IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 6, JUNE 2019

1365

Exploiting Inherent Error Resiliency of Deep Neural
Networks to Achieve Extreme Energy Efficiency
Through Mixed-Signal Neurons

Baibhab Chatterjee™, Student Member, IEEE, Priyadarshini Panda™, Student Member, IEEE,

Shovan Maity

, Student Member, IEEE, Ayan Biswas, Student Member, IEEE,

Kaushik Roy, Fellow, IEEE, and Shreyas Sen", Senior Member, IEEE

Abstract— Neuromorphic computing, inspired by the brain,
promises extreme efficiency for certain classes of learning tasks,
such as classification and pattern recognition. The performance
and power consumption of neuromorphic computing depend
heavily on the choice of the neuron architecture. Digital neu-
rons (Dig-N) are conventionally known to be accurate and
efficient at high speed while suffering from high leakage currents
from a large number of transistors in a large design. On the
other hand, analog/mixed-signal neurons (MS-Ns) are prone to
noise, variability, and mismatch but can lead to extremely low-
power designs. In this paper, we will analyze, compare, and
contrast existing neuron architectures with a proposed MS-N in
terms of performance, power, and noise, thereby demonstrating
the applicability of the proposed MS-N for achieving extreme
energy efficiency (femtojoule/multiply and accumulate or less).
The proposed MS-N is implemented in 65-nm CMOS technology
and exhibits >100x better energy efficiency across all frequencies
over two traditional Dig-Ns synthesized in the same technology
node. We also demonstrate that the inherent error resiliency of a
fully connected or even convolutional neural network can handle
the noise as well as the manufacturing nonidealities of the MS-N
up to certain degrees. Notably, a system-level implementation on
CIFAR-10 data set exhibits a worst case increase in classification
error by 2.1% when the integrated noise power in the bandwidth
is ~ 0.1 V2, along with £30 amount of variation and mismatch
introduced in the transistor parameters for the proposed neuron
with 8-bit precision.

Index Terms— Artificial neural network (ANN), CMOS, high-
speed neuromorphic computing, low energy, mixed signal (MS).

1. INTRODUCTION

HERE has always been a huge gap between the energy
efficiencies of the human brain and the von-Neumann
model of computing which dominates the consumer market.
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Software simulations of the brain of a mouse with 2.5 million
neurons are 9000 times slower than real-time when running on
a personal computer [1]. Moreover, it consumes 400-W power
as compared to the paltry 10 mW of a biological mouse brain.
To emulate a human brain (100 billion neurons, 20-W power),
a supercomputer requires 500 MW [2] of power. Such large
differences in energy efficiency, coupled with the rebirth of
the deep learning paradigms in the past decade, have forced
researchers all across the world to look into alternate models
of computation.

Neuromorphic computing, which loosely models the brain
and uses artificial neural networks (ANNs) for computation,
has found significant success in applications involving image
and pattern recognition, miniaturized autonomous robotics [3],
and neural prosthesis [4]. However, the performance and
energy efficiency of neuromorphic computing depend heavily
on the choice of the neuron architecture, operating frequency,
resolution, and accuracy required. Digital implementation of
a neuron has been the preferred choice for computing in
SpiNNekar [5] and TrueNorth [6] projects due to the excellent
noise immunity, variability tolerance, and technology scal-
ing of digital designs. While SpiNNekar had no dedicated
hardware for its neuron model and consumed 1-W power,
IBM’s TrueNorth had a dedicated point neuron model for
its 1 million neurons (256 synapses each) and consumed
only 65 mW. TrueNorth’s primary design emphasis was on
minimizing active as well as static power for a spiking neural
network (SNN) by using an event-driven architecture [7] and
having a compact physical design for increased parallelism on
a 28-nm process that is well known for power efficiency.

Analog/mixed-signal (MS) computational models can be
easily affected by noise, variability, and mismatch, which
makes its energy efficiency less attractive. In an interesting
study of digital versus analog circuits for computing [8], it was
shown that digital circuits perform better for high signal-to-
noise ratio (SNR) applications (>60 dB). However, if SNR
requirements are relaxed, analog computation could be orders
of magnitude more energy and area efficient. This is because
analog macros, for example, a multiplier, use only one dif-
ferential pair of MOSFETs which is sufficient to represent
the circuit dynamics using intrinsic device parameters. On the
other hand, a digital multiplier computes the same dynam-
ics using ~1000 transistors, the combined static leakage of
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Fig. 1. Neuron model in a feedforward CNN. MAC with thresholding.

which could be comparable to the bias current of analog in
scaled technologies. It is interesting to note that von-Neumann
architectures depend on the high accuracy of a multidigit rep-
resentation that necessitates a digital implementation. ANN,
however, has multiple connections from inputs to output due
to its distributed nature, and hence, the noise and variability
of analog transistors can be tolerated to some extent due to
this inherent error resiliency.

A. Related Work

Currently, several research groups are working on the
implementation of large-scale SNNs with analog/MS neu-
ron (MS-N) model. The BrainScaleS project (HICANN
chip) [9] at Heidelberg University aims to develop a brainlike
system that uses analog computation and digital asynchro-
nous communication and runs 1000-10000 times faster than
real time. The design consists of 200 000 analog neurons
with 40 million addressable synapses and consumes about
1 kW at 125-MHz frequency. The Neurogrid project at
Stanford [10] also uses a mixed design approach and reduces
transistor count further by sharing synapses and dendritic
tree circuits [11]. Neurogrid has one million neurons each
with 8000 synapses and consumes 3.1 W for real-time brain
computations. However, both of these designs are for SNNs
that aims to model the spiking neural activities by using a
current-switching neuron architecture and requires complex
learning models such as spike-timing-dependent plasticity.
Convolutional neural networks (CNNSs), on the other hand, can
employ simple backpropagation algorithms using a multiply-
and-accumulate (MAC) model [12] (shown in Fig. 1), which
is more suitable than SNNs in pattern recognition applications
and in scenarios involving generative-adversarial networks.
In [13], a large-signal current-mode MAC implementation
is demonstrated. However, in a large-signal implementation,
the bandwidth of the design keeps on changing with varying
bias currents, and hence, the frequency of the input sig-
nals is limited by the minimum large-signal current for any
practical application. A small-signal implementation, on the
other hand, would be much more attractive in terms of the
power, bandwidth, and scalability. Also, a differential voltage-
mode architecture would help in reducing the impact of
common-mode noise present in the system. Recently, in [14],
a 3.8-uJ/inference CNN processor with on-chip memory was
presented, which utilizes an MS approach for MAC opera-
tions, with XNOR gates as multipliers and switched capacitors
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Fig. 2. Energy efficiency per synapse for previously reported related works,
a Dig-N (Section II-A) and target MS design.

serving as additive elements. However, this architecture is only
applicable for BinaryNets, where the weights and activations
are constrained to be £1. For applications with real-valued
multiplication, the energy/MAC would increase exponentially.
The energy efficiencies of previously reported work are com-
pared with our target MS-N in Fig. 2.

This paper presents three different architectures, leading to
a compact, differential MS implementation of a MAC-based
neuron in Section III, which operates in small-signal mode
with linear power-bandwidth characteristics [unlike digital
neurons (Dig-N)] and can help to build an extremely energy-
efficient CNN. The key contributions of this paper are listed
as follows.

1) Power-bandwidth-scalable MS-N for CNN: This paper
focuses on the extreme power and energy efficiency
of an MS-N (over Dig-N) that can be achieved by
judiciously utilizing various tradeoffs (energy versus
frequency, energy versus linearity, and energy versus
total integrated noise/variations) and strategies in analog
design. To the best of our knowledge, this is the first
work that extensively analyzes various tradeoffs in an
MS-N for energy efficiency.

2) Proposed DFE-inspired MS-N with bandwidth extension
that can architecturally support both binary and nonbi-
nary multiplications: The design of a small-signal MS-N
with resistive feedback is presented in Section III, which
helps to achieve much better energy efficiency (ratio
of power to bandwidth) by extending the bandwidth.
The MS-N architecture is inspired by decision feedback
equalizers (DFEs) employed in wireline communication
[15] and can support nonbinary multiplications, unlike
previous implementations of MS-N [14]. The bandwidth
extension technique also allows the W/L ratio of the
input transistors to increase, thereby reducing the effects
of mismatch at no additional power cost. This results in
a subfemtojoule MAC operation that is ~100x improve-
ment over the state of the art. Lower energies at the neu-
ron level directly result in lower computation power/ops
at the network level for a fixed architecture and bit
precision. An analysis of the communication/interfacing
and memory fetch power is out of the scope of this
paper.

3) Proof-of-concept  simulations in  system level:
A system-level analysis of the inherent error resiliency
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Fig. 3. Comparison of current-mode MS MAC [13] with various voltage-
mode MS MACs presented in this paper.

of neural networks is illustrated, justifying how a
low/medium-complexity CNN/ANN for Internet of
Things/healthcare applications [16]-[22] can tolerate
the effects of noise and mismatch in the MS-N to a
considerable degree.

In essence, the proposed MS-N achieves order(s) of mag-
nitude better energy efficiency as compared to digital and
traditional analog architectures but can suffer from noise and
variations. A method to reduce those nonidealities has been
proposed, and the classification errors resulting from analog
computation have been quantified in a system-level applica-
tion. Such MS-N architectures are most useful for smaller
networks but could be made part of larger networks where
multiple local tiles/islands of analog computing units are
connected with digital interfaces. In this paper, we primarily
focus on applications involving low- to medium-complexity
networks as shown in Section VL.

The rest of this paper is organized as follows. Section II
describes three different implementations of a neuron—a fully
Dig-N, an MS-N operating in the large-signal mode, and an
MS-N operating in the small-signal mode. Section III depicts
the proposed MS-N with increased bandwidth and reduced
offset. The specific advantages and disadvantages of these
neurons are shown in Fig. 3 and will be discussed in detail
in Sections II and III. Section IV presents the comparison
between Dig-N and the small-signal MS-N, while Section V
presents a detailed discussion on the tradeoffs and theoretical
limits of the MS-N shown in Sections II and III. A system-
level application of the MS-N is presented in Section VI,
wherein the error resiliency of a CNN and a fully connected
network is demonstrated separately. Section VII compares
our design with other state-of-the-art neuron architectures.
We conclude the work in Section VIII by summarizing our
major contributions.

II. NEURON ARCHITECTURES: DIG-N AND MS-N

It is well-established that analog design is superior to digital
in terms of power and area for applications that require <8-bit
precisions [8]. It is also indicated in [23] that >8-bit fixed
point precision is redundant for most ANN applications.
In this paper, our target application is a classification problem
for digit/image recognition, using the MNIST data set [24]
for handwritten digits and the CIFAR-10 data set [25] for
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Fig. 4. System-level precision analysis for target applications.

images. The CNN and fully connected neural network (FCN)
architectures are used at the system level, as will be shown
in Section VI. Fig. 4 shows the classification error for the
applications and different network architectures as a function
of the fixed-point bit precision. It can be observed that
the classification error does not increase significantly from
the baseline if the precision is reduced from 16 to 6 bits.
The error rate starts to increase significantly at 3-bit precision.
2-bit precision results in a classification error of >80%. Based
on these numbers, we have limited ourselves with digital and
MS-Ns having a precision in the range of 3-8 bits. The CNN
architecture is assumed to be LeNet for MNIST and basic
AlexNet for CIFAR-10, both of which are highly susceptible to
nonidealities in the neuron (noise and mismatch in MS-N) due
to the lack of regularization techniques such as dropout and
data augmentation. This assumption leads to the high baseline
error rate as shown in Fig. 4.

A. Digital Neuron

The basic functionality of a MAC-based neuron is to
evaluate the weighted sum of input signals followed by a
thresholding function for activation. Hence, based on the
nomenclature used in Fig. 1, we can write the output of a
neuron as 0 = F(Zx;w;) fori = 1,2,3,...,n where n is
the total number of synapses, F is the activation function,
which can be hard-limiting (e.g., step function) or soft-limiting
(e.g., log/tan-sigmoid or rectified linear function). w; is the
weight corresponding to the ith multiplier having input volt-
age x;. The number of bits (V) in w; or x; defines the precision
of the MAC architecture. An 8-bit MAC needs an 8 x 8§ bit
multiplier and 17-bit adder, while a 3-bit MAC needs a 3 x3 bit
multiplier and 7-bit adder.

We have synthesized an 8 x 8 bit Wallace tree (WT)
multiplier with a 17-bit ripple-carry adder in 65-nm CMOS
technology, along with comparators for activation logic. The
3-bit version of the same design uses a 3 x 3 bit WT multiplier
and a 7-bit ripple carry adder. A carry look-ahead adder
or a carry-save adder does not result in significant speed
advantage at such low precisions at the expense of more
hardware. Although WT multipliers are fast, they consume
higher power than most other multiplier architectures. For this
reason, we have also synthesized 8 x 8 bit and 3 x 3 bit array
multipliers (AMs) that consume less power. The number of
different cells and transistors in an N-bit digital MAC (both
WT and AM) is given in Table I. Unlike analog implemen-
tations that rely on intrinsic device dynamics, digital logic
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TABLE I
NUMBER OF CELLS AND TRANSISTORS IN N-bit DIGITAL MAC

Number of . Total Number of

N AND gates Number of (HA, FA) transistors

3 9 (2,8)-WT", (3,3)-AM° 426-WT, 234-AM
4 16 (3,14)-WT, (4,8)-AM 738-WT, 504-AM
5 25 (4,22)-WT, (5,15)-AM 1146-WT, 870-AM
6 36 (9,30)-WT, (6,24)-AM 1638-WT, 1332-AM
7 49 (12,42)-WT, (7,35)-AM 2274-WT, 1890-AM
8 64 (14,56)-WT, (8,48)-AM  2988-WT, 2544-AM

“HA: half-adder, FA: full-adder
“WT: Wallace-tree based MAC, *AM: Array-Multiplier based MAC
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Fig. 5. Bandwidth of the Dig-N (WT) with different supply voltages.
computes the circuit dynamics algorithmically, leading to a
transistor count as high as 2500 for the 8-bit case.

1) Bandwidth: Bandwidth of the Dig-N is dependent on
the supply voltage (Vpp), as shown in Fig. 5. The BW is
slightly higher for the 3-bit Dig-N as the critical-path delays
are less for a low-complexity design. The scaling of bandwidth
with supply voltage allows dynamic voltage and frequency
scaling (DVES) over different frequencies.

2) Power Versus Performance: The power in digital circuits
usually consists of two components: 1) dynamic power and
2) static leakage power. Dynamic power in the design is given
in the following equation:

Npig
Ppig = »_ aiCiV3p pigf (1
i=1

where «; is the activity factor of the ith node, Np;g is the total
number of nodes, C; is the capacitance at a switching node,
VDD, Dig is the supply voltage, and f is the operating frequency.
The static leakage current is due to: 1) subthresh-
old conduction; 2) reverse-biased p-n-junction conduction;
and 3) gate-induced drain leakage, out of which subthreshold
conduction is the dominant factor [26]. Fig. 6 shows total
power versus frequency for the 8-bit and 3-bit Dig-Ns designed
in 65-nm CMOS process with DVFS. The dynamic power
dominates for frequencies >10 MHz. However, at lower fre-
quencies, power consumption is dominated by leakage, which
increases proportionally to the number of transistors (8-bit WT
has ~13 times more leakage than that of a 3-bit AM Dig-N,
which corresponds to the ratio of transistors present in
corresponding designs). The minimum energy consumption of
the 8-bit AM Dig-N can be calculated as 87 fJ at 10 MHz

(137 fJ for WT, 8-bit).
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3) Noise: The dominant source of noise in digital circuits
is quantization noise. Thermal noise-induced bit-flipping is
practically rare due to high noise margin. Assuming a uniform
distribution of error, the quantization noise voltage (in volts)
of the Dig-N can be expressed as shown in the following
equation:

_ (Vhigh — Viow)

/122N — 1) @

No
where N is the number of bits (precision), and (Vhigh— Viow) ~
Vbp. As N is reduced, Ng increases exponentially. For N-bit
precision, the SNR in presence of Ny can be calculated as
SNR = 6.02N + 1.76 (in decibel). This results in ~50-dB
SNR for 8-bit precision, and ~20-dB SNR for 3-bit precision.

B. Mixed-Signal Neuron (Large-Signal Mode)

The Dig-N is not energy efficient at frequencies <10 MHz
where it suffers from static leakage power. MS-N with analog
computation can potentially have far better energy efficiency,
as they can be designed with only a few transistors unlike
Dig-Ns. Fig. 7 shows an N-bit, differential-amplifier-based
subthreshold MS-N architecture with n synaptic weights.
The N-bit weights are coming from a digital memory while the
MAC operation is performed in an analog fashion, hence the
name MS-N. Bit j (j =0,1,2,..., N — 1) of the ith weight
activates switches at the tail current sources for each of the
27 slices (from slice number (27 —1) to slice number (2011-2))
in the ith multiplier (for all i = 1,2,3,...,n). The tail
current source for each slice has a value of Iy when on.
The overall circuit performs a vector MAC operation as
follows: the alternating current through the jth slice in a
single multiplier (let us take the multiplier with the input v;)
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Fig. 8. Power consumption of the large-signal MS-MAC versus frequency.
is equal to gm;, ;01 (gm;, ;: transconductance of the input
transistors of the jth slice). With the weight w; controlling the
number of slices that will be on in that multiplier, the total
current through the multiplier is gm,, ;v1wi. Combining all
the multipliers, the total current through the neuron becomes
Smin D j1 WKV (assuming every g, ; = &mj, in a regular,
repeated structure). The voltage output with load resistors R
would be Vyyu = F(gminR Zzzl wkvk), where F denotes the
voltage transfer function (sigmoidal activation) for a differen-
tial amplifier. Designing the scaling factor g,,,, R to be equal
to 1, Vour = 22:1 wy vk in the nonsaturated region, which is
a vector MAC operation between the input voltages vy and
weights wy. Interestingly, the total bias current through the
load also keeps on changing with the weight, which means the
effective bandwidth of the system corresponds to the minimum
weight while the maximum power consumption of the system
corresponds to the maximum weight. Moreover, changing the
large-signal current with the weight necessitates a resistive
load to ensure linearity of multiplication (a PMOS load will
be nonlinear). This leads to significant area penalty for an
on-chip implementation.

Fig. 8 illustrates the power consumption in the MS-N with
respect to frequency and compares it to the power consumption
of the Dig-Ns. The 8-bit analog MAC has a constant energy
consumption of ~0.9 pJ across all frequencies and has better
power efficiency than digital MACs at frequencies <1 MHz.
The 3-bit analog MAC has better power efficiency than the
3-bit digital MACs at all frequencies.

C. Mixed-Signal Neuron (Small-Signal Mode)

As illustrated in Fig. 9, to achieve a better power-bandwidth
scalability, the weights can be used to activate switches at
the gate of the input subthreshold transistors while a fixed
current Thjas = Zﬁzlx(N — Djlunit = @Y — 1) Iunie flows
through the ith multiplier (for all i = 1,2,3, ..., n), enabling
a small-signal mode of operation. When a switch is off, the
corresponding input is connected to ground to avoid floating
nodes. A PMOS load can now be employed as the bias current
through the neuron is fixed. Since the gain of the neuron
needs to be <1 (depending on the weight) to avoid saturating
subsequent stages, high-impedance PMOS loads now allow a
smaller effective transconductance which leads to better energy
efficiency. Also, the number of slices in the ith multiplier is
now reduced to N (from (2V — 1) in the large-signal case)
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while the current source of the jth slice now carries a current
of j x Iy This reduces the effective capacitance at the
output of the neuron, thus increasing its bandwidth. Output
of the MS-N is modeled in the following equation, following
a similar derivation as shown in Section II-B:

n
Vout = F(A x> wkvk) 3)
k=1

where F is the voltage transfer function of a differential
amplifier, which acts as a sigmoidal activation function in the
context of a neuron, and wy and vy are the weights and the
ac-coupled input voltage of the kth multiplier, respectively.
A is the small-signal voltage gain of the unit slice of the
kth multiplier where A ~ gm;, /8m,> &m, is the input
transconductance of the unit slice of the multiplier, g, is the
transconductance of the PMOS load, and (gm;,, > j—1 WkVk)
represent the Kirchoff’s current law (KCL) addition of currents
at the output nodes. The detailed expression for total gain
A, for the kth multiplier is obtained through a small-signal
analysis [27] and is shown in the following equation:

N
Zj:l gmin,j

N
8m, + 8ds,+ Zj:l 8dsin,j
)

. Ccoupling
Ccoupling + NxCg,

A, =

where Ceoupling 1S the ac coupling capacitance for each multi-
plier (100 fF—not shown in Fig. 9), Cg, is the effective gate-
to-ground capacitance at the input of a multiplier, and gy, ;
and gy, ; are the transconductance and output conductance,
respectively, for the input NMOS transistors in the jth slice of
a multiplier. Similarly, g, and ggs, are the transconductance
and output conductance, respectively, for the PMOS load.
The g, quantities are in the same range of g4, and hence,
gds cannot be ignored. Any source resistance/resistance at
gate is ignored as it will be very small and will create a
nondominant pole at a very high frequency.

1) Bandwidth: The linearity of bandwidth with respect to
power is substantiated from (5) which shows the bandwidth
at the output node of an N-bit synapse in terms of the
subthreshold current [27]

BW — 8m, _ (2N — 1) Lunit
2n xCefy 4 XV X Ceff

&)
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where g, = (I,/nVr) is the transconductance of the PMOS
load, I, is the large-signal current through the PMOS load
which is equal to half of the total current through a multiplier,
Cefr is the effective output capacitance, and Iy is the unit
current of a multiplier. All input transistors are designed to
carry subthreshold current.

2) Power Versus Performance: The total current is close to
255 times of the unit current for 8-bit MS-N and 7 times of the
unit current for 3-bit MS-N. Fig. 10 demonstrates the power
consumption in the MS-N with respect to frequency. The
linearity of frequency versus power consumption is established
from this figure as well. The energy consumption is constant
(0.8 {J for the 8-bit MS-N at all frequencies) and is >60x
better than the AM-based Dig-N.

3) Noise: Unlike Digital-MAC, MS-MAC does not have
a noise margin; hence, the accuracy of the network will be
affected by the noise in the circuit. The main components of
noise in the analog MAC are as follows.

a) MOSFET thermal noise: This is the dominant analog
noise source. Considering the input and load transistors are in
subthreshold saturation for each multiplier, we calculate the
open circuit mean-square noise power per unit bandwidth. The
total thermal noise current power per unit bandwidth for the
subthreshold input transistors connected to each polarity of
the differential input in a multiplier is given in the following
equation [28]:

inin=2ql (6)

where ¢ is an electronic charge and I, is the total bias current
through the relevant input transistors. Interestingly, 7, is half
of the total current through each multiplier, and hence, (6) can
be written as the following equation for an N-bit synapse:

N

5 1 i

imin =24 % 5 22070 5 hunit = ¢ x @Y = Dlunic. (7)
i=1

The channel noise for the PMOS load in subthreshold is
given in the following equation:

1
=2q1p =2 x 52" = Dlunic = ¢ x @" = D unic
()

)
L, p
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Hence, the total thermal noise power at the output
(in V2/Hz) can be obtained as given in the following equation:

2

— 1
02 =g x @Y = Dt + g x @Y = 1) Iynit] % (g—)
nmp

_ l4g1 nVr\> _ AqnPVi  8qn*V3
= g1, x (1) = - )
Ip Ip (2 - 1)Iunit

Therefore, v2 is inversely proportional with bias current.
Equations (5) g and (9) also imply that the integrated thermal
noise power over the bandwidth will be constant, as given in
the following equation:

o 4gnVt

— _anvr 10
v 27 x Cot (10)

n,integrated —

This means that to reduce the integrated thermal noise,

we need to use larger W and L for the transistors which

increases Cefr. However, this also reduces bandwidth. We will
show a method to overcome this tradeoff in Section III.

b) Flicker noise: This is a ubiquitous noise present in all
electronic systems, which is most significant at low frequen-
cies. This noise power is empirically given in the following
equation:

5 _ K

b= Ta (11)

where K is an empirical parameter that is dependent on device
type, dimensions, and technology node, and o is an exponent
that is usually close to unity [27].

c) Switch noise: Since we have introduced switches in the
signal path in our design, any switching activity will give rise
to transient noise. However, it must be noted that the weights
will be set during training, and hence, there would be no noise
from the switches during the testing phase.

d) Quantization noise: A binary code is used to activate
the binary weights that connect the inputs to the desired
differential pairs. Thus, effectively, a digital-to-analog conver-
sion (DAC) operation is being carried out, which gives rise
to quantization noise, given by (2). This is found to be the
overall dominant noise because of the low precisions in our
application.

In the system-level applications, however, the integrated
thermal and flicker noise is of more importance, as quantiza-
tion noise affects bit precision analysis for the weights (Fig. 4)
and creates the same baseline error for both Dig-N and MS-N.
Fig. 11 exhibits the noise power (in V?) integrated over the
signal bandwidth, as a function of the total power consumed.
As expected, this is relatively constant since bandwidth and
noise floor (in V?/Hz) both scales linearly in equal and
opposite amounts with bias current.

4) Effect of Mismatch/DC Offset: There is negligible sys-
tematic offset because of the symmetry of the design. How-
ever, there will be a random offset because of mismatches
in threshold voltages and dimensions during fabrication.
These mismatches can be within-die (local) or die-to-die
(global) and create an offset at the output nodes of each
multiplier. Since the individual multipliers are ac coupled (with
100-fF coupling capacitance), this offset will not propagate to
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Fig. 11.  Integrated device and quantization noise versus power for the
MS-MAC.
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Fig. 12.  Mismatch analysis. Input referred offset for the 8-bit MS-MAC.

subsequent stages. However, the input bias points of the two
legs of a branch can be different due to the offset, causing
variations in gain and swing in the two branches.

The primary contributor to overall mismatch is often the
mismatch in threshold voltages (Vry) of the otherwise sym-
metric transistors. The standard deviation for Vry is given in
the following equation [31]:

A

OV = J% + Sygy % Dy
where Ay, is the Vry-mismatch parameter, W and L are the
device dimensions, D, is the distance between the centers of
the devices, and Sy, is the distance proportionality constant
(=0 for common centroid layout). Mismatches in sizing,
mobility, gate—oxide capacitance, and body bias parameter also
contribute to the overall offset. With the standard values of the
parameters for a 65-nm process and the values of W and L,
30 vy is calculated to be around 60 mV for each differential
leg in our design. Fig. 12 shows the results of the Monte Carlo
analysis that indicates a 30 output offset variation of 98 mV,
which is alarmingly high considering the voltage swing to be
a few hundred millivolts.

(12)

III. PROPOSED MIXED SIGNAL NEURON: REDUCED
MISMATCH/OFFSET AND INCREASED BANDWIDTH

To solve the issue of offset, we propose an MS-N with
resistive feedback, as shown in Figs. 13 and 14. The feedback
resistance tries to keep the input and output dc points at
the same voltage. At the same time, the resistance forms a
low-pass filter with the parasitic Cgq in the feedback path.
This creates a zero in the feed-forward transfer function
which, when superimposed on the dominant pole, increases the
bandwidth of the circuit. The increase in bandwidth enables us
to increase W and L of the MOSFETs (keeping the ratio same)
that reduces the input offset and the effect of mismatch/noise.

1371

Voltage Mode, Small Signal Operation

Resistive Feedback
(MOSFET in triode)

Current Addition (KCL)

Sigmoidal Activation: using
Voo jF inherent voltage transfer
Current

function of diff-amp
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| — U
! )

=201 A =2 (N-1) |
W, [ =2 ,{ /l W, .l_2 [ Wa

. ._E< 2051 3
1
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AC . ( .
Coupled IxLyfie ixLyg;
Voltage — =
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Fig. 13.  Proposed small-signal MS-N with resistive feedback (resistance is

implemented with an NMOS in triode region). Total number of slices in the
kth multiplier = N.

Without feedback,
A= Voutl - VuutZ . .
= A(Ving = Vinz), A is gain

With feedback, V,, = Vi,
Similarly, V., =V,

_A
in2 = A

A= Voutl - voutZ vml '/

Fig. 14.  Offset compensation using resistive feedback. All voltages are dc.

These benefits are obtained at no extra power cost and a
minimal area cost.

Since on-chip poly resistors consume a significant area,
the resistance in the feedback path is implemented using an
NMOS in triode. The nonlinearity introduced due to this does
not affect the final results since the input common mode range
of the neuron is observed to be >150 mV across process
corners.

The gain of this multiplier structure can be obtained through
a small-signal analysis [27] and is given in the following
equation:

Ccoupling
Ccoupling + N x Cgg
N N
ijl gmin,j - R
X N ¥ (13)
&m, + 8ds, + Zj:l 8dsin; T R
where R is the feedback resistance (an NMOS in triode).
Again, g, quantities are in the same range of g4, and hence,
gds terms cannot be ignored. The dominant pole is given by

Ay = —

N
gm, +
@p.dom = — (14)
i, C
j=1%8d;
while the following equation models the zero:
N N
= g in,j R
o, = 2= 8y K (15)

N
Zj:l ng,'
Solving for wp dom = ®;, we can find R, as given by the
following equation:

2N
N
Zj:l Emin,j

R =

) (16)
- gm,,
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TABLE II
PROCESS AND TEMPERATURE VARIATION IN PROPOSED 8-bit MS-N! FOR SUPPLY VOLTAGE = 0.75 V

TT Process FF Process SS Process FNSP Process SNFP Process
Specification @(-25°C, 27°C, 100°C) @(-25°C, 27°C, 100°C) @(-25°C, 27°C, 100°C) @(-25°C, 27°C, 100°C) @(-25°C, 27°C, 100°C)
Power (nW) (16.6, 20.8, 35.7) (19.7,24.49, 42.8) (14.9,19.32, 31.9) (19.6, 23.44, 40.3) (17.9,20.27, 35.8)
BW (MHz) (330.6,292.2,201.1) (417.1, 374, 275.8) (274.7,247.4,173.2) (443.2,410.3, 306.4) (246.3,231.7,152.2)
Gain (dB) (-0.441, -0.457, -0.448) (-0.355,-0.361, -0.374) (-0.682, -0.696, -0.691) (-0.308, -0.315, -0.328) (-1.31,-1.39, -1.73)

Int. Noise Power (V?)
Energy Eff. (Power/BW)

(5.9¢-8, 6.3¢-8, 7.5¢-8)
(50,71, 178) aJ

(5.1e-8, 5.4¢-8, 6.5¢-8)
(47, 65, 155) a)

(6.3¢-8, 6.8¢-8, 8.1¢-8)
(54,78, 184) aJ

(5.9¢-8, 6.4¢-8, 7.3¢-8)
(44,57, 132) aJ

(6.1¢-8, 6.6¢-8,7.7¢-8)
(73, 87, 235) al

': Results are with I,

35.2 MHz

10-7 2.45 nW l
s L =10pA i
8 2270 MHz
£ 107 1 mHz I 230.4nW
5 58 pW Lu=InA
2 107 Li=10pA 107 MHz 1
8 7.224 nW ]
10710 Y145 Analog: 8b MAC|:
" ~<+Analog: 3b MAC|
108 107 108 10° 1010

Frequency (in Hz)

Fig. 15. Power consumption of the proposed MS-MAC versus frequencies.

This resistance (~100 kQ) is implemented using an NMOS
in the triode region, and the absolute value has a small
effect (~5% reduction) on the bandwidth of the circuit when
the resistance varies by +10% around its nominal value.
Fig. 13 shows how offset compensation can be achieved using
the resistive feedback structure. The output offset with the
feedback is reduced by a factor of A as compared to the offset
without the feedback. In our design, A = 1 that results in a
residual offset same as the original offset, but the introduction
of the zero due to the resistive feedback enables bandwidth
extension which allows larger devices (hence, smaller offset).
Fig. 15 exhibits the frequency (bandwidth) versus power
characteristics of the proposed MS-N. The energy efficiency
is ~100 aJ for the 8-bit design, which is much lower than the
Dig-N (87 fJ, the best case for AM-based MAC) and the other
designs of the MS-Ns presented in Section II (0.8 fJ, the best
case). Fig. 16 exhibits a 3¢ output offset variation of 2.5 mV
from Monte Carlo simulations of the 8-bit design, while
0 shows that the integrated output noise power <0.1 uV?
over the bandwidth (integrated noise voltage is ~0.17 mV).
Thus, the overall worst case effect of noise and mismatch
can be considered to be within 3 mV, from Figs. 16 and 17.
Fig. 18 presents the output total harmonic distortion (THD) as
a function of the voltage swing when /;ni; = 100 pA. With a
differential input swing of 400 mV, THD is <5%. Hence, the
3-mV error due to mismatch and noise is within 1% of the
output swing.

A. Effect of Variability

Apart from noise and mismatch, the MS-N also suffers from
process, voltage, and temperature (PVT) variations. Table II
lists the important specifications of the MS-N across different
process corners and temperatures. For room temperatures and

=100 pA (mirroring current) and Supply Voltage = 0.75V

250 I
2 200 T _' ~30X improvement over
=1 m Small Signal MS-N in
14 || sec Ii: by exploiting the
« 150 : zero in the transfer
o function that allows
‘q-, 100 | |simultaneous increase
o i |inWand L.
g 50 f
Z 9 - .- !
3 02 A 3

Input Referred Offset (mV)

Fig. 16. Mismatch analysis. Input referred offset for proposed MS-MAC.
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107" ‘4 3b - device + quantization noise |
K} P S, SO W, 4 i
S, 2 41.7mV
10 quantization noise (3b)
g 1. ‘( \
= 3 Y SR R
g10 m—ﬂL—u quanmatlon nonc (8b)
L. a a—o—'o0——00.17mV
£10
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Fig. 17. Integrated noise versus power for the proposed MS-MAC.
10
9 >
B
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a7
E 6
S e THD = 4.83%
£
8 4 Swing =
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2!
0 200 400 600
Differential Input Voltage Swing in mV
Fig. 18. THD for the 8-bit proposed MS-MAC, with [n;; = 100 pA.

below, the energy efficiency is close to 100 aJ/MAC (also
valid for supply voltages in the range 0.7-1 V), while the
worst case efficiency at 100° is 235 aJ/MAC at 0.75-V supply
(384 aJ at 1 V supply), which is still subfemtojoule/MAC.
Since the gain is always close to 1 and the integrated noise
is almost constant across process corners, the only limitation
posed by the process corners is the bandwidth when NMOS
transistors are slow. However, even the worst case bandwidth
results in an energy efficiency that is much better than existing
architectures, as will be seen in Section VII.
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Fig. 19. Linearity for the 8-bit MS-N with 400-mV differential swing and
100-pA unit current (in presence of +3¢ mismatch in device dimensions).
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Fig. 20. Simulated INL and DNL of the MS-N (conditions same as Fig. 19).

B. Stability

The bandwidth is extended by making wp dom ~ ®;. The
feedback resistor can lead to oscillations if the phase margin is
not enough. However, the system is always stable because the
gain of the system is <1, and hence, there is no gain crossover
frequency and the concept of phase margin does not apply.

C. DNL and INL

The multiplication of the input signal with the weights is
effectively a DAC operation. The slices in each multiplier are
designed with binary weighted bias currents but with same
sized input transistors, and hence, the overdrives are different
for the input transistors in each slice, which leads to an
effective transconductance that increases in a slightly nonlinear
manner with the weight. Hence, this architecture achieves high
bandwidth and low power at the cost of nonlinearities in the
DAC operation. However, with large input swing (~400-mV
differential) and a small unit current (~100 pA), the differen-
tial nonlinearity (DNL) and integral nonlinearity (INL) can be
kept within +0.5 LSB, even in the presence of £30 amount
of mismatch as shown in Figs. 19 and 20. This implies that
there is no missing code during the MS-N operation.

IV. COMPARISON: DIG-N VERSUS PROPOSED MS-N

The power and energy consumption of the proposed MS-N
at different frequencies is shown in Figs. 21 and 22, respec-
tively. The proposed MS-N is two to three orders more
energy-efficient as compared to the Dig-N over all frequencies.
At frequencies <1 MHz, the all-digital implementation suffers
from static leakage currents, which is quite high due to a large
number of transistors. Energy consumption at frequencies
>500 MHz is also high for the Dig-N because of DVFS.
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Fig. 21. Power consumption of the proposed MS-MAC against Dig-MAC.
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Fig. 22.  Energy consumption of the proposed MS-MAC against Dig-MAC.
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Fig. 23. Monte Carlo simulation showing the statistical distribution of energy
efficiency (with 27 °C temperature and 0.75-V supply).

In contrast, power for the analog MAC in the MS-N scales
linearly with frequency and is more energy-efficient both at
low and high frequencies. For the 8-bit design, the MS-N
is ~870x better than Dig-N in terms of energy efficiency
at near-threshold point (~10 MHz), which is a further 4x
improvement over the performance of the MS-N presented in
Section II-C and in [33]. Fig. 23 shows the statistical distrib-
ution of energy efficiency with £3-¢ models for process and
mismatch provided by the foundry at 27 °C temperature and
0.75-V supply, corroborating <100 aJ/MAC energy efficiency
for the above-mentioned conditions.

V. THEORETICAL LIMITS AND TRADEOFFS FOR MS-N

To understand the performance benefits of the MS-N over
Dig-N, we consider the fundamental design of the 8-bit MS-N
presented in Section II-C. The power consumption for an
MS-multiplier (Pys) in that case is calculated as given in the
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following equation:

Pms = Vpp,anal = VDD, Ana X (2 X 7V X Ceft X BW)
(17)

where Vpp ana is the supply voltage for the analog MAC,
I = N — Dlnie = @ x yV7 x Cegr x BW) is the total
current in the multiplier, as found from (5). On the other hand,
the dynamic power consumption of a Dig-N (Ppjg) was shown
in (1), which leads us to the following equation, which shows
the ratio (Ppig/Pwms)

Npj 2
Ppig 2t 0iCi Vob,pig/
Pyvs  Vpp,ana X (2 X nVr xCefr) X BW.

(18)

For isofrequencies (f = BW) and considering Vpp, ana =
1V, Vpp,pig = 0.4 V (which are the values of analog and
digital supplies in the simulations), » = 1.3, and Vr =
0.026 V, we get the following equation:

2 Npi
Ppig VDD, Dig > aiC _ 075
Pvs  Vbp,ana X m x nVr) Cefr '
NDig
- 0;Cq
xizﬁl L (19)
Cett

Depending on whether the effective output capacitance of
the MS-multiplier (Cefr) is dominated by its own intrinsic
capacitance (from the slices), or by the number of multipliers
connected at the output node, or by the number of fanouts
from the neuron, the following scenarios may arise.

A. Case 1: Intrinsic Slice Capacitance Dominates

From the simulation results shown in Figs. 6 and 10, it is
clear that the worst case energy-benefit (Ppig/Pwms) for the
MS-N would be observed near 10-MHz frequency where
the energy consumption of Dig-N is at its lowest. At that
frequency, Z;V:Dig a;C; for the Dig-N can be approximated as
(((1370 — 829) x 1077)/(0.4 x 0.4 x 107)) ~ 338 fF. Hence

Ppig  0.75 x338  253.5
Ceit Cefr

If all the slices in the MS-N were designed with unit current,
then the unit slice would have required to be repeated 2/ -times
for the jth bit of the weight for a multiplier (as shown in
Section II-B, j = N — 1 is the MSB, and j = 0 is the LSB).
This would have meant Ce = 2V — 1)Cunit = 255X Cypit,
where Cypi is the unit capacitance from each slice, connected
to the output node. As a result, (Ppig/Pwms) would have
been (253.5/255 x Cynit), which is close to a mere factor
of 2.5 assuming Cypiy = 0.4 fF which is the unit node
capacitance in both our Dig-N and MS-N implementations.
Hence, to get the energy benefits of MS-N, irregular slices had
to be adopted as shown in Fig. 9, where the tail current sources
are binary-weighted, but each bit of the weight is connected
to only one slice. This implies that Cegr = N Cypit = 8 X Cunit
and hence (Ppig/Pums) = (253.5/8 x 0.4) = 79. Of course,
this energy benefit comes with the issue of nonlinearity as
discussed in Section III.

20
Pus (20)
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The analysis shown earlier only considers the dynamic
power of the Dig-N. The total energy benefit considering
dynamic + leakage current for each node in the Dig-N in
this scenario is given in the following equation (again taking
the numbers from Fig. 6):

Ppig 1370 x 10~° _ 630.6
Pys VDD, Ana X (21 X nV7) X Cefe x 107 T Cefr

which results in (Ppig/Pms) ~ 197 when Cefr = 8 X Cynir and
Cunit = 0.4 fE. These results correspond to the graph shown
in Fig. 10 where the energy benefit for the MS-multiplier is
about 200x that of the digital implementation near 10 MHz.
Theoretically, we can arrive at the same result from (19)
by noting that (Z?gg a;C;/Cefr) is essentially the ratio of
number of transistors in Dig-N (Np;,) to the number of input
transistors in MS-N (Nana), multiplied with the effective a of
the Dig-N. Hence, (Ppig/Pwms) can be expressed as follows:

@=0.75xax Nbig x L

Pwvs Nana
where L is the additional contribution from leakage (L =
2.5 near the threshold frequency of 10 MHz where dynamic
power is almost 67% of the leakage power). Writing Napa =
(NAna,regular/((zN - 1)/N)) (N is the number of bits), we get
the following equation:

21

(22)

Poi _ 075 xax —D 21 o)
Pms ' _ NAna,regu]ar N .
Activity Factor Ratio of Benefit from Leakage (23)
(Dig-N) Transistors Irregular slices (Dig-N)
075 x03 x 205 L P21 s
=0. X003 X — X X 2.
255 8
=197

where  Nanaregular 1S the number of input transistors in
MS-N with regular slices, and ((2Y —1)/N) denotes the
benefit gained from irregular slices (as the number of tran-
sistors reduce from (2V — 1) to N). In the calculation,
we have assumed Npjg ~ 2805 (in Table I) and a ~ 0.3

(Z;\I:D]ig a; C; =338 fF, hence, a can be calculated and verified
from Synopsys reports).

B. Case 2: Load Capacitance Is Also Significant

The load capacitance consists the fanouts from the neuron
(same for both the Dig-N and MS-N) and the number of
multipliers (n) connected to the output node (considered only
for MS-N). Since the fanout can be taken care of by inserting
properly sized buffers for both Dig-N and MS-N, we only
consider the effect of n in this analysis and write the ratio
(Ppig/Pms) as shown in the following equation:

Ppig  630.6  630.6
Pus  Ceft 1 x NCunit
=075 x a x Noig N=lorL o4
n X N Ana,regular
Thus, the worst case energy benefit reduces by a factor

of 10 when n = 10. This means that the MS-N is largely
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TABLE III

LEARNING ANN/CNN ARCHITECTURES AND PERFORMANCE EVALUATION (NEURON-ONLY
POWER CONSUMPTION WITHOUT PIPELINING/RESOURCE SHARING)

Power (Dig-N: AM)

Energy (Dig-N: AM) Power (MS-N) Energy (MS-N)

Application Learning Architecture @100MHz @100MHz @100MHz @100MHz
MNIST_FCN: 784x100x50x10 582mW (8b), 5.82nJ (8b), 841uW (3b), 8.41pJ (8b),
84060 MACs (2 Hidden Layers) 69mW(3b) 690pJ (3b) 315uW (3b) 3.15pJ (3b)
MNIST_CNN: LeNet [12] 15.92W (8b), 159.2nJ (8b), 23mW (8b), 230pJ (8b),
2.3M MACs 1.89W(3b) 18.9nJ (3b) 8.6mW(3b) 86pJ (3b)
CIFAR_CNN: AlexNet [29] for 319.9W (8b), 3.2u3 (8b), 462mW (8b), 4.62nJ (8b),
46.2M MACs 32x32 images 37.9W(3b) 379nJ (3b) 173mW (3b) 1.73nJ (3b)

beneficial for a CNN where the number of connections to
a neuron is limited. However, cascode topologies are shown
to be useful when a number of input/outputs are large in an
analog design [34] and such structures can be employed for
implementing a fully connected network using the proposed
MS-N.

In summary, this analysis shows that the fundamental energy
benefit for the MS-N is a direct effect of: 1) lower number of
transistors due to the ability to represent complex functions
with intrinsic dynamics and 2) irregular slice structure, which
trades off with the linearity of the neuron. The leakage (at low
frequency) and DVFS (at high frequency) in Dig-N further
improves this energy benefit at frequencies other than the
near-threshold point (10 MHz) as the power consumption
for MS-N is linear with frequency. The other significant
tradeoffs are between total integrated noise [which reduces
by increasing device dimensions according to (10)] versus
bandwidth (which degrades as per (5) when device dimensions
are increased). The dc offset due to device mismatch can also
be reduced at the cost of reduced bandwidth. The proposed
design in Section III alleviates these tradeoffs by extending
the bandwidth of the circuit using pole-zero compensation,
which allows for increased device dimensions to reduce the
effects of noise and mismatch.

VI. EXPLOITING NEUROMORPHIC ERROR RESILIENCY AT
THE SYSTEM LEVEL FOR LENET AND ALEXNET

To analyze the energy benefits and performance of the
proposed MS-N, a cohesive circuit-algorithmic framework is
developed that uses two well-known benchmark image recog-
nition data sets, MNIST [24] and CIFAR-10 [25]. MNIST
is a standard data set of handwritten digits that contains
60000 training and 10000 test patterns of 28 x 28 pixel-
sized greyscale images of the digits 0-9. CIFARIO is a
more complex data set that consists of 60000 colored images
belonging to ten classes. Each image has 32 x 32 pixels.
The first 50000 images were used for training and the last
10000 images were used for testing.

Table III shows the different deep learning and fully con-
nected implementations used to evaluate the data sets. It is
to be noted that the learning architectures employed are the
standard networks that have shown reasonable accuracy on the
various benchmarks for low-to-medium-complexity applica-
tions [12], [29], as sensor nodes targeted toward edge analytics
do not require deeper networks like ResNet or GoogLeNet to

be implemented on the edge device. Each of the architectures
shown in Table III was implemented using the widely used
MatConvNet [30] platform, a deep learning toolbox used for
training and evaluating the performance of the benchmark
applications. While training, 16-bit precision was used to get
a reasonable accuracy for the baseline network. However,
for most ANNs, the bit precision can be scaled down to
8 bits without incurring any accuracy degradation as shown
in Fig. 4 (error versus bit precision figure). Scaling below
8-bits may cause accuracy loss, a part of which can be restored
by retraining the network. Therefore, for lower bit precision
(starting from 6 bits, down to 3 bits), incremental retraining
was performed with bit width restrictions in place on the
weights and neuron outputs to reclaim a significant portion
of the accuracy ceded by scaling. Bit width scaling (and
retraining) helps to get an optimized CMOS digital framework
for our precision-constrained MS multipliers. It also helps in
obtaining an optimized digital baseline framework for fair
energy/performance comparison with our MS-N. Hence, the
software baseline implementation was aggressively optimized
for performance.

The trained baseline network with appropriate bit restric-
tions on the learned weights is then evaluated on the testing set
of the benchmark to obtain the performance or accuracy. The
analog noise and mismatch models obtained from circuit sim-
ulations are incorporated in the software during the evaluation
phase. The total integrated noise power was calculated in the
range 1 kHz—1 GHz (ac coupling capacitors filter out the low-
frequency noise) using the bsim4 noise model in Cadence Vir-
tuoso tool flow, and with a standard 65-nm technology model
for transistors (obtained from foundry). The mismatch/input-
referred-offset was simulated using Monte Carlo analysis
(in Cadence Virtuoso) with =3 — ¢ models for process and
mismatch. Since both dc offset and analog noise come from the
multiplier units that perform the multiplication of the weight
values with the corresponding input, they are included within
a modified weight value. The output at a particular neuron
without noise and mismatch is given by (3), while the same
output is calculated using the following equation in presence
of noise and mismatch:

n
Vouw = F |:ADX Zwk(l)k + \/Z—I- Ak):|

k=1

" A+ A
—F [A,] x Zwk(l + %)uk} (25)

k=1
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Fig. 24. System level simulation results for 3-, 8-, and 16-bit MS-N. (a) MNIST [24] with FCN. (b) MNIST with CNN. (c) CIFAR-10 [25] with CNN.

TABLE IV
COMPARISON RESULTS WITH STATE-OF-THE-ART NEURON ARCHITECTURES

SpiNNekarl TrueNorth Neurogrid BrainScaleS VMM ISSCC 2018 Traditional MS- Proposed Work
[5] [6] [10] [9] [13] MS-N [14] MAC (Sec IT A.)? (Section I11)*
Meas./Sim. Measured Measured Measured Measured Measured Measured Simulation Analysis/Simulation
Neuron Type Digital Digital Mixed-Signal Mixed-Signal Mixed-Signal Mixed-Signal Mixed-Signal Mixed-Signal
SNN/CNN SNN SNN SNN SNN CNN CNN CNN CNN
Architecture ARM-core Point neuron Current mode Current mode Current mode BinaryNetJrSC2 Current mode Small signal
MAC based No No No No Yes Yes Yes Yes
CMOS Tech. 130 nm 28 nm 180 nm 180 nm 500 nm 28 nm 65 nm 65 nm
Power/synapse - 254 nW 390 pW 19.5 pW 5.310 uyW 4.62 pW 0.9 uW 10 nW
Frequency 200 MHz 1 kHz 1 kHz 125 MHz 10 MHz 237 FPS 1 MHz 100 MHz
Energy/synapse - 254 11 390 fJ 156 11 53117 19.511 900 fJ 100 aJ

T Neurons are simulated on ARM-core (no physical implementation), % Switched-Capacitor (SC) addition with XNOR multiplication,

34 The ANN architectures are not available on hardware

where A is the integrated noise power (V2) within the band-
width at a given bias current, while Ay is the dc offset in the
kth synapse. If the swing of vy is high, the effect of noise and
mismatch is minimal. Fig. 24 presents the classification error
for (a) MNIST_FCN, (b) MNIST_CNN, and (c) CIFAR_CNN
as a function of the nonideality percentage (NIP), which we
define as NIP (WA + Ay/vr) x 100. We observe that
the worst case increase in error from the baseline (8-bit and
3-bit Dig-Ns) is only 5.2% in 3 bit and 2.1% in the 8-bit
proposed MS-N (both for CIFAR-10, with AlexNet CNN) with
a differential input swing of 400 mV and NIP of 0.75% =~
3 mV which is found from circuit-level simulations.

VII. PERFORMANCE COMPARISON AND DISCUSSION

Table IV shows the comparison of the performance of
the proposed design with the existing neuron architectures.
The proposed design achieves the best energy efficiency and
can work at high frequencies, which makes it suitable for
neuromorphic computing applications. Although the power
consumption per synapse is lower for Neurogrid, we must
note that Neurogrid runs at a much lower frequency. The
bias currents in the proposed design can be reduced for low-
frequency applications and have a better power per synapse
value. Since the power in MS-N scales linearly with frequency,
this will not degrade the energy efficiency.

It must be noted that the proposed work is based on
simulation and analysis, while the other works presented
in Table IV have measured data that consider the energy and
latency of communication, memory fetch, data management,
and streaming, which often proves to be a worse energy bot-
tleneck than computation. However, in-memory [35] or near-
memory [36] architectures help in reducing the memory-fetch

power. As shown in [11], several power-reduction strategies
such as event-driven computing, overlapping dendritic trees,
island formation, hierarchical axonal structures, power-gating,
multiplexed signaling, and coordinated processing can be
employed to reduce the communication energy, further exploit-
ing the improved energy efficiency of the proposed neuron at
a system level. To account for the increased loading at the
output nodes in a fully functional ANN, a cascode topology as
presented in [34] can be adopted as well. The proposed neuron
model can, thus, be utilized to improve the power versus
frequency performance for the architectures demonstrated in
the references shown in Table IV, with similar hardware
for communication, memory fetch, data management, and
streaming, and motivates the need for future research in this
direction.

VIII. CONCLUSION

We have presented a MAC-based MS-N architecture that
can achieve extreme energy efficiency by employing a
small-signal voltage mode multiplication using a differen-
tial amplifier with resistive feedback. Compared to a tra-
ditional Dig-N, the proposed MS-N is ~ 1000x more
energy efficient at both low frequencies (<1 MHz) and very
high frequencies (>500 MHz), and > 100x more energy-
efficient across frequencies in the range of 1-500 MHz
without significantly affecting the classification error rate for
digit/image recognition applications. The proposed implemen-
tation promises to achieve better energy efficiency than prior
analog/MS designs (20-40x better than digital implementa-
tions) as well as memristor-based designs (3—4x better than
prior MS designs) [37]. Digital implementations can be duty
cycled (using power gating) to reduce the power consumption.
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However, duty cycling does not reduce the on-time energy
consumption. Moreover, for applications with low-frequency
input signal, duty-cycled digital implementations require input
and output FIFOs and suffer from the tradeoff between FIFO
size and frequency of turn-on/turn-off of the computation unit.
The sources of the energy benefit in the MS-MAC for such
scenarios are thoroughly analyzed and the significant tradeofts
are identified, which are: 1) energy versus linearity; 2) energy
versus total integrated noise; and 3) energy versus variability.
A bandwidth extension technique is proposed, which helps in
alleviating the tradeoffs and leads to a 0.1 fJ/MAC implemen-
tation of the 8-bit MS-N, which provides enough headroom
for mimicking a biological neuron (20 fJ/MAC [11]) at a
system level. As a future extension of this paper, the memory
fetch and communication energies of FCN and CNNs will
be analyzed and implemented with near-memory computation,
which promises to achieve an energy-efficient MS neural
network.
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