assembly proce-
dure. The proposed ANCF tetrahedral elements lead
to a constant mass matrix and zero Coriolis and cen-
trifugal inertia forces. The numerical results obtained
using the proposed new FN and ENMC tetrahedral ele-
ments are comparedwith the numerical results obtained
using the conventional four-node linear (FN) and ten-
node quadratic (TNQ) tetrahedral elements, as well as
the results obtained using the ANCF brick element.
The results obtained in this study showed, in gen-
eral, good convergence characteristics of the proposed
ANCF tetrahedral elements. When compared to the
conventional tetrahedral elements, the proposedANCF
elements do not require any special form of strain- and
stress-averaging techniques. In particular, it is demon-
strated that complex deformation shapes can be mod-
eled using a smaller number of ANCF/ENMC tetrahe-
dral elementswhen compared to the conventional linear
and quadratic (FNL and TNQ) tetrahedral elements.
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It is important also to point out that the method of
algebraic constraint equations used to obtain the FN
incomplete polynomials from the complete polynomi-
als has several advantages that include eliminating the
trial and errors in identifying the incomplete polynomi-
als, ensuring that the obtained incomplete polynomials
are symmetric in the coordinates, and making clear the
geometric restrictions imposed in the process of reduc-
ing the number of the basis functions.

Acknowledgements This research was supported, in part, by
the National Science Foundation (Project # 1632302).

Appendix A

The linear transformations between the Bezier tetra-
hedral patch basis functions gk, k = 1, 2, . . . , 20, and
the shape functions of the ANCF/ENMC tetrahedral
element s̄k, k = 1, 2, . . . , 20, are given by

s̄1 = g1 + g5 + g9 + g11 − 7
6 (g17 + g18 + g20) ,

s̄2 = 1
3 g5 − 1

6 (g17 + g18) ,

s̄3 = 1
3 g9 − 1

6 (g17 + g20) ,

s̄4 = 1
3 g11 − 1

6 (g18 + g20) ,

s̄5 = g2 + g6 + g7 + g13 − 7
6 (g17 + g18 + g19) ,

s̄6 = 1
3 g7 − 1

6 (g17 + g19) ,

s̄7 = 1
3 g13 − 1

6 (g18 + g19) ,

s̄8 = 1
3 g6 − 1

6 (g17 + g18) ,

s̄9 = g3 + g8 + g10 + g15 − 7
6 (g17 + g19 + g20) ,

s̄10 = 1
3 g15 − 1

6 (g19 + g20) ,

s̄11 = 1
3 g10 − 1

6 (g17 + g20) ,

s̄12 = 1
3 g8 − 1

6 (g17 + g19) ,

s̄13 = g4 + g12 + g14 + g16 − 7
6 (g18 + g19 + g20) ,

s̄14 = 1
3 g12 − 1

6 (g18 + g20) ,

s̄15 = 1
3 g14 − 1

6 (g18 + g19) ,

s̄16 = 1
3 g16 − 1

6 (g19 + g20) , s̄17 = 9
2 g17,

s̄18 = 9
2 g18, s̄19 = 9

2 g19, s̄20 = 9
2 g20

⎫
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(A.1)

The linear transformations between the shape func-
tions of the ANCF/ENMC tetrahedral element s̄k, k =
1, 2, . . . , 20, and the shape functions of theANCF four-
node (FN) tetrahedral element sk, k = 1, 2, . . . , 16, are
given by:

s1 = s̄1 + 1
3 s̄17 + 1

3 s̄18 + 1
3 s̄20,

s2 = s̄2 + 2
81 s̄17 + 2

81 s̄18,

s3 = s̄3 + 2
81 s̄17 + 2

81 s̄20,

s4 = s̄4 + 2
81 s̄18 + 2

81 s̄20,

s5 = s̄5 + 1
3 s̄17 + 1

3 s̄18 + 1
3 s̄19,

s6 = s̄6 + 2
81 s̄17 + 2

81 s̄19,

s7 = s̄7 + 2
81 s̄18 + 2

81 s̄19,

s8 = s̄8 + 2
81 s̄17 + 2

81 s̄18,

s9 = s̄9 + 1
3 s̄17 + 1

3 s̄19 + 1
3 s̄20,

s10 = s̄10 + 2
81 s̄19 + 2

81 s̄20,

s11 = s̄11 + 2
81 s̄17 + 2

81 s̄20,

s12 = s̄12 + 2
81 s̄17 + 2

81 s̄19,

s13 = s̄13 + 1
3 s̄18 + 1

3 s̄19 + 1
3 s̄20,

s14 = s̄14 + 2
81 s̄18 + 2

81 s̄20,

s15 = s̄15 + 2
81 s̄18 + 2

81 s̄19,

s16 = s̄16 + 2
81 s̄19 + 2

81 s̄20

⎫
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(A.2)

The shape functions of the ENMC and FN elements
associated with the Cartesian gradient vectors rkx , r

k
y ,

and rkz can be systematically evaluated. The ENMC
shape functions s̄∗

k , k = 1, 2, . . . , 20, associated with
the Cartesian gradients can be explicitly written in
terms of the tetrahedral volume parameters as
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s̄∗
1 = ξ

(
ξ2 + 3ξ (η + ζ + χ) − 7 (ηζ + χ (η + ζ ))

)

s̄∗
2 = a2,1ξη (ξ − ζ − χ) + a3,1ξζ (ξ − χ − η)

+ a4,1ξχ (ξ − η − ζ )

s̄∗
3 = b2,1ξη (ξ − ζ − χ) + b3,1ξζ (ξ − χ − η)

+ b4,1ξχ (ξ − η − ζ )

s̄∗
4 = c2,1ξη (ξ − ζ − χ) + c3,1ξζ (ξ − χ − η)

+ c4,1ξχ (ξ − η − ζ )

s̄∗
5 = η

(
η2 + 3η (ζ + χ + ξ) − 7 (ζχ + ξ (ζ + χ))

)

s̄∗
6 = a3,2ηζ (η − χ − ξ) + a4,2ηχ (η − ξ − ζ )

+ a1,2ηξ (η − ζ − χ)

s̄∗
7 = b3,2ηζ (η − χ − ξ) + b4,2ηχ (η − ξ − ζ )

+ b1,2ηξ (η − ζ − χ)

s̄∗
8 = c3,2ηζ (η − χ − ξ) + c4,2ηχ (η − ξ − ζ )

+ c1,2ηξ (η − ζ − χ)

s̄∗
9 = ζ

(
ζ 2 + 3ζ (χ + ξ + η) − 7 (χξ + η (χ + ξ))

)

s̄∗
10 = a4,3ζχ (ζ − ξ − η) + a1,3ζ ξ (ζ − η − χ)

+ a2,3ζη (ζ − χ − ξ)

s̄∗
11 = b4,3ζχ (ζ − ξ − η) + b1,3ζ ξ (ζ − η − χ)

+ b2,3ζη (ζ − χ − ξ)

s̄∗
12 = c4,3ζχ (ζ − ξ − η) + c1,3ζ ξ (ζ − η − χ)

+ c2,3ζη (ζ − χ − ξ)

s̄∗
13 = χ

(
χ2 + 3χ (ξ + η + ζ ) − 7 (ξη + ζ (ξ + η))

)

s̄∗
14 = a1,4χξ (χ − η − ζ ) + a2,4χη (χ − ζ − ξ)

+ a3,4χζ (χ − ξ − η)

s̄∗
15 = b1,4χξ (χ − η − ζ ) + b2,4χη (χ − ζ − ξ)

+ b3,4χζ (χ − ξ − η)

s̄∗
16 = c1,4χξ (χ − η − ζ ) + c2,4χη (χ − ζ − ξ)

+ c3,4χζ (χ − ξ − η)

s̄∗
17 = 27ξηζ, s̄∗

18 = 27ξηχ, s̄∗
19 = 27ηζχ,

s̄∗
20 = 27ξζχ

⎫
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(A.3)

The ANCF/FN shape functions s∗
k , k = 1, 2, . . . , 16,

associated with the Cartesian gradients can be written
as

s∗
1 = ξ

(
ξ2 + 3ξ (η + ζ + χ) + 2 (ηζ + χ (η + ζ ))

)

s∗
2 = a2,1

1
3 ξη (3ξ − ζ − χ) + a3,1

1
3 ξζ (3ξ − χ − η)

+ a4,1
1
3 ξχ (3ξ − η − ζ )

s∗
3 = b2,1

1
3 ξη (3ξ − ζ − χ) + b3,1

1
3 ξζ (3ξ − χ − η)

+ b4,1
1
3 ξχ (3ξ − η − ζ )

s∗
4 = c2,1

1
3 ξη (3ξ − ζ − χ) + c3,1

1
3 ξζ (3ξ − χ − η)

+ c4,1
1
3 ξχ (3ξ − η − ζ )

s∗
5 = η

(
η2 + 3η (ζ + χ + ξ) + 2 (ζχ + ξ (ζ + χ))

)

s∗
6 = a3,2

1
3ηζ (3η − χ − ξ) + a4,2

1
3ηχ (3η − ξ − ζ )

+ a1,2
1
3ηξ (3η − ζ − χ)

s∗
7 = b3,2

1
3ηζ (3η − χ − ξ) + b4,2

1
3ηχ (3η − ξ − ζ )

+ b1,2
1
3ηξ (3η − ζ − χ)

s∗
8 = c3,2

1
3ηζ (3η − χ − ξ) + c4,2

1
3ηχ (3η − ξ − ζ )

+ c1,2
1
3ηξ (3η − ζ − χ)

s∗
9 = ζ

(
ζ 2 + 3ζ (χ + ξ + η) + 2 (χξ + η (χ + ξ))

)

s∗
10 = a4,3

1
3 ζχ (3ζ − ξ − η) + a1,3

1
3 ζ ξ (3ζ − η − χ)

+ a2,3
1
3 ζη (3ζ − χ − ξ)

s∗
11 = b4,3

1
3 ζχ (3ζ − ξ − η) + b1,3

1
3 ζ ξ (3ζ − η − χ)

+ b2,3
1
3 ζη (3ζ − χ − ξ)

s∗
12 = c4,3

1
3 ζχ (3ζ − ξ − η) + c1,3

1
3 ζ ξ (3ζ − η − χ)

+ c2,3
1
3 ζη (3ζ − χ − ξ)

s∗
13 = χ

(
χ2 + 3χ (ξ + η + ζ ) + 2 (ξη + ζ (ξ + η))

)

s∗
14 = a1,4

1
3χξ (3χ − η − ζ ) + a2,4

1
3χη (3χ − ζ − ξ)

+ a3,4
1
3χζ (3χ − ξ − η)

s∗
15 = b1,4

1
3χξ (3χ − η − ζ ) + b2,4

1
3χη (3χ − ζ − ξ)

+ b3,4
1
3χζ (3χ − ξ − η)

s∗
16 = c1,4

1
3χξ (3χ − η − ζ ) + c2,4

1
3χη (3χ − ζ − ξ)

+ c3,4
1
3χζ (3χ − ξ − η)

⎫
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(A.4)
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The above FN shape functions can be written in terms
of the ENMC shape functions as

s∗1 = s̄∗1 + 1
3 s̄

∗
17 + 1

3 s̄
∗
18 + 1

3 s̄
∗
20,

s∗2 = s̄∗2 + 2
81α2,3,1s̄

∗
17 + 2

81α2,4,1s̄
∗
18 + 2

81α3,4,1s̄
∗
20,

s∗3 = s̄∗3 + 2
81β2,3,1s̄

∗
17 + 2

81β2,4,1s̄
∗
18 + 2

81β3,4,1s̄
∗
20,

s∗4 = s̄∗4 + 2
81γ2,3,1s̄

∗
17 + 2

81γ2,4,1s̄
∗
18 + 2

81γ3,4,1s̄
∗
20,

s∗5 = s̄∗5 + 1
3 s̄

∗
17 + 1

3 s̄
∗
18 + 1

3 s̄
∗
19,

s∗6 = s̄∗6 + 2
81α1,3,2 s̄

∗
17 + 2

81α1,4,2 s̄
∗
18 + 2

81α3,4,2 s̄
∗
19,

s∗7 = s̄∗7 + 2
81β1,3,2 s̄

∗
17 + 2

81β1,4,2 s̄
∗
18 + 2

81β3,4,2 s̄
∗
19,

s∗8 = s̄∗8 + 2
81γ1,3,2 s̄

∗
17 + 2

81γ1,4,2 s̄
∗
18 + 2

81γ3,4,2 s̄
∗
19,

s∗9 = s̄∗9 + 1
3 s̄

∗
17 + 1

3 s̄
∗
19 + 1

3 s̄
∗
20,

s∗10 = s̄∗10 + 2
81α1,2,3s̄

∗
17 + 2

81α2,4,3s̄
∗
19 + 2

81α1,4,3s̄
∗
20,

s∗11 = s̄∗11 + 2
81β1,2,3s̄

∗
17 + 2

81β2,4,3s̄
∗
19 + 2

81β1,4,3s̄
∗
20,

s∗12 = s̄∗12 + 2
81γ1,2,3s̄

∗
17 + 2

81γ2,4,3s̄
∗
19 + 2

81γ1,4,3s̄
∗
20,

s∗13 = s̄∗13 + 1
3 s̄

∗
18 + 1

3 s̄
∗
19 + 1

3 s̄
∗
20,

s∗14 = s̄∗14 + 2
81α1,2,4s̄

∗
18 + 2

81α2,3,4s̄
∗
19 + 2

81α1,3,4s̄
∗
20,

s∗15 = s̄∗15 + 2
81β1,2,4s̄

∗
18 + 2

81β2,3,4s̄
∗
19 + 2

81β1,3,4s̄
∗
20,

s∗16 = s̄∗16 + 2
81γ1,2,4 s̄

∗
18 + 2

81γ2,3,4s̄
∗
19 + 2

81γ1,3,4s̄
∗
20

⎫
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(A.5)

To obtain the above equations, the following constant
coefficients need to be defined:

V1 = 1
6 ((x3y4 − x4y3) z2 + (x4y2 − x2y4) z3

+ (x2y3 − x3y2) z4)

V2 = 1
6 ((x4y3 − x3y4) z1 + (x1y4 − x4y1) z3

+ (x3y1 − x1y3) z4)

V3 = 1
6 ((x2y4 − x4y2) z1 + (x4y1 − x1y4) z2

+ (x1y2 − x2y1) z4)

V4 = 1
6 ((x3y2 − x2y3) z1 + (x1y3 − x3y1) z2

+ (x2y1 − x1y2) z3)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.6)
L1,1 = y4 (z3 − z2) + y3 (z2 − z4) + y2 (z4 − z3)
L1,2 = x4 (z2 − z3) + x2 (z3 − z4) + x3 (z4 − z2)
L1,3 = x4 (y3 − y2) + x3 (y2 − y4) + x2 (y4 − y3)

⎫
⎬

⎭

(A.7)
L2,1 = y4 (z1 − z3) + y1 (z3 − z4) + y3 (z4 − z1)
L2,2 = x4 (z3 − z1) + x3 (z1 − z4) + x1 (z4 − z3)
L2,3 = x4 (y1 − y3) + x1 (y3 − y4) + x3 (y4 − y1)

⎫
⎬

⎭

(A.8)

L3,1 = y4 (z2 − z1) + y2 (z1 − z4) + y1 (z4 − z2)
L3,2 = x4 (z1 − z2) + x1 (z2 − z4) + x2 (z4 − z1)
L3,3 = x4 (y2 − y1) + x2 (y1 − y4) + x1 (y4 − y2)

⎫
⎬

⎭

(A.9)
L4,1 = y3 (z1 − z2) + y1 (z2 − z3) + y2 (z3 − z1)
L4,2 = x3 (z2 − z1) + x2 (z1 − z3) + x1 (z3 − z2)
L4,3 = x3 (y1 − y2) + x1 (y2 − y3) + x2 (y3 − y1)

⎫
⎬

⎭

(A.10)

ai, j = xi − x j , bi, j = yi − y j , ci, j = zi − z j ,

i = 1, 2, . . . , 4, j = 1, 2, . . . , 4, i �= j (A.11)
αi, j,h = xi + x j − 2xh
βi, j,h = yi + y j − 2yh
γi, j,h = zi + z j − 2zh

⎫
⎬

⎭
,

i = 1, 2, . . . , 4, j = 1, 2, . . . , 4,

h = 1, 2, . . . , 4, i �= j, i �= h (A.12)

where xk , yk , and zk represent theCartesian coordinates
of the tetrahedron vertex k, and V = V1+V2+V3+V4.
The tetrahedron volume coordinates ξ, η, ζ , and χ can
be expressed as a linear combination of the tetrahedral
Cartesian coordinates x , y, and z as:

ξ = 1
6V

(
6V1 + L1,1x + L1,2y + L1,3z

)

η = 1
6V

(
6V2 + L2,1x + L2,2y + L2,3z

)

ζ = 1
6V

(
6V3 + L3,1x + L3,2y + L3,3z

)

χ = 1
6V

(
6V4 + L4,1x + L4,2y + L4,3z

)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(A.13)

It can also be shown that the ENMC and FN shape
functions written in terms of the Cartesian gradients s̄∗

k
and s∗

k can be expressed in terms of the ENMC and FN
shape functions associated with the volume gradients
s̄k and sk as S̄∗ = S̄T̄ and S∗ = ST, where the trans-
formation matrices T̄ and T are previously defined in
the paper.

In developing new ANCF finite elements with cer-
tain number and type of nodal coordinates, the use of
incomplete polynomials may be necessary. In order to
avoid trials and errors in identifying such incomplete
polynomials and obtain symmetric structure in x, y,
and z, themethodof algebraic constraint equations used
in developing the FN element presented in this paper
can be systematically used. For the FN element, one
can use from the outset, the algebraic constraint equa-
tions to reduce the number of each polynomial basis
function from 20 to 16 and to systematically define the
incomplete polynomial which has the following basis
expressed in terms of the volume coordinates:
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h1 = ξ
(
ξ2 + 4ηχ + 4ζ (η + χ)

)
,

h2 = η
(
η2 + 4ξχ + 4ζ (ξ + χ)

)
,

h3 = ζ
(
ζ 2 + 4ξχ + 4η (ξ + χ)

)
,

h4 = χ
(
χ2 + 4ηξ + 4ζ (η + ξ)

)
,

h5 = ηξ (3ξ − ζ − χ) ,

h6 = ηξ (3η − ζ − χ) ,

h7 = ζη (3η − ξ − χ) ,

h8 = ζη (3ζ − ξ − χ) ,

h9 = ζ ξ (3ξ − η − χ) ,

h10 = ζ ξ (3ζ − η − χ) ,

h11 = ξχ (3ξ − ζ − η) ,

h12 = ξχ (3χ − ζ − η) ,

h13 = ηχ (3η − ζ − ξ) ,

h14 = ηχ (3χ − ζ − ξ) ,

h15 = ζχ (3ζ − η − ξ) ,

h16 = ζχ (3χ − η − ξ)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.14)

Using the relationship between the Cartesian and vol-
ume coordinates (Eq. A.13), the basis functions can be
written in terms of the Cartesian coordinates x, y, and
z as hi = ∑20

j=1 ai, j b j , where
[
b1 b2 . . . b20

] =[
1 x y z x2 y2 z2 xy yz xz x3 y3

z3 x2y y2x y2z z2y x2z z2x xyz
]

(A.15)

and the coefficients ai, j , i = 1, 2, . . . , 16, j =
1, 2, . . . , 20, can be systematically defined. One can
show that the incomplete polynomial defined by the
basis functions hi = ∑20

j=1 ai, j b j has the linear terms
1, x, y, and z that ensure that the rigid body motion
can be correctly described, and such a polynomial will
have a symmetric structure in x, y, and z.
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