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ABSTRACT. We prove a p-adic analog of Kunz’s theorem: a p-adically complete noether-

ian ring is regular exactly when it admits a faithfully flat map to a perfectoid ring. This

result is deduced from a more precise statement on detecting finiteness of projective di-

mension of finitely generated modules over noetherian rings via maps to perfectoid rings.

We also establish a version of the p-adic Kunz’s theorem where the flatness hypothesis is

relaxed to almost flatness.

1. INTRODUCTION

This paper explores some homological properties of perfect(oid) algebras over commu-

tative noetherian rings. A commutative ring of positive characteristic p is called perfect

if its Frobenius endomorphism is an isomorphism. Perfectoid rings are generalizations of

perfect rings to mixed characteristic (Definition 3.5). Their most important features for our

work are: if A is a perfectoid ring, then
√

pA is a flat ideal, A/
√

pA is a perfect ring, and

finitely generated radical ideals in A containing p have finite flat dimension (Lemma 3.7).

One of our main results is that over a noetherian local ring R, any perfectoid R-algebra

A with mA 6= A detects finiteness of homological dimension of R-modules. More precisely,

given such an A, if a finitely generated R-module M satisfies TorR
j (A,M) = 0 for j� 0,

then M has a finite free resolution by R-modules (Theorem 4.1). The crucial property of A

that is responsible for this phenomenon is isolated in Theorem 2.1, which identifies a large

class of modules that can detect finiteness of homological dimension over local rings.

As a consequence, we obtain a mixed characteristic generalization of Kunz’s theorem,

resolving a question from [9, Remark 5.5]; see also [3, pp. 6]. Recall that Kunz’s theorem

asserts that a noetherian ring R of characteristic p is regular if and only if the Frobenius

map R→ R is flat. One can reformulate this result as the following assertion: such an R

is regular exactly when there exists a faithfully flat map R→ A with A perfect. Our p-adic

generalization is the following:

Theorem (see Theorem 4.7). Let R be a noetherian ring such that p lies in the Jacobson

radical of R (for example, R could be p-adically complete). Then R is regular if and only

if there exists a faithfully flat map R→ A with A perfectoid.

Two algebras are of special interest: the absolute integral closure, R+, of a domain R,

and the perfection, Rperf, of a local ring R of positive characteristic. We prove that if R is an

excellent local domain of positive characteristic and TorR
j (R

+,k) = 0 or TorR
j (Rperf,k) = 0
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for some j≥ 1, then R is regular; see Theorem 4.13, which contains also a statement about

R+ for local rings of mixed characteristic. A key input in its proof is that systems of

parameters for R are weakly proregular on R+ and on Rperf (Lemma 4.10).

Over a perfectoid ring A one has often to consider modules that are almost zero, meaning

that they are annihilated by
√

pA. In particular, in the context of the theorem above, the

more reasonable hypothesis on the map R→ A is that it is almost flat, that is to say that

TorR
i (−,A) is almost zero for i ≥ 1. With this in mind, in Section 5, we establish the

following, more natural, extension of the p-adic Kunz theorem in the almost setting.

Theorem (see Corollary 5.7). Let R be a noetherian p-torsionfree ring containing p in its

Jacobson radical. If there exists a map R→ A with A perfectoid that is almost flat and zero

is the only R-module M for which M⊗R A is zero, then R is regular.

2. CRITERIA FOR FINITE FLAT DIMENSION

Let S be a ring; throughout this work rings will be commutative but not always noether-

ian. The flat dimension of an S-module N is denoted flatdimS(N); when S is noetherian

and N is finitely generated, this coincides with the projective dimension of N. By a local

ring (R,m,k) we mean that R is a ring with unique maximal ideal m and residue field k.

Theorem 2.1. Let (R,m,k) be a noetherian local ring and S an R-algebra containing an

ideal J with mS⊆ J and d := flatdimS(S/J) finite. Let U be an S-module with JU 6=U.

If an R-module M has TorR
i (U,M) = 0 for i = s, . . . ,s+d and some integer s≥ 0, then

TorR
s+d(k,M) = 0 .

In particular, if TorR
j (U,M) = 0 for j ≥ s, then TorR

j (k,M) = 0 for j ≥ s+d.

Proof. Set V := (S/J)⊗L
S U , viewed as a complex of S-modules. The hypothesis is that

Hi(U⊗L
R M) = 0 for i = s, . . . ,s+d. Given the quasi-isomorphism of complexes

V ⊗L
R M ' (S/J)⊗L

S (U⊗L
R M)

it follows by, for example, a standard spectral sequence argument that Hs+d(V ⊗L
R M) = 0.

Since mS ⊆ J, the action of R on S/J and hence also on V , factors through R/m, that is to

say, through k. Thus one has a quasi-isomorphism

V ⊗L
R M 'V ⊗L

k (k⊗L
R M)

of complexes of R-modules. The Künneth isomorphism then yields the isomorphism below

0 = Hs+d(V ⊗L
R M)∼=

⊕

j

H j(V )⊗k Hs+d− j(k⊗L
R M) .

Since H0(V )∼=U/JU is nonzero, by hypotheses, it follows that Hs+d(k⊗L
R M) = 0. �

Corollary 2.2. Let S and U be as in Theorem 2.1. If a finitely generated R-module M

satisfies TorR
i (U,M) = 0 for i = s, . . . ,s+d and some integer s≥ 0, then M has a finite free

resolution of length at most s+d.

Proof. Since R is a noetherian local ring, flatdimR(M) = sup{i | TorR
i (k,M) 6= 0} when M

is finitely generated. Thus the desired result is a direct consequence of Theorem 2.1. �

A natural question that arises is whether TorR
s (U,M) = 0 for some s≥ 0 ensures that M

has a finite free resolution. This is indeed the case for M = k; the argument depends on a

rigidity result, recalled below.
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2.3. Rigidity. Let (R,m,k) be a noetherian local ring and N an R-module. Set

s(N) := sup{t | Ht
m(HomR(N,E)) 6= 0} .

where E is the injective hull of the R-module k and H∗m(−) denotes local cohomology with

respect to m. The following statements hold:

(1) s(N)≤ dimR;

(2) If TorR
i (N,k) = 0 for some i≥ s(N), then TorR

j (N,k) = 0 for all j ≥ i.

Indeed (1) holds because Hi
m(−) = 0 for i > dimR; see [14, Theorem 3.5.7]. Part (2) is

contained in [15, Proposition 3.3] due to Christensen, Iyengar, and Marley.

Corollary 2.4. Let S and U be as in Theorem 2.1. If TorR
i (U,k) = 0 for some i ≥ dimR,

then R is regular.

Proof. By 2.3 one has TorR
j (U,k) = 0 for all j ≥ i. Theorem 2.1 then yields TorR

j (k,k) = 0

for j� 0, and so R is regular; see by [14, Theorem 2.2.7]. �

The preceding result may be viewed as an generalization of the descent of regularity

along homomorphisms of finite flat dimension. Indeed, if (R,m,k)→ (S,n, l) is a local

homomorphism with S regular and flatdimR S finite, then Corollary 2.4 applies with U := S

and J := n to yield that R is regular.

Remark 2.5. It should be clear from the proof of Theorem 2.1 that the ring S in the hypoth-

esis may well be a differential graded algebra, U a dg S-module with H(k⊗L
R U) 6= 0, and

M an R-complex; in that generality, the result compares with [6, Theorem 6.2.2].

3. RECOLLECTIONS ON PERFECT AND PERFECTOID RINGS

In this section, we recall the definition of perfect and perfectoid rings (with examples)

and summarize their homological features most relevant to us. Fix a prime number p. In

what follows Zp denotes the p-adic completion of Z.

3.1. Perfect rings. Let A be a commutative ring of positive characteristic p and ϕ : A→ A

the Frobenius endomorphism: ϕ(a)= ap for each a∈A. The ring A perfect if ϕ is bijective;

such an A is reduced.

The perfect closure of a ring A is the colimit A
ϕ−→ A

ϕ−→ ·· · , denoted Aperf. It is easy to

verify that Aperf is a perfect ring of characteristic p, and the map A→ Aperf is the universal

map from A to such a ring. Moreover the kernel of the canonical map A→ Aperf is precisely√
0, the nilradical of A; in particular, when A is reduced, we identify A as a subring of Aperf.

Each element x in a perfect ring A has a unique pe-th root, for each e≥ 1. We set

(x1/p∞

) :=
∞⋃

e=1

(x1/pe

)A

This ideal is reduced for it equals
√

xA.

Lemma 3.2. Let S be a perfect ring of positive characteristic. For any set x1, . . . ,xn of

elements of S, the ideal J := (x
1/p∞

1 , . . . ,x
1/p∞

n ) of S satisfies flatdimS(S/J)≤ n. �

This result is due to Aberbach and Hochster [2, Theorem 3.1]. We recall an elementary

proof from [12, Lemma 3.16].
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Proof. If R is any perfect ring of positive characteristic and f ∈ R, then R/( f 1/p∞
) is re-

duced and hence also perfect. Thus, by induction, it is enough to treat the case when n = 1.

Relabel x = x1 for visual convenience. It suffices to check that the ideal I := (x1/p∞
)⊂ S is

flat as an S-module. Consider the direct limit

M := lim−→
(

S
x

1− 1
p

−−−→ S
x

1
p− 1

p2

−−−−→ S→ ·· · → S
x

1
pn − 1

pn+1

−−−−−−→ S→ . . .
)
.

As M is a direct limit of free S-modules, it is flat. There is a natural map M→ I determined

by sending 1 ∈ S in the n-th spot of the diagram above to x
1

pn ∈ I. It is enough to show that

this map is an isomorphism. Surjectivity holds as all generators of I are hit.

As to injectivity, pick an element g ∈M in the kernel. Then g lifts to an element g ∈ S

(viewed in the n-th copy of S in the diagram above for some n) such that g · x
1

pn = 0. But

then (g · x
1

pn+1 )p = 0 and so g · x
1

pn+1 = 0, as S is reduced. As 1
pn − 1

pn+1 ≥ 1
pn+1 , we get

g ·x
1

pn− 1

pn+1 = 0, so g is killed by the transition map in the system above, whence g= 0. �

Remark 3.3. An important property of perfect rings is that they admit canonical (and u-

nique) lifts to Zp. Indeed, if A is a perfect ring of characteristic p, then the ring W (A) of

Witt vectors of A is a p-torsionfree and p-adically complete ring with W (A)/p ∼= A. In

fact, any such lift is uniquely isomorphic to W (A): the functors A 7→W (A) and B 7→ B/p

implement an equivalence between the categories of perfect rings of characteristic p and

the category of p-torsionfree and p-adically complete rings B with B/p being perfect. This

perspective can help guess W (A) in concrete situations. For instance, it follows that the

p-adic completion of Z[x
1/p∞

1 , ...,x
1/p∞

d ] coincides with the Witt vectors of Fp[x1, ...,xd ]perf.

3.4. Perfectoid rings. Let us recall the notion of a perfectoid ring from [10, Definition

3.5]; this is sometimes referred to as integral perfectoid to emphasize its integral nature,

and to contrast it with the perfectoid Tate rings that arise in the context of perfectoid spaces.

For any commutative ring A, consider the tilt A[ of A defined by

A[ := lim←−
x 7→xp

A/p .

This ring is perfect of characteristic p and the projection map A[ → A/p is the universal

map from a perfect ring to A/p. Set

Ainf(A) :=W (A[) .

When A is p-adically complete, the projection map A[ → A/p lifts uniquely to a map

θ : Ainf(A)→ A, called Fontaine’s θ -map.

Definition 3.5. A ring A is perfectoid if the following conditions hold:

(1) A is p-adically complete.

(2) The Frobenius A/p→ A/p is surjective.

(3) The kernel of Fontaine’s map θ : Ainf(A)→ A is principal.

(4) There exists an element ϖ ∈ A with ϖ p = pu for a unit u.

The category of perfectoid rings is the full subcategory of all commutative rings spanned

by perfectoid rings.

There is a more explicit characterization of perfectoid rings in terms of Teichmuller ex-

pansions that avoids directly contemplating the Ainf(−) construction. Recall that for any

perfect ring B of characteristic p, each f ∈W (B) can be written uniquely as ∑
∞
i=0[bi]p

i
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where bi ∈ B and the map [·] : B→W (B) is the multiplicative (but not additive) Teich-

muller section to the projection W (B)→ B; we refer to this presentation as the Teichmuller

expansion of f . One then has the following characterization of perfectoidness:

Lemma 3.6. A ring A is perfectoid if and only if there exists a perfect ring B of character-

istic p and an isomorphism W (B)/(ξ ) ∼= A, where the coefficient of p in the Teichmuller

expansion of ξ is a unit (i.e. ξ is primitive) and B is (ξ )-adically complete, where ξ is the

image of ξ in B. For such a B, there is a unique identification B∼= A[ compatible with the

isomorphism W (B)/(ξ )∼= A. In particular, the element ϖ appearing in Definition 3.5 can

be assumed to admit a compatible system {ϖ1/pn} of p-power roots.

The equivalence of this definition with Definition 3.5 can be deduced from the discus-

sion in [10, §3] (and is presumably present in [19, §16]). The analogous characterization

of perfectoid Tate rings can be found in [20, Proposition 1.1], [31, Theorem 3.6.5] and

[37, Theorem 3.17]. An explicit reference is [33, Remark 8.6]. (We are grateful to Scholze

for bringing [33] to our attention.) For the convenience of the reader, we sketch the proof.

Proof sketch. The “only if” direction is immediate from [10, Remark 3.11] as we can

simply take B = A[, so W (B) = Ainf(A). For the “if” direction, the formula W (B)/(ξ )∼= A

shows that B/ξ ∼= A/p, whence B ∼= A[ as B is perfect and (ξ )-adically complete; the

formula A∼=W (B)/(ξ ) can then be rewritten as A∼= Ainf(A)/(ξ ), which immediately gives

the perfectoidness of A.

Finally, for A =W (A[)/(ξ ), up to multiplication by units, we have ξ = p− [a0]u where

u ∈W (A[)∗ and a0 ∈ A[. Set ϖ ∈ A to be the image of [a
1/p

0 ]. Then ϖ ∈ A satisfies (4) in

Definition 3.5 and admits a compatible system of p-power roots ϖ1/pn
:= [a

1/pn+1

0 ]. �

Perfectoid rings are reduced; this follows by combining [19, Corollary 16.3.61 (i)] with

[10, Remark 3.8], or by arguing as in the first proof of [11, Proposition 4.18 (3)], or simply

by [33, Lemma 8.9]. The most important feature of perfectoid rings for the purposes of

this paper is that they are perfect modulo a flat ideal.

Lemma 3.7. Let A be a perfectoid ring. Then the ideal
√

pA⊂ A is flat and A := A/
√

pA

is a perfect ring of characteristic p. Moreover, if J ⊂ A is any radical ideal containing p

such that JA generated by n elements up to radicals, then flatdimA(A/
√

J)≤ n+1.

The construction A 7→ A gives a functor from perfectoid rings to perfect rings, left ad-

joint to the inclusion in the other direction (see Example 3.8 (1) below).

Proof. Write A =W (A[)/(ξ ) and let ϖ be as in Lemma 3.6, with a compatible system of

p-power roots. We first show that A/(ϖ1/p∞
) is perfect and thus reduced; since (p)= (ϖ p),

this will imply that
√

pA = (ϖ1/p∞
) and hence that A/

√
pA is perfect. Note that

A/(ϖ1/p∞

)∼=W (A[)/(p− [a0]u, [a
1/p∞

0 ])∼= A[/(a
1/p∞

0 ).

This ring is perfect as A[ is perfect, proving the claim.

Next, we check that flatdimA(A) ≤ 1; this is equivalent to showing that
√

pA is a flat

ideal. Note that if A is p-torsionfree, then
√

pA = (ϖ1/p∞
) is a rising union of principal

ideals generated by elements which are not zero divisors, and thus trivially flat. In general,

as A has characteristic p, it is enough to check that p-complete Tor amplitude of A ∈ D(A)
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lies in [−1,0], in the sense of [11, §4.1]. By [10, Lemma 3.13], the square

W (A[) //

��

A

��

W (A) // A

is a Tor-independent pushout square. By base change, it is enough to check that p-complete

Tor amplitude of W (A)∈D(W (A[)) lies in [−1,0]. As p is not a zero divisor on both W (A[)

and W (A), this reduces to checking that the Tor amplitude of A over A[ lies in [−1,0]. But

this follows from Lemma 3.2 since A = A[/(a
1/p∞

0 ).
The final assertion about flat dimensions now also follows from Lemma 3.2 and transi-

tivity of flat dimensions. �

Example 3.8. Let us give some examples relevant to this paper.

(1) Perfect rings. A ring A of characteristic p is perfectoid if and only if it is perfect. The

“if” direction is immediate: the kernel of Ainf(A) ∼= W (A)→ A is generated by p, and

we may take ϖ = 0. For the reverse implication, see [34, Example 3.11]. In terms of

Lemma 3.6, these are exactly the perfectoid rings of the form W (B)/(p) for a perfect ring

B of characteristic p.

(2) Absolute integral closures. If A is an absolutely integrally closed domain, then its p-

adic completion Â is perfectoid. This is clear from the previous example when A has

characteristic p. In the mixed characteristic case, the ring A is a p-torsionfree ring that

contains an element ϖ ∈ A with ϖ p = p. As A is absolutely integrally closed, the p-power

map map A/(ϖ)→ A/(ϖ p) is readily checked to be an isomorphism. But then the same

holds true for Â/(ϖ)→ Â/(ϖ p). The perfectoidness of Â follows from [10, Lemma 3.10].

(3) Perfectoid polynomial rings. The p-adic completion A of Z[p1/p∞
,x

1/p∞

1 , . . . ,x
1/p∞

d ] is

perfectoid. In terms of the characterization in Lemma 3.6, one takes B to be the t-adic

completion of Fp[t,x1, . . . ,xd ]perf and ξ = p− [t].

(4) Perfectoidification of unramified regular local rings. Let (R,m,k) be a complete noe-

therian regular local ring of mixed characteristic. Assume k is perfect and write W =W (k)
for the Witt vectors of k. Assume that R is unramified, i.e., p /∈m2. By the Cohen structure

theorem, we can write R∼=W Jx2, . . . ,xdK. Let A be the p-adic completion of

W [p1/p∞

,x
1/p∞

2 , . . . ,x
1/p∞

d ]⊗W [x1,...,xd ] R .

By a variant of the previous example, one checks that the ring A is perfectoid and the map

R→ A is faithfully flat.

(5) Perfectoidification of ramified regular local rings. Fix (R,m,k) and W be as in the first

two sentences of the previous example. Assume that R is ramified, i.e., p ∈ m2. By the

Cohen structure theorem, we can write R =W Jx1, . . . ,xdK/(p− f ) where f ∈ (x1, . . . ,xd)
2.

Let A be the p-adic completion of

W [x
1/p∞

1 , . . . ,x
1/p∞

d ]⊗W [x1,...,xd ] R .

As observed by Shimomoto [38, Proposition 4.9], the ring A is perfectoid and the map

R→ A is faithfully flat (see also [4, Example 3.4.5], [9, Proposition 5.2]). In terms of
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Lemma 3.6, one takes B to be the (y1, . . . ,yd)-adic completion of k[y1, . . . ,yd ]perf and ξ =
p− f ([yi]) to get that A∼=W (B)/(ξ ) is perfectoid.

(6) Modifications in characteristic p. One can construct new perfectoid rings from old

ones by changing their special fibers: if A is a perfectoid ring, and B→ A is any map of

perfect rings of characteristic p (such as an inclusion) then B̃ := A×A B is a perfectoid ring.

Indeed, if we write A = W (A[)/(ξ ) for a primitive element ξ , then setting B′ := A[×A B

gives a perfect ring of characteristic p such that W (B′)∼=W (A[)×A B. Thus. as ξ maps to

0 in A, it lifts uniquely to W (B′). One checks that B̃∼=W (B′)/(ξ ) is indeed perfectoid.

(7) Completed localizations. If A is a perfectoid ring and S⊂ A is a multiplicative set, then

the p-adic completion Ŝ−1A of S−1A is perfectoid. In particular, the p-adically completed

local rings of A are perfectoid.

(8) Products. An arbitrary product of perfectoid rings is perfectoid. This follows imme-

diately from Definition 3.5 as the functor A 7→ Ainf(A) = W (A[) = W (limx 7→xp A/p) com-

mutes with products.

Remark 3.9. All examples above involve perfectoid rings that either have characteristic p

or were p-torsionfree. One can take products to obtain examples where neither of these

properties holds true. Using Example 3.8 (6), one can also construct such examples which

are closely related to products, but not themselves products. In fact, all examples have this

flavor: if A is a perfectoid ring, then its maximal p-torsionfree quotient At f := A/A[p∞] is

a perfectoid p-torsionfree ring, and the natural maps give an exact sequence

0→ A→ At f ×A→ At f → 0

of A-modules by [33, Remark 8.8]. This realizes A as the fiber product At f ×At f
A. In other

words, one can construct arbitrary perfectoid rings by “modifying” p-torsionfree perfectoid

rings by the procedure of Example 3.8 (6).

4. APPLICATIONS

In this section we prove the results dealing with perfect, and with perfectoid, algebras

stated in the Introduction. Fix a prime p.

Theorem 4.1. Let (R,m,k) be a noetherian local ring and A an R-algebra with mA 6= A.

Assume that A is perfectoid (and thus k has characteristic p). Set n = dim(R).
If M is an R-module with TorR

i (A,M) = 0 for s≤ i≤ s+n+1 and integer s≥ 0, then

TorR
s+n+1(k,M) = 0 .

In particular, if TorR
j (A,M) = 0 for j� 0, then TorR

j (k,M) = 0 for j� 0.

Proof. Let J ⊂ A the radical of the ideal generated by a system of parameters x1, ...,xn of

R. Then mA⊂ J. Moreover, since J is generated by n elements up to radicals and contains

p, Lemma 3.7 implies that flatdimA(A/J)≤ n+1. Theorem 2.1 applied with S = A, U = A

and d = n+1 then implies the result. �

Remark 4.2. If the perfectoid ring A appearing in Theorem 4.1 is either perfect or p-

torsionfree, the hypothesis on the vanishing range can be improved slightly: it is sufficient

to require vanishing of TorR
i (A,M) = 0 when s≤ i≤ s+n for an integer s≥ 0.

To see this, note that we can replace the sequence x1, ...xn in the proof above by a

system of parameters for the image R of R→ A without changing the proof. Now if A is
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perfect, then R has characteristic p, so we can replace the reference to Lemma 3.7 by a

reference to Lemma 3.2, which results in an improvement of 1 in the range of vanishing.

If A is p-torsionfree, so is R, so we may take x1 = p, in which case the ideal JA appearing

in the proof above is generated by n− 1 elements, up to radical; this again results in an

improvement of 1. We do not know if this improvement of 1 is possible in general.

Remark 4.3. It will be evident from the proof that the result above holds under the weaker

hypothesis that the R-algebra A factors through a perfectoid algebra. What is more, the only

relevant property of perfectoid algebras that is needed is that it is of positive characteristic

and perfect modulo a flat ideal.

There is an extension of Theorem 4.1 to the non-local case. It can be viewed an exten-

sion of Herzog’s result [23, Satz 3.1] that, for a finitely generated R-module M, vanishing

of Tor against high Frobenius twists of R implies finiteness of the flat dimension of M.

Corollary 4.4. Let R be a noetherian ring with p in its Jacobson radical and let A be

a perfectoid R-algebra such that SpecA→ SpecR is surjective. Let M be an R-module

satisfying TorR
i (A,M) = 0 for i� 0.

If M is finitely generated, or p = 0 in R and dimR is finite, then flatdimR M is finite.

Proof. Fix a prime p ⊂ R containing p. The hypothesis implies Tor
Rp

i (Ap,Mp) = 0 for

i� 0. Then pAp 6= Ap, because SpecA→ SpecR is surjective. The ring Ap is perfect

modulo a flat ideal (since the same was true for A), so Theorem 4.1 (see also Remark 4.3)

applies and yields that, with k(p) the residue of the local ring Rp, one has

(4.4.1) Tor
Rp

i (k(p),Mp) = 0 for all i� 0.

Since p is in the Jacobson radical, this conclusion holds whenever p is a maximal ideal.

When the R-module M is finitely generated, the Rp-module Mp is finitely generated and

the vanishing condition above implies that flatdimRp
(Mp) is finite, and since p can be an

arbitrary maximal ideal, it follows from a result of Bass and Murthy [7, Lemma 4.5] that

flatdimR M is finite.

Assume p = 0 in R and that dimR is finite. In particular (4.4.1) holds for each prime p

in R. It follows from [15, Theorem 4.1] that

Tor
Rp

i (k(p),Mp) = 0 for i≥ dimR+1

and hence, again from op. cit., that flatdimR M is finite. �

Remark 4.5. In Corollary 4.4, the additional hypotheses on R, or on M, is necessary. For

example, if R is a regular ring of positive characteristic and M := ⊕m∈MaxR(R/m), one

has TorR
i (Rperf,M) = 0 for each i ≥ 1, since Rperf is a flat R-module. However one has

flatdimR M = dimR, and the latter can be infinite; see [35, Appendix A1].

4.6. Regularity. We can now prove a mixed characteristic generalization of Kunz’s theo-

rem [32, Theorem 2.1], answering a question in [9, Remark 5.5]; see also [3, pp. 6].

Theorem 4.7. Let R be a noetherian ring with p in its Jacobson radical. If R is regular,

then there exists a faithfully flat map R→ A with A perfectoid.

Conversely, fix a map R→ A with A perfectoid. If SpecA→ SpecR is surjective and

TorR
i (A,A) = 0 for i� 0 (for example, if A is a faithfully flat R-algebra), then R is regular.

Proof. Assume first that there exists an R-algebra A with the stated properties. Fix a maxi-

mal ideal m of R. Since p∈m holds, by hypothesis, arguing as in the proof of Corollary 4.4
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(with M = A) one gets the vanishing of Tor below:

TorR
i (k(m),A)∼= Tor

Rm

i (k(m),Am) = 0 for all i� 0.

The isomorphism holds because the module on the left is m-local. Since k(m) = R/m, it is

a finitely generated R-module, so another application of Corollary 4.4, now with M = k(m),
implies that flatdimR k(m) is finite, and hence that Rm is regular. Since this holds for each

maximal ideal of R, one deduces that R is regular.

Conversely, assume that R is regular with p ∈ J(R). We must construct a faithfully flat

map R→ A with A perfectoid. It clearly suffices to do this on each connected component

of Spec(R), so we may assume R is a regular domain. When R has characteristic p, we may

simply take A = Rperf by Kunz’s theorem. Assume from now on that R is p-torsionfree.

Let us first explain how to construct the required cover when R is complete noetherian

regular local ring of mixed characteristic (0, p). By gonflement [13, IX, App., Theorem

1, Cor.], we may assume that the residue field of R is perfect. One can then perform the

constructions in Examples 3.8 (4) and (5) to obtain the required covers.

It remains to globalize. As R is noetherian and p ∈ J(R), each completion R̂m at a

maximal ideal m is flat over R and has mixed characteristic (0, p). By the previous para-

graph, for each maximal ideal m ⊂ R, we may choose a faithfully flat map R̂m → A(m)
with perfectoid target. Consider the resulting map

R→∏
m

R̂m→∏
m

A(m) .

As R is noetherian, an arbitrary product of flat R-modules is flat, so the above map is flat.

Moreover, it is also faithfully flat: the image of the induced map on Spec(−) is generalizing

(by flatness) and hits all closed points (by construction), and hence must be everything. As

a product of perfectoid rings is perfectoid, we have constructed the desired covers. �

In fact, it is possible to give a more precise characterization of regularity in terms of

perfectoids than that given in Theorem 4.7. For instance, it is enough to assume a single

Tor-module vanishes in a sufficiently large degree.

Corollary 4.8. Let R be a noetherian local ring with residue field k, and let A be an R-

algebra with mA 6= A. Assume A is perfectoid. If TorR
i (A,k) = 0 for some integer i≥ dimR

(for example, if flatdimR A is finite), then R is regular.

Proof. The hypothesis implies TorR
j (A,k) = 0 for j ≥ i; this is by 2.3. Then Theorem 4.1

implies TorR
j (k,k) = 0 for j� 0, so R is regular, by [14, Theorem 2.2.7]. �

In the preceding result, we do not know if the requirement that i ≥ dimR is necessary.

Next we prove that, for special A, it is not. To this end we recall the notion of a proregular

sequence introduced by Greenlees and May [17]. The treatment due by Schenzel [36] is

better suited to our needs.

4.9. Proregular sequences. A sequence of elements x := x1, . . . ,xd in a ring S is proreg-

ular if for i := 1, . . . ,d and integer m≥ 1, there exists an integer n≥ m such that

((xn
1, . . . ,x

n
i−1) :S xn

i )⊆ ((xm
1 , . . . ,x

m
i−1) :S xn−m

i )

It is not hard to verify that this property holds if x is a regular sequence, or if S is noetherian;

see [36, pp. 167]. By [36, Lemma 2.7] such a sequence is weakly proregular, that is to say,

for each m, there exists an integer n≥ m such that the canonical map

Hi(x
n
1, . . . ,x

n
d ;S)−→ Hi(x

m
1 , . . . ,x

m
d ;S)
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on Koszul homology modules is zero for i≥ 1.

We care about these notions because of the following observation.

Lemma 4.10. Let a be an ideal in a noetherian ring R and S an R-algebra. If a can

be generated, up to radical, by a sequence whose image in S is weakly progregular, then

Hi
a(I) = 0 for i≥ 1 and any injective S-module I.

Proof. By hypothesis, there exists a sequence x in R such that
√

x =
√
a and xS, the image

of the sequence x in S, is weakly proregular. Let C be the Čech complex on x, so that

Hi
a(M) = Hi(C⊗R M) for any R-module M; see, for example, [14, Theorem 3.5.6]. Since

I is an S-module has one C⊗R I ∼= (C⊗R S)⊗S I. Since C⊗R S is the Čech complex on xS,

the desired result then follows from [36, Theorem 3.2]. �

Absolute integral closure. Given a domain R, its absolute integral closure (that is to say,

the its integral closure in an algebraic closure of it field of fractions), is denoted R+. When

R is of positive characteristic, R+ contains a subalgebra isomorphic to Rperf.

When R has mixed characteristic, with residual characteristic p, the ideal (p1/p∞
)R+ is

flat, and the quotient ring R+/(p1/p∞
)R+ is of characteristic p and perfect. In the light of

Remark 4.3, it follows that the conclusion of Corollary 4.8 also holds when R has mixed

characteristic and the R-algebra A factors through R+.

Proposition 4.11. Let x be a system of parameters in an excellent local domain R.

If R has positive characteristic, then x is weakly proregular in Rperf and in R+.

If R has mixed characteristic and dimR≤ 3, then x is weakly proregular in R+.

Proof. By [36, Corollary 3.3], it suffices to verify that there is some choice of an s.o.p. that

is (weakly) proregular on Rperf, or R+, as the case maybe.

We treat first the case where R has positive characteristic. In this case, R+ is a balanced

big Cohen-Macaulay algebra, as proved by Hochster and Huneke [25, Theorem 1.1]; see

also Huneke and Lyubeznik [28, Corollary 2.3]. Thus any s.o.p. for R, in particular, x is a

regular sequence, and hence also a (weakly) proregular sequence, in R+.

As to Rperf: Since R is excellent, it is a homomorphic image of an excellent Cohen-

Macaulay local ring [30, Corollary 1.2] and hence it admits a p-standard s.o.p. [18, Defi-

nition 2.1 and Theorem 1.3]. In particular, R admits an s.o.p. x := x1, . . . ,xd such that

((xn1
1 , . . . ,x

ni−1

i−1 ) :R x
ni
i x

n j

j ) = ((xn1
1 , . . . ,x

ni−1

i−1 ) :R x
n j

j ) for all 1≤ i≤ j ≤ d.

In other words, x is a strong d-sequence; see [27, Definition 5.10]. We claim that such an

x satisfies

((xn
1, . . . ,x

n
i−1) :Rperf

xn
i )⊆ ((xm

1 , . . . ,x
m
i−1) :Rperf

xn−m
i ) for all m≥ 1 and n > m.

To this end, since Rperf = ∪R1/pe
, it suffices to prove that

((xpen
1 , . . . ,xpen

i−1) :R x
pen
i )⊆ ((xpem

1 , . . . ,xpem
i−1 ) :R x

pen−pem
i ).

But the conditions on x imply

((xpen
1 , . . . ,xpen

i−1) :R x
pen
i ) = ((xpen

1 , . . . ,xpen
i−1) :R xi)

⊆ ((xpem
1 , . . . ,xpem

i−1 ) :R xi)

= ((xpem
1 , . . . ,xpem

i−1 ) :R x
pen−pem
i )

This proves x is proregular, and hence also weakly proregular, on Rperf, as desired.
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Suppose R is of mixed characteristic. When dimR ≤ 2 once again R+ is a big Cohen-

Macaulay algebra, so the result follows. Assume dimR = 3 and choose an s.o.p. of the

form x,y, p. Since R+ is normal, x,y is a regular sequence on it. It thus suffices to verify:

((xn,yn) : R+ pn)⊆ ((xm,ym) : R+ pn−m) for all m≥ 1 and n > m.

Assume zpn ∈ (xn,yn)R+. It follows from a result of Heitmann’s [21, Theorem 0.1], see

also [22], that pε z ∈ (xn,yn)R+ for any rational number ε . In particular, pz ∈ (xn,yn)R+

and this implies the desired inclusion. �

Corollary 4.12. Let (R,m,k) be an excellent local domain and E the injective hull of k.

If R has positive characteristic, then

Hi
m(HomR(R

+,E)) = 0 = Hi
m(HomR(Rperf,E)) for each i≥ 1.

When R has mixed characteristic and dimR≤ 3, one has

Hi
m(HomR(R

+,E)) = 0 for each i≥ 1.

Proof. By adjunction, the R+-module HomR(R
+,E) and the Rperf-module HomR(Rperf,E)

are injective. Thus the desired result follows from Proposition 4.11 and Lemma 4.10. �

Aberbach and Li [1, Corollary 3.5] have proved parts (1) and (2) of the following result,

using different methods.

Theorem 4.13. Let (R,m,k) be an excellent local domain. Then R is regular if any one of

the following conditions.

(1) R has positive characteristic and TorR
i (Rperf,k) = 0 for some integer i≥ 1;

(2) R has positive characteristic and TorR
i (R

+,k) = 0 for some integer i≥ 1;

(3) R has mixed characteristic, dimR≤ 3, and TorR
i (R

+,k) = 0 for some i≥ 1.

Proof. In all cases, it follows from Corollary 4.12 and 2.3 that TorR
j (R

+,k), respectively,

TorR
j (Rperf,k), is zero for each j ≥ i. When R has positive characteristic, R+ contains

Rperf; in mixed characteristic, R+ is perfect modulo a flat ideal. Therefore, in either case

Theorem 4.1—see also Remark 4.3—implies TorR
j (k,k) = 0 for j� 0 as desired. �

Here is a question suggested by part (3) above: If (R,m,k) is a noetherian local domain

of characteristic 0 and TorR
i (R

+,k) = 0 for some i≥ 1, then is R regular?

5. ALMOST FLATNESS

The goal of this section is to prove, for rings of mixed characteristic, the variations of

Theorems 4.1 and 4.7 where the vanishing of Tor and the flatness hypotheses are relaxed

to almost conditions. As before, throughout this section we fix a prime p; the notion of

perfectoid is with respect to this prime. A module over a perfectoid ring A almost zero if it

is killed by
√

pA; a map R→ A is almost flat if TorR
i (−,A) is almost zero for each i≥ 1.

In what follows we will consider maps R→ A with R noetherian and p-torsion free, and

A perfectoid, satisfying the following:
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5.1. Valuative condition. For every map R→ V with V a p-torsionfree and p-adically

complete rank 1 valuation ring, there exists an extension V →W of p-torsionfree and p-

adically complete rank 1 valuation rings and a map A→W extending R→V →W .

See Remark 5.4 for an alternative description of this condition, and Proposition 5.6 for

a sufficient, and perhaps easier to verify, condition under which it holds.

Compare the result below with Theorem 4.1, and also Remark 4.2.

Theorem 5.2. Let (R,m,k) be a noetherian local ring that is p-torsionfree and p ∈ m

holds. Let R→ A be a map with A perfectoid and satisfying the valuative condition 5.1.

If M is an R-module for which the A-module TorR
i (A,M) is almost zero for each integer

s≤ i≤ s+dimR, for some s≥ 0, then

TorR
s+dimR+1(k,M) = 0 .

In particular, if M = k, then the ring R is regular.

The proof of this result, given further below, is a little more involved than that of Theo-

rem 4.1. It will be clear from the proof that there is a version of the preceding result where

almost zero is measured with respect to some fixed nonzero divisor in A, not necessarily p,

that admits a compatible system of p-power roots. Moreover, it suffices that condition 5.1

holds for noetherian valuations V that dominate the maximal ideal m.

Here is an analogue of Theorem 4.7.

Theorem 5.3. Let R be a noetherian p-torsionfree ring such that p lies in its Jacobson

radical. Let R→ A be a map with A perfectoid and satisfying the valuative condition 5.1.

If R→ A is almost flat, then R is regular.

Proof. Fix a maximal ideal m of R. We shall prove that Rm is regular; as m was arbitrary,

the theorem follows. Since p is in the Jacobson radical of R, the residue field k at m has

characteristic p. Let Âm denote the p-adic completion of Am; this is a perfectoid ring. It is

easy to verify that the valuative condition 5.1 is inherited by the induced map Rm→ Âm.

Since k is of characteristic p and is m-local, for each i there are natural isomorphisms

Tor
Rm

i (Âm,k)∼= Tor
Rm

i (Am,k)∼= TorR
i (A,k) .

Since R→ A is almost flat, it thus follows that the Âm-module Tor
Rm

i (Âm,k) is almost zero

for i≥ 1. Thus, Theorem 5.2 applies and yields that Rm is regular, as desired. �

Observe that, in contrast with the statement of Theorem 4.7, the preceding result makes

no explicit hypothesis on the induced map of spectra of R and A. But in fact the valuative

condition 5.1 can be described in terms of adic spectra.

Remark 5.4. Give a p-torsion free commutative ring B, let Spa(B[1/p],B) denote the adic

spectrum of (B[1/p],B) topologized using the p-adic topology on B; see Huber [26, Def-

inition (iii)] and also [16, §10.3], keeping in mind that Spa(B[1/p],B) coincides with

Spa(B[1/p],B+), where B+ is the integral closure of B in B[1/p]. The generic points

of Spa(B[1/p],B) are in bijective correspondence with equivalence classes of maps B→V

where V is a p-torsionfree and p-adically complete rank 1 valuation ring; the equivalence

relation is generated by refinements of such V .

The valuative condition 5.1 is thus equivalent to the surjectivity on generic points of the

induced map Spa(A[1/p],A)→ Spa(R[1/p],R). For psychological ease, we remark that if

a generic point x ∈ Spa(R[1/p],R) is the image of a point y ∈ Spa(A[1/p],A), then we can

also find a generic point y′ ∈ Spa(A[1/p],A) lifting x simply by setting y′ to be the maximal

generalization of y.
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Remark 5.5. The main reason to use the valuative condition 5.1 in formulating Theorem 5.2

is that nonzero finitely generated ideals in a valuation ring cannot contain elements of ar-

bitrarily small valuation. This provides an easy way to test whether certain modules not

almost zero (which is a stronger statement than merely requiring them to be nonzero); see

the paragraph following Claim 1 in the proof of Theorem 5.2. The restriction to rank 1 val-

uations ensures that we may replace the ring A appearing in the statement of Theorem 5.2

with an almost isomorphic one without affecting the hypotheses on A.

Proof of Theorem 5.2. The assumptions on R→ A are stable under replacing A with an

almost isomorphic perfectoid ring (such as At f ). Thus, we may assume A is p-torsionfree.

Set d := dimR and choose elements f1, ..., fd in m that generate it up to radical.

We begin by replacing the images of the fi’s in A by elements that admit p-power roots

as follows: Choose g1 = ϖ p, so that (g1) = (p) = ( f1); see Lemma 3.6. For i≥ 2, choose

elements hi ∈ A[ lifting fi ∈ A/(g1) and set gi = h
]
i . Then each gi admits a compatible

system {g1/pn

i } of p-power roots. Moreover, by construction we have
(
g

1/pn

i

)pn

≡ fi mod (g1) for i≥ 2.

In particular, there is an equality ( f1, ..., fd) = (g1, ...,gd) of ideals of A.

The key step will be to justify the following

Claim 1. When TorR
s+d+1(k,M) 6= 0 holds, there is an containment of ideals

(5.5.1) (g
1/p∞

1 )⊆ (g1, ...,gd)A = ( f1, ..., fd)A⊂ A.

Given this we complete the proof by checking that (5.5.1) is not compatible with the

valuative condition. Choose a map A→W to a p-adically complete and p-torsionfree

rank 1 valuation ring W such that the image of fi in W is not invertible; to construct such

a map, one first does it for R—where it exists since R is p-torsionfree and ( fi) is not

the unit ideal [29, Theorem 6.4.3]—and then invokes condition 5.1. As (g1) = (p) and

p is a pseudouniformizer in W , elements of (g
1/p∞

1 ) give elements of W with arbitrarily

small valuation. On the other hand, the ideal ( f1, ..., fd) ⊆W is finitely generated and

non-unital by construction, so it cannot contain elements of arbitrarily small valuation.

In particular, it cannot contain (g
1/p∞

1 ), contradicting (5.5.1). See Proposition 5.6 for an

alternative denouement.

Now we take up the task of proving Claim 1. To that end for each integer n≥ 1 set

An := K(g
1/pn

1 , ...,g
1/pn

d ; A) ,

the Koszul complex over A on the elements g
1/pn

1 , ...,g
1/pn

d .

Claim 2. For each n the A-module TorR
s+d+1(An,M) is almost zero.

This is a straightforward verification using the fact that An can be constructed as an

iterated mapping cone (d of them are required) starting with A, and our hypothesis that

TorR
i (A,M) is almost zero for s≤ i≤ s+d.

In the next steps we will exploit the fact that each An has a structure of a strict graded-

commutative dg (differential graded) A-algebra; namely, it is an exterior algebra over A

on indeterminates yn,1, . . . ,yn,d of degree one with differential defined by the assignment

yn,i 7→ g
1/pn

i . For each integer n≥ 1, writing one gets a morphism of dg A-algebras

An→ An+1 where yn,i 7→ (g
1

pn− 1

pn+1

i )yn+1,i .
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Then A∞ := colimn An is a strict graded-commutative dg A-algebra, and the structure maps

An→ A∞ are morphisms of dg A-algebras.

Claim 3. The dg A-algebra A∞ satisfies

Hi(A∞) =

{
A/(g

1/p∞

1 , . . . ,g
1/p∞

d ) for i = 0

0 for i≥ 1.

To begin with, set B := A/(
√

pA); this ring is of characteristic p and is perfect; see

Lemma 3.7. Since A is p-torsion free, the dg A-algebra

0→ A
p1/pn

−−−→ A→ 0

is quasi-isomorphic to its homology module in degree zero, namely, A/(p1/pn
). Thus the

colimit, as n→∞, of these dg algebras is quasi-isomorphic to A/(p1/p∞
) = B. Since g1 = p

and colimits commute with tensor products, it follows that A∞ is quasi-isomorphic to the

colimit, B∞, of dg B-algebras

Bn := K(g
1/pn

2 , ...,g
1/pn

d ; B)

where the maps Bn → Bn+1 are defined as for the An. It thus suffices to prove that the

homology of B∞ is concentrated in degree 0, where it is B/(g
1/p∞

2 , . . . ,g
1/p∞

d ). This is

essentially the content of Lemma 3.2. Indeed, as in the proof of Lemma 3.2 one reduces to

the case of a single element, g, in B. Consider F := 0→ (g1/p∞
)
⊂−→ B→ 0, viewed as a dg

B-algebra concentrated in degrees 0 and 1, and the morphism Bn→ F of dg B-algebras

0 // B

17→g1/pn

��

g1/pn

// B // 0

0 // (g1/p∞
)
⊂

// B // 0

It is clear that these morphisms are compatible with the morphisms Bn → Bn+1, and so

yield a morphism B∞→ F of dg B-algebras. This an isomorphism: this is clear in degree

0 zero, whilst in degree 1 it was verified in the proof of Lemma 3.2.

This completes the proof of the claim. Observe that A/(g
1/p∞

1 , . . . ,g
1/p∞

d )∼= (A/mA)perf.

In the remainder of the proof we use some basic facts about (strict graded-commutative)

semifree dg R-algebras, referring to Avramov [5] for details. Let R[X ] be a resolvent of k

viewed as an R-algebra; in particular, the R-algebra R[X ] is the strict graded-commutative

polynomial ring on a graded set of indeterminates X := {Xi}i>1. Since R is noetherian, one

can choose X such that set Xi is finite for each i; see [5, Proposition 2.1.10].

Claim 3 implies that the canonical surjection A∞ → H0(A∞) is a quasi-isomorphism

of dg A-algebras, and hence also of dg R-algebras. By construction mH0(A∞) = 0 so

the induced morphism R→ H0(A∞) factors through the surjection R→ k. Since R[X ] is

semifree, it then follows from [5, Proposition 2.1.9] that there is a commutative square

R[X ]
ϕ

//

��

A∞

'
��
��

k // H0(A∞)

of dg R-algebras. Recall that A∞ is constructed as a colimit of the An.
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Claim 4. For n� 0, the morphism ϕ : R[X ]→ A∞ of dg R-algebras factors through An; that

is to say, there is a morphism ϕn : R[X ]→ An of dg R-algebras such that its composition

with An→ A∞ is ϕ .

The crucial point is that since each complex An is zero outside (homological) degrees

[0,d], so is their colimit A∞. In particular, ϕ(Xi) = 0 for i≥ d +1 for degree reasons, and

ϕ is completely determined by its values on the Xi for 1 ≤ i ≤ d. Since each Xi is finite,

it clear that ϕ lifts to a map of R-algebras ϕn : R[X ]→ An for some n ≥ 1. Moreover,

increasing n if needed we can ensure that the commutator [∂ ,ϕn] vanishes on the Xi, that is

to say, ϕn is also a morphism of complexes, and hence a morphism of dg R-algebras.

Claim 5. For n� 0 there is an isomorphism of graded A-modules

TorR(An,M)∼= H(An)⊗k TorR(k,M) .

By each n as in Claim 4, the R-module structure on An extends, via ϕn, to that of a dg

module over R[X ], so one has

An⊗L
R M ' An⊗L

R[X ] (R[X ]⊗L
R M)

as complexes of A-modules. Since H(R[X ]) = k is a field, the Künneth map

H(An)⊗H(R[X ]) H(R[X ]⊗L
R M)−→ H(An⊗L

R[X ] (R[X ]⊗L
R M))

is an isomorphism. Combining the preceding two isomorphisms yields

TorR(An,M) = H(An⊗L
R M)∼= H(An)⊗k TorR(k,M) .

This completes the proof of Claim 5.

Proof of Claim 1: Assume to the contrary that TorR
s+d+1(k,M) 6= 0. Fix n� 0 so that

Claim 5 applies. Then the A-module TorR
s+d+1(An,M) contains H0(An) as a direct sum-

mand. Claim 2 implies that H0(An) is almost zero. Since H0(An)∼= A/(g
1/pn

1 , ...,g
1/pn

d ), by

construction, this fact translates to
√

pA = (g
1/p∞

1 )A⊆ (g
1/pn

1 , ...,g
1/pn

d ) .

Raising to a sufficiently large power and observing that (g
1/p∞

1 ) is idempotent, this gives

(g
1/p∞

1 )A⊆ (g1, ...,gr)A = ( f1, ..., fr)A.

This completes the proof of Claim 1 and so also that of the theorem. �

The next result gives a way to check the valuative condition 5.1.

Proposition 5.6. Let R be a noetherian p-torsionfree ring containing p in its Jacobson

radical. Let R→ A be a map, with A perfectoid, that is almost flat and 0 is the only

R-module M for which M⊗R A = 0. Then the following statements hold.

(1) R→ A satisfies the valuative condition 5.1.

(2)
√

pA 6⊆mA for any maximal ideal m of R.

(3) 0 is the only R-module M for which M⊗R A is almost zero.

Proof. We proved that (2) follows from (1) as part of the proof of Theorem 5.3. Here we

establish (2) first, and then deduce (1) and (3) from it.

(2) This part does not use the hypothesis that R→ A is almost flat. Let p be a minimal

prime of R̂m, the m-adic completion of Rm and set S := R̂m/p. For d = dimS one gets that

Hd
m(S⊗R A)∼= Hd

m(S)⊗R A 6= 0;
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here we have used the hypothesis that (−)⊗R A is faithful on modules. Therefore S⊗R A

is a solid S-algebra in the sense of Hochster; see [24, Corollary 2.4].

Contrary to the desired result, suppose
√

pA ⊆ mA, and consider the element ϖ from

Definition 3.5. Since ϖ p = pu, for some unit u in A, one has that
√

ϖA⊆mA. Therefore,

for each e≥ 0 the element ϖ1/pe
is in m(S⊗R A) and hence ϖ ∈mpe

(S⊗R A); this implies

that p is the same ideal. By definition [24, (1.2)], this implies that p is contained in the

solid closure of mpe
S, and hence in the integral closure of mpe

, by [24, Theorem 5.10].

This is a contradiction for p is not zero in S; see [29, Proposition 5.3.4].

(3) Suppose M 6= 0, so there is an embedding R/I ⊆M for some nonunit ideal I of R.

Since R→ A is almost flat, when M⊗R A is almost zero, so is (R/I)⊗R A, that is to say,

(p1/p∞
)A⊆ IA; this contradicts (2). Note that (2) is the special case M = R/m of (3).

(1) At this point we can assume R→ A is almost flat and that 0 is the only R-module

M for which M⊗R A almost zero. These hypotheses remain unchanged, and it suffices to

verify the conclusion, when we replace A by any almost isomorphic ring, and by doing

so we can assume that A is also p-torsion free. Then, for any integer n ≥ 1 the map

R/pn→ A/pn is almost flat, and has the property that M⊗R/pn (A/pn) almost zero implies

M = 0. These observations will be used below.

Fix a map R→V with V a p-adically complete and p-torsionfree rank 1 valuation ring.

Set B := A⊗R V and let B̂ denote the p-adic completion of B. It will be enough to show

that B̂[1/p] 6= 0; then, for any prime q in B̂ not containing p, there exists a p-adic rank 1

valuation on the domain B̂/q, for each maximal of this quotient contains p, and any such

valuation extends V ; see also [26, Proposition 3.6].

Assume towards contradiction that B̂[1/p] = 0. Then the Banach open mapping theorem

shows that for some m ≥ 0 one has pm · B̂ = 0, that is to say, B̂ ' B̂/pm; see [8]. Since

B̂/pm ' B/pm and the transition maps in the tower {B/pn} limiting to B̂ are surjective,

it follows that B/pm+1 ' B/pm via the natural map. In other words, the surjective map

V/pm+1→V/pm becomes an isomorphism after applying −⊗R/pn A/pn for n≥ m+1. It

then follows that pmV/pm+1V ⊗R/pn A/pn is almost zero and hence that pmV/pm+1V = 0,

which is absurd as V is p-torsionfree and p-adically complete. �

Here is a more intuitive formulation of the p-adic Kunz theorem in the almost setting.

Corollary 5.7. Let R be a noetherian p-torsionfree ring containing p in its Jacobson rad-

ical. If there exists a map R→ A with A perfectoid that is almost flat and zero is the only

R-module M for which M⊗R A is zero, then R is regular.

Proof. This is a direct consequence of Proposition 5.6(1) and Theorem 5.3. �
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