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In this paper we review the most common descriptions for the first order phase tran-
sition to deconfined quark matter in the core of neutron stars. We also present a new

description of these phase transitions in the core of proto-neutron stars, in which more

constraints are enforced so as to include trapped neutrinos. Finally, we calculate the
emission of gravitational waves associated with deconfinement phase transitions, discuss

the possibility of their detection, and how this would provide information about the

equation of state of dense matter.
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1. Introduction

Neutron stars (NS’s) are a natural laboratory for the study of dense matter. Their

interiors cover a large range of densities going from about 1 g/cm3 in the atmosphere

to about 1015 g/cm3 — a number density of about 1 baryon per fm3 — in the stellar

core. The latter value corresponds to a volume per baryon less than the size of a

nucleon, implying that at such densities baryons overlap. This can be understood

as a strong indication of deconfined quark matter in the interior of NS’s. From a

stability point of view, it was long ago establish that 3-flavored quark matter could

be more energetically stable than hadronic matter1,2 and, more recently, the same

was shown for 2-flavored quark matter3 .

After the first work proposing pure quark stars in 19704 , Glendenning started

the discussion of conserved charges in hybrid hadronic-quark stars in 1992. He high-

lighted the fact that, if allowed, a mixture of phases will take place when first order

phase transitions take place5 . Consequently, the pressure is not constant in the ex-

tended mixture, as the concentrations of the substances change together with the

chemical potentials associated with the constraints (two in this case, global baryon

number and global electric charge). This became known as Gibbs construction, as

equilibrium conditions require the Gibbs free energy per particle (i.e. the baryon

chemical potential), temperature and pressure to be equal in both phases within
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the mixture. Finally, a volume fraction of each substance can be calculated at any

point in the mixture which fulfills the globally required constraints. Note that pre-

vious works had studied mixtures of hadronic and quark phases, although not in

the context of astrophysics 5–7 .

If charge neutrality is imposed locally in each phase, there is no mixture of

phases. The pressure is constant, in the sense that it relates to the value of the

chemical potential associated with the conserved quantity (which is different in

each phase). The Gibbs free energy per particle, temperature, and pressure are

still equal in both phases. This is known as Maxwell construction, as it does not

allow the pressure to change as a function of number density. But, as a result,

constant pressure means that this region does not occupy a physical space under

the influence of gravity in a star (unlike the mixture of phases). More recently, this

discussion appeared again in the literature in a more general form and using the

terms congruent and non-congruent referring to Maxwell and Gibbs constructions,

including two or more constraints in the context of astrophysics and heavy-ion

collision physics8–10 .

The determination of the way phase transitions take place in nature, with local

or global charge neutrality (and in the latter also the extent of mixed phase), de-

pends directly on the surface tension between the two phases. For deconfinement

phase transitions, surface tension has been calculated, but shown to be model de-

pendent11–20 . The description of hybrid stars under both scenarios of global and

local charge neutrality has been studied in many works in the past, and also re-

cently used to constrain even further the equation of state (EoS) of nuclear matter

in attempts to reproduce tidal deformability measurements from neutron star merg-

ers21–28 . In this paper, we review some of the points related to phase transitions

already raised in our previous works, but focusing on their relation with the pos-

sibility of identifying such phase transitions through the detection of gravitational

waves (GW’s).

We have recently and definitively entered the age of gravitational wave astro-

physics with the discoveries of black hole and NS mergers made by the LIGO and

Virgo collaborations29,30 . The next runs of the interferometers will be able to detect

GW’s of smaller and smaller amplitudes, raising the possibility of detecting even

more subtle events31 , such as the ones described in the section 4 of this work. This

requires prior knowledge of the signal waveform, making the identification of possi-

ble sources and wave frequencies a relevant problem in the detection strategy. Using

the EoS’s presented in this paper, we estimate the initial amplitude and frequency

of the gravitational waves (GW’s) emitted by a NS that undergoes a phase tran-

sition going from a purely hadronic star to a hybrid one with the same number of

baryons. Note that this is different from what has been recently presented in Ref.32

or previously in Ref.33 , where different EoS’s were used to generate purely hadronic

and purely quark branches. Finally, we estimate the decay of GW amplitudes with

time for some selected pulsars.
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2. Microscopic Description

As matter in the inner core of NS’s is very dense but strongly interacting, it cannot

be currently described by first principle theories. Alternatively, we can rely on effec-

tive models, which after being calibrated to work in the desired regime of energies,

can produce reliable results concerning the matter EoS and associated particle pop-

ulation. For this purpose, we choose the Chiral Mean Field (CMF) model, which

is based on a non-linear realization of the SU(3) sigma model34 . It is an quantum

relativistic model that describes hadrons (nucleons and hyperons) and 3 light fla-

vors of quarks interacting via meson exchange, as a way to describe the attractive

and repulsive components of the strong force9,35 . The model is constructed to be

chirally-invariant, in a manner similar to the linear-sigma model, as the particle

masses originate from (instead of being modified by) interactions with the medium

and, therefore, decrease at high densities/temperatures. The non-linear realization

refers to the kind of chiral transformation imposed, which has the pseudo-scalar

mesons as parameters. This setup results in a framework in which there is no dis-

tinction between left- and right-handed space and, therefore, in a larger freedom

in the calculation of the mesonic couplings. The mesons included are the lowest

mass ones that are scalar iso-scalar, vector iso-scalar, scalar iso-vector, and vector

iso-vector (with and without hidden strangeness) .

After applying the mean-field theory approximation, the hadronic coupling con-

stants of the model were calibrated to reproduce the vacuum masses of baryons and

mesons, and were fitted to reproduce nuclear constraints for isospin symmetric mat-

ter (together with the symmetry energy) at saturation with reasonable values for

the hyperon potentials. The quark coupling constants were constrained using lattice

QCD data at zero baryon chemical potential36,37 , as well as information about the

the remaining QCD phase diagram for isospin asymmetric and symmetric matter.

The latter include the point where the coexistence line ends at the zero-temperature

axis and the position of the critical point38 , among others. As a consequence, this

formalism reproduces the nuclear liquid-gas phase transition as well as the decon-

finement/chiral symmetry restoration phase transitions expected to be found in the

QCD phase diagram, as shown in Fig. 1. As a final test, we have used perturba-

tive QCD (PQCD) results, calculated by taking into account beta equilibrium and

charge neutrality39 , in order to determine until which density/chemical potential

our model is valid. We found that our model is fully consistent with PQCD in the

whole regime of densities achieved inside NS’s and proto-neutron stars (PNS’s)10,39 .

The lines in Fig. 1 represent first-order transitions and the dots mark the crit-

ical end-points. Isospin-symmetric matter refers to zero-isospin matter with zero

net strangeness, as the one created in heavy-ions collisions or any nuclear experi-

ment performed in the laboratory. NS matter stands for charged neutral matter in

chemical equilibrium, such as the one inside the core of neutron stars. The shaded

regions exemplify in which regimes these kinds of matter can exist. Other scenar-

ios showed in the figure (and colored accordingly) correspond to matter created
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Fig. 1: QCD phase diagram (temperature vs. baryon chemical potential) resulting

from the CMF model with lines indicating first-order phase transition coexisting

lines. The line on the bottom stands for the nuclear liquid-gas transition, while

the lines on the top-right stand for the chiral-symmetry restoration/quark decon-

finement transitions, The dots mark the respective critical end-points. The shaded

regions exemplify relevant scenarios.

in the early universe, also isospin symmetric with zero net strangeness, and mat-

ter created in supernova explosions and neutron star mergers, also charge neutral.

Chemical equilibrium is not establish immediately in supernovae and stellar merg-

ers, but instead these events present a temporary large lepton fraction. For the case

of proto-neutron star matter, a fixed lepton fraction discussion will be presented in

the following.

We model PNS matter by imposing another constraint to characterize the neu-

trinos trapped by the dense and hot medium, lepton fraction. This is the ratio of

the amount of electrons/electron neutrinos to the amount of baryons and it is fixed

according to supernova simulations to be Yl = 0.440,41 . The extra constraint has

the effect of suppressing the hyperons (due to the presence of negatively charged

electrons) and pushing the phase transition to higher chemical potentials (as it

makes the quark matter EoS softer than the hadronic one), with respect to the NS

case. The results from this description can be seen in the left panel of Fig. 2 for the

case that all constraints (except baryon number) are enforced locally in each phase.

Although this locally enforced condition might be the case for electric charge if the

surface tension is large18,19 , it is not the case for lepton fraction. This is because
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Fi g. 2: Q C D p h a s e di a gr a m s, a s i n Fi g. 1, b ut i n cl u di n g o n e e xtr a c o n str ai nt t o

d e s cri b e pr ot o- n e utr o n st ar s. I n t h e l eft p a n el, el e ctri c c h ar g e n e utr alit y a n d l e pt o n

fr a cti o n ar e e nf or c e d l o c all y. I n t h e ri g ht p a n el o n e or b ot h c o n str ai nt s ar e e nf or c e d

gl o b all y, cr e ati n g r e gi o n s wit h mi xt ur e s of p h a s e s.

t h er e i s n o l o n g r a n g e f or c e a s s o ci at e d wit h t hi s q u a ntit y ( s u c h a s C o ul o m b’ s f or c e

f or el e ctri c c h ar g e)8 , w h at l e a d s u s t o r ef er t o t hi s c a s e a s “f or c e d- c o n gr u e nt ”, i n

w hi c h c a s e t h e Gi b b s fr e e e n er g y µ̃ i s n ot t h e b a r y o n c h e mi c al p ot e nti al, b ut a

f u n cti o n of t h e l e pt o n c h e mi c al p ot e nti al µ̃ = µ B + Y l µ l .

T h e ri g ht p a n el of Fi g. 2 ill u str at e s w h at h a p p e n s if o n e or t w o c o n str ai nt s (i n

a d diti o n t o b ar y o n n u m b er) ar e all o w e d t o b e c o n s er v e d gl o b all y. I n t hi s d e s cri pti o n,

mi xt ur e s of p h a s e s a p p e ar, alt h o u g h P N S m att er p o s s e s s m u c h s m all er mi xt ur e s

of p h a s e s t h a n t h o s e of N S m att er (i. e., t h e y e xt e n d t hr o u g h m u c h s m all er r a n g e s

of c h e mi c al p ot e nti al s a n d s m all er r a n g e s of d e n siti e s). I n t h e c a s e of gl o b al l e p-

t o n fr a cti o n c o n s er v ati o n, s p e ci all y w h e n el e ctri c c h ar g e n e utr alit y i s c o n str ai n e d

l o c all y, t h e mi xt ur e s of p h a s e s b e c o m e s o n arr o w at l ar g e t e m p er at ur e s t h at it b e-

c o m e n u m eri c all y i m p o s si bl e t o fi n d t h e m. I n pr a cti c e, t hi s w o ul d m e a n t h at t h e s e

mi xt ur e s of p h a s e s w o ul d n ot i m p a ct si g ni fi c a ntl y a n y st ell ar pr o p erti e s. N ot e t h at

fi nit e si z e e ff e ct s t e n d t o s hri n k t h e si z e of mi xt ur e s of p h a s e s e v e n f urt h er 4 2, 4 3 .

3. M a c r o s c o pi c D e s c ri p ti o n

Alt h o u g h t h er m al e n er g y i s n e gli gi bl e i n N S’ s, t hi s i s n ot t h e c a s e f or P N S’ s, a s

t h e y c a n r e a c h t e n s of M e V t e m p er at ur e i n t h eir c e nt er s 4 4, 4 5 . T o si m ul at e t h at, w e

a d d t h e a d diti o n al (l o c al) c o n str ai nt of fi x e d e ntr o p y d e n sit y p er b ar y o n d e n sit y

S B = 2 i n o ur P N S E o S’ s. It r e s ult s i n a t e m p er at ur e gr a di e nt i n st ar s t h at, a s

a c o n s e q u e n c e of fi xi n g e ntr o p y p er b ar y o n l o c all y a n d n ot gl o b all y, h a s a s m all

( pr a cti c all y n e gli gi bl e) j u m p a cr o s s t h e p h a s e tr a n siti o n, a s di s c u s s e d i n d et ail i n

R ef. 4 6 .

N e xt, w e u s e o ur di ff er e nt N S a n d P N S E o S’ s i n t h e T ol m a n- O p p e n h ei m er-

V ol k o ff ( T O V) e q u ati o n s t o fi n d a f a mil y of st ell ar s ol uti o n s f or e a c h E o S, a s s h o w n
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Fig. 3: Solution of TOV equations showing stellar masses and radii for neutron

stars (left panel) and proto-neutron stars with fixed entropy density per baryon

density (right panel). The following cases are shown: when quark matter is artifi-

cially suppressed (H), when quark matter is allowed and electric charge neutrality

is constrained locally (LCN) or globally (GCN) and lepton fraction is constrained

locally (LCN) or globally (GCN).

in Fig. 3. For NS’s, we show three curves, for hadronic matter only (H) and with

a first order phase transition assuming local charge neutrality (LCN) or global

charge neutrality (GCN). In the case with the local constraint, stars that reach the

threshold central density for the phase transition are unstable but, in the case with

the global constraint, there is an extended mixture of phases that reaches about

2 km of radius in the most massive stable star. For PNS’s, we show again three

curves, for hadronic matter only (H), with a first order phase transition assuming

local charge neutrality and lepton fraction (LCN LGYl), and with a first order

phase transition assuming local charge neutrality and global lepton fraction (LCN

GYl). In the case with both local constraints, stars that reach the threshold central

density for the phase transition are unstable but, as before, in the case with the

global constraint, there is an extended mixture of phases that reaches about 1 km

of radius in the most massive stable star. The case in which all constraints are

conserved globally for PNS’s is not shown in the figure, as it is very demanding

numerically and does not differentiate dramatically from the LCN GYl case.

It is important to note that, in all hybrid PNS cases, there are quarks present

in stable stars. This is because the CMF model allows for the existence of soluted

quarks in the hadronic phase and soluted hadrons in the quark phase at finite tem-

perature. This is discussed in detail in Ref.46 . Regardless, quarks will always give

the dominant contribution in the quark phase, and hadrons in the hadronic phase

and the phases can be distinguished from one another though their order parame-

ters. We assume that this inter-penetration of quarks and hadrons (that increases

with temperature) is indeed physical, and is required to achieve the crossover tran-
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sition known to take place at small chemical potential values47 .

4. Gravitational Wave Emission due to Phase Transition

Even though only GW’s from NS’s in a binary system have been detected until

201829,30 , it is predicted that isolated NS’s could also irradiate detectable GW’s

through different processes. In particular, newly formed neutron stars that reach

high enough central densities in their cores could undergo a phase transition to

deconfined quark matter. In this case, the new hybrid configurations would be more

compact (than their purely hadronic counterparts) but have the same number of

baryons. Such dense metastable hadronic stars could be formed, for example, by

the merging of two low mass neutron stars, two white dwarfs, or a combination of

both48–50 .

The conversion from a purely hadronic to a hybrid star would decrease the

star’s gravitational mass ∆MG and, therefore, also gravitational energy ∆MGc
2 =

(MHyb
G − MHad

G )c2 = ∆ET . Among other things, this energy can excite pulsat-

ing modes of the star. NS’s have a large number of distinct vibrational modes,

being the fundamental (f) mode, in general, the one that radiates most mechan-

ical energy51,52 . A star of mass M and size R has a natural GW frequency of

f = (1/4π)
√

3GM/R3 53 . So, considering typical NS values, we expect to detect

waves in the range of 1-3 kHz when using the prescription from Ref.54 and consider-

ing that a deconfinement phase transition occurs. Because it is a sudden event, this

phenomenon is usually classified as a burst, although the damping of the oscillation

of the star’s surface may in some cases last for years, as we shall discuss later.

Assuming the quadrupole moment of an arbitrary mass distribution Qij , the

energy lost via gravitational radiation is given by the time derivative of the energy

(see, e.g., Ref.55):

− dE

dt
=

G

45c2

(
∂3Qij
∂t3

)2

, (1)

which provides the mean luminosity of the gravitational wave emitted LGW . We

are interested in the fundamental mode, which is characterized by being a surface

mode between the star interface and its surroundings51 . Then, by conceiving a

non-radial axisymmetric oscillation in a sphere of a given radius, we can express

an oscillation at its surface by describing an expansion of r(θ) Ref.56 . If only linear

terms are considered, the expansion is reduced to its first two terms, leading up to

the relation:

LGW =
2E2

τ
, (2)

where E2 represents the approximation in the energy and τ is the damping time

scale, which is expected to be relatively large for the f mode, indicating a slow

damping. Then, if we consider that most of the mechanical energy is in the f
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mode, the gravitational strain amplitude can be written as57 :

h0 =
4

2πf0r

(
G∆E

τc3

)1/2

, (3)

where r is the distance to the source and h0 the amplitude measured at distance r.

The frequency of the fundamental mode (in kHz), is well fitted by58 :

f0 ≈ 0.17 + 2.30

√(
10 km

R

)3(
M

1.4M�

)
, (4)

and the damping time scale by GW emission is:56

τ = 1.8

(
M�

M

)(
P 4

R2

)
, (5)

where P is the period of rotation of the star (in ms).

Before using the change in gravitational stellar mass due to the deconfinement

phase transition ∆MG as available energy as in Eq. (3), we must keep in mind that

not all the energy released in the transition is converted into mechanical energy.

Instead, some of it is dissipated into thermal, shear and bulk viscosity processes.

Thus, we must introduce an efficiency term η in this relation. Early works59–61

suggest 10−3 . η . 0.5, while more recent calculations62 estimate 10−7 . η . 10−5,

depending on the model used. Given the large uncertainty in this parameter and

the difficulty of evaluating the best value, we scale our relation with an intermediate

value η = 10−4.

In our setup, the initial amplitude of the measured GW depends on mass, radius,

and rotation period of the star; the distance between the star and Earth; and also

of the energy released via the phase transition. Although the TOV equations only

describe spherical stars, any corrections to that due to rotation and magnetic fields

would deform further the star and, therefore, cause a larger emission of GW’s. For

each star (calculated with a given EoS and central density), rotation period and

distance of the source are additional parameters that will differentiate the initial

amplitude of the GW. Here, we use data from 2572 pulsars cataloged in Ref.63 .

The previous equations also allow us to describe the wave oscillation behavior

in time, which is given by56,61 :

h(t) = h0e
−(1/τ−i2πf0)t. (6)

In the case of an interferometric detector with an arm of length L, h = ∆L/L is

measured, where ∆L is a small change in the length L caused by the GW. Using

this framework, we estimate the GW amplitude when metastable hadronic stars

go through deconfinement phase transitions in two cases, first, assuming stars that

are cold and in chemical equilibrium (previously referred to as NS’s) and, second,

assuming stars to be hot and with trapped neutrinos (previously referred to as

PNS’s).
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Fig. 4: Initial amplitude of GW’s and respective frequencies when phase transitions

take place in NS’s allowing the existence of a mixed phase and in PNS’s allowing

for the existence of a mixed phase, or not. Different lines show the sensitivity of

several gravitational-wave detectors64,65 .

Fig. 4 shows the results of our estimates of h0 in comparison with

the sensitivity of different GW detectors. Note that the GW amplitude

h0 ∝ ∆E1/2 , 1/r , R5/2 , 1/P 2. The quantities ∆E and R vary considering

all the possible NS’s that can undergo a deconfinement phase transition (from the

hadronic to the hybrid branch with a mixed phase in the left panel in Fig. 3) at fixed

baryon number. They generate very similar results. The case without a mixed phase

is not considered as it does not produce stable hybrid NS’s. For PNS’s or, to be more

specific, stars that follow more closely PNS conditions such as finite temperature

and fixed lepton fraction effects, the quantities ∆E and R vary considering only

massive stars from the hadronic to the hybrid branch with and without a mixed

phase (see right panel in Fig. 3) that can go through a deconfinement phase transi-

tion at fixed baryon number. The case without a mixed phase produces stable stars

with quarks only due to the finite temperature assumed in PNS’s. Less massive

stars are not considered, as they generate lower energy release upon transitioning.

As explained above, the distance r and the pulsar period P are varied according

to available pulsar data. As a result, the pulsars with the largest h0 are the ones with

smallest periods and/or which are closest to Earth. We estimate that h0 varies from

2.2× 10−31 to 5.9× 10−22 (η/10−4) and the frequency is around 2.0 kHz for NS’s.

For PNS’s, h0 varies from 8.0 × 10−30 to 2.4 × 10−20 (η/10−4) and the frequency

is around 1.3 kHz. In the case of PNSs, the estimated initial signal for more than

two thousand (83%) pulsars are above the sensitivity limit of the LIGO and Virgo
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Fig. 5: Decay of GW amplitude with time for three selected pulsars for NS H-LCN

(left panel) and PNS H-LCN LYl (right panel) conditions, the one with the highest

estimated amplitude (h0 = 1.9× 10−21), the one with the shortest rotation period

(P = 1.396 ms), and the closest to the Earth (r = 90 pc).

detectors, and more than one thousand (54%) for KAGRA detector, depending on

η/10−4. For NS, there are six hundred (25%) for LIGO and Virgo, and four hundred

(17%) for KAGRA. Note that the GW frequency f ∝ 1/R3/2 and M1/2 only, so

this results could be in principle used to distinguish among different EoS’s and, in

the case that the stellar mass is known, the stellar radius of neutron stars. This in

return could provide information about the interior of the stars.

Another point that must be highlighted is the order of magnitude of the damping

time scale τ , as it is proportional to the fourth power of P. Typical pulsars period

values can lead to a τ of some milliseconds or several years, making the detection

in the latter case very difficult, given the time of operation of the detectors. This

becomes clear in Fig. 5, where we present the wave pattern for three pulsars selected

from the catalog: the one with the highest estimated amplitude (h0 = 1.9× 10−21),

the one with the shortest rotation period (P = 1.396 ms) and the closest to the

Earth(r = 90 pc). Here, both r and P are very important, but it is their combination

that determines the highest amplitude of the GW signal. Pulsars with slow rotation

rate, in addition to tending to decrease the amplitude of the GW, have a very long

damping time and would require a very extensive operating time for the detectors.

This is also the case with the pulsar with smaller distance. The left and right

figure panels of Fig. 5 show results for NS H-LCN and PNS H-LCN LYl conditions,

respectively. In the case of PNS’s with global Yl, the results are similar to what is

presented in the right panel of Fig. 5, but with slightly reduced overall amplitude

magnitude. Note that although pulsars with large damping time are not of interest

for detection, they are of great importance for the establishment of background

noise, since their signal remains practically constant for a long time.
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5. Conclusions

In this work, we have revisited the topic of phase transitions in the interior of

neutron and proto-neutron stars making use of a realistic equation of state that

accounts for hadronic and quark degrees of freedom. Different possible scenarios, in

which global and local charge neutrality and lepton fraction constraints were im-

posed. The possibility of deconfinement to quark matter in the core different stars

was investigated. Although mixtures of phases extend through larger portions of

cold deleptonized neutron stars, in our framework, quarks are present in hot stars

even outside these mixtures. As a consequence, stars at all stages of evolution can

present quarks in extended portions (if they possess large enough central density).

When we compared massive but purely hadronic stars (that had the quarks sup-

pressed artificially), and respective hybrid stars (with same number of baryons),

they presented distinguished compactnesses, for all the conditions analyzed.

We then investigated the possibility of detecting GW’s emitted in the case of

metastable hadronic stars undergoing a deconfinement phase transition and con-

verting to hybrid stars. This could be the case of isolated newly formed massive

neutron stars formed, for example, by the merger of low mass stars. In this case,

the phase transition from a hadronic star to a more compact hybrid star with the

same number of baryons would release gravitational energy and excite pulsation

modes that could eventually be detected. Most of the uncertainties in our predic-

tions refer more to the amplitude of the detected GW’s and less to their frequency,

which is mainly equation of state dependent. In this way, a possible detection will

be able to provide solutions to outstanding issues regarding dense matter, such as

which degrees of freedom exist in the center of neutron stars, in addition to an

alternative way to measure stellar radii, complimentary to electromagnetic wave

measurements.

Although not unique, our scenario predicts gravitational waves that could be

measured in the near future. Our results are consistent for example with the ones

from Ref.66 , which uses simple equations of state but a very sophisticated treat-

ment of the oscillations including simulations performed using a code that solves

the general relativistic hydrodynamic equations and includes rotation. We must

emphasize that we used in our work an integration time of 1 month for the GW

detectors and an efficiency of η/10−4 for the relation between released gravitational

energy and available energy for GW emission. Modifying η will modify our results

for the amplitudes by a factor η1/2. Moreover, for simplicity we consider only the

fundamental mode of oscillation, but we point out that the addition of other vi-

brational modes can increase the values of GW’s amplitude. Ref.67 , for example,

assesses the gravitational waveform that would result from r-mode driven spindown

of magnetized neutron stars.
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