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Can magnetic fields stabilize or destabilize twin stars?
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Sharp phase transitions described by stiff equations of state allow for the existence of a third
family of stable compact stars (besides white dwarfs and neutron stars), twin stars. In this work, we
investigate for the first time the role of strong magnetic fields on non-magnetic twin stars sequences
and the case in which magnetic fields themselves give rise to a third family of stable stars. We
use three sets of equations of state to study such effects from a more general point of view: the
Quark-Hadron Chiral Parity-Doublet (QχP) model for both hadronic and quark phases, and the
Many-Body Forces (MBF) model connected to either the MIT Bag model with vector interaction
(MIT) or to the Constant-Sound-Speed (CSS) approximation for the quark phase, through a Maxwell
construction. Magnetic field effects are introduced in the structure of stars through the solution of
the Einstein-Maxwell equations, assuming a poloidal magnetic field configuration and a metric that
allows for the description of deformed stars. We show that strong magnetic fields can destabilize twin
star sequences, with the threshold intensity being model dependent. On the other hand, magnetic
fields can also give rise to twin stars in models that did not predict these sequences, up to some
point when they are again destabilized. In this sense, magnetic fields can play an important role on
the evolution of neutron stars.

I. INTRODUCTION

The idea of a third family of compact stars with small
radii (tertiary stars) was first suggested by Gerlach in
1968 [1] in a generic context, and then by Kämpfer in
1981 in the context of hybrid stars with a quark core [2].
In the past years, the interest in these stars increased
due to studies indicating that neutron star radii might
be smaller than previously expected. Recently, this idea
came back in order to explain data from neutron star
mergers suggesting again smaller radii [3].
In addition, the observation of twin stars (two stars

with the same mass and significantly different radius)
would be a definite confirmation of a strong first-order
phase transition in stars, as already pointed out in Refs.
[4–7]. This is a very timely idea, as NASA’s Neutron
star Interior Composition Explorer (NICER) has been
attached to the space station in June of 2017 and will
soon report accurate data of neutron star radii. The third
family of stars has also been investigated with regard to
different properties and contexts such as supernovae [8,
9], pasta phases [10], particle populations [11–13], color
superconductivity [14, 15], rotation [16, 17], and tidal
deformation in neutron star mergers [18–20].
The conversion mechanism of hadronic stars into hy-

brid or quark stars is still an open question, and the pos-
sibility of a third family or even two families of stars have
been addressed in past works [4, 21–23]. From the micro-
scopic point of view, a soft equation of state (EoS) in the
transition region is necessary. It generates a large energy
density gap which creates a sequence of hybrid stars that
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is disconnected from the hadronic branch (third family)
[7]. On the other hand, in order to reproduce the ob-
servational stellar mass constraints, it is necessary that
both hadronic and quark matter equations of state are
stiff. For the EoS criteria for hybrid star branches to
be connected or disconnected to hadronic ones, see Refs.
[24–26].

Moreover, it is important to note that magnetic fields
are also relevant in the calculation of the structure of neu-
tron stars. It has been shown that although they do not
significantly affect the matter equation of state, strong
magnetic fields can change the macroscopic properties of
neutron stars dramatically [27–29]. In particular, they
have the effect of decreasing the central density of stars
due to Lorentz force, turning hybrid and hyperonic stars
into nucleonic stars (composed only of nucleons and lep-
tons) [27, 30].

In this work, we address for the first time how strong
magnetic fields affect the mass-radius relation of neutron
stars, both generating and destabilizing twin-star config-
urations. We start from describing different models that
generate twin configurations without resorting to mag-
netic fields. Then, we discuss the effect of adding strong
magnetic field effects to these twin stars. After that, we
discuss the possibility of twin stars that exist only in the
case when strong magnetic fields are present. Finally, we
present our conclusions and outlook.

II. FORMALISM

In this section, we present the formalism used to study
the effects of magnetic fields in twin stars. In subsection
IIA, we present two equations of state that allow for the
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Table I. Nuclear matter properties at saturation for the hadronic models used in this analysis, assuming a saturation density of
ρ0 = 0.15 fm−3. The columns read: model, nucleon effective mass m∗

n, compressibility modulus K0, binding energy per nucleon
B/A, and symmetry energy asym, at nuclear saturation density ρ0.

Model m∗
n/mn K0 B/A asym

(MeV) (MeV) (MeV)

1. MBF [31] 0.66 297 -15.75 32.00
2. Chiral [32] 0.67 318.76 -15.65 32.43

existence of a third family of non-magnetic stars. Assum-
ing that a first-order phase transition takes place at high
densities, matter is modeled in two different scenarios:
one caused by a deconfinement phase transition to quark
matter, and another one caused by a phase transition to
high-strangeness matter. We use two relativistic mean
field models to describe hadronic matter, considering a
nuclear saturation density ρ0 = 0.15 fm−3, parametrized
to reproduce the nuclear properties at saturation shown
in Table I. All models/constructions we use are able to
reproduce standard nuclear and astrophysical constraints
[20, 24, 30, 31]. In subsection II B, we investigate the
effects of strong magnetic fields on the twin stars from
section II A. In section II C, we present a configuration
of highly magnetized hybrid stars which only in this case
generates magnetic twin-star sequences. For the latter
analysis, only the hadron-quark phase transition scenario
is considered, using one of the models from section I A
but with a different parametrization.

A. Non-magnetic twin stars

In the following, we present different relativistic mean
field models that are used to generate equations of state
taking into account charge neutrality and chemical equi-
librium. Sequences of spherical, non-rotating and non-
magnetic twin stars are then calculated by solving the
Tolman-Oppenheimer-Volkoff equations.

1. Due to deconfinement

First, we discuss the case in which a non-magnetic
third family is generated by a hadron-quark phase tran-
sition. For such a case, we use an EoS parametrization
of the many-body forces (MBF) model for the hadronic
phase [31] and the MIT bag model with vector interaction
for the quark phase (see, for example Ref. [30]).
The hadronic phase is assumed to consist of only nu-

cleons and leptons. In this relativistic mean-field frame-
work, many-body forces contributions are introduced in
the baryon couplings to the scalar fields (σ, δ), and are
controlled by a parameter ζ. The vector interaction in-
troduced in the MIT bag model is equivalent to the ap-
proaches proposed in Refs. [33–35], in which is referred
to as vMIT or vBag-model, and allows for a stiff EoS

for quark matter, able to describe massive hybrid stars.
The two phases are connected by a Maxwell construc-
tion, which describes a necessary sharp phase transition
to quark matter.

In this work, we choose the many-body forces param-
eter to be ζ = 0.040, which is the stiffest possible re-
alistic parametrization of the model (see Table I). The
values of the vector coupling, bag constant and mass of
the strange quark in the MIT bag model that give rise to
a third family are (gV /mV )

2 = 1.7 fm2, B1/4 = 171MeV
and ms = 150MeV, respectively. Note that increasing
the strange quark mass or repulsion does not favor hy-
brid stars, as higher transition pressure and larger energy
gap, make it more likely that the stars will become un-
stable [36]. For Set 1, we have used the BPS equation of
state [37] for the crust.

For Set 2, we again describe hadronic matter with the
same parametrization of the MBF model, but also al-
lowing for hyperon degrees of freedom to appear, repro-
ducing the respective values for the hyperon potentials
[31]: UΛ = −28 MeV, UΣ = 30 MeV, and UΞ = −18
MeV. For quark matter, we use the “constant-sound-
speed (CSS)” parametrization which assumes that the
speed of sound in quark matter is pressure-independent
for pressures ranging from the first-order transition pres-
sure up to the maximum central pressure of a neutron
star [24, 38]. For a given hadronic matter EoS, CSS pa-
rameters are then the pressure at the transition ptrans
(or equivalently the transition density ρtrans), the dis-
continuity in energy density at the transition ∆ε, and
the speed of sound in the high-density phase c2QM. The
CSS parameter values we applied for the MBF model are
ρtrans = 3.5 ρ0, ∆ε/εtrans = 0.3 and c2QM = 1, where

εtrans ≡ εMBF(ptrans). The properties of the third family
configuration found for this set is also shown in Table II.
For the crust in Set 2, we have used EoS’ from Baym
et al. [37] and Negele and Vautherin [39].

The corresponding sequence of twin stars for these
models are shown in Figure 1 and are labeled Set 1 and
Set 2. Increasing the central density, the hadronic stars
become more compact due to the larger gravitational at-
traction. When a sharp phase transition to quark matter
takes place, stars become unstable until the quark core
(described with a stiff quark matter EoS) becomes large
enough to overcome the instability, creating the third
family of stars. We define the maximum mass for the
hadronic and hybrid branches as M1 and M2, respec-
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Table II. Properties of non-magnetic twin stars for the sets used in this analysis. The columns are: masses and radii of the
maximum mass star at the first (hadronic) and second (hybrid) branches, M1 and R1, and M2 and R2, respectively; and lastly
the range of radii ∆R2 of stable third-family stars. These quantities are displayed in the top panel of Figure 1.

Set M1 R1 M2 R2 ∆R2

(M⊙) (km) (M⊙) (km) (km)

Set 1 1.969 14.23 1.978 12.47 1.33
Set 2 2.061 13.61 2.108 10.9 1.97
Set 3 1.971 13.63 1.680 9.70 0.45

tively. The radius interval for the third family branch,
from the minimum between the mass peaks until the hy-
brid maximum mass peak (M2) is defined as ∆R2. We
display the main properties of these sets in Table II.

2. Due to strangeness

Here, we discuss the case in which there are stable
twin stars (not considering magnetic fields) still gener-
ated by a strong phase transition not necessarily related
to deconfinement. The corresponding EoS is modeled
using the Quark-Hadron Chiral Parity-Doublet (QχP)
model [40, 41], which contains positive and negative par-
ity states of the baryons octet as well as quarks within
the mean field approximation. The introduction of an
excluded volume for the baryons suppresses hadrons at
high density and/or temperature, allowing the quarks to
dominate [42]. The coupling constants of the model were
fitted to reproduce the vacuum masses of the baryons and
mesons, and reasonable values for the hyperon potentials
(UΛ = −30.44 MeV, UΣ = 2.47 MeV, and UΞ = −26.28
MeV). In addition to the properties presented in Table
I, the vacuum expectation values of the scalar mesons
are constrained by reproducing the pion and kaon decay
constants fπ and fκ. The BPS equation of state [37] is
also used to describe the crust of these stars.
The effects of strangeness on the quark sector of this

equation of state are studied in Ref. [32] by varying the
quark coupling to the strange vector meson. In particu-
lar, it is found that a large amount of strange quarks is
related to a softer equation of state that posses a first-
order phase transition observed in a reduction of the chi-
ral condensate. Note that in this model both phases con-
tain hadrons (nucleons and hyperons) and quarks and
there would not be a first-order phase transition (but a
crossover instead) if it were not for the choice of strange
quark coupling. In this way, a phase transition sepa-
rates a phase with lower strangeness from a phase with
larger strangeness. In the context of hadronic matter,
the possibility of smooth and strong phase transitions to
strange matter has been explored in Ref. [43]. We label
this sequence of twin stars Set 3 (see Figure 1). For ex-
ample, a particular star mass of 1.68M⊙, corresponding
to radii of 14.00 km and 9.60 km in different branches,

contains strangeness fraction of fs = 0.01 and fs = 1.68,
respectively, at the center of the star in each branch. The
strangeness is defined as fs =

∑
i ρiQSi

/ρB, where ρi is
the number density of each particle, ρB the baryon num-
ber density, and QSi

is the strangeness of each particle.
The properties of the two branches of stars are also shown
in Table II.

B. Adding magnetic field effects

In this section, we investigate the effects of magnetic
fields on the twin stars presented in section II A. Mag-
netic field effects can be introduced simultaneously in the
macroscopic structure of neutron stars by the solution of
the Einstein-Maxwell equations and in the microscopic
formalism of the EoS through Landau quantization. Nev-
ertheless, as already shown in Refs. [28, 44], the latter
does not show significant effects on the macroscopic prop-
erties of stars for magnetic fields of ∼ 1018G or smaller
(which is the case in this work) and, therefore, is not
taken into account in this work.
The macroscopic stellar structure, on the other hand,

is significantly modified by magnetic fields with strengths
∼ 1018 G in the stellar center [45]. For this reason, spher-
ical solutions of Einstein’s equations must be abandoned
when studying strongly magnetized stars. For this pur-
pose, we make use of the LORENE C++ class library for
numerical relativity that generates equilibrium configu-
rations from Einstein-Maxwell’s field equations assum-
ing a poloidal magnetic field configuration produced self-
consistently by a macroscopic current [45]. The magnetic
field strengh depends on the stellar radius (with respect
to the symmetry axis), the dipole magnetic moment and
the EoS. For a fixed dipole magnetic moment, the mag-
netic field increases slowly in the polar direction towards
the center of each star [29, 46].
In this work, for the first time, we fix the magnetic

field in the center of each star of the sequence by adjust-
ing the dipole magnetic moment for each stellar central
density. This is shown in Figure 2 for Set 1-3 of section II
A. Note that in this work we have chosen to discuss twin
stars from the analysis of their (magnetic-axis) equatorial
radii. This is because neutron star radius measurements
usually refer necessary to their equatorial radii. In the
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Figure 1. Mass-radius diagram for Sets 1, 2, and 3, all re-
producing twin-star configurations (without the inclusion of
magnetic fields). M1 and M2 are the hadronic and hybrid
branch maximum masses, and ∆R2 is the radius interval cov-
ered by the third family.

case of measurements using x-ray bursts, as for example
the ones to be performed by NICER, they refer to stellar
equatorial radius (possibly at non-zero latitudes) defined
by rotation [47]. In the case of measurements from grav-
itational waves, they refer to a radius defined by the pro-
jection from the binary orbital motion, since this is the
direction in which deformation takes place [48, 49]. In
any case, all these “equators” are not expected to be sig-
nificantly different from each other angular wise in com-
parison to the polar angle, as magnetic and rotation axes

are expected to be almost aligned for stars with strong
magnetic fields [50].
For Set 1, shown at the top panel in Figure 2, the

introduction of stellar magnetic fields at first increases
the masses and radii of stars until after it reaches a
central value of Bc ∼ 5 × 1017G, when it completely
destabilizes all twin stars. The change in mass and ra-
dius is larger for hadronic stars than for hybrid ones, as
hybrid stars are more compact and, therefore, less de-
formable by magnetic fields [28]. For the hadronic max-
imum mass star, R1 = 14.23 km goes to R1 = 14.49 km
and M1 = 1.969M⊙ goes to M1 = 2.016M⊙, for central
magnetic fields going from zero to Bc ∼ 4× 1017G.
The behavior of twin stars for Set 2 is not distinct

from Set 1, and it is shown at the middle panel in Figure
2. The main difference is that now none of the physical
magnetic fields studied destabilizes the twin stars. This
is due to the fact that the original mass range of the twins
is larger than for Set 1. The changes in maximum masses
and radii for the maximum mass hadronic star, from the
non-magnetic case to a central magnetic field Bc ∼ 1 ×

1018G are: from R1 = 13.61 km to R1 = 14.173 km and
from M1 = 2.061M⊙ to M1 = 2.208M⊙.
The twin stars from Set 3 are shown at the bottom

panel in Figure 2. In this case, again, none of the physical
magnetic fields used in this analysis destabilizes the twin
stars, as they are extremely compact. For this set, the
changes in maximum masses and radii due to magnetic
fields of Bc ∼ 1×1018G for the maximum mass hadronic
star are from R1 = 13.63 km (non-magnetic) to R1 =
14.65 km and from M1 = 1.971M⊙ (non-magnetic) to
M1 = 2.159M⊙.
It is important to notice that for central magnetic fields

higher than Bc ∼ 1×1018G, the hadronic star branch be-
comes unstable even before the twin stars for Sets 2 and 3.
In these cases, the third family still remains, but the in-
tensity of magnetic fields reaches both numeric and phys-
ical limit for our description of magnetic neutron stars.
Numerically, beyond this (model dependent) threshold,
the purely magnetic contribution to the energy density
exceeds the matter part, and the code stops converging.
From the physical point of view, stars on the hadronic
branch have low central densities, and magnetic field ef-
fects on the crust equation of state should be taken into
account. The latter is beyond the scope of this work.

C. Magnetic twin stars

In this section, we investigate the effects of magnetic
fields generating twin-star configurations that otherwise
would not exist. For this purpose, we once more de-
scribe a hadron-quark phase transition with a Maxwell
construction for the combination of the MBF and MIT
models. The hadronic phase parameterization is the
same as in Section II A 1 (ζ = 0.040), but we take the
values of the vector coupling and bag constant to be:
(gV /mV )

2 = 2.2 fm2 and B1/4 = 160MeV, in order to
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Figure 2. Mass-radius diagram for Sets 1 (top), 2 (middle),
and 3 (bottom), for different magnetic field configurations.
For Set 1, twin stars disappear for a central magnetic field
of around Bc ∼ 5 × 1017 G, but do not disappear for the
maximum central magnetic field configurations investigated
in the analysis of Sets 2 and 3.

reproduce massive and stable hybrid stars without the
existence of twins (Set 4). The results are presented in
Figure 3.

As the central magnetic field in the hybrid star in-
creases (and so does the magnetic field strength through-
out the star), a second mass peak appears, and hence
a twin-star configuration. The corresponding threshold
is Bc = 3 × 1017G for this configuration. For larger
magnetic fields, the masses and radii of stars (especially
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Figure 3. Mass-Radius diagram for Set 4. This configuration
does not present twins for the non-magnetic case, and the
appearance of twin stars takes place for magnetic fields as
high as Bc ∼ 4 × 1017 G. For even higher magnitudes of
central magnetic fields, of around Bc ∼ 7× 1017 G, the third
family becomes unstable.

hadronic ones) keep increasing until Bc ∼ 7 × 1017G,
when the twin-star branch disappears again, equivalently
to the discussion for Set 1 in the last session.
More specifically, the non-magnetic configuration for

Set 4 has a maximum mass hybrid star ofM2 = 1.966M⊙

and radius R2 = 12.00 km. The critical mass star, be-
yond which all stars are hybrid, has a mass and radius of
Mc = 1.908M⊙ and radius Rc = 14.05 km. When mag-
netic fields are introduced, due to the appearance of a
third family of stars at Bc = 3×1017G, the critical mass
starMc becomes the maximum mass star at the hadronic
branch M1, having mass and radius of R1 = 14.19 km
and M1 = 1.939M⊙, for this central magnetic field.
The interval of radii for the third family R2 ranges from
13.73 km to 12.04 km (∆R2 = 1.69 km).
Once the third family is established, ∆R2 decreases as

a function of the central magnetic field and ultimately the
twin stars disappear. In particular, at Bc = 6 × 1017G,
when the twin-star configuration is close to the vanishing
threshold, the radius and mass of the hadronic maximum
mass star is R1 = 14.62 km and M1 = 2.037M⊙, and the
radius interval for the third family is reduced to ∆R2 =
(13.32− 12.19) km.
Note that throughout this work, only gravitational

masses were displayed in all figures. Nevertheless, bary-
onic mass plots would show the same qualitative behavior
for twin stars.

III. DISCUSSION AND CONCLUSIONS

In this work we made use of different hadronic and
quark models to study the effects of magnetic fields
on twin stars generated both without and exclusively
by magnetic field effects. The hadronic models em-
ployed were the many-body forces (MBF) and the Quark-
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Hadron Chiral Parity Doublet (QχP) model. The quark
models were the vector MIT bag model, the Constant-
Sound-Speed (CSS) approximation and, once more, the
Quark-Hadron Chiral Parity Doublet (QχP) model.
By defining M1 and M2 as the maximum mass stars on

the hadronic and hybrid branches, respectively, we have
shown that strong magnetic fields do not affect M2 sub-
stantially. On the other hand, M1 corresponds to stars
that are less compact and, therefore, show a stronger in-
crease in both mass and radius due to the magnetic field.
This particular feature makes the M1 peak increase in
value, leading to a less pronounced minimum between
the two peaks of mass (M1 and M2), which characterizes
a third family of stars. Depending on the EoS models
used and on the intensity of magnetic fields considered,
this behavior can eventually result in the elimination of
twin stars, as shown in our results for EoS in Set 1.
In addition, we have also studied the case in which

strong magnetic fields generate twin-star configurations
that otherwise would not exist. This is again related to
the increase of mass and radius for the (less compact)
hadronic branch. In this particular case, shown for Set
4, the critical mass (that corresponds to a critical central
density) becomes a peak of mass M1, which also creates
a nearby minimum and, consequently, a third family.
From our results, we can confidently state that the

mass minimum generated between the two mass max-
ima when twin stars are present depends on the central
magnetic fields as well as on the compactness of stars
in the hadronic and hybrid branches. A more thorough
future study considering many twin stars configurations

will provide a more model-independent relation between
those quantities.

Strong magnetic fields give rise to an instability re-
gion on the mass-radius diagram, directly affecting hy-
brid star configurations by the appearance and/or van-
ishing of a third family of stars. Together, our conclu-
sions point out the fact that twin stars can only exist
as stable objects at specific stages of a magnetar evolu-
tion, as either the absence of strong magnetic fields or the
presence of very strong ones reduces the number of mod-
els/parametrizations that give rise to a mass degeneracy
corresponding to stable stars. In the future, we intend to
expand our calculations to include different models to-
gether with temperature and rotation effects. This will
provide more quantitative understandings of how twin
stars can be a part of star evolution and how magnetic
field decay can generate two families of compact stars.
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