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extend beyond 500 bil-
lion devices by 2030 [1].

This article provides an academic perspective of the problem, starting with

a survey of recent advances in intelligent sensing, computation, commu-
nication, and energy management for resource-constrained IoT sensor

nodes and leading to a future outlook and needs.

—Shreyas Sen, Purdue University

Il THE PERSONAL, HEALTHCARE, AND CONSUMER
ELECTRONIC industries have experienced rapid
advancements in the past few decades due to ag-
gressive technology scaling and low-power, low-
cost implementation of sensor electronics built
on mobile computing/communication platforms
having small form factors. This has resulted in a
pervasive growth of connected devices, leading
to what is known today as the Internet of Things
(IoT), as shown in Figure la. Increased fidelity
and higher bandwidths are expected to result in
50 billion connected devices, generating 30+ ex-
abytes of data per month by 2020, which would
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Background and
motivation

The dynamic nature
of the IoT devices, cou-
pled with their stringent
resource constraints (small-size and portability
requirements, leading to smaller energy backup, less
computing and memory resources in harsh environ-
ments, varying channel conditions, asymmetric data
rates in uplink and downlink, etc.) and the availability
of multiple communication modalities [wired, prox-
imity, low-energy Bluetooth (BTLE), ANT, LoRa, Zig-
Bee, Human Body Communication (HBC), MedRa-
dio, and millimeter-wave (mm-wave), to name a few]
necessitate proper selection of communication archi-
tecture based on the application and corresponding
resource constraints. In addition, the power cost of
communication (=1 nJ/bit in standard wireless net-
works [2]) may warrant intelligent allocation between
local and remote computing resources, which would
require context-aware operation corresponding
to different scenarios, leading to minimum energy
consumption for a certain amount of information
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Figure 1. (a) loT at the juncture of Moore’s
law (more computation enabled by
technology scaling) and Shannon’s law
(more data rate enabled by modern wireless
standards), consuming a prohibitively high
amount of energy [2]. (b) Our vision for an
RC-loT device for optimum energy efficiency.

transfer, thereby improving the lifespan of the
network. Also, energy-resolution scalable sensing
technology [preferably in the compressed domain
(CD)] enables consumption of sensing energy when
required and present-day context-agnostic IoT sys-
tems are typically overdesigned to take care of all
possible contexts/scenarios, which trade off fidelity
with power consumption and, hence, degrade
the energy efficiency. Cloud computing is usually
employed in a larger system that enables data ana-
lytics, remote device monitoring, visualization, and
client delivery [3]. This requires the IoT nodes to
upload the digitized data from the sensors to the
gateway/cloud. The cloud then performs data ana-
lytics and notifies specific management systems
(energy, memory, and real-time OS) to take suitable
actions. However, implementing the entire compu-
tation framework in the cloud would mean a higher
communication payload at the edge device, which in
turn leads to higher communication power. Also, the
closed loop (from the sensor to cloud and back to the
sensor) latency might be prohibitively large for certain

cases (e.g., tactile internet, autonomous driving, and
medical emergencies). The situation demands truly
intelligent devices that are aware of the operating
conditions and contexts and can dynamically adapt
itself for optimal energy efficiency and performance
by switching among different modes (computation-
heavy, communication-heavy, high-security, low-
power, etc.). This is shown in Figure 1b in the form
of our vision for a secure, context-aware, adaptive,
resource-constrained yet intelligent IoT device, repre-
sented as a combination of multiple sensing, compu-
tation, and communication modalities with different
power and performance. Parts of the context infor-
mation can be generated in the cloud (for latency-
relaxed applications), whereas the latency-limited
context assessment needs to happen in the sensor
node itself, using smart learning algorithms.

Challenges in asymmetric loT networks

Before delving into the implementation details of
contextual, adaptive machine intelligence, let us dis-
cuss the specific challenges for a generic scenario of an
loT ecosystem that contains a multitude of heterogene-
ous connected devices (Figure 2). These loT devices
include resource-constrained and resource-rich nodes,
gateways, and cloud data centers. The focus of this arti-
cle is on the resource-constrained leaf nodes that are
defined in [4] as the ones that do not have the hard-
ware and software capabilities to support the Transmis-
sion Control Protocol (TCP)/IP protocol suite.

1) Finite Resources: In view of the IoT ecosystem,
a resource can either be physical (such as memory,
computation power, energy, and network band-
width) or virtual (software procedures to perform
data compression, outlier detection, etc.). An IoT de-
vice may lack one or more of these aspects because
of size limitation and specific applications.

2) Heterogeneity: An loT subsystem, such as a
smart home, can have a significant amount of het-
erogeneity with respect to hardware and software
[4]. Various degrees of resource constraints may co-
exist in the same ecosystem, which makes context-
awareness a challenging task since it now becomes
a function of application, device location, available
computation/memory resources, channel condi-
tions, and communication modalities. For exam-
ple, smartphones with relatively high computation
power can support advanced learning and data
compression algorithms, while a small temperature
sensor must resort to elementary learning and data
processing methods [5].
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3) Security: 10T systems envision automatic dis-
covery and support for a new target device without
human intervention [6], [7], which immediately
raises concerns on the security and privacy aspects of
the network. With the limited resources and latency
constraints, proper authentication and/or authoriza-
tion mechanisms become all the more challenging,
as the devices with fewer resources often tend to sac-
rifice security for lower energy consumption.

4) Context and context-based adaptability: To
optimize the performance of the individual nodes,
specific contexts/modes need to be defined as dis-
cussed in the previous section, with a proper switch-
ing arrangement between modes for adaptability.
The definition of context, as will be discussed later,
is highly application dependent, and therefore the
implementation of context-based adaptability would
be different for every application and either needs to
be decided beforehand by the designer or learned
on the fly by the system.

5) Scalability and reconfigurability: In addition,
the IoT ecosystem should be capable of handling a
variable number of nodes due to the mobility and
dynamic properties of the devices, and the hardware
and software implementations should be scalable
to a large population of devices. It is important to
note that the previously described challenges also
create asymmetry among the nodes in the network,
asthere could be a need for communication between
two devices with unequal resources and capabili-
ties. Indeed, IoT has a communication bottleneck in
the uplink, as typical IoT applications (smart sens-
ing, wearable devices, healthcare, etc.) involve up-
loading the collected data from multiple sensors to a
single base station [5]. This asymmetry can be
optimally leveraged with a high-level goal to reduce
the energy consumption of the overall system, as will
be explained in the following sections.

Common terminologies used throughout
the article

1) IoT: Smallscale developments of internet-
connected devices were materialized as early as
1982, when researchers at Carnegie Mellon Universi-
ty deployed a Coke vending machine with an online
inventory [8]. Mark Weiser’s famous 1991 paper on
ubiquitous computing [9] envisioned the concept of
a large scale implementation, and the term Internet
of Things was coined by Ashton in a presentation at
Proctor and Gamble in 1999 [10]. According to the
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Figure 2. l1oT ecosystem and its specific
challenges [4].

International Telecommunication Union, IoT is
a vision that ensures “from anytime, anyplace
connectivity for anyone—we will now have connec-
tivity for anything”

2) Machine intelligence: Machine intelligence
is usually associated with Machine learning (ML),
which is defined in [11] as “the adoption of com-
putational methods for improving machine perfor-
mance by detecting and describing consistencies
and patterns in training data.” In view of the resource-
constrained IoT (RC-IoT) nodes, however, intelligence
or edge intelligence refers to the process of context
discovery and assessment, which is imperative in the
realization of context-aware, adaptive techniques and
strategies (hardware/algorithmic/learning-based) for
sensing, computing, and communication in the con-
strained environment.

3) Resource: Adopting the generic, all-encom-
passing definition [12], a resource is defined as “any
object which can be allocated within a system.”
For IoT systems, the most important resources are
memory (for storage), energy (for battery lifetime),
compute capability (for computation), and network
bandwidth (for communication). Depending on the
available memory, RC-IoT devices are categorized
into Class-0, Class-1, and Class-2 devices as shown
in Table 1 [13], with Class-0 devices having the most
stringent constraints.

4) Context and context awareness: The notion of
context-aware computing was first introduced by Schilit
and Theimer [14]. Although many definitions exist for
context and context awareness, the one provided by
Abowd et al. [15] is widely accepted as a concrete
definition of context based on the five Ws (who,
what, where, when, and why). As has been argued
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Table 1. Available resources for RC-IoT Devices [13].

[ RC-IoT device | RAM(data Size) [ ROM(code size) | Example |

Class-0 (C0) < 10KB < 100KB Single biosensor
Class-1 (C1) ~ 10KB ~ 100KB Multi-sensor node
Class-2 (C2) ~ 50KB ~ 250KB Local hub with TCP/IP

in [16], all previous definitions [17]-[20] of context
and context-awareness suffered from the specificity
of the example applications that they were referred

to and could not be used to define the new context.

References [15] and [16] defined context as follows:

Context is any information that can be used to
characterize the situation of an entity. An entity
is a person, place, or object that is considered
relevant to the interaction between a user and
an application, including the user and applica-
tions themselves.

In light of the above definition of context, context-
awareness is defined as follows: “A system is context-
aware if it uses context to provide relevant information
and/or services to the user,where relevancy depends on
the user’s task” [15].A context is usually represented by a
model and its attributes,and it is often described based
on the application scenario. Further details on this can
be found in [6] and [21].
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5) Quality of context: Quality of context (QoC) is
related to how well the context model and its attributes
are extracted from raw sensor data. QoC is defined
using a combination of parameters such as validity,
precision, and update rate of the context information,
which is processed out of the raw data from a sensor.
Reference [6] presents a detailed survey on QoC.

Building toward the concept of a context-aware,
adaptive RC-IoT system, we shall discuss intelligent
hardware techniques for sensing (compressive sens-
ing, time-based sensing), computation (edge ana-
lytics/in-sensor analytics in the form of anomaly
detection and data compression), communication
[Intraphysical layer (Intra-PHY)) and Inter-PHY adap-
tation, along with two recent sub-10pJ/b communica-
tion modalities, i.e., proximity communication and
HBC], and energy management (dynamically recon-
figurable LDO, switched-mode LDO, and intermittent
powering) in this article. We shall also present two
examples of cross-layer adaptive systems that employ
more than one approach discussed in this article for
optimum power-efficiency. Finally, after describing
various security considerations and learning tech-
niques for RC-IoT devices, we present our view of the
current state-of-the-art and where it needs to be in
the near future, based on the learnings and research
in the domain of secure, context-aware, adaptive
Re-IoT nodes over the last two decades.

Intelligent sensing

Compressed-domain signal acquisition
Compressed-domain sensing/compressive sens-
ing (CS) [22], [23] is a mathematical tool in sig-
nal processing that defies the Shannon-Nyquist
sampling theorem by sampling a sparse signal at
a rate lower than the Nyquist paradigm and still
being able to reconstruct the signal with negligi-
ble errorrate (Figure 3). Since its inception, CS
has found multiple applications including image
processing [24], medical imaging [25], RADAR
technology [26], in-sensor analytics [27], gesture
recognition [28], [29], and healthcare [30]. CS
algorithms assume that the signal to be sampled
has a sparse representation, and it was shown that
sparse signals with randomly [from independent
and identically distributed (i.i.d) Gaussian dis-
tribution] undersampled data can be recovered
with a low error by formulating it as an optimi-
zation problem. Hence, the advantage of CS is
twofold: 1) CS allows a lower sampling rate that
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reduces the power consumption in the analog-to-
digital converter (ADC) and clock generation
circuitry, and 2) compression creates a smaller
amount of data with rich information-content that
reduces the burden on the subsequent processing
and communication modules. Since many of the
naturally occurring signals such as sound, visual
image, or seismic data can be represented in the
sparse form [31], it is possible to leverage the supe-
rior energy efficiency of CS in an IoT scenario. Two
comprehensive reviews on CS can be found in [31]
and [32].

To mathematically represent CS more clearly,
let us assume that the orthogonal basis {wy.., span
the n-dimensional real space R". Then, any signal
z € R"can be represented by matrix multiplication
of the matrix y with the elements of a sparse vector
S=1[8, 8, S, ..., S,]Te R*such that z = 2;‘:]1//,-.5‘,-. If
the vector .S has only £ < n nonzero entries, then the
signal zis said to be k-sparse, and y is called the spar-
sifying/representation matrix for . For CS, the n x 1
input signal z is pre-multiplied by an m x n sensing
matrix @ to get an m x 1 compressed signal y, where
m < n and the ratio (n/m) is termed as the com-
pression factor. This is represented by the following
equation and is shown in Figure 4

y = dr = dyS. (D

If the coherence (correlation) u(®,y) = nmax
|@;wi| (where 1 <i<nand 1 <j<mwith ®; being
the jth row of @) is low, it can be proved that fewer
samples are required to reconstruct the signal [23].

Compressed domain processing and
computational data converters

Multiple CS algorithms for IoT applications
have been developed in the last decade. Reference
[34] showed a matrix-multiplying ADC (MM-ADC)
in 130-nm CMOS technology and demonstrated two
applications: 1) electrocardiogram (ECG)-based car
diac arrhythmia detection (9.7x energy savings as
compared to traditional ADC followed by arrhyth-
mia detection) and 2) image-pixel-based gender
detection (23x energy savings as compared to tradi-
tional ADC followed by gender detection). Feature
extraction and classification were combined in a
single measurement matrix (® in CS theory) for light-
weight applications as shown in the work. Our ear
lier work [33] demonstrated a light-powered smart
camera with CD gesture detection.To enable always
on and self-powered operation on IoT devices,
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Amaravati et al. [33] exploit CD data processing,
which allows trigger detection with significantly
lower power and computational requirements. This
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is in contrast to existing algorithms that work directly
in the pixel domain. Given the objective of the cam-
era front end (FE), the computation complexity can
be largely reduced (768x, as demonstrated in [33])
from existing algorithms that are targeted for continu-
ous gesture recognition [35],[36].
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ing that a compression ratio of 8x achieves ~90%
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In this system, the gesture motion is captured by
a sequence of difference images between consecu-
tive frames. Each difference image passes through
two layers of compression to reduce its resolution
and to be transferred to the CD. In the first layer, the
resolution is reduced by dividing the whole image
into several blocks and taking the average of each
block. In the second layer, coded combinations of
these block-averaged pixels are extracted. It then
estimates the center of the motion directly from
these compressed measurements. These motion
centers are passed to a classifier for gesture recog-
nition. Figure 5 shows the block diagram of the pro-
posed system, while Figure 6 presents the accuracy
of detecting different hand gestures as a function of
the irradiance levels in the environment where the
camera operates. In the work presented in [33], the
sparse compression algorithm was performed in
the microcontroller unit instead of the ADC. In [27],
the authors have shown an ASIC implementation in
130-nm technology that utilizes CS DAC and MM-ADC
together to achieve only 165-nJ/frame classification.

Figure 7 shows the results from an arrhythia detec-
tion ASIC [30] with a time-based CS ADC. A total of
160 parallel processing units were employed on-chip,
and an accuracy of 84% was achieved with only
10.5-nJ energy per classification for a compression
ratio of 8x. One key idea here is the introduction of
computational ADCs, where analog input signals are
not only digitized but also computed upon during
acquisition. In particular, computational ADCs pro-
vide linear transformations of the signal in a single
stage, thus improving the system energy-efficiency.

In a more recent work [37], a submicrowatt CS
hardware is presented in 65-nm CMOS technology
with online self-adaptivity for incoming signals with
varying sparsity. Initial efforts of self-adaptivity were
earlier demonstrated in [38] using an asynchronous
ADC with an adjustable sampling rate and in [39]
using temporal decimation and wavelet shrinkage.
Both of these techniques were utilized with specific
incoming signals. On the other hand, Roose et al. [37]
offera more general technique that exploits the online
sensory data statistics for dynamic reconfiguration
(in terms of the compression algorithm, compression
harshness, and sampling frequency).

Sensing using time/frequency

Many of the naturally occurring signals in loT
are slowly varying, such as temperature, humidity,
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and vibration. Most of the energy content in these
signals is contained within extremely low frequen-
cies. The resolution and dynamic range (DR)
requirements for these applications, however, can
be small (e.g, temperature and humidity), large (e.g,
vibration), or variable based on environment (e.g,
radiation). Voltage-mode and current-mode ADC
designs in these scenarios become limited by the
ambient noise, supply rails, and power consump-
tion. Time-based ADCs, on the other hand, can uti-
lize the availability of time (since signals are of very
low frequency) in an energy-resolution scalable
manner as shown in [40]. For high-resolution require-
ments, the signal to be sensed is converted into an
equivalent frequency (using a resistive sensor and
a ring oscillator-based resistance to frequency con-
verter) and is simply observed (using a counter) for
a longer amount of time for a change in the aver-
age frequency. For low-resolution requirements, the
frequency is observed for a shorter amount of and
then can be turned off (through duty cycling) for
saving energy. Figure 8 shows the working principle
for the time-based ADC for detecting the difference
between a frequency f and its slightly modified ver-
sion f,. The minimum amount of time for which we
need to observe/count the frequencies to detect the
difference is 1/|f, - f,|. Hence, for a smaller |f - f,|
(high-resolution requirement), the time to enable
the counter needs to be higher.

Even though this method ensures energy-
resolution scalability within a range, the resolution
cannot be made infinitely high by waiting for a
longer time. The ambient noise statistics, process,
voltage, and temperature (PVT) variation, and jitter
accumulation in the ring oscillator would limit the
achievable resolution, out of which jitter accumu-
lation is shown to be the dominant factor in [40]
in a controlled environment for radiation measure-
ment. This is demonstrated in Figure 9, where it is
shown that the scaled quantization error in measur-
ing a fixed frequency within a predefined amount
of time goes down with the time of measurement.
However, the accumulated jitter from the ring oscil-
lator goes up with the total time of measurement.
If the slope of the linear plot of accumulated jitter
versus measurement time is k, then the achievable
resolution is shown to be limited to log, (1/k) bits.

The system in [40] achieves 18bit resolution
with 861-nW power consumption (one reading per
second) and 12-bit resolution with 9.04-nW power
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consumption (one reading per second). The resolution
can be improved by phase noise reduction techniques
for the ring oscillator at the cost of a higher power.

Collaborative sensing

Collaborative wireless sensor networks [41]-[43]
can sense an analog signal over a large-area test bed
(e.g., soil nitrate sensing for smart agricultural appli-
cation) utilizing collaborative efforts among the sen-
sor nodes and their communication with each other/
with the cloud, which brings us to the next part of
the article—the tradeoffs and power optimization
among in-sensor computation, short-range commu-
nication, and long-range communication.

Intelligent computing platforms

As the number of distributed sensors and loT
end-nodes are increasing, the total amount of data
transfer to the backend cloud servers are becoming
prohibitively large, resulting in network congestion
and high energy consumption during data trans-
mission at the sensor node [44]. This motivates the
need for in-sensor data analytics that would perform
context-aware data acquisition with compression,
followed by transmit if necessary.

Need for intelligent computing

The computation and communication energies
(Beomp and E,,,, respectively) in a system can be
written as

Eeomp = (Ecomp/bit) x Number of bits switched

Ecomm

= (Eeomm/bit) x Number of bits sent. @)

(Ecomp/it) will be dominated by the dynamic
power for frequencies above the leakage-dom-
inant region, as shown in [45] and [46], and,
hence, can be approximated by (E,,.,,/bit) = CV?,
which scales with technology. If an ideal technol-
ogy had allowed zero device capacitances, then
(Ecomp/bit) would be very close to the theoreti-
cal limit posed by the Landauer principle [47] as
given in the following:

(Buomp [ i) = by TxIn2, 3)

th_min

where £kj is Boltzmann's constant and 7 is the
ambient temperature. For room temperatures,
(Eomp/Pity,  win is calculated to be about 2.9 x 102! J.
For a standard 45-nm CMOS technology node, the bit
switching energy was simulated to be =1f] for this

analysis. However, even if a fictitious technology
could potentially offer zero capacitances, a zero-
power receiver (Rx), and 100% efficiency for the trans-
mitter (Tx), (E,..m/bit) would still be limited by the
free-space path loss (PLrg) of the physical channel,
which is given by Frii’s equation [48], [49] and shown
in the following:

PLpg = Gp,-Gg, (ﬁ)m: (4)

where G, and Gy, represent the gains of the trans-
mitting and receiving antennas, respectively; A is the
wavelength, d is the distance between the Tx and Rx,
and m is a parameter (typically between two and
three) that represents the fading margin.For d=10 m
and a typical ANT protocol operating at 915 MHz, the
most optimistic PLp, (m =2, Gy, =2 dB, G, =2 dB)
turns out to be about 48 dB,which means,with a state-
of-the-art Rx sensitivity of =100 dBm [50],the Tx needs
to transmit a minimum of —52 dBm.This translates to
a power consumption of 6.3 nW (theoretical limit—
assuming no capacitance and 100% efficiency) and
an energy/bit of 105 fJ/b (for a maximum data rate of
60 kbps for ANT), which is 107 times higher than the
theoretical minimum energy/bit for computation, as
given by the Landauer principle.

From the foregoing analysis, the theoretical min-
imum energy/bit for communication is given by the
physical limits of the channel, and can be written as

Rz,
(GT: - Gpe (%rd)“) xNn.DR

where Rz, = kpTsoo X NF'x SNR x kx DR is the Rx
sensitivity as a function of DR [51], n7 is Tx efficiency,
and DR is the data rate supported.

Figure 10 shows the comparison of £, and
E¢p for the same number of bits transmitted, or
switched. The state-of-the-art wireless transceivers
[52] consume =10? times more energy as compared
to computational bit switching in 45- and 65-nm
nodes. This bottleneck analysis directly signifies that
some amount of intelligent computation at the sen-
sor node (in-sensor analytics) would help in bring-
ing down the total energy by enabling selective data
transmission, which will reduce E,,,,, at the cost of
additional £,

comp*

(Econun/bit)ﬂme = ’ (5)

In-sensor analytics as a form of edge
intelligence

Based on the communication and computa-
tion energy tradeoffs and the amount of resources
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available at the RC-IoT device, partial or complete
processing of the sensor data (e.g., anomaly detection
and data compression for sensor readout, and object
localization and segmentation for video surveillance)
can take place in the leaf node itself. In this section,
we discuss the two most common ISA techniques for
RCoT devices, namely, anomaly/outlier detection
and data compression. The anomaly detection meth-
ods can enable selective (and immediate) data trans-
mission when an anomaly occurs in an otherwise nor-
mal sensor readout. As a healthcare example, selective
ECG data transmission with arrhythmia (anomaly)
detection would ensure immediate notification with
minimum communication cost. Data compression,
on the other hand, would ensure that the maximum
amount of information between transmissions can be
stored in a small amount of on-sensor memory.

1) Anomaly/Outlier Detection: According to
Barnett and Lewis [69], “an outlier is an observation
(or subset of observations) which appears to be in-
consistent with the remainder of that set of data’
Figure 11 shows an example of anomaly in a sensor
readout and explains the three classes of anomaly
that are common in loT devices and wireless sen-
sor networks [70]. It is to be noted that the primary
difference between outlier detection and event
detection is the fact that an outlier is detected by
comparing the readings from the sensor with each
other and without any prior semantics that define the
trigger conditions of an anomaly. On the other hand,
trigger conditions for event detection are usually
defined a priori, and the sensor readouts are com-
pared with that trigger condition to detect an event.

Outlier detection algorithms utilize spatio-
temporal correlations among the data points from the
same node and/or neighboring nodes to distinguish
between normal operation and anomalies [70].
Table 2 shows some of the most common anomaly
detection techniques for wireless sensor networks
and IoT. These methods include both learning
(supervised and unsupervised)-based techniques
and algorithmic (statistics-based) techniques and
offer various orders of resource requirements and
accuracy. Some of the most recent works include a
hybrid statistical method from Twitter [71], which
has low latency and high accuracy but needs more
computational resources. Simplistic techniques such
as mean- and average-based statistical analysis [53],
on the other hand, can be implemented easily on
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Figure 10. Comparison of communication and
computation energies (both theoretical and from
standard implementations [52]) that show that
communication energy is =104 times more than
computation energy (with same number of hits).
Leakage power is ignored in the analysis.

the RC-IoT device itself for optimum computation-
communication tradeoff.

2) Data Compression: Asshown in the “Intelligent
Computing Platforms” section, compressive-sensing
techniques can result in significant energy savings
in the ADC, on-sensor processor, and communica-
tion modules. It must be noted that CS-ADC is still
an emerging technology and has not yet become an
integral part of commercially available embedded
frameworks. In-sensor data compression techniques
on the Iol processor, however, have also shown
energy benefits by bringing down the communica-
tion power. Some of the earliest reported works on the
tradeoff between the raw data communication and
the compressed data communication are from MIT’s
Computer Science and Artificial Intelligence Labora-
tory [72] and from CMU’s Odyssey Project [73]. Ref-
erence [73] used application-aware adaptation that
trades off data quality with resource consumption

>
>

1. Noise/Errors
(Fault Detection)
2. Events
(Event Detection)
3. Malicious Attacks
(Intrusion Detection)

Expected Readings
o 090
90 00° %0
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(temp, humidity etc.)
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Time/Sensor Location etc.

Figure 11. Example of anomaly in sensor
readout.
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Table 2. Outlier detection techniques for wireless sensor networks/IoT.

Technique

Example

Salient features

Drawbacks

Statistics-based

1) Gaussian Parametric

Estimation [53], 2) Non-Gaussian
Parametric Estimation [54], 3) Kernel
Density Estimation (non-parametric)
[55], [56], and 4) histogram-based
method (nonparametric) [57]

1) Spatiotemporal correlation for Gaussian
nonanomalous data, fixed thresholds

for anomaly detection, 2) anomalies

are treated as SaS-distributed impulsive
events, 3) no a priori PDF is assumed.
Kernel density functions approximate

the PDF, and 4) works on histograms and
not on raw data (inherent compression—
reduced communication cost)

Simplistic and can suffer
from low accuracy

Nearest-Neighbor-based

Euclidean distance [58] and dynam-
ic time warping methods [59]

Simple implementations for both
univariate and multivariate data

Resource-extensive for
multivariate data

Clustering-based

Creates clusters based on raw data
and detects outliers that do not fall
into any cluster [60]

Can be employed to take care of incre-
mental processing

Resource-extensive for
multivariate data, suffer
from the choice of an
appropriate cluster width

Classification-based

1) SVM approach [61], [62],

2) Bayesian Network approach [63],
[64], 3) long short term memory
(LSTM) [65]/hierarchical temporal
memory (HTM) [66] approach

1) Maximally separated classes (one/two
class approach to reduce complexity, 2)
uses Bayesian Intuitions to predict anom-
alies, and 3) uses LSTM/HTM for time-
series data pattern of unknown length

Computationally
intensive

Spectral-decomposition-

PCA-based approach

Added advantage of dimensionality

Selecting suitable

based

[67], [68]

reduction/data compression

principal components is
computation-heavy
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with the help of an embedded OS. Reference [72]
experimentally showed that the ratio of energy re-
quired to transmit 1 bit is =480-1270 times higher than
that of a 32-bit addition under varying channel condi-
tions. This means that a compression algorithm that
is able to remove more than 1 bit from a string of data
would have energy benefits if the algorithm is equiv-
alent to (or less than) 480 addition instructions. The
standard compression algorithms explored in [72]
[such as bzip2/Burrows—-Wheeler transform (BWT),
Lempel-Ziv—Welch (LZW), Lempel-Ziv—Oberhumer
(LZO), and prediction by partial matching (PPMd)]
are much smaller than 480 additions, which means
that any of these algorithms would be beneficial.
However, the key limitation in an IoT implementa-
tion comes from the runtime memory requirement
for these algorithms, which is in tens of kilobytes for
LZO to hundreds of kilobytes for BWT. This readily
makes these algorithms infeasible for CO, Cl, and
C2 RC-IoT devices (referring to Table 1). More light-
weight compression techniques, such as miniL.ZO
and sensor LZW with mini cache (S-LZW-MC) [74],
require only 8.192 and 3.250 Kbytes memory, respec-
tively, and can be used in C2 and some Cl1 devices.
Other important techniques for data compression in

IoT devices include 1) principal component analy-
sis (PCA) ([75]-[77], which use lightweight PCA for
dimensionality reduction and data compression),
2) coding by ordering ([78], where the data from one
node is shown to be encoded by the order at which
other nodes in the same hierarchy communicate
with the parent node), 3) burst mode/pipelined tech-
niques ([79], where data are stored, packetized, and
transmitted in burst mode to remove redundancies
and number of transmitter switch on/off), 4) frame
difference-based compression ([33] and [80] that
store differences in consecutive frames for video
compression), and 5) distributed data compression
[81] using conditional entropy encoding with corre-
lated data between two nodes that perform spatial
data compression through short-range communi-
cation between the sensor nodes. For optimum re-
source utilization, this short-range communication
can be a low-power communication scheme, such
as MedRadio or HBC (for body area networks within
a few meters), which consumes hundreds of micro-
watts, or ANT/BTLE, which consumes a few milliwatts
to =10 mW when 0N, as will be shown in the next sec-
tion. After spatial compression is done, we envision
that the node with the highest amount of battery life
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Table 3. Comparison of state-of-the-art wireless techniques for IoT nodes [82].

Proximity HBC [84], NFC ZigBee BT/BTLE ANT WiFi LoRa WAN
comm. [83] [85]
Distance I mm 2-5m 10 cm 10-100 m 10-100 m 10-20 m 30-50 m ~1 km
through
human
body
Data rate 8-32G 10’s of M 20-400 k 20-200 k 0.8-2.1M 60 k 300 M (802.11 g), 200 k
(bps) 7 G (802.11ac/11d)
Energy effi- 4p 6.3 p In 5n 15n 10n 5n lu
ciency (J/b)
Security High High Medium Low Low Medium Medium/High Low/Medium

(or the node that is closest to the Rx) would take the
responsibility of sending the compressed data to larg-
er distances, possibly through a high-power commu-
nication protocol such as LoRa WAN.

Intelligent communication

Continuous device scaling over the last few dec-
ades have resulted in cheap computation through
Moore’s law, and the ability to support higher data
bandwidths has created cheap wireless commu-
nication paradigms through Shannon’s law. How-
ever, the progress in battery technology has been
relatively slower, making the available energy one
of the most sought after resources in modern IoT sys-
tems, thereby motivating the research needs toward
low-energy sensing, computation, and communica-
tion. As supported by the analysis presented in [86]
and in the “Intelligent Computing Platforms” section,
the energy cost per bit for communication is 10°*~10*
times higher than the energy cost of computation
for raw data bits. In the vision of the truly intelligent
IoT nodes presented in this article, most optimum
energy efficiencies are expected from the commu-
nication subsystems based on the specific operating
conditions/context (such as communication dis-
tance, channel conditions, latency, quality of ser-
vice requirements, data rate, battery conditions, and
process variation) when turned on. Table 3 shows
the state-of-the-art communication modalities avail-
able for IoT devices, which range from 4-pJ/b prox-
imity communication for =1-mm distance to 1-uJ/b
long-range (LoRaWAN) communication to =1 km.
We readily notice the possibility of optimizing the
communication framework within a modality and
among different modalities, hereinafter called Intra-
PHY and Inter-PHY communication as explained in
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[2]. The concept of Intra-PHY and Inter-PHY communi-
cation is presented in Figure 12a, where the switching
of PHY is shown to occur based on communication
distance (as an example of context), while the adap-
tation within a PHY is performed for optimum energy
efficiency based on the operating conditions.

Intra-PHY channel-adaptive radios

For Intra-PHY adaptation, the energy-performance
tunability knobs are dynamically optimized without
changing the PHY. Traditional techniques of scal-
ing the energy consumption over varying channels
involve adaptive modulation and coding [87], which
increases the order of modulation (from QPSK to
16-QAM to 64-QAM) as the channel quality becomes
better and corresponding error vectors become
more and more manageable. Although this increases
the spectral efficiency of overall transmission, the
power consumption of the radio frequency (RF) FE
effectively remains constant. As shown in [88], 70%—
90% of the overall power in a low-power transceiver
(Tx+Rx) system is consumed in the Rx FE/Tx power
amplifier (PA) and LO generation subsystems, and,
hence, significantly more energy efficiencies can be
obtained by dynamically scaling the FE power and
performance according to the application. Most of
the research efforts in building channel-adaptive
designs are concentrated toward the Tx PA and
employ techniques such as digital predistortion, Tx
power control, envelope tracking, polar implemen-
tation, and dynamic companding with PA bias con-
trol [89], [90]. Rx circuit-level adaptation techniques
include automatic gain control and field-program-
mable low-noise amplifiers (LNA) with power-linear-
ity tradeoff [91]. Some of the recent advancements
include an adaptive DR and BW Rx [92] that use a
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Figure 12. Vision for adaptive communication in 10T [2]. (a) Context-aware communication PHY,
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18

programmable gain amplifier (PGA) and an adaptive
intermediate-frequency filter. Discrete-time spectrum
sensing was utilized in [93] to modify the modes of an
Rx filter to achieve adaptive interference rejection.
An interference-aware adaptive ADC was shown to
adapt itself to a low-power mode in absence of any
blocker using a simple built-in spectrum analyzer
[94]. A channel adaptive ADC and a successive-
approximation-register-based time-to-digital
verter (TDC) was shown for a 28-Gbps wireline sys-
tem in [95]. These implementations have shown
benefits in the standalone adaptive subsystems
(such as the LNA, PGA, or TDC). However, it must
be noted that, unlike a Tx where most of the power
is consumed in the PA, the Rx power consumption is
more distributed among different blocks; hence, the
entire Rx should be considered as a unit for power-
performance tradeoff analysis. It was shown in [96]
and [97] that the best-case energy-savings in an Rx
FE can be obtained by distributing the instantane-
ous performance-sslack optimally across different
building blocks in the Rx. A precharacterized con-
trol law (defined during design) was employed to
achieve multidimensional adaptation of multiple Rx
components with virtually zero-margin (ViZOR) Rx
operation. Figure 12c shows the operation of ViZOR
using design-time tuning knobs and sensors in the Rx

con-

FE to dynamically optimize power and performance.
If the tuning knobs are designed in an orthogonal
manner (i.e., operation of one knob will modify only
one specification out of linearity, gain, and NF of the
FE), the controller was shown to achieve =3x better
energy savings for best-case channel conditions [98],
[99] and can be optimized for either maximum data-
rate (data-priority) or minimum energy (energy-pri-
ority) for any channel [100], [101]. However, it was
also reported that the adaptation control law, which
was fixed during design time, cannot work optimally
under manufacturing process variations. References
[90] and [102] solve this problem by detecting the
process corner of the device under consideration
using builtin process sensors and updating the
control law accordingly during postmanufacturing
tuning. This technique (i.e., Pro-ViZOR) is shown in
Figure 12d and requires high design-time effort
to cover the entire process-corner space for the
power-performance adaptation [103].

Intra-PHY adaptation: Self-learning radios

The high design-time complexity of Pro-ViZOR
was significantly reduced by employing self-learning
wireless systems (Figure 12e) that gradually learn
the adaptation control law when the device is in idle
condition [104]. Figure 13 shows how the learning
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algorithm populates the power-performance channel
space during an intermediate time instant and at
the final time instant when learning is complete.
Figure 14 presents the average power consumption
of such a self-learning channel-adaptive wireless sys-
tem over multiple days to include various channel
conditions. The initial overhead is due to the need
for controlled on-line experiments during real-time
operation that gathers useful data points for learn-
ing the control law. It is shown that this system
becomes increasingly energy-efficient with experi-
ence [105]-[107]. When the power consumption
saturates with the learning, the overhead of con-
trolled experiments is removed (day 29 in Figure 14).

Communicating with ultralow-energy
(<10 pJ/b) PHYs

Today’s wireless technology is limited by the high
channel losses (=60-80 dB in standard operating
conditions) that increase the power consumption in
the Tx to compensate for this channel loss. In addi-
tion, narrowband wireless techniques employed in
standard implementations involve frequency upcon-
version (Tx) and downconversion (Rx), which
increase the power overhead to enable smaller
antennas and multiplexing.

Due to these reasons, traditional wireless tech-
niques such as nearfield communication (NFC),
Zigbee, BTLE, ANT, and Wi-Fi can only achieve a best-
case energy efficiency of =1 nJ/b, while low-power
wireless body-area networks (WBANs) and MedRadio
implementations usually operate at hundreds of
pJ/b for short-distance (1-5 m) communication [2].
However, recent progress in wireline-like broadband
techniques can enable sub-10-pJ/b communication
over low-loss channels (mm-scale device proximity
communication, or meter-scale data transfer through
the human body), as shown with two examples in this
section. Wireline-like techniques eliminate the need
for antennas as well as modulation, thus lowering the
power consumption dramatically. However, commu-
nicating with multiple devices would now require
time division multiplexing instead of frequency divi-
sion multiplexing, thereby increasing the latency if
proper scheduling techniques are not employed.

1) mm-scale proximity communication: Figure 15
demonstrates the modality for mm-scale multi-Gbps
proximity communication [83], [108] at=4 pJ/b. Prox-
imity communication is implemented by employing
metal plates (couplers) in both communicating
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Figure 13. Self-learning the adaptation control
law: learning of channel space and power profile at

intermediate and final time instances [2].

devices, which are brought in close proximity
(=1 mm) to establish connectivity through capaci-
tive coupling. Because of the antennaless capaci-
tive terminations in both the devices, the channel
behaves like a simple capacitive divider with low
loss and maximally flat frequency response, thus
enabling broadband signaling. One key challenge in
this mode of communication arises from the self-res-
onance frequency (SRF) of the inductive vias with
the distributed parasitic capacitance of the coupler
plates. The SRF creates a peak in the channel fre-
quency response, thus disturbing its otherwise flat

11| M — IR— -

E Initial power '
: overhead : : :

=
£
g :
P o e o o o o o v o, v o - o - - -}
-3 I I R IR AR I
a Power consumption without adaptation '
& 80f------hag---oe- e besosaes beeoes Final
8 avg. power
@ ' savings
2 : e :
8 JOfeeseen dassncsasfigrunaen LR G, [T I EERE (RS bevese
@ : ; ] ;
()] H - '
®© : : 4 v . H 1
E 60F------4----- Learning overhead removed -—" B (. S—_—
! Leaming complete  mpmmip : © '
5 10 15 20 25 30 35
Days

Figure 14. System behavior and power savings for

self-learning radio.
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nature. An integrating receiver (Rx) with a tunable
notch placed at the SRF can solve this problem as
illustrated in [83]. The other key challenge in this
technique is the crosstalk between parallel chan-
nels, which is solved using alternating rectangular
differential couplers that employ inherent passive
crosstalk cancelation. As shown in Figure 15e, the
crosstalk from 1+ and 1-to 2- is equal and opposite,
and hence, cancels each other, while the crosstalk
from 1- to 3+ and 3- are equal and therefore can-
cel each other differentially. Using these two tech-
niques, Thakkar et al. [83] successfully demonstrate
32-Gbps data transfer with bit error rate (BER) <1012
using four parallel channels up to 0.8-mm distance
and 4-pJ/b energy efficiency (which is =100x lower
than contemporary mm-wave gigabits-per-second
implementations [109], [110]).

2) Interference-Robust Human Body Communica-
tion (IR HBC): Many future healthcare [111], human—
computer interaction [112], [113], and neuroscience
applications rely on the Internet of Body (loB), to
connect wearable and implantable devices on, in,
and around the human body, which are typically in-
terconnected though WBAN, consuming upward of 1
nJ/b. Using the human body itself as a low-loss broad-
band communication medium [114]-[116], energy
efficiencies [84], [117] similar to the proximity com-
munication, or wireline input—output (10) [118]-[120]
achieve high physical security [85]. Capacitive ter-
mination along with voltage-mode signaling allows
broadband communication in which low loss and ab-
sence of upconversion and downconversion give rise
to the extreme energy efficiencies. The key challenge
in broadband HBC comes from the antenna effect in
the human body that picks up unwanted interferenc-
es that corrupt the signal. An interference detection
and rejection loop using an adaptive notch [121],
[122] at the integrating Rx has enabled the lowest en-
ergy (6.3 pJ/b for 30-Mbps data transfer through the
body, which is =100x lower than traditional WBAN),
as well as the most interference robust (can tolerate
-30-dB signal-to-interference ratio) HBC transceiver
built to date [84], as shown in Figure 16.

Inter-PHY adaptation: Communication with
context switching

Like humans, a truly intelligent RC-loT node
needs knowledge (context-awareness) and adapta-
tion according to the situation (reconfigurability).
Inter-PHY context-aware adaptation is most effective
when multiple PHYs with different orders of energy
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battery life) along with its own remaining battery life.
In case of an event/anomaly detection, if the sensor
storage is full (even with data compression) or there
is a transmit timeout, the node would then asses the
context and turn the corresponding transmit subsys-
tem on. If a change in context requires change in Tx
modality, it will be taken care of by the context dis-
covery/assessment block, which can employ a struc-
tured algorithm/learning framework.

efficiencies, channel loss, data rates, and distance
support are incorporated in the same transceiver.
Figure 17 presents the vision for a context-aware
adaptive PHY that involves the following:

assessment of the need for communication
based on event/anomaly detection (in-sensor
analytics), memory (storage) buffer information,
and channel quality information,

context discovery and assessment based on
battery life of current and nearby devices (helps
to understand which device has the most
resources for long-range high-power communica-
tion, if required),

last transmit time and modality of current and
nearby devices (helps to understand the spatial
statistics of the data and the sensors), Rx distance
and location (e.g., whether both the Tx and Rx
devices are on the human body),

the possiblity of spatial data compression based
on the information from nearby devices (if suc-
cessful, this will require long-range data commu-
nication for only one node among a cluster of
sensors), along with any other information from
the cloud.

Equipped with all the knowledge, the RC-IoT device
can now adapt itself to the context and transmit
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using the available modes (proximity communi-
cation for mm-scale, IR-HBC for body-connected
devices, low-power wireless/MedRadio for short
distances within 5 m, ANT/BTLE for distances up
to tens of meters, and high-power LoRa WAN for
distances >100 m).

Intelligent energy management

By exploiting aggressive technology scaling
and low-power design techniques, IoT nodes are
continuously trying to reduce the overall energy
consumption. Context-aware and adaptive future
IoT devices would require different power supplies
for different modes of operation, thereby necessitat-
ing an adaptive energy management unit to handle
different scenarios. For example, in-sensor analytics
(which are performed in a digital on-chip/on-board
processor) can utilize minimal supply voltages for
low-power, near-threshold (=0.35V for 14-nm or lower
nodes) operation, while the high-power RF Tx for long-
distance communication may need a higher supply
voltage (=1 V) for high-power delivery. Short-range
communication, on the other hand, may require a dif-
ferent supply voltage that falls between the minimum
and maximum values. Some of these modules may
be connected to the same power delivery network
(PDN) (e.g., the entire communication module with
multiple modalities can be supported by only one
on-chip voltage regulator), thereby offering a variable
load to the power management unit (PMU). The PMU
may even be supported by a dynamic source if oppor-
tunistic energy harvesting is used to supplement the
onboard battery [123]. Hence, the PDN in the con-
text-aware, adaptive RC-IoT scenario should be able
to support 1) a wide DR, 2) high-power conversion
efficiency throughout the range, and 3) a platform
and interfacing circuitry for optimum power transfer
to the load with minimum losses. LDOs have been tra-
ditionally used in CMOS ASICs to provide ripple-free

constant voltages, the analog and digital implementa-
tions of which are shown in Figure 18.

The power conversion efficiency () of an LDO
is given by

— VOUT'LDO ILoml (6)

k
Vineo  Troad + lcontrol

where Vourpo and Viypo are the output and input
voltages from the LDO, [}, is the load current drawn
from the LDO,and /¢, is the controller current con-
sumption. It has been shown in [124] that a digital
LDO can offer fast switching at low controller currents,
apart from being synthesizable and process/voltage
scalable as compared to its analog counterpart.

Dynamically reconfigurable power
conversion LDO

To meet the requirements of large DR and high effi-
ciency, which effectively remains constant over the DR
of operation, a reconfigurable digital LDO with sam-
pling rate adaptation was demonstrated in [124] and
[125], using an IBM 130-nm CMOS technology. The
design comprises of a 128-bit barrel shifter, controlling
128 identical P-MOSFETs that provide line and load
regulation at the output side (Figure 19a). A clocked,
sense-amplifier-based comparator compares the reg-
ulated voltage with a reference voltage and, depend-
ing on the result of the comparison, increases or
decreases the number of P-MOSFETs supplying cur-
rent to the load. It has been explained in [125] that
a linearized control loop model for the LDO has two
open loop poles—one at DC (from the integrator) and
the other at a frequency determined by the ratio of
the load’s pole frequency to the sampling frequency
of the controller. As the load current dynamically
changes in different IoT scenarios, the pole from the
load and, hence, the second pole for the LDO would
also change in a baseline design without adaptation,
leading to overdamped behavior in heavy-load condi-
tion, and oscillatory behavior in light-load condition,
which reduces the current efficiency drastically. How-
ever, if the sampling frequency of the controller is also
modified according to the load current (this informa-
tion is obtained from how many P-MOSFETs are on in
the LDO), it has been shown that an effectively con-
stant current efficiency can be maintained. This tech-
nique for adaptation has two significant system-level
advantages: 1) the closed-loop system poles are
bounded within a certain range, leading to stable
and consistent system behavior over a large DR, and
2) as the sampling frequency is lowered for light-load
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condition, the digital controller's power also scales,
leading to an improved current efficiency (Figure 19¢).
The overall design achieves >80% peak-current
efficiency over 0.45-1.14 V, with 0.1-4.60-mA load
current range.

Switched mode control (SMC) for LDOs

To achieve 1) fast transient response across a wide
current and voltage range, 2) rapid droop mitigation,
and 3) dynamic switching by exploiting decoupling
between small signal (SS) gain and large-signal (LS)
transient behavior, Nasir et al. [126] demonstrated an
SMC-based hybrid LDO (analog LDO with SS control
and digital LDO with large signal control) as shown
in Figure 20. SMC combines the advantages of both
analog LDO (high gain, low droop, high-power sup-
ply rejection) with digital LDO (fast LS operation and
adaptivity as shown in Figure 19¢) and achieves >80%
peak current efficiency over 0.5-1.1 V, with 1-12-mA
load current and only 6-ns droop recovery time.

Energy management for intermittently
powered devices

Since an IoT device can employ intermittent
sensing, computation, and communication, which
is supported from small-energy sources (or from
harvested energy in extremely resource-constrained
scenarios), energy management considerations for
intermittent operation become extremely important,
and lightweight software procedures for control flow,
optimal checkpointing, concurrence, and data con-
sistency [127], [128] need to be developed. This along
with improved techniques of high-dynamic-range,
adaptive PDNs is believed to be one of the major
research directions for context-aware RC-IoT devices.

Intelligent cross-layer
adaptive systems

System-level IoT designs can incorporate more
than one approach discussed previously to optimally
enhance machine intelligence and achieve perfor-
mance improvement/energy reduction, as shown in
[129] and [130].

Caoetal. [129] proposed a camera-based wireless
sensor node with a self-optimizing end-to-end com-
putation and communication design, targeted for
surveillance applications. The demonstrated system
supports multiple feature-extraction and -classifi-
cation algorithms, tunable processing depth (PD),
and PA gain. Minimum-energy operating point is
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video frame [129].

sensor module, and transmission blocks are ADI
ADSP-BF707 image processor, OV7670 camera sen-
sor, and USRP B200 SDR software-defined radio,
respectively, and achieve a 4.3x reduction in energy
consumption compared to a baseline design.

The sensing+computation process is demon-

strated in Figure 21. After image data acquisition,
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Figure 22. Measured total energy (computation+
communication) per frame for different PD with
increasing pathloss [129]. Experimental results are
demonstrated for the three algorithms described
here and two BER targets. When pathloss is high,
the general trend is that optimal mode moves to
more FE-embedded processing.
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the consecutive frame differences are computed
as a preprocessing step. Low-power preprocessing
not only locates and segments the potential human
objects but also enables adaptive in situ processing
depending on the information content defined as a
number of active pixels of frame difference.The plat-
form demonstrates three different algorithms to pro-
vide accuracy/energy scalability and each algorithm
is further divided into three PDs—i.e., compression,
feature extraction, and classification—to support
computation and communication tradeoff. On the
transmission side, the platform applies adaptive
radio whose PA gain is dynamically adjusted, guar
anteeing minimum required BER with respect to
time-varying wireless channel condition (pathloss
in this case). It is intuitive to understand that as the
PD increases, the energy cost to compute increases,
but the data volume required to transmit decreases,
thus reducing the energy cost to communicate. As
the channel condition changes (from clean to noisy
channel), the minimum energy point also changes.
For a clean channel, a lower PD is preferred (as the
energy to communicate is low),whereas with increas-
ing pathloss a higher PD is preferred.The end-to-end
self-optimization, which dynamically adapts the PD
depending on the channel condition to always track
the point of minimum total energy, is measured and
demonstrated in Figure 22.

Platform proposed in [130] is a collaborative
intelligent heating, ventilation, and airconditioning
system (HVAC) occupancy detection solution via
data fusion between optical (OP) and infrared (IR)
camera-based sensor nodes together in a smart wire-
less sensor network. Figure 23 demonstrates that data
fusion has enabled accurate human detection com-
pared with baseline designs,especially in severe light-
ing/heating conditions, and the consequent low miss
rate (5x) in turn reduces sampling rate, resulting in
expanded sensor lifetime (3x) while maintaining the
required detection latency.

Collaborative intelligence is achieved at the sensor
node as well as among the sensor nodes at the back-
end server,which is located at the HVAC and controls
the HVAC.When detection accuracy is fixed after the
employment of the sensor network, minimizing the
latency of occupancy detection depends on reduc-
ing the sample interval (i.e.,the number of OP and IR
images captured per second). However, a high sam-
pling rate will lead to severe sensor energy expend-
iture and limited sensor lifetime. It is also noted that

IEEE Design&Test



the occupancy of a particular region in a building
is dependent on its neighboring regions. For exam-
ple, consider a typical floorplan of a building with
three rooms, A, B,and C.The occupancy of room A is
dependent on room B if a door between A and B is
available and people can walk from B to A, as shown
in Figure 24a and vice versa. This motivates the pro-
posed dynamic HVAC control strategy, targeting mini-
mized latency of occupancy detection based on a col-
laborative scheme among neighboring HVAC sections.

Consider a network of sensors deployed as shown
in Figure 24a. The sensor node at B estimates the
presence of an occupant. If an occupant is detected,
then it further tracks the occupant via difference of
frames and estimation of the direction of motion.
The direction of motion is sent to the backend,
which resolves the potential adjoining HVAC areas
that can be subsequently occupied. In this example,
an occupant moving from B toward A will allow the
backend to send an alert to the sensor node at A.
Now, this sensor node increases its sampling rate to
reduce the latency of detection. The effective sam-
pling interval, T, is reduced as shown in Figure 24b.

References [129] and [130] aim at adaptively
minimizing energy expenditure of Iol devices in
a time-varying environment (wireless condition,
object moving direction, etc.) while maintaining
decent performance (accuracy, BER, detection
latency, etc.) through distributed control on the fly
or centralized control at the backend.

Security considerations for
RC-loT devices

From an implementation point of view, the IoT
architecture is usually divided into 3, 4, 5 or 7 layers
as shown in [131]-[135]. References [132]-[134]
demonstrated the three-layer architecture as shown
in Figure 25. The details of the three layers and
their security concerns are presented in Table 4.
These security concerns involve data confidential-
ity, integrity, and availability (commonly known as
the CIA triad [136]), which are related to privacy,
correctness, and authentication, respectively. Con-
strained IoT devices (most notably, CO devices such
as small biosensors) have limited resources and can,
hence, support only a subset of the intended secu-
rity features. This makes these devices extremely
prone to privacy attacks [136]-[138].

In addition to these three layers, today’s loT
devices employ a fourth layer called support layer,
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Figure 23. Demonstration of the algorithm
presented in [130].

in between the network layer and application layer,
which is dedicated toward security features and
performs authentication using preshared secrets,
keys, and passwords. However, this layer can also suf-
fer from DoS attacks and malicious insider attack, as
illustrated in [137], [155], and [156]. Moreover, the big-
data problem in IoT (network exhaustion due to inun-
dation of data) has resulted in modem IoT architects
to move to a five-layer architecture with added secu-
rity and data-processing capabilities [3], [157]-[163].
CISCO currently defines a seven-layer [oT structure
as shown in [135]. In this discussion, we shall limit
ourselves to only the perception layer, and hence, a
detailed description of the advanced layer models
(4, 5, and 7 layers) is out of the scope of this article.

Traditional techniques against
perception layer attacks

A large number of security breaches in RC-IoT
occur in the perception layer which is most vul-
nerable to privacy attacks due to its resource
constraints. The most common security measures
against attacks on the perception layer are listed in
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Figure 25. Basic three-layer architecture of loT
ecosystem. The perception layer devices are
usually resource constrained and is more prone to
attacks due to elementary security features [131].

Table 5. A complete description of each of these
techniques is out of the scope of this article. Further
details on each can be found in [137] and the cor-
responding references.

Hardware security

Encryption engines are at center stage for
achieving IoT security. The computationally secure
256-bit Advanced Encryption Standard (AES) is tra-
ditionally believed to provide data confidentiality
through encryption as the mathematical complex-
ity of the recovery algorithm becomes 22°6. AES-256
with 14 rounds is used today in banking, military, and
government applications, and hence, there has been
significant research efforts to break (as well as to
enhance) the standard. Related subkey-based recov-
ery attacks have shown to significantly decrease the
complexity of key recovery for reduced-round AES
(2% for five rounds [164], 2% for nine rounds, and 2%

for ten rounds [165]). However, recovery complexity

Full AES current PO‘.Ner
signature Pin

Attenuated AES Pov'ver
current signature Pin

1
|
o |
! o d Lags+1
AES SAH
4 Lags 1
| Signature
S 1 Attenuation
AE I Hardware (SAH
Engine (l M : AES( l Iz
I Engine
I
I
| onp I GND
= |

Figure 26. Noise injection and ASNI as
countermeasures for power SCA.
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for practical applications with 14 rounds is still signif-
icantly high with traditional mathematical attacks.
However, nontraditional techniques such as electro-
magnetic side channel attacks (EM-SCA) or power
SCA have proven to reduce the recovery complexity
to a mere 2'3, breakable within 50 s as shown in [166].
These emerging SCA techniques exploit information
leaks from the physical cryptohardware in the form of
EM emanation (for EM-SCA) and supply-line fluctua-
tions (for power SCA), and pose a much bigger threat
to the current standards than computational attacks,
motivating the need for hardware techniques to sup-
press the side-channel leaks in the physical system.

1) Power SCA and its countermeasures: Corre-
lation power analysis (CPA) [167] has shown to be
an efficient technique for power SCA as it reduces
the search space of AES-128/192/256 to just 28 = 256
for each key byte (hence, the overall complexity
becomes 2! for 256-bit, i.e., 2° byte keys). Traditional
power SCA countermeasures try to reduce the SNR of
the leaked information through power balancing or
gate-level masking but incur significant area, power,
and performance overhead [168]. Attenuated Signa-
ture Noise Injection (ASNI) was utilized in [168] and
[169] (Figure 26), which obfuscates the AES power
traces through parallel noise injection and performs
signature attenuation through a signature-attenuating
hardware implemented using an on-chip shunt LDO.
This method attenuates the critical AES signature
in the supply current by >200x with 60% additional
overhead in area and 68% overhead in power. More
recently, Kar et al. [170] and Singh et al. [171] demon-
strated the signature attenuation technique using
an integrated voltage regulator (IVR) and loop ran-
domizing/random fast voltage dithering techniques
with only =5% overhead in power and area.

2) EM SCA and its countermeasures: Except for
hardware masking [172], the amount of protective
approaches against correlation EM analysis (CEMA
[173])-based EM-SCA has remained relatively scarce.
In [174],a ground-up approach was presented to find
the specific source of EM emanation within the met-
al stack of an ASIC built using Intel’s 32-nm technolo-
gy,and was generalized using other popular technol-
ogies such as Taiwan Semiconductor Manufacturing
Company (TSMC) 65-nm. It was shown that EM ema-
nations from metals lower than layer eight are barely
distinguishable using a commercially available EM
probe, and hence, it was proposed (STELLAR) that
a cryptographic core, with power supply routed
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Table 4. Details and security considerations of the three-layer IoT architecture [137].

Layer

Purpose

Security threats

Remarks

Perception/sensor

Collecting information from sensors/
devices

Eavesdropping [137], Node
Capture [139], Add Malicious Node [137],
Replay Attack [140], Timing Attack [141]

Most attacks are on
data confidentiality and
integrity [137], [138]

Network/transmission

Connects devices to each
other and to higher layer through
wired/wireless media

Denial of Service (DoS) [137],
Man-in-the-Middle Attack [142], Storage
Attack [137], Exploit Attack [137]

Most attacks are on data
integrity [137]

Application

Has the responsibility to

Cross-site Scripting [137], Malicious Code

Most attacks are on data

extend sensor-specific services to
applications/clients

Attack [137]

availability [137]

Table 5. Security measures against perception layer attacks.

Security measure

Details

Advantages

Drawbacks

HMAC [143], [144]

Hash Functions along with Encryp-
tion Algorithms (SHA, MD5, CBC etc)
are used

Employed to maintain data
integrity

Key-hacking is possible through invasive/
semi-invasive/software/side-channel
attacks

Public Key
Infrastructure (PKI)
protocols [145], [146]

Base station communicates with the
devices to get the public key while
the private keys are stored separately

More secure than passwords —Ma-
licious user needs both the secret
private key and a passphrase to
pose any threat

1) Key hacking: The private key needs to
be protected and 2) not very scalable

Open Authentication
(OAuth/OAuth 2.0)
[147]-[149]

Client-server-based system where
server has the list of authorized
clients. Everyone can request for ac-
cess, but server grants access tokens
only to authorized clients

Access is granted in a secure way

1) Vulnerable to cross-cite-recovery-
forgery (CSRF) and

2) implementation becomes cumbersome
as the network grows since the user needs
to authenticate each device

Mutual authentication
[150], [151]

Client-server-based system where
Client creates a request and an
HMAC-SHA signature, and sends
both the request and signature

to server. The server retrieves the
HMAC-SHA signature using a secret
access key and verifies the signature
with client’s signature

Both client and server certificates
are verified

Requires a PKI with high cost of initial
deployment

Lightweight cryptogra-
phy [131], [152]

Cryptographic Keys are used to
convert messages

Plain text to cipher text by using
symmetric, asymmetric keys and
hash functions

Hard to implement for Class-0 devices with
stringent resource constraints

Embedded security
framework [153], [154]

Provides secure secondary storage,
runtime environment and secure
memory management

Provides a complete security
package

Extremely resource-intensive

entirely in lower level metals locally, and equipped
with signature suppression techniques like ASNI, be-
fore reaching higherlevel metal routing, would be
resistant against both EM and Power SCA.

3) Machine learning SCA—X-DeepSCA and pos-
sible countermeasures: Recently, ML SCA attacks
have been shown as a big threat as it can uncover
the secret key within a few traces using previously
learned models. Das et al. [175] demonstrate cross-
device deep-learning-based SCA (X-DeepSCA)
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using training data that contains augmented power
traces from multiple devices with AES-128. With
~200k traces and proper choice of hyperparam-
eters, it was shown that X-DeepSCA attacks can
recover keys with 99.9% accuracy from different
target devices with =10x lower minimum number
of traces as compared to traditional CPA. This in-
creases the threat surface of SCAs significantly and
puts further emphasis on SCA countermeasures
such as IVR, ASNI, and STELLAR.
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PUF-based techniques

Physical unclonable functions (PUFs) have
emerged as a promising augmentation (sometimes
even as an alternative to key/token-based cryp-
tography), which leverage manufacturing process
variations to generate a unique and device-specific
identity for a physical system [176][178]. PUF imple-
mentations are simpler in terms of hardware and
do not need to store the secret key that is used to
employ complex cryptographic algorithms.

1) Digital PUFs: Traditional digital PUFs em-
ploy simple circuitry such as ring oscillators [179],
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Figure 28. Principle of RF-PUF [187].

(a) Authentication in human voice communication:
Bob (the receiver) can identify Alice (the transmit-
ter) based on the unique voice signatures, and not
based on the contents of what Alice speaks.

Mallory (the impersonator) can also be identified (as

not Alice), since his unique voice signatures would
be different from Alice. (b) Analogous system that
utilizes an RF-PUF framework for secure radio
communication.
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Arbiters [180], SRAMs [181]-[183], and dynamic
RAMs [184] for PUF implementation, which consume
muchlesspowerandareathankey-based cryptograph-
ic implementations wherein the secret key is stored
in a battery-backed SRAM or in a nonvolatile mem-
ory/electrically erasable programmable read-only
memories (EEPROMs), which are all expensive
resources for a constrained devices such as CO or C1.
Moreover, any invasive tampering mechanism
usually changes the PUF’s output, thereby letting the
user know about the attack. These advantages, cou-
pled with low resource requirements, makes PUFs a
suitable choice for loT environments. As an exam-
ple, an Arbiter PUF is shown in Figure 27, wherein a
128-bit challenge (input) produces a 1-bit response
(output) according to the respective path delays in
the data and clock paths due to the random man-
ufacturing variations [176], [180], and hence, can
be utilized for device authentication. Even though it
was shown later in [185] that the randomness of the
output can be modeled with reasonably low com-
plexity, an improved design with Xored outputs from
multiple Arbiter PUFs demonstrated high tolerance
against modeling attacks [185], [186].

2) RF-PUF: Traditional PUF designs discussed
above still require a minimal amount of additional
hardware at the transmitter side of the RC-oT de-
vice. Chatterjee et al. [187] proposed a new kind of
PUF for RC-IoT scenario, which exploits the effects
of inherent analog and RF process variations at the
transmitter (Tx) side by detecting them with an in-situ
ML hardware at the resource-rich receiver (Rx). This
method embraces the already existing nonidealities
at the Tx, which are usually discarded in a traditional
communication scenario and, hence, do not require
any additional hardware for PUF generation. The
method is inspired by the inherent authentication in
human voice communication as shown in Figure 28,
with unique human voice being replaced by unique
Tx signatures, and human brain replaced by a neu-
ral network at the Rx. The holistic system-level view
for RF-PUF implementation is shown in Figure 29,
while the number of unique transmitters that can be
identified with varying channel conditions and Rx
signatures is shown in Figure 30. It has been shown
with the simulation results that up to 8000 RC-loT de-
vices can be uniquely identified with 99% accuracy.
Proof-of-concept hardware evaluations were also
demonstrated. Since this method does not require any
additional hardware at the Tx, the framework can be
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utilized as an extremely useful security feature for RC-
[oT devices for a small-to-medium-scale smart system.

Learning frameworks for
RC-loT devices

With the above background in energy-constrained
sensing, computing, communication, energy manage-
ment, and security, let us look into the ML models that
have been developed and can effectively combine
different modalities based on context. Since this is a
developing field, there is no single learning framework
that overcomes all the challenges in IoT, and hence, it
is important to characterize the most promising learn-
ing frameworks based on the applications [5]. The
current literature on learning in an IoT framework can
broadly be classified into three categories: ML, sequen-
tial learning (SL), and reinforcement learning (RL).

Machine learning (ML)

ML techniques usually build regression-based
models on labeled or unlabeled data (for supervised
and unsupervised learning, respectively). ML tech-
niques are computationally complex and require
an extensive training data set for acceptable perfor-
mance, both of which require expensive resources
[188]. Hence, instead of executing the ML algorithms
in the RC-IoT device, many of the implementations
resort to a centralized cloud-based processing unit
for ML [3], [188], [189]. However, this means that the
sensor data have to be communicated to the cloud
for further processing and, hence, pose a burden of
communication payload on the RC-IoT device. Com-
pressive sensing and PCA has been shown to be use-
ful [189] in reducing the payload.

Sequential learning (SL)

SL [190]-[192] uses intelligent distributed agents
(RC-IoT devices) that sequentially learn about
an underlying binary state of the system (such as
a medical status, fire alarm, triggering event, or
anomaly- and event-based transmission), and subse-
quently propagate it through the network, as shown
in Figure 31. Depending on the number of previous
agents from which information is gathered, SL is cat-
egorized into finite memory and infinite memory [5].
In infinite memory SL, agents collect information on
the estimate from all other agents in the sequence
and, hence, require more memory resources. Finite
memory SL, on the other hand, collects information
from a userdefined fixed number of previous agents
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Figure 29. Visualization of RF-PUF in an asymmet-
ric loT network with multiple RC-1oT devices as
transmitters and one resource-rich receiver [187].

and is more suited to RC-IoT devices. It was shown
in [190] and [192] that it is possible to converge to
an accurate underlying state using only two previ-
ous states (the tradeoff being higher convergence
time and, hence, more latency, the allowable limit
for which depends on the application). Also, unlike
the traditional centralized ML architecture, SL can
have a distributed implementation and does not
require an extensive data set for learning. However,
SL requires machine-to-machine (M2M) communi-
cation, which may increase energy consumption if
it is not taken care of at the network implementa-
tion level. SL is particularly useful for event/anomaly
detection applications, whereas ML is more suitable
for data analytics applications with higher complex-
ity and higher resource requirement.

Accuracy vs. Number of Tx
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Figure 30. Probability of false detection
as a function of the total number of trans-
mitters in the system, with and without
receiver signature compensation [187].
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Figure 31. Sequential learning in loT [5].

Reinforcement learning (RL)

RL implementations [188], [193]-[197] utilize
the interaction between the agent and the environ-
ment in a method based on rewards and penalties.
In RL, the agents can perform a predefined set of
actions in an environment with a set of states and
a state-transition function. The action of the agents
changes the states, and based on the state transi-
tions and the final goal, the environment rewards
(or penalizes) the agent. The agent tries to maximize
its immediate as well as future rewards and learns
to converge to a steady state as explained in [193].
The action-reward combination works as a closed
loop feedback system with a high chance of conver-
gence, and can be implemented using computation-
ally simple algebraic Q-learning algorithm [188]. As
shown in Figure 32a, the agent receives the reward
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(e.g., sensor node)

New State (sy,4)

Environment

w
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Figure 32. (a) Q-learning (RL framework) for RC-loT
devices. (b) Implementation showing an RL-ena-
bled microrobot [197] with time-domain inputs and
processing through a three-layer neural network
and SVM loss function.
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based on the state transition due to the action taken
at a given state. The total cumulative reward (called
Q value) of performing an action at at a given state
s; is given by the linear combination of the old Q
value, the immediate reward and the total estimate
of the future rewards as indicated by the Q-learning-
equation in Figure 32a.

Amravati et al. [197] demonstrated a time-
domain mixed-signal neuromorphic accelerator with
embedded RL implemented using a three-layer neu-
ral network with 84 neurons. The test chip was built
in 55-nm CMOS technology and was mounted on
a mobile microrobot for autonomous exploration
of the environment (Figure 32b). The peak power
was only 690 uW at 1.2-V supply while operating at
3.12 TOPS/W. The peak energy efficiency was 690 pJ/
Inference and 1.5 nJ/training (1.25 pJ/MAC), making
it one of the highest performance and lowest power
implementation till date. The low energy is attributed
to: 1) time-domain mixed-signal MAC operations with
time-domain inputs which do not need voltage to time
or time to voltage conversions and consumes scaled
energies based on the importance of the computa-
tion and 2) a relatively low 6-bit precision, which was
shown to be enough for low-to-medium complexity
applications [45] involving pattern/object recognition.

The convergence process for RL is slower than
SL and the requirement to preemptively know the
states and state-transition-matrix makes RL chal-
lenging for medium- and high-complexity applica-
tions. However, for low-complexity, high-latency-
tolerant tasks such as resource management or
power management [195], [196], RL can be an
extremely relevant choice. Parallel Q-learning (PQL)
algorithms (PCSP-8 [198], PQL-C [199], CS-RL, and
CS-RL-EXT [200]) have also been developed for dis-
tributed, resource-constrained applications and for
speeding up the RL convergence. Figure 33 shows a
comparison of speed-up using these techniques.

In essence, SL- and RL-based learning techniques
have shown enough promise through lightweight
algorithms that can be implemented on the small
IoT nodes. However, a network-wide full realization
of these techniques for context discovery and assess-
ment is still a wide open area of research.New devices
and technologies such as mixed-signal neurons,
memristors, spin-transfertorque-based devices, opto-
electronic and ferroelectric devices with in-memory
and nearmemory computation to reduce memory
fetch, computation, and communication power in a
neural network are areas of active research and hold
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tremendous potential for future. Online/incremental
learning is of paramount importance because of the
variations in the manufacturing process and oper
ating conditions. By fully utilizing the capabilities of
devices, hardware, and algorithms together, the path
toward more efficient context-aware systems needs to
be paved.

The way ahead: Future of 10T systems

Where we stand: Systems with efficient
components and promising applications

The preceding analysis puts us in perspective of
the current state-of-the-art in adaptive, context-aware
loT hardware and machine intelligence. The number
of applications is numerous, ranging from small-scale
smart biosensing and smart cars to medium-scale
smart homes and offices, and to large-scale smart
cities. Significant research efforts have been put into
optimizing the available resources for correspond-
ing applications as pointed out in previous sections.

Where the future lies: Secure, context-aware,
intelligent, and adaptive devices and systems
However, bigger IoT networks still remain subop-
timal in terms of effective utilization of the distrib-
uted resources. The vision of secure, context-aware,
intelligent, and adaptive devices and systems, as pre-
sented throughout this article, involves a holistic opti-
mization of all the resource-constrained leaf devices
within a network, in each of the following subareas.

Sensing: As the sensing leaf nodes in an [oT
network have the most stringent resource con-
straints, the sensing process itself should be made
extremely low power through sub-Nyquist-rate CS
[22], [30], [33] for sparse signals (such as audio
and image), or made adaptive/energy-resolution
scalable through time-/frequency-based sens-
ing [40] for slowly varying signals with high DR
(such as radiation and vibration). The adaptivity
information/resolution requirement (context)
should come from the cloud for latency-relaxed
applications, and from in-senor/on-gateway
learning hardware for latency-limited scenarios.
Reconfigurability among Nyquist-rate sensing,
CS and time-/frequency-based sensing can be an
optional feature, depending on the applications
and amount of resources available.

Computation: The intelligent RC-IoT nodes
should have the capability of locally extracting
important information from the sensed data to
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reduce subsequent power consumption in com-
municating otherwise raw data bits to the cloud.
Anomaly/Outlier/Event detection and data
compression are the two most important forms
of in-sensor/edge analytics that are required in
today’s systems and is an extremely promising
research direction for bringing down the power
consumption due to nonoptimal data handling
and communication.

Communication: As shown in the analysis pre-
sented in the “Intelligent Computing Platforms”
and the Intelligent Communication” sections, this
is the subsystem toward which a lot of research
focus should be directed for practical feasibil-
ity of the context-aware vision. The numerous
modalities available (proximity communication
[83], HBC [84], NFC, ZigBee, ANT, BTLE, Wi-Fi
and LoRA, among others) makes this a multidi-
mensional and multilevel optimization problem
with possibilities of intra-PHY and inter-PHY
adaptability and tradeoffs. Techniques such as
anomaly detection and channel quality estima-
tion would determine when to communicate,
and how much data are to be sent (e.g., burst-
mode communication will bring in further energy
efficiency and context awareness on top of data
compression, through duty cycled intermittent
communication, even with good channel qual-
ity [129]). Furthermore, short-range low-energy
communication using HBC/ANT/BTLE should be
explored to assess the possibility of spatial data
compression for sensors within close proximity
of each other. If the spatial data compression
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is possible, only one node in an RC-oT cluster
would take the responsibility to communicate
the compressed data to the upper level gateway/
cloud (possibly using a higher power modal-
ity like LoRa for longrange communication).
Again, processing all the above information
would require sophisticated learning algorithms
to be implemented in different hierarchical lev-
els of the IoT architecture which, by itself, is an
involved optimization problem.

Energy management: As shown in the “Intelligent
Energy Management” section, high-dynamic-
range and high-power conversion LDOs with low
voltage droop/droop recovery time are one of the
major requirements in a dynamic loT scenario.
High DR adaptation techniques such as sampling
frequency based reconfigurable LDOs [124] and
SMC LDOs [126] have been explored. However,
challenges due to checkpointing and data con-
sistency need to be looked into. Recent check-
pointing schemes such as the one shown in [128]
have demonstrated improved latencies in a medi-
um-to-high-resource device—though similar and
more lightweight techniques need to be devel-
oped for highly resource-constrained devices.
Adaptive security: The RF-PUF [187] framework
shown in the “Learning Frameworks for RC-loT
Devices”section, along with low-level metal rout-
ing for the encryption core [174] for EM-SCA
resistance can be utilized as a baseline security
feature at no additional power/area overhead in
extremely resource-constrained C0 devices. Light-
weight implementation of ASNI/IVR [168], [170]
with minimal overhead should be placed as well
in CO devices,while nodes with more relaxed con-
straints can benefit from implementations with
better signature attenuation (consum-

in the IoT environment, it is necessary to model the
heterogeneity, resource constraints, and distribution
of the IoT devices within the architecture in a struc-
tured manner. CHT is an emerging tool to provide
such a modeling framework using behavioral game
theory, and is based on bounded rationalities [5],
[201], [202]. The theory of bounded rationalities
ensures that each node in the network tries to find its
best strategy, bounded by information from the lower
level nodes in the hierarchy, its own computational
capacity, and time/resource available. CHT model
(Figure 34) inherently takes care of the device het-
erogeneity in loT as it considers the resources availa-
ble for each device separately. References [201] and
[202] present further details of the CHT techniques,
while [5] demonstrates an example of the CHT theory
in determining the type of learning algorithm (ML, SL,
and RL) to be implemented on a particular IoT device
based on its resource constraints. It must be noted
that though CHT would define a structure in the het-
erogeneous loT hierarchy, such an algorithm cannot
be implemented in CO and possibly C1 devices. How-
ever, the output of the algorithm can be passed on
to the RC-IoT devices from higher level nodes which
have higher computational power.

loT
works in view of their specific challenges in device
heterogeneity, resource constraints, context-variability,
and security, thereby necessitating adaptive solutions
for resource-aware operation. In this article, we have
presented a broad review of the different areas that
need to be looked into for holistic, system-level
resource optimization for RC-IoT devices in a network.

NETWORKS are different from traditional net-

Various techniques in sensing (compressed-domain
sensing/energy-resolution scalable frequency-domain

ing higher power). These techniques
should also be augmented with one or
multiple traditional security features
such as hash-based message authen-
tication (HMAC) and mutual authen-
tication/OAuth based on the context
(application, importance of collected
data) and resources available,and can
be adaptive in nature.

Smart Controller Device with
more Resources

Sensors

Cognitive hierarchy theory (CHT)
To capture and exploit the multitude
of reconfigurable modalities effectively

Figure 34. Distribution of 10T devices according to
the levels of cognitive hierarchy theory [5].
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sensing),computation (in-sensor/edge analytics in the
form of outlier detection and data compression),com-
munication (intra-PHY and interPHY adaptation with
low and high-power modalities), power management
and security were analyzed,and the vision for a secure,
context-aware, adaptive, resource-constrained but
intelligent [oT device was presented. However, numer-
ous challenges (in the form of system-level controller
design for adaptive architectures, reliability, security,
latency limitations, intermittent powering/checkpoint-
ing and realtime/online learning) still exist in realizing
a full implementation of the concepts demonstrated,
indicating future research directions toward building
smarter and more adaptive systems. In that context,
the goal in this article has been to identify the current
trends,foundations and components of the envisioned
RC-oT devices to enable the design of more efficient
connected intelligent systems in the future. |
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