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Abstract This paper is concernedwith the study of the high-frequencymodes resulting from the use of thefinite
elementabsolute nodal coordinate formulation (ANCF) inmultibody system (MBS) applications. The coupling
between the cross-sectional deformations and bending and extension of ANCF beam and plate elements
produces high-frequency modes which negatively impact the computational efficiency. In this paper, two new
and fundamentally different approaches are proposed to efficiently solve stiff systems of differential/algebraic
equations by filtering and/or damping out ANCF high-frequency modes. A new objective large rotation and
large deformation viscoelastic constitutive model defined by the Navier–Stokes equations, widely used for
fluids, is proposed for ANCF solids. The proposed Navier–Stokes viscoelastic constitutive model is formulated
in terms of a diagonal damping matrix, allows damping out insignificant high-frequency modes, and leads
to zero energy dissipation in the case of rigid body motion. The second approach, however, is numerical
and is based on enhancing the two-loop implicit sparse matrix numerical integration (TLISMNI) method by
introducing a new stiffness detection error control criterion. The new criterion avoids unnecessary reductions in
the time step andminimizes the number of TLISMNI outer loop iterations required to achieve convergence. The
TLISMNImethod ensures that theMBS algebraic constraint equations are satisfied at the position, velocity, and
acceleration levels, efficiently exploits sparsematrix techniques, and avoids numerical force differentiation. The
performance of the TLISMNI/Adams algorithm using the proposed error criterion is evaluated by comparison
with the TLISMNI/HHT method and the explicit predictor–corrector, variable-order, and variable step-size
Adams methods. Several numerical examples are used to evaluate the accuracy, efficiency, and damping
characteristics of the new nonlinear viscoelastic constitutive model and the TLISMNI procedure.

1 Introduction

ANCF elements, based on accurate geometric representation, can capture deformation modes that cannot
be captured using conventional structural elements such as beams, plates, and shells. Use of the continuum
mechanics approach with ANCF elements allows for capturing the coupling between the cross-sectional
deformation and the beam centerline or plate mid-surface displacements, thus relaxing the assumptions of
Euler–Bernoulli and Timoshenko beam theories [4,39]. Nonetheless, some ANCF coupled deformation high-
frequency modes adversely affect the computational efficiency and can be source of numerical problems,
despite having a negligible effect on the solution accuracy.
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There are two fundamentally different approaches that are commonly used to handle ANCF high-frequency
modes. The first approach employs physical internal damping, while the second approach is based on using
implicit numerical integrationmethods, some ofwhich are based on controllable numerical dissipation, referred
to as numerical damping. With regard to the first approach, viscoelastic constitutive models can be used
with confidence to damp out high-frequency oscillations as long as they reflect the physical behavior of
the system without violating mechanics principles. Accurate energy description is also necessary to perform
reliable durability and noise, vibration, and harshness (NVH) analyses.With regard to the numerical integration
approach, numerical damping must be used with care because the effect of high-frequency modes cannot be
arbitrarily filtered out in all applications. The two-loop implicit sparsematrix numerical integration (TLISMNI)
method was proposed to address the limitations of existing low-order implicit integration methods which can
filter out contributions of importantmodes [29].Another important problemwhich can undermine the efficiency
and convergence rate of ANCF elements is the locking phenomenon, which can be solved by selecting proper
locking alleviation techniques [14]. The specific contributions of this paper are summarized as follows:

(i) A new objective viscoelastic constitutive model which accounts for both material and geometric non-
linearities, does not damp out rigid body motion, and allows for filtering out high-frequency modes in
the case of small and large deformations is proposed. The elastic response is described using general
hyperelastic material laws which can accurately capture the elastic deformation of flexible and incom-
pressible materials. The viscous damping model, on the other hand, is based on a generalization of the
Navier–Stokes constitutive equations, widely used for fluids, for the use with ANCF solids.

(ii) The relationship between the proposedNavier–Stokes viscoelasticmodel and existing constitutive laws is
discussed in both small and large deformation scenarios. The newly implemented viscoelastic constitutive
model is validated and tested in order to demonstrate that the proposed constitutive model can be used to
efficiently damp out ANCF high-frequency modes and achieve CPU time saving of at least 50% when
compared with the perfect elastic case.

(iii) General stiffness detection and error control criteria are developed within the TLISMNI framework to
identify, during the integration process, the high-frequency and stiff components of the solution vector.
The development of a robust stiffness detection scheme is important to evaluate the significance of each
signal and filter out the effect of selected insignificant high-frequency oscillations. Using the stiffness
detection criterion, new TLISMNI error estimation and control methods are proposed to allow avoiding
unnecessary reduction in the time step size and minimizing the number of the TLISMNI outer loop
iterations required to achieve convergence.

(iv) Several constrained dynamical systems are used to study the accuracy, robustness, and damping char-
acteristics of the TLISMNI/Adams algorithm as compared to the TLISMNI/HHT and the explicit
predictor–corrector Adams methods. The damping characteristics of the TLISMNI/Adams method used
with the newly proposed Navier–Stokes viscoelastic constitutive model are compared with those of the
TLISMNI/HHT method.

This paper is organized as follows. In Sect. 2, several existing viscoelastic constitutive models are reviewed,
and the newly proposed Navier–Stokes viscoelastic constitutive model is introduced. In Sect. 3, experimental
and analytical methods which can be used in the identification of the dynamic viscosity coefficients of different
materials are presented. The ANCF equations of motion and generalized viscoelastic forces are introduced in
Sects. 4 and 5, respectively. Sections 6 and 7 describe the TLISMNI method, and the stiffness detection and
error control criteria, respectively. Section 8 presents several numerical examples used to assess the efficiency
and applicability of the proposed viscoelastic constitutive model and the TLISMNI error criterion. Section 9
provides a summary and the main conclusions drawn from this study.

2 Viscoelasticity formulations

In this Section, a review of existing viscoelastic constitutive models is presented, and the Navier–Stokes
viscoelastic formulation, used in this investigation for ANCF solids, is introduced.

2.1 Existing viscoelastic constitutive models

Accurate description of material behavior is necessary for developing realistic virtual prototyping models that
can be used for design and analysis of automotive, heavy machinery, and aerospace systems. Most materials
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dissipate energy as they deform because of internal damping, associatedwith physical micro- andmacroscopic-
level mechanisms [23]. The introduction of a physics-based internal damping is also important in order to
achieve dynamic simulation efficiency by damping out high-frequency oscillations that require a small time
step during the numerical integration of the equations of motion. Several linear and nonlinear viscoelastic
constitutive models that can be implemented in incremental solution procedures based on the corotational FE
approach can be found in the literature [5,11,32,42]. However, these models are not suited for implementation
in general-purpose flexible MBS computer algorithms that are based on non-incremental solution procedures.
Takahashi et al. [38] proposed using the proportional Rayleigh damping in the ANCF nonlinear equations of
motion. This approach is limited to the analysis of small deformations within individual ANCF elements and
leads to damping the rigid body motion. Yoo et al. [43] used the damping procedure proposed by Takahashi et
al. [38] to study the oscillations of a cantilever beam with attached endpoint mass and validated the numerical
results against experimental measurements. Garcia and Vallejo et al. [13] developed an objective internal
damping formulation based on the linear Kelvin–Voigt constitutive model which accounts for the deviatoric
and hydrostatic material response. This model, referred to in this paper as the small strain viscoelastic model,
is not suitable for the analysis of very flexible and incompressible materials because it is based on linear
constitutive equations. As reported in the literature, the use of nonlinear elastic constitutive models for large
deformation problems can improve the computational efficiency of ANCF models and contributes to avoiding
singular-deformation configurations that may result from using the linear elastic models [20]. Moreover, the
damping matrix obtained in case of the small strain viscoelastic model leads to viscous coupling between the
strain rate components and does not allow damping out high-frequency modes independently. Zhang et al.
[45] proposed a viscoelastic fractional derivative ANCF model and obtained good results in several numerical
examples including pendulum and cantilever beam problems. However, this approach was proposed only for
two-dimensional analysis under the assumption of plane stress. Furthermore, the use of fractional derivatives
requires large storage and can lead to a significant computational cost increase [26]. An objective nonlinear
viscoelastic constitutive model that can be implemented in non-incremental FE formulations was proposed
[22]. In this model, referred to in this paper as the ANCF deformation gradient rate viscoelastic (DGRV)
model, the damping force vector is defined as a function of the time rate of the deformation gradients, which
are determined using the QR decomposition of the matrix of position vector gradients. As a result, the viscous
stresses not only are functions of the strain rates but also depend nonlinearly on the Green–Lagrange strain
components. Further research is required to analyze the performance of the DGRV model as compared to
viscoelastic formulations based on a different decomposition of the matrix of position vector gradients such
as the polar decomposition theorem and using different reference coordinate systems such as the cross section
or Frenet frame.

2.2 Navier–Stokes viscoelastic model

In order to capture the physical behavior of metal- and rubberlike materials in large deformation and large
rotation problems, a general viscoelastic constitutive model must properly account for geometric and material
nonlinearities. In the viscoelastic formulation proposed in this investigation, the nonlinear elastic behavior of
very flexible and incompressible materials is captured by properly defining the strain energy density function.
The material dissipation is accounted for by introducing a viscous stress defined using the incompressible
Navier–Stokes equations.

The one-dimensional Kelvin–Voigt viscoelastic constitutive model is among the simplest models used in
linear viscoelasticity. The total stress is defined as the sum of elastic and viscous components which result from
a configuration of springs and dashpots arranged in parallel [33]. Under the assumption of infinitesimal strain,
theKelvin–Voigt constitutivemodel can bewritten in the three-dimensional case as σ = E : εi +Dt : ε̇i , where
σ is the stress tensor, εi = 1/2

(
Jd + JTd

)
is the infinitesimal strain tensor, Jd is the matrix of displacement

vector gradients, and E and Dt are the fourth-order tensors of elastic and damping coefficients, respectively
[5,28]. This formulation can be used to obtain the small strain viscoelastic model by introducing appropriate
stress and strain measures and ensuring that the constitutive equation is frame-indifferent as

σP2 = E : ε + Dt : ε̇ (1)

where σP2 is the second Piola–Kirchhoff stress tensor, ε = (1/2)
(
JT J − I

)
is the Green–Lagrange strain

tensor, J is the matrix of position vector gradients, I is the 3× 3 identity matrix, and ε̇ is the time derivative of
ε ([5,13]). The Kelvin–Voigt constitutive model can be generalized in a straightforward manner to the case of
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nonlinear elasticity by writing the elastic component of the second Piola–Kirchhoff stress tensor as function
of the strain energy density function � as

σ P2 = σ e
P2 + σ v

P2 = ∂�

∂ε
+ Dt : ε̇. (2)

In the case of finite strain elasticity, the energy density function � can be written as � = � + �◦, where
�◦ and � are the volume preserving (deviatoric) and volumetric components of the energy density function,
respectively. The viscous component of the stress tensor σ v

P2 can be conveniently written in the current
configuration as

σ v = −pI + A : D (3)

where p is the hydrostatic pressure, σ v is the Cauchy stress tensor, I is the 3 × 3 identity matrix, A is the

fourth-order tensor of viscosity coefficients, and D = (J−1
)T

ε̇ J−1 is the rate of deformation tensor. Under
the assumption of isotropic viscous response, the viscous stress tensor can be written as a function of two
independent parameters as

σ v = [−p + λtr(D)] I + 2μD (4)

where μ is the coefficient of dynamic viscosity and (λ + 2μ/3) is the coefficient of bulk viscosity [12,35,
40]. For many viscoelastic materials, such as polymers, the dilatational deformation is much stiffer than the
deviatoric response, and the incompressibility assumption is acceptable [32]. Motivated by these observations,
the incompressibility assumption J̇ = J tr (D) = 0 is imposed, and in this case, Eq. (4) reduces to

σ v = −pI + 2μD (5)

which is the Navier–Stokes constitutive equation widely used for incompressible Newtonian viscous fluids.
The incompressibility condition can be enforced using a penalty method by defining the volumetric strain
energy function as � = (1/2) k (J − 1)2, where k is a penalty coefficient. The viscous damping stress
can be written in Voigt form as {σ v} = Dm{D}, where {σ v} = [

σv
11 σv

22 σv
33 σv

12 σv
13 σv

23

]T , {D} =
[D11 D22 D33 D12 D13 D23]T , and Dm is the damping matrix, defined as

Dm = 2μI (6)

where I is the 6 × 6 identity matrix.

2.3 Comparison with existing viscoelastic models

In this Section, the Navier–Stokes viscoelastic model is compared with the small strain and the ANCF DGRV
constitutive models. It is clear that the diagonal form of the damping matrix Dm defined by Eq. (6) does not
couple the components of the rate of deformation tensor unlike the small strain viscoelastic model. In the latter
formulation, the damping matrix leads to viscous coupling between the normal strain rates and can be written
for isotropic materials as

Ds =

⎡

⎢⎢
⎢⎢
⎢
⎣

ξ + 2β ξ ξ
ξ ξ + 2β ξ 0
ξ ξ ξ + 2β

0 2β I

⎤

⎥⎥
⎥⎥
⎥
⎦

(7)

where I and 0 in this equation are the 3 × 3 identity and null matrices, respectively, ξ = (Eγv1
−2Gγv1 (1 − 2ν)) /3 (1 − 2ν), β = Gγv2, E and G are the elastic and shear moduli, respectively, v is
Poisson’s ratio, and γv1 and γv2 are the dilatational and deviatoric dissipation factors, respectively. In Sect. 3.2,
it is shown analytically that in the case of small deformations the coefficient of dynamic viscosityμ used in the
Navier–Stokes constitutive model proposed in this investigation for ANCF solids is equivalent to β. Another
advantage of the viscous Navier–Stokes damping formulation, shared with the ANCFDGRVmodel, is that the
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matrix of damping coefficients can be written more generally as function of two different dynamic viscosity
coefficients, while preserving its diagonal form as

Dm =
[

(λ + 2μ) I 0
0 2μI

]
(8)

where λ can be identified experimentally. This form of the damping matrix ensures isotropy, neglects the
Poisson damping effects, and allows independently damping out dilatational and deviatoric vibration modes.
The viscous Cauchy stress tensor defined in Eq. (5) can be transformed to the reference configuration by

applying the pullback operation σ v
P2 = J (J)−1 σ v

[
(J)−1]T , and the viscoelastic constitutive model of Eq. (2)

can be written as

σ P2 = ∂�

∂ε
+ 2μJ (J)−1 D

[
(J)−1]T . (9)

This second Piola–Kirchhoff stress tensor is defined in the reference configuration and can be used with both

the Green–Lagrange strain tensor to define the elastic forces and the tensor (J)−1 D
[
(J)−1]T required for the

calculation of the viscous forces.

2.4 Objectivity

Structural damping forces are the result of the relative motion between the material particles. If the body
experiences a pure rigid body motion, no internal friction between its particles is developed, and consequently,
no damping forces are generated. It can be demonstrated analytically that the Navier–Stokes formulation leads
to zero damping forces in case of rigid body motion. The Green–Lagrange deformation tensor ε is used as
a measure of the deformation because it vanishes in the case of rigid body motion. The rate of deformation
tensor D is related to the rate of change in the Green–Lagrange deformation tensor ε̇ by the push-forward

operation D = (J−1
)T

ε̇ J−1. In the case of rigid body motion, ε is constant, and consequently, the strain rate
ε̇ = 0, leading to D = 0. Since the viscous damping stress depends linearly on the rate of deformation tensor,
the damping forces are also zero in the case of rigid body motion.

3 Determination of the damping coefficient

The Navier–Stokes equations are used mainly to describe the viscosity of fluids and are not widely used for
describing the damping of solids. In order to be able to use these equations for solids modeled using ANCF
elements, it is necessary to define the viscosity coefficients that appear in these equations. While this paper
is not focused on the experimental identification of the viscosity coefficients, in this Section an overview of
some popular experimental procedures used to determine the coefficients of dynamic viscosity of rubberlike
and steel materials is presented. These experimentally determined coefficients can be used in the Navier–
Stokes viscoelastic constitutive model proposed in this investigation for ANCF solids. In the case of small
deformations, the analytical relationship between the coefficient of dynamic viscosity μ and the deviatoric
dissipation factor γv2, often used in the literature, is defined.

3.1 Experimental testing

The coefficient of dynamic viscosity μ is an important measure of the internal damping characteristics of
materials. Several experimental methods have been developed to identify the viscosity of metals, polymers,
rubbers, and composite materials in the solid state. Among the most popular techniques for measuring high
viscosities (μ > 108 Pa · s) are the beam bending, bar torsion, and penetration methods, while for low
viscosities (μ < 108 Pa · s), the rotational viscometer methods are preferred [9,19,36,37]. Kobayashi et al.
[18] designed an apparatus which accurately measures the Newtonian viscosity of solids up to 1014 Pa · s. A
constant shear load is applied to a cubic test specimen, and the viscoelastic deformation is measured using a
laser interferometer. The load/displacement relation is converted into a stress/strain relation, and the viscosity
coefficient is defined as μ = σ s/(dεs/dt), where σ s and εs are the shear stress and strain, respectively.
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Fig. 1 Dynamic viscosity of low-carbon steel in logarithmic scale [27]

Fig. 2 Dynamic viscosity of steels at different structural levels [25]

Several studies have been performed to identify the shear viscosity of rubber and materials that have rubber
contents. It was found that for most rubberlike materials the value of the dynamic viscosity ranges between 1
and 103 Pa · s in the shear rate range 1−102 1/s [2,6,41]. A popular experiment used to calculate the viscosity
of metals is the compressed cylindrical shell, in which a hollow metal cylinder is deformed axisymmetrically
by applying a varying internal pressure. Using this method, Serikov [27] computed the value of dynamic
viscosity of low-carbon steel and Z3CN18-10 steel as a function of the strain rate (Fig. 1). In 2002, Savenkov
and Meshcheryakov [25] applied the method of pulse loading of specimens to calculate the coefficient of
dynamic viscosity of different steels and showed that, at the macroscopic level, μ ranges from 103 to 106 Pa · s
(Fig. 2).

3.2 Dynamic viscosity coefficient and dissipation factor

Using the principles of vibration theory and under the assumption of small deformations, it is possible to
identify the relationship between the coefficient of dynamic viscosity μ and the dissipation factor γv2 used in
the small strain viscoelastic model. The generalized standard model of a linear viscoelastic material can be
expressed in the time domain using a linear ordinary differential equation of arbitrary order [23] as follows:

σ +
∞∑

n=1

zn
dnσ

dtn
= Eε +

∞∑

n=1

un
dnε

dtn
(10)

where n is the order of the differential equation, σ is the stress, ε is the strain, and z and u are constants.
In the case of sinusoidal stress and strain of the form σ = σ0e jωt and ε = ε0e jωt , respectively, where ω
is the excitation frequency, σ0 and ε0 are the initial stress and strain, respectively, Eq. (10) can be written
in the frequency domain as σ0/ε0 = [c1 (ω) + jc2 (ω)]/[d1 (ω) + jd2 (ω)], where c1 (ω), c2 (ω), d1 (ω) and
d2 (ω) are functions of the frequency ω, and j = √−1. The right-hand side of the equation σ0/ε0 can be
defined as a single complex variable G∗, leading to σ0/ε0 = σ/ε = G∗ = G1 + jG2, where G1 and G2 are
functions of ω. The ratio between the imaginary and real parts of G∗ is commonly referred to as the loss factor
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δ = G2/G1, which is a measure of the energy dissipation associated with the viscoelastic damping. The loss
factors of different materials have been obtained experimentally as functions of the excitation frequency and
temperature [23,33]. In the case of linear viscoelastic response, it is possible to prove that dε/dt = j |ω| ε
and the stress/strain rate relationship can be written as σ = G1ε + (G1δ/|ω|) (dε/dt). If the Kelvin–Voigt
viscoelastic model is used, the relation between the coefficient of dynamic viscosity μ and the loss factor δ is
derived in a straightforward manner as μ = G1δ/|ω|. The dissipation factor γv2 which appears in Eq. (7) is
defined in the time domain as γv2 = δv2/|ω|, from which it follows that μ = Gγv2 = β, where G is the shear
modulus and δv2 is the shear loss factor.

4 ANCF equations of motion

The use of ANCF elements eliminates the need for using an incremental corotational solution procedure and
allows for directly using the objective Navier–Stokes equations for defining the damping forces in the case
of solids. This is attributed to the fact that absolute position vectors and position vector gradients are used
as nodal coordinates. The Navier–Stokes equations are linear functions of the rate of the position gradients,
and this facilitates the definition of the ANCF Navier–Stokes damping forces as discussed in the following
Section. Furthermore, the initial geometry of an ANCF mesh can be accurately described without the need
for converting a CAD B-splines or NURBS mesh to an analysis mesh. Figure 3 shows that an ANCF body
can be described using straight, reference, and current configurations, whose associated volumes and position
vectors (parameters) are V , V0, v and x, X, r, respectively. The global position vector of an arbitrary point
on an ANCF element j can be expressed in the current and reference configurations as r j = S j (x, y, z)e j (t)
and X j = S j (x, y, z)e j

0(t), respectively, where S j is the shape function matrix expressed in terms of the

element spatial coordinates x , y, and z, x = [
x y z

]T , e j , and e j
0 are the element nodal coordinates in the

reference and current configurations, respectively, and t is time [28]. In the case of three-dimensional fully
parameterized ANCF elements, the nodal coordinate vector of element j at note k consists of absolute position

and gradient coordinates and can be written as e jk =
[ (

r jk
)T (

∂r jk/∂x
)T (

∂r jk/∂y
)T (

∂r jk/∂z
)T
]T

. The

mapping between the element volumes in the current and reference configurations can be described in a
straightforward manner using the determinant of the matrix of position vector gradients J j as dv j = J jdV j

0 ,
where J j = ∂r j/∂X j . If the mesh geometry is initially curved, the volume integration can be further simplified
by introducing a straight reference configuration, which can be derived from the reference configuration using
the relationship dV j

0 = J j
0 dV

j , where J j
0 = ∂X j/∂x j . Moreover, the straight configuration can be directly

mapped to the reference configuration as dv j = J j
e dV j , where J j

e = ∂r j/∂x j and J j
e = |J j

e |. It can be shown
that J j = ∂r j/∂X j = (∂r j/∂x j

) (
∂x j/∂X j

) = J j
e

(
J j
0

)−1
.

Having defined the initial geometry correctly, the equations of motion of a flexible ANCF body can be
derived from the principle of virtual work in dynamics, which can be written in the case of unconstrained

X
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Fig. 3 Current, reference, and straight configurations
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motion as δWi = δWs + δWex . The virtual work of the inertia forces can be written as δWi = (Më)T δe,
where M is the body symmetric mass matrix, e is the vector of body nodal coordinates, and ë is the vector of
body nodal accelerations. The virtual work of the internal forces is calculated as δWs = QT

s δe, where Qs is
the vector of generalized body internal forces, which includes elastic and internal damping forces. The virtual
work of the external forces is defined as δWex = QT

exδe, where Qex is the vector of generalized body external
and constraint forces. By substituting the expressions for the virtual work of the inertia, internal, and external
forces into the principle of virtual work, the ANCF equations of motion of the body can be written as

Më + Qs − Qex = 0. (11)

This equation can be solved for the accelerations which can be integrated numerically to determine the coor-
dinates and velocities.

5 Generalized viscoelastic forces

The virtual work of the internal forces for an ANCF element j can be written as

δW j
s = −

∫

V j
0

σ
j
P2 : δε j dV j

0 = δW j
e + δW j

d (12)

where δW j
e = − ∫

V j
0

(
∂�/∂ε j

) : δε j dV j
0 is the virtual work of the internal elastic forces, δW j

d =
− ∫

V j
0
2μJ j

(
J j
)−1

D j
[(

J j
)−1
]T : δε j dV j

0 is the virtual work of the viscous damping forces, and δε j is

the virtual change in the Green–Lagrange strain tensor. Because the rate of deformation tensor can be written

as D j =
[(

J j
)−1
]T

ε̇ j (J j
)−1

, one can write the virtual work of the damping forces as

δW j
d = −

∫

V j
0

J j
(

J j
)−1

2μ

[(
J j
)−1
]T

ε̇ j
(

J j
)−1

[(
J j
)−1
]T

: δε j dV j
0

= −
∫

V j
0

2μJ j
(

C j
r

)−1
ε̇
(

C j
r

)−1 : δε j dV j
0

(13)

where C j
r = (J j

)T
J j is the right Cauchy–Green deformation tensor. The generalized viscous damping forces

associated with the ANCF nodal coordinates can be computed at any integration point using the virtual change
in the strains δε j = (∂ε j/∂e j

)
δe j as

(
Q j

d

)T = −2μJ j
[(

C j
r

)−1
ε̇ j
(

C j
r

)−1
]

: ∂ε j

∂e j
. (14)

The vector of generalized elastic forces depends on the definition of the deviatoric strain energy density function
�◦.

The linear Hooke’s law is mainly suited for the small deformation problems, while the neo-Hookean and
Mooney–Rivlin constitutive equations are suited for studying the nonlinear behavior of materials such as rubber
and biological tissues. In the case of the generalized Hooke’s law, the vector of elastic forces can be defined
at the integration points as

(
Q j

e

)T =
(

∂ε
j
m

∂e j

)T

AdE j
mε

j
m (15)

where E j
m is the matrix of elastic coefficients, ε j

m is the Green–Lagrange strain tensor in Voigt form, and Ad
is a 6 × 6 diagonal matrix with diagonal elements (1, 1, 1, 2, 2, 2) [28].
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In the case of incompressible neo-Hookean and Mooney–Rivlin constitutive models, the expression of the
vector of elastic forces at any integration point can be defined, respectively, as

(
Q j

e

)T = ϕ

2

∂
(
tr
(
C j
))

∂e j
+ k

(
J j − 1

) ∂ J j

∂e j

(
Q j

e

)T = [μ10 + μ01
(
tr
(
C j
))] ∂

(
tr
(
C j
))

∂e j
− μ01

2

∂
[
tr
((

C j
)2)]

∂e j
+ k

(
J j − 1

)
(

∂ J j

∂e j

)T

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(16)

where ϕ, μ10, and μ01 are material constants, k is the incompressibility constant, and C is the right Cauchy–
Green deformation tensor [20]. FromEq. (12), it follows that the vector of generalized internal forces associated
with the nodal coordinates of the ANCF element j can be written as Q j

s = Q j
e + Q j

d . The vector of body

internal forces Qs can be obtained using a standard FE assembly procedure as Qs = ∑ne
i=1

(
B j
)T

Q j
s , where

B j is a Boolean matrix and ne is the number of elements of the ANCF mesh.

5.1 Internal force computations

The nonlinear ANCF internal forces are evaluated using Gauss quadrature formulas. The large number of
quadrature base points which is required to integrate ANCF elements can make the integration process com-
putationally expensive, especially in the case of large meshes. For this reason, a parallel computing strategy
is used in the calculation of the ANCF internal forces. A parallel computation scheme is developed using the
OpenMP (Open Multi-Processing) parallel programming to allow for computing the element internal forces
simultaneously using different threads, as shown in Fig. 4 [7]. The boundaries of the parallel region are defined
using the commands !$OMP parallel do / !$OMP end parallel do. The variables defined in common blocks
can be made private to each thread using the command !$OMP threadprivate. Synchronization techniques
are used to avoid data conflicts which can occur when global variables are updated by each thread inside
the parallel loop. In particular, a critical region is created using the commands !$OMP critical / !$OMP end
critical, during the assembly process of the element internal forces.

!$OMP threadprivate(/… /)

!$OMP parallel do

do i =1: number of elements

!$OMP critical

Assemble ANCF internal forces

!$OMP end critical

end do

!$OMP end parallel do

Thread 1 Thread n
⋯

Critical region

Master thread

Parallel region

Fig. 4 Parallelization flowchart
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5.2 Verification

In this Section, the proposed internal damping model is verified against analytical and numerical results using
a benchmark problem [22]. Figure 5a shows a mass–viscoelastic rod system of length 0.1 m, square cross-
sectional area 0.01 × 0.01 m2, density 1000 kg/m3, Poisson ratio 0.3, and Young’s modulus 5 × 106 N/m2.
The flexible rod, modeled using one fully parameterized ANCF beam element, is rigidly attached to the ground
at the left end and to a mass at the right end. The oscillation of the system is generated by giving the mass an
initial velocity of 0.01 m/s. The volumetric and deviatoric dissipation factors are assumed equal to 0.0001 s.
A mass–spring–damper system with equivalent stiffness and damping coefficients k = 5 × 103 N/m2 and
c = 0.5 Ns/m2, respectively, and known analytical solution is introduced for the sake of verification (Fig. 5b).
Because the problem is in the range of small deformations, the coefficient of dynamic viscosity is calculated
using the analytical relation described in Sect. 3.2 as μ = 192 Pa · s. Figure 6 shows a comparison between
the x-displacement of the mass using the proposed viscoelastic formulation, the ANCF DGRV model, and the
mass–spring–damper system. In general, a very good agreement between the analytical and numerical results
is obtained in terms of both amplitude and frequency of oscillation.

L
(a)

c

k

(b)

Fig. 5 a Mass with viscoelastic rod; b mass–spring–damper system
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Fig. 6 x-displacement of the mass ( proposed model, mass–spring–damper, ANCF DGRV model)
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6 Numerical solution of ANCF equations

Introducing physical damping is not necessary only for accurate virtual prototyping, but also for improving
the computational efficiency by damping out insignificant high-frequency modes. Another method which can
be used to filter out ANCF high-frequency modes is to use appropriate numerical integration algorithms. In
this Section, an overview of existing numerical integration methods used to solve stiff dynamical systems is
provided.

6.1 Background

Explicit numerical integration methods, such as the predictor–corrector Adams method [31], are widely used
in the computer solution of MBS equations. However, such explicit methods often fail or become inefficient
when the equations to be solved are stiff. Some existing low-order implicit numerical integration methods
which have numerical damping, such as HHT, are widely used in the solution of stiff differential equations
[16]. Such methods, however, must be used with care because of the tendency of filtering out modes which
can be significant. While filtering out significant high-frequency modes can be avoided by properly reducing
the amount of numerical dissipation, it was shown that for systems with dominant high-frequency oscillations
an excessive reduction in the amount of numerical damping can adversely impact the convergence [45]. For
this reason, general-purpose MBS algorithms must provide the option of efficiently solving numerically stiff
systems without solely relying on low-order methods that have artificial numerical damping.

The TLISMNI method avoids numerical force differentiation, satisfies the nonlinear algebraic equations
at the position, velocity, and acceleration levels, and exploits sparse matrix techniques [29]. The TLISMNI
algorithm can be designed using several different integration methods such as the Hilber–Hughes–Taylor
(HHT), trapezoidal, and BDF methods, the third- and fourth-order Adams integration methods, the higher-
order symplectic implicit Runge–Kutta method, and the fourth-order BDF/EBDF method [1,15,17,30,44].
While second-order implicit methods have been successfully used in a large number of problems, low-order
formulas do not allow performing an accurate MBS analysis in the case of high speed and highly nonlinear
spinning motion. Moreover, the larger local truncation error resulting from lower-order formulas must be
compensated for by taking smaller time steps in order to obtain the desired accuracy. The relatively higher-
order TLISMNI/Adams method was proposed to address these concerns [30]. The performance of high-order
implicit integration methods, such as the TLISMNI/Adams method, can be enhanced by designing error and
time step selection criteria to minimize the number of outer loop iterations required to achieve convergence
and to avoid unnecessary reductions in the time step.

6.2 Differential/algebraic equations

A constrained dynamical system is described by second-order differential equations of motionMq̈+CT
q λ = Q

and by a set of algebraic constraint equationsC (q, t) = 0 which define mechanical joints and specified motion
trajectories. In these motion and constraint equations, M is the systemmass matrix, q is the system generalized
coordinate vector, C is the constraint function vector, t is time, Cq is the Jacobian matrix of the kinematic
constraint equations, λ is the vector of Lagrange multipliers, and Q is the vector of generalized forces. The
constraint equations at the velocity and acceleration levels can be obtained by taking the first and second time
derivatives of the constraint equations C (q, t) = 0 as Cqq̇ = −Ct and Cqq̈ = Qc, respectively, where the
subscript t represents the partial derivative with respect to time and Qc is a vector that contains terms which
are not linear in the accelerations. The equations of motion and the constraint equations at the acceleration
level can be combined in one matrix equation as

[
M CT

q
Cq 0

] [
q̈
λ

]
=
[

Q
Qc

]
. (17)

The coefficient matrix in this equation is sparse, allowing for using sparse matrix techniques in order to
efficiently solve for the accelerations and the vector of Lagrange multipliers.



E. Grossi, A. A. Shabana

6.3 TLISMNI/Adams method

The TLISMNI/Adams method, which is based on a constant order and a variable time step size, has two
iterative loops: the outer loop and the inner loop. In the outer loop, the independent differential equations
of motion are solved using the predictor Adams–Bashforth and corrector Adams–Moulton formulae, while
in the inner loop the dependent variables are determined from the system degrees of freedom by solving the
system of algebraic constraint equations. The two sets of independent and dependent coordinates qi and qd are
identified using the constraint Jacobian matrix Cq. In the TLISMNI inner loop, the dependent coordinates are
determined using a Newton–Raphson algorithm by iteratively solving the following sparse system of algebraic
equations:

[
C j

q
Ii

]
q j =

[−C j

0

]
(18)

where q j is the vector of Newton differences at iteration j and Ii is a Boolean matrix used to ensure that the
independent coordinates remain fixed. Once the coordinates are determined, the dependent velocities can be
calculated by solving the linear sparse matrix equation

Fig. 7 TLISMNI flowchart
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[
Cq
Ii

]
q̇ =

[−Ct
q̇i

]
. (19)

After calculating the coordinates and velocities, Eq. (17) can be solved for the vectors of accelerations and
Lagrange multipliers. The main steps of the TLISMNI/Adams algorithm are summarized in the flowchart
shown in Fig. 7. The maximum number of outer loop iterations nit is set to 5. The time step selection criterion
adopted in this investigation is the same as the one presented previously in the literature [30]. The error check
and stiffness detection scheme used in this investigation are discussed in the following Section.

7 Stiffness detection and error control

In the TLISMNI procedure, the equations of motion are converted to the state space form as ẏ = f (y, t),
where y = [qT q̇T

]T
, t is time, and q and q̇ are the vectors of system generalized coordinates and velocities,

respectively. A differential equation of the form ẏ = f (y, t) can be defined as stiff if its Jacobian matrix
fy (y, t) is characterized by widely separated eigenvalues. Moreover, the solution of a stiff system is defined by
components which exhibit very rapid changes. Explicit variable-order methods, such as the predictor–corrector
Adams method, fail or become very inefficient in the case of stiff problems because the stability requirement
reduces the order and the step size [31]. The reduction in the order of the integration formulas when stiffness is
encountered is justified because past history details become less significant and the region of absolute stability
of a method becomes larger as the order is decreased [3]. Implicit schemes, such as the low-order A-stable
trapezoidal and BDF methods, are often used for the solution of stiff systems. However, there are no A-stable
multistep methods with order higher than two, as shown by Dahlquist [8]. Higher-order implicit methods are,
therefore, necessary to accurately capture rapid changes in the solution of stiff MBS applications characterized
by high speed and highly nonlinear spinning motion. For this reason, it is important to design a stiffness (high-
frequency) detection procedure which can be used with higher-order implicit integration methods, such as the
TLISMNI/Adams algorithm, to obtain an efficient solution of stiff problems without compromising numerical
accuracy.

The approach presented in this Section is based on the observation that repeated jumps in low-order
derivatives arise from discontinuities, which lead to stiff systems. For this reason, the change in the low-order
derivatives at successive time steps during the integration process canbeused to shed light on the high-frequency
contents in the solution. It is important, however, to point out that the analysis of jumps in low-order derivatives
must be performed with care because jumps can also result from the accumulation of discretization errors due
to the numerical approximations and from errors due to the use of a limited precision arithmetic. A flowchart
of the proposed stiffness detection algorithm and error check is shown in Fig. 8. Using an approach similar to

that proposed in the literature [17], the error at time step n+1 is computed as |en+1| =
√∑N

i=1

[
(y)i/(Y )i

]2,
where N is the number of independent coordinates, y is defined as the difference between the components
of the corrector and predictor vectors ycr and ypr as (y)i = (ycr )i − (ypr )i , and Y is a weighted vector
such that (Y )i = max

[
1, (ycr )i

]
. The process of identifying high frequencies or rapid changes starts with the

calculation, at each time step, of the two vectors s1 and s2, defined as

(s j )k = (ẏn − ẏn− j )k/(ẏn− j )k j = 1, 2, (20)

where ẏn , ẏn−1 and ẏn−2 contain information on the low-order derivatives at time steps n, n − 1, and n − 2,
and k is the element number. The vectors s1 and s2 measure the relative change in each component of the state
vector ẏ at the three time steps prior to step n + 1. The use of a relative measure is preferred over an absolute
measure because it allows for performing an analysis which is not coordinate-dependent. It is important to
notice that using more than two vectors s j can lead to a significant increase in the storage memory required,
especially in the case of large systems of equations. The next step consists of checking each component of
s1 and s2 against a parameter η which serves as an indicator of stiffness. The value of η must be carefully
defined based on extensive numerical experimentation. If the absolute value of an element of the vectors of
Eq. (20) is larger than η, the corresponding coordinate is assumed to have a high frequency. In the numerical
implementation, the frequency check is made using the vector w, whose components are defined as

wi = max
[∣∣(s1)i

∣
∣ ,
∣
∣(s2)i

∣
∣] , i = 1, . . . , N . (21)

If at least one component of w is larger than η, a stiffness counter is increased one unit. The stiffness test
consists of a sequence of 50 consecutive steps in which the value of the stiffness counter is increased. The
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Fig. 8 Flowchart of the stiffness detection algorithm and error estimation.

number of consecutive steps is selected using a procedure consistent with the stiffness indicator implemented
in the code DE by Shampine and Gordon [31]. Once a stiff behavior is identified, a flag variable is set equal
to 1 and the error formula is modified to

∣∣e∗
n+1

∣∣ =
√
∑N∗

i=1

[
(y)i/(Y )i

]2
, i = 1, . . . , N∗ (22)

where N∗ is the number of non-stiff components of the vector w. The solution at time step n + 1 is accepted if
the error is less than the user specified tolerance tol. Neglecting the contribution of selected stiff independent
coordinates in the calculation of the error allows avoiding reductions in the time step, minimizes the number
of outer loop iterations, and significantly reduces unnecessary calculations which can negatively impact the
computational efficiency.

8 Numerical results

In this Section, several numerical examples which include ANCF high-frequency oscillations are studied in
order to demonstrate the effectiveness and efficiency of the proposed Navier–Stokes viscoelastic constitutive
model and the new TLISMNI error control criterion. The first three numerical examples are used to examine
the effect of the proposed viscous damping formulation in small and large deformation problems. In the first
example, the small deformation of a stiff cantilever beam is investigated, and the final equilibrium position of
the tip node is verified against the reference solution obtained using the commercial FE software ANSYS�.
In the second example, the large deformation of a flexible pendulum with moving base is studied. In the
third example, the ANCF high-frequency tire oscillations produced during pressurization are analyzed. It is
found that accounting for the viscoelasticity allows for damping out high-frequency oscillations and leads to
a 50–65% reduction in CPU simulation time as compared to the undamped case.

The last two examples are used to demonstrate the use of TLISMNI/Adams algorithm for solving stiff
problems characterized by ANCF high-frequency oscillations. The results obtained for the implicit third-order
TLISMNI/Adams algorithm, the explicit Adams predictor–corrector method, and the TLISMNI/HHT method
are compared in terms of accuracy, efficiency, and damping characteristics. The stiffness parameter used in the
TLISMNI/Adams algorithm is η = 10, while the TLISMNI/HHT method is used with the maximum allowed
numerical damping α = − 0.3 [17]. The simulations were performed on a PC with an Intel i5 3.40GHz
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processor and 8 GB RAM. In all the examples, the elastic forces are formulated using the general continuum
mechanics approach.

8.1 Cantilever beam

In the first example, a cantilever beam subjected to a vertical concentrated load at its free end is analyzed. The
beam is assumed to have a length of 1 m and a square cross section with dimension 0.1 m, as shown in Fig. 9.
Young’s modulus and material density are assumed 2 × 1011 Pa and 7800 kg/m3, respectively. The dynamic
viscosity coefficient μ is assumed 106 Pa · s, based on the analysis of Sect. 3. The cantilever beam is meshed
using 10 three-dimensional fully parameterized ANCF beam elements, which allow correctly describing finite
rigid body rotation, lead to zero strain under arbitrary rigid body displacement, and account for both shear
deformation and rotary inertia. In order to alleviate the Poisson locking, Poisson’s ratio ν is assumed zero,
an assumption often made in the literature when using benchmark examples ([13,34,45]). The effect of the
gravitational force is also neglected. The equilibrium position of the beam free end is compared with the
reference solution obtained using ANSYS� BEAM188 elements. The external load is assumed initially zero
and reaches the steady-state value F at time t0 according to

(F/2) [1 − cos (π t/t0)] if t ≤ t0

F if t > t0

}

. (23)

The value of F is selected 50 kN so that the cantilever beam can experience small oscillations. First, a quasi-
static analysis is performed by gradually applying the load (t0 = 4 s) during the first 5 s of simulation time, and

L

F(t)

Fig. 9 Cantilever beam subjected to tip vertical load
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Fig. 10 Vertical displacement of the beam tip. Quasi-static analysis ( ANCF, static)
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Fig. 11 Vertical displacement of the beam tip. Dynamic analysis ( ANCF, static)

the results are shown in Fig. 10. In order to test the ability of the viscoelastic constitutive model to damp out
high-frequency oscillations, the value of t0 is reduced to 0.01 s. The solution in this case is shown in Fig. 11. It
is clear that the steady-state results of the quasi-static and dynamic analyses coincide with the static solution
(0.010 m). The results shown in this example demonstrate that the proposed viscoelastic constitutive model
is effective in damping out ANCF high-frequency oscillations.

8.2 Pendulum with moving base

In this example, the oscillation of a pendulum subjected to a uniform distributed gravity force is studied to
examine the effect of the viscoelastic constitutive model in the analysis of very flexible and incompressible
rubberlike materials. The initial configuration of the system is shown in Fig. 12, and the problem data are
provided in Table 1. The base of the pendulum is subjected to a prescribed harmonic motion defined by
X = X0 sinωt , where X0 = − 0.02m and ω = 2π rad/s. The pendulum is meshed using 4 three-dimensional
fully parameterizedANCFbeamelements. This problemwaspreviously analyzed in the literature [20] to test the
implementation of ANCF elastic force formulations, such as the neo-Hookean and Mooney–Rivlin, for rubber
materials. The vertical position of the pendulum tip is shown in Fig. 13 for the damped and undamped scenarios.
The results obtained show that there is no significant difference between the vertical tip displacements using
different models. Nonetheless, a reduction of nearly 50% of the CPU time is achieved when the viscoelastic
constitutive model is used. Figure 14 shows the determinant J of the matrix of position vector gradients J at
the tip of the pendulum as a function of time when using the incompressible neo-Hookean constitutive law.
It is clear that the use of the viscoelastic formulation allows damping out the high-frequency oscillations of
J . The position vector gradients of the beam cross section ry and rz , which are important indicators of the
cross-sectional deformation, can exhibit high-frequency oscillations that do not have a significant effect on the

L

X

Y
Z

Fig. 12 Flexible pendulum with moving base
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Table 1 Material and geometric properties of the pendulum with moving base

Property Quantity

Length L (m) 1.0
Cross-sectional area (m2) 0.02 × 0.02
Density ρ (kg/m3) 7200
Poisson’s ratio ν 0.3
Young’s modulus E (Pa) 2 × 106

Mooney–Rivlin coefficient μ10 (Pa) 0.8 × 106

Mooney–Rivlin coefficient μ01 (Pa) 0.2 × 106

Incompressibility constant k (Pa) 109

Dynamic viscosity μ (Pa · s) 10
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Fig. 13 Vertical position of the pendulum tip (neo-Hookean: damped, undamped; Mooney–Rivlin:
damped, undamped)
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Fig. 14 Determinant of the matrix of position vector gradients ( damped, undamped)

solution in this problem, but lead to a significant increase in the CPU time. Figure 15 shows the variation of the
norm of ry at the tip of the pendulum as a function of time in the undamped and damped cases when the elastic
Mooney–Rivlin constitutive law is used. As expected, the use of the viscoelastic constitutive model results in
damping out the high-frequency oscillations of the position vector gradients of the beam cross section.
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Fig. 15 Norm of gradient ry at the pendulum tip ( damped, undamped)

8.3 Tire pressurization

In this example, the ANCF high-frequency oscillations exhibited by a pneumatic tire during pressurization
are analyzed. The tire geometry, shown in Fig. 16, is based on the 11R22.5 model manufactured by Michelin
[21]. The material has density 1500 kg/m3, modulus of rigidity 108 N/m2, Young’s modulus 2 × 108 N/m2,
and dynamic viscosity 1000 Pa · s. The tire FE model is meshed using 24 fully parameterized ANCF plate
elements, and the rigid rim is modeled using an ANCF reference node [24,28]. The effects of localized
geometries on the tire tread such as grooves are not included in this model. The vector of generalized
continuum-based air pressure forces applied to the internal surface of ANCF element j can be written as

Q j
p = ∫

S j
0

(
S j
)T
(
J j ptn j/

√(
n j
)T J j

(
J j
)T n j

)
dS j

0 , where S j is the shape function matrix, S j
0 is the ele-

ment area in the reference configuration, n j is the unit normal to the surface, pt is the pressure magnitude,
and J j is the determinant of the matrix of position vector gradients J j [24,28]. The pressure magnitude is
assumed pt = 90 psi, while the effect of gravity is neglected. Figure 17 shows a comparison between the
radial deformation of node 1 during pressurization in the damped and undamped cases. Clearly, the viscoelas-
tic constitutive model allows damping out the vibrations of the tire and reaching a steady-state equilibrium
configuration. Moreover, the use of the viscoelastic constitutive model leads to a 65% reduction in the CPU
time compared to the purely elastic case.

rx
ry

rz

Node 1

Rigid rim node 

Reference node 

Fig. 16 From left to right: CAD, ANCF element, and pressurized tire model
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Fig. 17 Radial deformation of node 1 of the ANCF tire model ( damped, undamped)

8.4 Planar pendulum

In this example, an initially horizontal planar pendulum falling under the effect of gravity is considered, as
shown in Fig. 18. This problem is similar to the example previously used in the literature [17]. The pendulum
is connected to the ground by a revolute joint and is modeled using eight two-dimensional shear-deformable
ANCF beam elements. The pendulum has an initial length of 0.4 m, square cross-sectional area of 0.04 ×
0.04 m2, density 7800 kg/m3, Young’s modulus 2 × 1011 N/m2, and Poisson’s ratio 0.3. The gravitational
acceleration constant g is assumed to be 9.81 m/s2. For this stiff problem, the transverse deformation of the
beam is dominated by the frequency of the free-falling motion, which has a periodic time of nearly 1.2 s,
and by the beam’s first and second bending modes. The beam midpoint transverse and axial deformations
are measured as shown in Fig. 19. Figures 20 and 21 show a comparison between the midpoint transverse
deformations obtained using different integration methods. It is clear that the TLISMNI/Adams algorithm
and the explicit Adams method agree well in capturing the high-frequency content of the solution. On the

X

Y
Gravity force

Cross section

Fig. 18 Initial configuration of the planar pendulum
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Y
Y

Axial deformation

Transverse 
deformation

Mid-point of the deformed beam

Deformed beam center line

Mid-point of the undeformed beam

Fig. 19 Midpoint transverse and axial deformations
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Fig. 20 Pendulum midpoint transverse deformation for a short time interval ( Explicit Adams;
TLISMNI/Adams)
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Fig. 21 Pendulum midpoint transverse deformation ( TLISMNI/HHT; TLISMNI/Adams;
TLISMNI/Adams–damped μ = 2 · 105 Pa · s)

other hand, the TLISMNI/HHT method produces a smoother solution by filtering out the first and second
bending modes. It is observed that if the TLISMNI/Adams algorithm is used with the newly proposed Navier–
Stokes physical damping, the two fundamental bending modes are damped out at a faster rate compared to
the TLISMNI/HHT method. In Fig. 22, the CPU time required to simulate the same example using different
values of Young’s modulus is shown; these values are 2 × 106, 2 × 107, 2 × 108, 2 × 109, 2 × 1010, 2 ×
1011 N/m2. It can be noticed that as the stiffness of the system increases, theTLISMNI/Adamsmethod becomes
nearly four times faster than the explicit Adams method. The TLISMNI/Adams and TLISMNI/HHT methods
have a similar degree of computational efficiency for the entire range of Young’s modulus. Furthermore, the
TLISMNI/Adams CPU time obtained when physical damping is used is less than the CPU time in the case of
zero damping.
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Fig. 22 CPU time versus modulus of elasticity for the pendulum problem ( Explicit Adams; TLISMNI/Adams;
TLISMNI/Adams–damped; TLISMNI/HHT)

8.5 Planar slider crank mechanism

The planar slider crankmechanism considered in this example, and shown in Fig. 23, is the same as the one used
in the literature [10,22]. The crankshaft is assumed to have a constant angular velocityω = π rad/s and a mass
moment of inertia with respect to its the mass center 0.015 kg · m2. The connecting rod, which is horizontal in
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Fig. 23 Slider crank mechanism
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Fig. 24 Connecting-rod midpoint transverse deformation for a short time interval ( Explicit Adams;
TLISMNI/Adams)
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Fig. 25 Connecting-rod midpoint transverse deformation ( TLISMNI/Adams; TLISMNI/HHT;
TLISMNI/Adams–damped μ = 2 · 106 Pa · s)
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Fig. 26 Connecting-rod midpoint axial deformation ( TLISMNI/Adams; TLISMNI/HHT;
TLISMNI/Adams–damped μ = 2 · 106 Pa · s)

the initial configuration, has an undeformed length of 1.0 m and a square cross-sectional area 0.05× 0.05 m2.
The connecting rod is modeled using eight two-dimensional shear-deformable ANCF beam elements that have
a density 7200 kg/m3, Young’s modulus 2 × 108 N/m2, and Poisson’s ratio 0.3. The slider block has a mass
1.0 kg. The midpoint transverse and axial deformations of the connecting rod, which are measured as shown
in Fig. 19, are used to compare the results obtained using different numerical integration methods. As was the
case with the planar pendulum example, Fig. 24 shows that the TLISMNI/Adams algorithm and the explicit
Adams method agree well in capturing the high-frequency content of the midpoint transverse deformation.
With regard to the damping effectiveness of each method, it can be noted that the TLISMNI/HHT method
successfully damps out the axial mode but is less efficient than the physically damped TLISMNI/Adams
algorithm in filtering out the transverse bending mode, as shown in Figs. 25 and 26. In order to compare the
computational efficiency of each method, the CPU time required to simulate the same example using different
values of the elasticity coefficient is shown in Fig. 27. It is clear that while there is a good agreement between
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Fig. 27 CPU time versusmodulus of elasticity for the slider crank problem ( Explicit Adams; TLISMNI/Adams;
TLISMNI/Adams–damped; TLISMNI/HHT)

the TLISMNI/HHT and TLISMNI/Adams methods in terms of computational efficiency, in the case of a stiff
system the explicit Adams method becomes four times slower than the TLISMNI implicit methods.

9 Summary and conclusions

High-frequency ANCF coupled deformation modes can be the source of numerical problems if appropriate
solution techniques are not used. In this paper, two techniques are proposed to eliminate or damp out ANCF
high-frequency modes and efficiently solve stiff systems of differential/algebraic equations. A new objective
viscoelastic constitutivemodelwhich can be used in the study of small and large deformations of incompressible
and very flexible materials is proposed. The elastic forces are formulated using general hyperelastic strain
energy density functions, and the viscous damping forces are defined using theNavier–Stokes equations,widely
used for fluids. This paper extends the use of the Navier–Stokes equations for solids modeled using ANCF
elements. The novelty of the proposed viscoelastic constitutivemodel in comparisonwith existing formulations,
such as the small strain and ANCF DGRV models, is discussed. The Navier–Stokes viscoelastic approach for
ANCF solids is validated using analytical and numerical results and is tested using several numerical examples.
It is shown that the proposed viscoelastic formulation can efficiently damp out ANCF high-frequency modes
and leads to a reduction in simulation time of at least 50% compared to the undamped case. A new error control
criterion based on a stiffness detection algorithm is proposed for the variable step-size TLISMNI method to
allow evaluating the significance of each solution coordinate during the integration process. This criterion
is used to filter out insignificant high-frequency components. The TLISMNI method exploits sparse matrix
techniques, satisfies the algebraic constraint equations at the position, velocity, and acceleration levels, and
avoids numerical force differentiation, which can be a source of error when bodies with high stiffness are
considered. The proposed error control criterion is tested with the third-order TLISMNI/Adams method by
solving several numerical examples. The TLISMNI/Adamsmethod is compared to the TLISMNI/HHT and the
explicit predictor–corrector Adams methods in terms of efficiency, accuracy, and damping characteristics. It
is shown that the TLISMNI/Adams method becomes nearly four times faster than the explicit Adams method
in case of stiff systems. It is also noted that the TLISMNI/Adams method can achieve the same level of
computational efficiency as the TLISMNI/HHT method, which is based on low-order integration formulas
and makes use of artificial numerical damping. It is shown that the Navier–Stokes viscoelastic constitutive
model used with the TLISMNI/Adams method can damp out ANCF high-frequency oscillations at a faster
rate compared to the TLISMNI/HHT method.
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