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Abstract. Conditions on the Koszul complex of a noetherian local ring R

guarantee that TorR
i
(M,N) is nonzero for infinitely many i, when M and N are

finitely generated R-modules of infinite projective dimension. These conditions
are obtained from results concerning Tor of differential graded modules over
certain trivial extensions of commutative differential graded algebras.

Introduction

This paper is motivated by, and feeds into our work in [7], which is concerned
with the following problem: Given a commutative noetherian ring R and a finitely

generated R-module M , does TorRi (M,M) = 0 for i � 0 imply that the projective

dimension of M is finite? Similar questions have arisen in the literature, also in
certain non-commutative contexts; we refer the reader to [7] for a discussion.

When R is complete intersection, by using their theory of cohomological support
varieties Avramov and Buchweitz [3] answered that question in the positive and
showed the failure in codimension two or higher of the following stronger property:

(∗) TorRi (M,N) = 0 for i� 0 implies proj dimRM <∞ or proj dimRN <∞ .

On the other hand, work of Huneke and Wiegand [11] and Jorgensen [12] shows
that (∗) does hold for Golod rings. More recently, Nasseh and Yoshino [13] proved
it for local rings whose maximal ideal requires a generator from the socle. Such
rings are trivial extensions of the form S nW , where S is a local ring and W is a
nonzero finitely generated S-module, annihilated by the maximal ideal of S.

Even when a local ring is not a trivial extension, its Koszul complex—viewed as a
differential graded (DG) algebra—may have such a structure. The goal of this paper
is to prove that then the implication (∗) still holds. This is achieved in Theorem
5.3, which is deduced from much more general results concerning non-vanishing of
Tor of DG modules over certain trivial extensions of DG algebras.

The substance of the paper is the development of techniques needed to state and
prove this result; see Theorems 3.1 and 4.2, which in Proposition 5.2 give unified
proofs of the results in [11, 12, 13]. Along the way, in Theorem 1.5, we obtain for
retracts of augmented DG algebras a result that implies Herzog’s [10] computation
of Poincaré series of modules over retracts of local rings; see Proposition 5.1.
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1. Retracts of DG algebras

In this section we establish statements concerning Tor functors of differential
graded (DG) modules over retracts of DG algebras. Some basic definitions and
constructions concerning DG algebras and their DG modules are recapped in an
appendix to the paper, to which there are frequent references throughout the text.

In the following paragraphs, we often consider bimodules: When B,C are DG
algebras, by a DG BC-bimodule we mean a complex of abelian groups with com-
patible structures of a left DG B-module and a right DG C-module.

1.1. Let β : B → C be a morphism of DG algebras and M a left DG C-module.
We write βM for M viewed as a left DG B-module by restriction of scalars along
β; similarly for right DG modules. It is a routine verification that the maps

(1.1.1)
ιM : βM −→ β(Cβ ⊗B

βM)

ιM (m) = 1⊗m
and

µM : Cβ ⊗B
βM −→M

µM (c⊗m) = cm

are morphism of left DG B-modules and DG C-modules, respectively. Note that

the composed map βM
∼=
−−→ B ⊗B

βM
β⊗B

βM
−−−−−−→ β(Cβ ⊗B

βM) is ιM(1.1.2)

the composed map µM ◦ ιM is the identity map of M .(1.1.3)

Lemma 1.2. When A
α
−→ B

β
−→ C are morphisms of DG algebras, L a right DG

A-module, and M a left DG C-module, there is an isomorphism of complexes

(L⊗A
βαC)β ⊗B

βM ∼= (L⊗A
βαM)⊕

(
L⊗A

α(Coker(β)⊗B
βM)

)
.

Proof. Consider the exact sequence of DG BB-bimodules:

B
β
−−→ C −→ Coker(β) −→ 0 .

Applying (?⊗B
βM) to it, in view of (1.1.2) we get a sequence of left DG B-modules

0 −→ βM
ιM

−−−→ β(Cβ ⊗B
βM) −→ Coker(β)⊗B

βM −→ 0 .

Its exactness is clear except at M , and (1.1.3) shows that ιM is a split monomor-
phism. Thus, by restriction along α, one gets an isomorphism of left DG A-modules

βα(Cβ ⊗B
βM) ∼= βαM ⊕ α(Coker(β)⊗B

βM) .

The desired result is obtained by applying (L⊗A?), then invoking the canonical
isomorphism L⊗A

βα(Cβ ⊗B
βM) ∼= (L⊗A

βαC)β ⊗B
βM . �

1.3. Let β : B → C be a morphism of DG algebras and M a left DG C-module.
When β is a quasi-isomorphism and either Cβ or βM is semiflat, the morphisms

of left DG modules ιM and µM , defined in (1.1.1) are quasi-isomorphisms.
Indeed, β ⊗B

βM is a quasi-isomorphism by A.6, so (1.1.2) shows that ιM is a
quasi-isomorphism, and then (1.1.3) implies that so is µM .

Proposition 1.4. Let A
α
−→ B

β
−→ C be morphisms of DG algebras, L a right DG

C-module, and M a semiflat left DG C-module such that βM is semiflat.

If βα is a quasi-isomorphism and the DG module Lβα or βαC is semiflat, then

there is a quasi-isomorphism of complexes

Lβ ⊗B
βM '

(
L⊗C M)⊕ (Lβα ⊗A

α(Coker(β)⊗B
βM)

)
.



HOMOLOGY OVER TRIVIAL EXTENSIONS 3

Proof. By (the analogue for right DG modules of) 1.3 the map

Lβα ⊗A
βαC −→ L

is a quasi-isomorphism of right DG C-modules and thus also one of right DG
B-modules. This, and the hypotheses on M , give the first and the last quasi-
isomorphisms of complexes in the following string

Lβ ⊗B
βM

'
←−(Lβα ⊗A

βαC)β ⊗B
βM

∼= (Lβα ⊗A
βαM)⊕ (Lβα ⊗A

α(Coker(β)⊗B
βM))

∼= ((Lβα ⊗A
βαC)⊗C M)⊕ (Lβα ⊗A

α(Coker(β)⊗B
βM))

'
−→(L⊗C M)⊕ (Lβα ⊗A

α(Coker(β)⊗B
βM))

The second one is Lemma 1.2, applied to Lβα; the third one is canonical. �

Here is a first application of Proposition 1.4. Note that the DG algebras in the
statement are graded-commutative.

Theorem 1.5. Let B
β
−→ C

ε
−→ k be morphisms of graded-commutative DG algebras,

where k is a field, and let L be a DG C-module.

If there exists a morphism of DG algebras α : A → B, such that βα : A → C is

a quasi-isomorphism, then there is an isomorphism of graded k-vector spaces:

TorB(Lβ , εβk) ∼= TorC(L, εk)⊗k Tor
B(Cβ , εβk) .

Proof. Referring to A.9, form a commutative diagram of DG algebras

B̃

'
����

//
β̃

// C̃

'
����

A
α

//
??

α̃

??

B
β

// C
ε

// k

where A
α̃
−→ B̃

'
� B is a semiflat DG algebra resolution of α and B̃

β̃
−→ C̃

'
� C

is one of the composed morphism B̃ → B
β
−→ C. In view of A.4, it suffices to

establish the desired isomorphism for the morphism of DG algebras B̃ → C̃ → k.

Thus, replacing B → C → k by B̃ → C̃ → k we may assume that αB and βC are
semiflat. Moreover, replacing L with a resolution, we may further assume that L
is semiflat. Note that βαC and Lβα are semiflat, by A.7.

One has an exact sequence of DG B-modules

0 −→ B
β
−−→ C −→ Coker(β) −→ 0 .

Applying TorB(?, εβk) one gets an isomorphism of graded k-vector spaces

(1.5.1) k ⊕ TorB(Coker(β), εβk) ∼= TorB(Cβ , εβk) .

Let M
'
−→ εk be a semiflat resolution over C. Since Coker(β) is semiflat, by

construction, it induces a quasi-isomorphism of DG B-modules

Coker(β)⊗B
βM

'
−−→ Coker(β)⊗B

εβk .
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By restriction of scalars, this is also a morphism of DG A-modules. Since Lβα is
semiflat, the preceding quasi-isomorphism induces the one below:

Lβα ⊗A
α(Coker(β)⊗B

βM) ' Lβα ⊗A
α(Coker(β)⊗B

εβk)

∼= (Lβα ⊗A
εβαk)⊗k (Coker(β)⊗B

εβk)

The isomorphism holds because the action of B on Coker(β)⊗B k through Coker(β)
coincides with is action through k, and hence so do the induced actions of A.

The quasi-isomorphisms above and the Künneth formula yield the first one of
the following isomorphisms of graded k-vector spaces:

H(Lβα ⊗A
α(Coker(β)⊗B

βM)) ∼= TorA(Lβα, εβαk)⊗k Tor
B(Coker(β), kεβ)

∼= TorC(L, εk)⊗k Tor
B(Coker(β), kεβ)

The second one holds by A.4, since βα is a quasi-isomorphism.
The last display justifies the third isomorphism in the next string:

TorB(Lβ , kεβ) ∼= H(Lβ ⊗B
βM)

∼= H(L⊗C M)⊕H(Lβα ⊗A
α(Coker(β)⊗B

βM))

∼= TorC(L, εk)⊕
(
TorC(L, εk)⊗k Tor

B(Coker(β), kεβ)
)

∼= TorC(L, εk)⊗k
(
k ⊕ TorB(Coker(β), kεβ)

)

∼= TorC(L, εk)⊗k Tor
B(Cβ , kεβ)

Proposition 1.4 gives the second isomorphism, and formula (1.5.1) the last one. �

2. Trivial extensions

For the rest of the article all DG algebras are assumed to be graded-commutative.

Let A be a DG algebra and W a DG A-module.
The trivial extension AnW is the DG algebra with underlying complex A⊕W

and product given by (a, w)(a′, w′) = (aa′, aw′ + (−1)|w||a′|a′w). Note that the
canonical maps A→ AnW → A are morphisms of DG algebras.

Theorem 2.1. Let A be a DG algebra, and let M and N be DG A-modules.

Let k be a field, W a DG k-module, and ε : A→ k a morphism of DG algebras.

Set B = An εW and let β : B → A be the canonical surjection.

There is then a natural isomorphism of graded H(A)-modules:

TorB(Mβ , βN) ∼= TorA(M,N)⊕
(
TorA(M, εk)⊗k (ΣH(W ))⊗k Tor

B(kεβ , βN)
)
.

Corollary 2.2. When Hi(W ) 6= 0 holds for some i 6= −1, the condition

TorA(M, εk) 6= 0 6= TorA(kε, N)

implies TorBi (M
β , βN) 6= 0 for infinitely many integers i.

In the proofs we use basic properties of mapping cones, which we recall next.

2.3. Let ψ : S → T be a morphism of DG A-modules.

The cone of ψ is the DG A-module Cone(ψ), with Cone(ψ)
\
= ΣS\ ⊕ T \ and

differential given by (s, t) 7→ (∂ΣS(s), ∂T (t) + ψ(s)).
If ψ is injective, then there is a quasi-isomorphism of DG A-modules

(2.3.1) π : Cone(ψ)
'
−−→ Coker(ψ) given by (s, t) 7→ t+ Im(ψ) .
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Indeed, then π is surjective with Ker(ι) ∼= Cone(idS), and Cone(idS) is acyclic.
If ψ is surjective, then there is a quasi-isomorphism of DG A-modules

(2.3.2) ι : ΣKer(ψ)
'
−−→ Cone(ψ) given by s 7→ (s, 0) .

Indeed, then ι is injective with Coker(ι) ∼= Cone(idT ), and Cone(idT ) is acyclic.
If there is a commutative square of morphisms of DG A-modules

S
ψ

//

σ '

��

T

τ'

��

S′ ψ′

// T ′

with σ, τ quasi-isomorphisms, then there is a quasi-isomorphism of DG A-modules

(2.3.3) ψ : Cone(ψ)
'
−→ Cone(ψ′) is given by (s, t) 7→ (σ(s), τ(t)) .

Indeed, this follows from the Five-Lemma applied to the commutative diagram

0 // T //

τ '

��

Cone(ψ) //

ψ

��

ΣS //

Σσ '

��

0

0 // T ′ // Cone(ψ′) // ΣS′ // 0

Proof of Theorem 2.1. By using A.9, we construct a diagram of DG algebras

A
α

//
��

ι
��

B̃

'ι̃
����

//
β̃

// C

' γ

����

B
β

// // A
ε

// k

where ι is canonical, ι̃α is a semiflat resolution of ι, and γβ̃ is one of βι̃.

Let M̃
'
−→Mγ and Ñ

'
−→ γN be semiflat resolutions over C. In view of A.7, the

maps M̃ β̃ '
−→Mγβ̃ =Mβι̃ and β̃Ñ

'
−→ γβ̃N = βι̃N are semiflat resolutions over B̃.

They explain the first isomorphisms below, and A.4 gives the second ones:

H(M̃ β̃ ⊗
B̃
β̃Ñ) ∼= TorB̃(Mβι̃, βι̃N) ∼= TorB(Mβ , βN)

H(M̃ ⊗C Ñ) ∼= TorC(Mγ , γN) ∼= TorA(M,N) .

In view of these isomorphisms, Proposition 1.4 applied with A
α
−→ B̃

β̃
−→ C yields

(2.4.1) TorB(Mβ , βN) ∼= TorA(M,N)⊕H(M̃ β̃α ⊗A
α(Coker(β̃)⊗

B̃
β̃Ñ)) .

The rest of the argument goes into computing the homology on the right hand side.

Since β̃ is injective and β is surjective, (2.3.1) and (2.3.2) give quasi-isomorphisms

Coker(β̃) ' Cone(β̃) and Cone(β) ' ΣW εβ , respectively. From (2.3.3) we further

obtain Cone(β̃) ' ι̃ Cone(β), so we get a quasi-isomorphism of DG B̃-modules

Coker(β̃) ' ΣW εβι̃ = ΣW εγβ̃ .

Since β̃Ñ is semiflat, it induces a quasi-isomorphism of DG A-modules

α(Coker(β̃)⊗
B̃
β̃Ñ) ' α(ΣW εγβ̃ ⊗

B̃
β̃Ñ) .
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As M̃ β̃α is semiflat, the preceding quasi-isomorphism induces the one in the display

M̃ β̃α ⊗A
α(Coker(β̃)⊗

B̃
Ñ) ' M̃ β̃α ⊗A

α(ΣW εγβ̃ ⊗
B̃
β̃Ñ)

∼= (M̃ β̃α ⊗A
εk)⊗k (ΣW )⊗k (k

εβι̃ ⊗
B̃
β̃Ñ) .

From the semiflat resolution β̃Ñ
'
−→ βι̃N and A.6, we get isomorphisms

H(kεβι̃ ⊗
B̃
β̃Ñ) ∼= TorB̃(kεβι̃, βι̃N) ∼= TorB(kεβ , βN) .

Finally, the semiflat resolution M̃ β̃α '
−→M yields

H(M̃ β̃α ⊗A
εk) ∼= TorA(M, εk) .

The formulas in the last three displays and the Künneth isomorphism give
(2.4.2)

H(M̃ β̃α ⊗A
α(Coker(β)⊗

B̃
Ñ)) ∼= TorA(M, εk)⊗k ΣH(W )⊗k Tor

B(kεβ , βN) .

Combining (2.4.1) and (2.4.2) yields the isomorphism in the statement of Theo-
rem 2.1. It is natural, as it was obtained as a composition of natural morphisms. �

Proof of Corollary 2.2. To simplify notation, we let k stand also for εk and for εβk.
We have TorA(M,k) 6= 0 6= H(W ) by hypothesis, so by Theorem 2.1 it suffices

to prove TorBi (k,
βN) 6= 0 for infinitely many i. From TorB(k, βN) ∼= TorB(Nβ , k)

and another reference to Theorem 2.1, we see that it suffices to show TorBi (k, k) 6= 0
for infinitely many i; that is, the validity of the following alternative:

(2.5.1) supTorB(k, k) =∞ or inf TorB(k, k) = −∞ .

We start by proving that there are inequalities

(2.5.2) supTorA(k, k) ≥ 0 and inf TorA(k, k) ≤ 0 .

Let A→ Ã→ k be a semiflat resolution of the DG A-algebra k; see A.9. It induces
the first two arrows in the next string, where the last one is multiplication:

k = A⊗A k −→ Ã⊗A k −→ k ⊗A k −→ k .

The composed map sends 1 to 1, so is the identity map of k. The induced maps
k → TorA(k, k)→ k also compose to idk. We get TorA0 (k, k) 6= 0, so (2.5.2) holds.

Suppose, by way of contradiction, that (2.5.1) fails, so that supTorB(k, k) and

inf TorB(k, k) are both finite. The isomorphism of graded k-vector spaces

(2.5.3) TorB(k, k) ∼= TorA(k, k)⊕
(
TorA(k, k)⊗k ΣH(W )⊗k Tor

B(k, k)
)
,

given by Theorem 2.1, then implies that supTorA(k, k) and inf TorA(k, k) are finite,
ditto for supH(W ) and inf H(W ).

If inf H(W ) ≤ −2, then (2.5.2), and the corresponding estimates for B, imply

inf TorB(k, k) = 1 + inf TorA(k, k) + inf H(W ) + inf TorB(k, k) ,

which contradicts inf TorA(k, k) ≤ 0. We conclude that inf H(W ) ≥ −1 holds.
Then supH(W ) ≥ 0, by the hypothesis on W . Again from (2.5.3) one gets

supTorB(k, k) = 1 + supTorA(k, k) + supH(W ) + supTorB(k, k) .

Once again, this is impossible, this time because supTorA(k, k) ≥ 0.
This gives the desired contradiction, and completes the proof of the corollary. �

The next example shows that in Corollary 2.2 the hypothesis on W is necessary.
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Example 2.6. When k is a field and W = Σ−1k, one has

TorknWi (k, k) ∼=

{
k〈x〉 for i = 0

0 for i 6= 0

where k〈x〉 denotes a divided powers algebra on an indeterminate x.

3. Local DG algebras

In this section, as in the preceding one, we consider DG modules over a DG
algebra B quasi-isomorphic to A nW when A is augmented to a field, k, and W
is a DG k-module. The goal here is to prove that the boundedness of TorB(M,N)
for DG B-modules M and N implies strong structural restrictions on M or N . In
order to do this, we need additional hypotheses on A.

The notion of a local DG algebra used in the next result, is defined in B.4,
whereas perfect DG modules are defined in A.2.

Theorem 3.1. Let B be a DG algebra that is quasi-isomorphic to An εW , where

(A,m, k) is a local DG algebra with H(A) bounded, and W is a DG k-module with

H(W ) finite and H<0(W ) = 0 6= H(W ).
IfM and N are DG B-modules such that H(M) and H(N) are finite over H0(B),

and TorB(M,N) is bounded, then M or N is perfect.

The proof utilizes the following auxilliary result.

Proposition 3.2. Let (B, n, k) be a local DG algebra and M a DG B-module with

H(M) finite over H0(B). There exists an exact sequence of DG B-modules

0 −→M ′ −→ F −→M ′′ −→ 0

with F finite semifree, M ′ ⊆ nF , and M ′′ 'M with infM ′′ = inf H(M).

Proof. Using Proposition B.7 we can replace M with a minimal semifree resolution
and assume it has a semibasis e and satisfies ∂(M) ⊆ nM . Setting f = {p ∈ e :
|e| ≤ s}, where s = supH(M), and F = Bf , note that f is a semibasis of F , it is
finite by ??, and ∂(F ) ⊆ nF holds.

The subset L = M>s+1 ∪ ∂(Ms+1) is a DG B-submodule of M with H(L) = 0.
Thus, M ′′ = M/L has M ′′

i = 0 for i ≥ s + 1, and the natural map M → M ′′ is a
surjective quasi-isomorphism of DG B-modules.

The composed map F ↪→M �M ′′ is a surjective morphism of DG B-modules.
Let M ′ denote its kernel. By construction one then has

M ′
i =





0 for i ≤ s− 1 ;

∂(Fs+1) for i = s ;

Fi =
∑s
h=1BhFi−h for i ≥ s+ 1 .

In particular, M ′ ⊆ nF . Thus, the DG modules M ′, F and M ′′ yield the desired
exact sequence. �

Proof of Theorem 3.1. As k is a field there is a quasi-isomorphism W ' H(W ) of
DG k-modules. It yields one between the DG A-modules εW and εH(W ) and hence
a quasi-isomorphism A n εW ' A n εH(W ) of DG algebras. Thus, we obtain a
composite quasi-isomorphism B ' An εH(W ) of DG algebras.

In view of A.5, it suffices to prove the theorem for B = A n εW , where W is a
nonzero finite DG k-module with ∂(W ) = 0 and W<0 = 0. In particular, (B, n, k)
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is a local DG algebra with n = B(m, εW ) is local. Since H(A) is bounded, the same
is true of H(B), and hence any finite semifree DG B-module is homologically finite
over H0(B); this remark will be used in what follows.

Proposition 3.2 gives finite semifree DG B-modules F and G and exact sequences
of DG B-modules

0 −→M ′ −→ F −→M ′′ −→ 0(3.3.1)

0 −→ N ′ −→ G −→ N ′′ −→ 0(3.3.2)

where M ′ ⊆ nF and N ′ ⊆ nG hold, and M ′′ and N ′′ are quasi-isomorphic to M
and N , respectively. In particular, for i� 0 we have

TorBi (F,N
′′) ∼= Hi(F ⊗B N

′′) = 0(3.3.3)

TorBi (M
′′, G) ∼= Hi(M

′′ ⊗B G) = 0(3.3.4)

TorBi (M
′′, N ′′) ∼= TorBi (M,N) = 0(3.3.5)

Due to (3.3.3) and (3.3.5), the exact sequence (3.3.1) yields TorBi (M
′, N ′′) = 0

for i� 0. By using the latter equalities and (3.3.4), from the exact sequence (3.3.2)

we obtain TorBi (M
′, N ′) = 0 for i � 0. In addition, TorBi (M

′, N ′) = 0 holds for
i� 0, as H(M) and H(N) are bounded. The DG module M ′ and N ′ satisfy

(εW )M ′ ⊆ (εW )nF = 0 = (εW )nG ⊇ (εW )N ′ ,

so we have M ′ = βαM ′ and N ′ = βαN ′, where A
α
−→ B

β
−→ A are the natural maps.

Corollary 2.2 gives TorA(αM ′, k) = 0 or TorA(k, αN ′) = 0. In view of (??), this
means that αM ′ ' 0 or αN ′ ' 0. Thus F 'M ′′ 'M or G ' N ′′ ' N , by (3.3.1),
respectively, (3.3.2). We have proved that M or N is perfect, as desired. �

Remark 3.4. Let C be a local DG algebra with residue field k, and let L be a
DG C-module with H(L) degreewise finite and bounded below. The graded vector

space TorC(L, k) then has the same properties, see B.8, so a formal Laurent series

PCL (t) =
∑

i∈Z

rankk(Tor
C
i (L, k))t

i ∈ Z((t))

is defined. It is known as the Poincaré series of L over C.
Let B be a local DG algebra with residue field k and β : B → C a morphisms

of local DG algebras commuting with the canonical augmentations. If there is a
morphism of DG algebras α : A→ B, such that βα is a quasi-isomorphism, then

(3.4.1) PBL (t) = PBC(t) P
C
L (t)

holds in Z((t)), due to the isomorphism in Theorem 1.5.
This formula holds, in particular, when C is a DG algebra retract of B.

4. Koszul extensions

Here we widen the range of applications of Theorem 3.1 by weakening some of its
hypotheses, by means of the classical construction of adjunction of indeterminates.

4.1. Let B be a commutative DG algebra and z a cycle with |z| even.

A DG algebra Bz〈x〉 is defined by Bz〈x〉
\
= B\ ⊗Z Z〈x〉, where Z〈x〉 is the

exterior algebra of a free Z-module Zx with |x| = |z|+ 1, and

∂(b+ cx) = ∂(b) + ∂(c)x+ (−1)|c|cz .
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A Koszul extension of B is a DG algebra of the form B〈X〉, whereX = x1, . . . , xn
is a sequence of indeterminates of odd degrees, and for i = 1, . . . , n there are cycles
zi ∈ B〈x1, . . . , xi−1〉, such that B〈x1, . . . , xi〉 = Bzi〈x1, . . . , xi−1〉〈xi〉.

The inclusion B ⊆ B〈X〉 is a morphism of DG algebras.
WhenM is a DG B-module we letM〈X〉 denote the B〈X〉-module B〈X〉⊗BM .

The terminology adopted above is a reminder that the Koszul complex on a
sequence of elements z1, . . . , zn in a commutative ring R is a Koszul extension of R.

Theorem 4.2. Let (B, n, k) be a local DG algebra.

Assume that some Koszul extension of B is quasi-isomorphic to An εW , where

A is a local DG algebra with H(A) bounded, and W is a DG k-module with H(W )
nonzero and bounded.

IfM and N are DG B-modules, such that H(M) and H(N) are finite over H0(B)

and TorB(M,N) is bounded, then M or N is perfect.

The next result collects standard properties of Koszul extensions needed in the
proof of the preceding theorem; proofs are included for ease of reference.

Lemma 4.3. Let B be a DG algebra and B〈X〉 a Koszul extension of B.

Let M and N be DG B-module.

(1) If H(M) is bounded, then so H(M〈X〉).

(2) If TorB(M,N) is bounded, then so is TorB〈X〉(M〈X〉, N〈X〉).

(3) If N is a DG B〈X〉-module, then TorB〈X〉(M〈X〉, N) ∼= TorB(M,N) holds.
(4) If H0(B) is noetherian and H(M) is degreewise finite, then H0(B〈X〉) is

noetherian and H(M〈X〉) is degreewise finite.

(5) If (B, n, k) is local and B0 ∩ ∂X ⊆ n, then (B〈X〉, B〈X〉(n, X), k) is local.

Proof. By induction, it suffices to treat the case X = {x}; set |x| = d+ 1.
Applying (?)⊗B M to the exact sequence of DG B-modules

0 −→ B −→ B〈x〉 −→ xB −→ 0

yields, in homology, an exact sequence of H0(B)-modules

0 −→ Hi(M)/zHi−d(M) −→ Hi(M〈x〉) −→ (0 : z)Hi−d−1(M) −→ 0

for every i ∈ Z. Parts (1) and (4) follow, and the latter implies part (5).
In the remainder of the proof we may assume that the DG B-module M is

semiflat. The DG B〈X〉-module M〈X〉 then is semiflat, by A.7, so we have

TorB(M, ?) ∼= H(M⊗B?) and TorB〈X〉(M〈X〉, ?) ∼= H(M〈X〉⊗B〈X〉?) .

The definition of Koszul extensions gives an isomorphism

M〈X〉 ⊗B〈X〉 N〈X〉 ∼= (M ⊗B N)〈X〉

of DG B〈X〉-modules, which proves (2). Part (3) follows from the isomorphisms

M〈X〉 ⊗B〈X〉 N = (B〈X〉 ⊗B M)⊗B〈X〉 N ∼=M ⊗B N . �

One advantage of local DG algebras is that perfection can be detected by ho-
mology. This is the content of the next result, a variation on [4, 4.8 and 4.10].

Proposition 4.4. Let (B, n, k) be a local DG algebra and M a left DG B-module.

The following conditions are equivalent:

(i) M is perfect.
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(ii) M is quasi-isomorphic to a finite semifree DG B-module.

(iii) H(M) is bounded below and degreewise finite, and TorB(M,k) is bounded.

Proof. The definition yields (ii) =⇒ (i). For (i) =⇒ (iii), since the conclusions in
(iii) are inherited by direct summands, we may assume M is finite semifree; then

TorB(M,k) is isomorphic to H(M ⊗B k), and thus bounded, while induction on
rankB\ M \, using that each Hi(M) is noetherian, shows that H(M) is bounded

below and degreewise finite. For (iii) =⇒ (ii), let F
'
−→ M be a minimal semifree

resolution and note that by (??) F has a finite semifree basis. �

Proof of Theorem 4.2. Let B′ be the Koszul extension of B offered by the hypothe-
sis, and setM ′ = B′⊗BM and N ′ = B′⊗BN . By parts (1) and (4) of Lemma 4.3,

the H0(B
′)-modules H(M ′) and H(N ′) are finite and TorB

′

(M ′, N ′) is bounded, by
part (2) of that lemma. By Lemma 4.3(5), B′ is a local DG algebra with residue
field k. Since B′ is quasi-isomorphic to An εW , it follows that H(W ) is degreewise
finite and H<0(W ) = 0. As H(W ) is nonzero and bounded, by hypothesis, Theo-
rem 3.1 applies and yields that one of the DG B′-modules M ′ and N ′ is perfect;
assume that the first one is.

The inclusion B ⊆ B′ commutes with the canonical augmentations to k. Thus,

Lemma 4.3(3) yields TorB(M,k) ∼= TorB
′

(M ′, k). Recalling that M ′ is perfect over
B′, we conclude thatM is perfect over B by referring, twice, to Proposition 4.4. �

5. Local rings

We say that (R,m, k) is a local ring if R is commutative noetherian ring with
unique maximal ideal m, and k = R/m is the residue field. Let e denote the minimal
number of generators of m, and recall that e−depthR is non-negative. We fix some
minimal generating set of m and let KR denote the Koszul complex on this set.

Clearly, local rings are precisely those local DG algebras, in the sense of B.4,
which are zero in nonzero degrees. In particular, the results of the preceding section
apply directly to complexes over local rings with finitely generated homology. Note
that a perfect DG R-module is simply one that is quasi-isomorphic to a bounded
complex of finite free R-modules.

As a first application, we recover some known results about modules over local
rings. Formula (3.4.1) specializes to the following result of Herzog [10, Theorem 1]:

Proposition 5.1. If (R,m, k) and (S, n, k) are local rings, and α : S → R and

β : R → S are homomorphisms of rings, such that βα = idS, then for every finite

S-module N there is an equality of formal power series

PRN (t) = PRS (t) P
S
N (t) . �

Among the original characterizations of Golod rings, which appear in the next
result, is the property that Massey products are defined for every finite set of
elements of H>1(K

R): This is one direction of Golod’s theorem in [9].

Proposition 5.2. Let (R,m, k) be a local ring satisfying one of the conditions

(a) R is Golod; or

(b) R ∼= S n k for some local ring (S, n, k).

If M and N are finite R-modules and TorR(M,N) is bounded, then M or N has

finite projective dimension.
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Remark. Case (b) of the proposition is due to Nasseh and Yoshino, [13, 3.1]
In case (a), the conclusion is evident when e = edimR, as then R is regular. If

e = depthR+1, then R is a hypersurface ring, and the result is due to Huneke and
Wiegand [11, 1.9]. For e ≥ depthR+ 2 the result is proved by Jorgensen [12, 3.1].

Each one of those theorems required a different proof.

Proof. In case (b) the conclusion follows directly from Theorem 3.1.
It is proved in [1, 2.3] that all Massey products on H>1(K

R) exist if and only
KR ' k nW holds with some graded k-vector space W . We may assume R is not
regular, so that W is nonzero. As KR is a Koszul extension of R, Theorem 4.2
applies and shows that M or N is quasi-isomorphic to a bounded complex of free
R-modules; that is, proj dimRM or proj dimRN is finite. �

The value for local rings of the general form of Theorem 4.2 is demonstrated by
the proof of the next theorem, on which much of our work in [7] depends.

As usual R̂ denotes the m-adic completion of R. Cohen’s Structure Theorem

yields R̂ ∼= P/I for some regular local ring (P, p, k) and ideal I contained in p2; any

such isomorphism is called a minimal Cohen presentation of R̂.

Theorem 5.3. Let R be a local ring. Assume there exists a minimal Cohen pre-

sentation R̂ ∼= P/I satisfying

(a) some minimal free resolution of R̂ over P has a structure of DG algebra; and

(b) the k-algebra B = TorP (R̂, k) is isomorphic to the trivial extension A nW
of a graded k-algebra A by a graded A-module W 6= 0 with A>1 ·W = 0.

If M and N are finite R-modules and TorR(M,N) is bounded, then M or N has

finite projective dimension.

Proof. In view of the faithful flatness of completions, the canonical isomorphisms

TorR̂(R̂⊗RM, R̂⊗R N) ∼= R̂⊗R TorR(M,N)

TorR̂(R̂⊗RM,k) ∼= R̂⊗R TorR(M,k) ∼= TorR(M,k)

show that we may assume that R is complete, and hence R ∼= P/I.
Let KP denote the Koszul complex on a minimal set of generators of p. It is a

local DG algebra, in the sense of B.4, and as P is regular it has H(K) ∼= k.
By (a), there is a DG P -algebra B, semifree as a DG P -module, with H(B) = R

and ∂(B) ⊆ pB. These properties yield the equality and the last isomorphism in
the following string

KR ∼= R⊗P K
P '
←−− B ⊗P K

P '
−−→ B ⊗P k = H(B ⊗P k) ∼= TorP (R, k)

of morphisms of DG algebras. The quasi-isomorphisms are obtained by tensoring

the augmentations B
'
−→ R and KP '

−→ k with the bounded complexes of free
P -modules K and B, respectively. Due to (b), we get KR ' AnW .

As KR is a Koszul extension of R, Theorem 4.2 yields the desired conclusion. �

Appendix A. Tor for DG modules

This section is a collection of basic facts concerning DG modules over DG al-
gebras used in the body of the article. Most of them are stated in [6, Section 1],
where arguments are only sketched; for details we refer to [2] and [8].
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A.1. Let B be a DG algebra and M a DG B-module. Both are Z-graded and all
their elements are homogenous. We say that M is bounded below if Mi = 0 for
i� 0, bounded if Mi = 0 for |i| � 0, and non-negative if Mi = 0 for i < 0. Set

infM := inf{i |Mi 6= 0} and supM := sup{i |Mi 6= 0} .

We write ΣM for the left DG B-module with Mn−1 as component of degree n,
∂ΣM (m) = −∂Mm, and B acting by b ·m = (−1)|b|bm, where |b| is the degree of b.

The homology H(M) is a graded module over the graded ring H(B). In particu-
lar, H0(B) is a ring and each Hi(M) is a left H0(B)-module. When these modules
are finite for all i ∈ Z, we say that H(M) is degreewise finite over H0(B); when
H(M) is also bounded, we say it is finite over H0(B). Morphisms of DG objects
that induce isomorphisms in homology are called quasi-isomorphisms.

The graded ring underlying B is denoted by B\, and M \ denotes the graded left
B\-module underlying M .

A.2. Let F be left DG B-module. A semibasis of F is a well-ordered subset {f}
of F , which is a basis of F \ over R\ and satisfies d(f) ∈

∑
e<f Be for each f in f .

A DG B-module that has a (finite) semibasis is said to be (finite) semifree.
A DG B-module that is quasi-isomorphic to a direct summand of some finite

semifree DG B-module is said to be perfect.

A.3. A semifree resolution of a (left) DG B-modules M is a quasi-isomorphism

F
∼=
−→ M of (left) DG with F semifree. Every left DG B-module admits such a

resolution; see [8, 6.6(i)]. Choosing a resolution FM for each M , one sets

TorB(L,M) = H(L⊗B F
M )

for every right DG B-module L. All choices of resolutions yield canonically isomor-
phic results, because any two resolutions are homotopy equivalent; see [8, 6.6(ii)].

A.4. Let β : B → C be a morphism of DG algebras. Let L and L′ be right DG
modules and M and M ′ be a left DG modules, over B and C, respectively.

Morphisms of complexes λ : L→ L′ and µ : M →M ′ are called β-equivariant if

λ(lb) = λ(l)β(b) and µ(bm) = β(b)µ(m)

hold for all b ∈ B, l ∈ L and m ∈M . Such maps define a natural homomorphism

Torβ(λ, µ) : TorB(L,M) −→ TorC(L′,M ′) .

of graded abelian groups. It is bijective if H(β), H(λ), and H(µ) are; see [8, 6.10].

A.5. Two DG algebras B and C are said to be quasi-isomorphic if there exists
a chain f of quasi-isomorphisms of DG algebras linking B and C. Such a chain

f defines an isomorphism f∗ : H(B)
∼=
−→ H(C) of graded rings. To each right DG

B-module L and left DG B-module M it assigns a right DG C-module fL, a left

DG C-module fM , isomorphisms H(L)
∼=
−→ H(fL) and H(M)

∼=
−→ H(fM) that are

f∗-equivariant, and an isomorphism TorB(L,M)
∼=
−→ TorC(fL, fM).

In addition, M is perfect over B if and only if fM is perfect over C.
These statements reflect various properties of a triangle equivalence, induced

by f, of the derived categories of DG B-modules and DG C-modules; see [4, 3.6.2].

A.6. A left DG B-module F is said to be semiflat if the functor (? ⊗B F ) pre-
serves injective quasi-isomorphisms of right DG B-modules; equivalently, (?⊗B F )
preserves quasi-isomorphisms and the graded B\-module F \ is flat.
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If F → G is a quasi-isomorphism of semiflat left DG B-modules, then the induced
map L⊗B F → L⊗B G is a quasi-isomorphism for every right DG B-module L.

Semifree DG modules are semiflat. If F
'
−→ M is a quasi-isomorphism with F

semiflat, then for any right DG B-module L, there is an isomorphism

TorB(L,M) ∼= H(L⊗B F ) .

A.7. Let β : B → C be a morphism of DG algebras.
IfM is a semiflat left DG B-module, then C⊗BM is a semiflat left DG C-module.
If βC is semiflat and N is a semiflat left DG C-module, then βN is semiflat.

A.8. A DG algebra B is graded-commutative if all b, b′ in B satisfy

b · b′ = (−1)|b||b
′|b′ · b and b2 = 0 when |b| is odd

Every right DG B-module M then is canonically a left DG B-module, with action

b ·m := (−1)|b||m|mb for b ∈ B and m ∈M ,

so when speaking of DG B-modules, we drop references to ‘left’ or ‘right’; in particu-
lar, this refers to semifreeness and semiflatness. When L andM are DG B-modules,
TorB(L,M) is a graded H(B)-module and there is an H(B)-linear isomorphism

TorB(L,M) ∼= TorB(M,L) .

We record a basic fact on the existence of resolutions that are also DG algebras.

A.9. For each morphism β : B → C of graded-commutative DG algebras there is a

graded-commutative DG algebra C̃ and a morphisms B
ι
−−→ C̃

ε
� C of DG algebras

with ει = β such that ι is injective, ε is a surjective quasi-isomorphism, and C̃ and
Coker(ι) are semiflat as DG B-modules; see [2, 2.1.9].

Any such factorization is called a semiflat DG algebra resolution of β.

Appendix B. Finiteness and minimality for semifree resolutions

In this appendix, B denotes a DG algebra and M a DG module over it. In some
cases, semifree resolutions can be chosen to reflect certain finiteness properties of
H(M) over H(B). The constructions described below come from [5].

B.1. A graded module M over a graded ring A is said to be degreewise finite (over
A) if M has a generating set containing only finitely many elements in each degree.
Since M is also a graded module over A0, degreewise finiteness over A0 is defined
as well, but neither property implies the other one in general.

For any set x, let B\x̃ denote a B\-module with basis x̃ = {x̃}x∈x; the degrees
of the basis elements can be specified as needed.

Proposition B.2. Let B be a DG algebra with Hi(B) = 0 for i < 0 and M a DG

B-module with inf H(M) = j > −∞.

There is a resolution F
'
−→M where F has a semibasis f with fn = ∅ for n < j.

If, in addition, H0(B) is noetherian and H(B) and H(M) are degreewise finite

over H0(B), then there exists such an F with f degreewise finite.
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Proof. When H(M) = 0 set F = 0. Else, it suffices to argue the case j = 0. The
strategy is to construct a commutative diagram of DG B-modules

(B.2.1)

F (0)

ε(0)

++

ι(0)
// F (1)

ε(1)

**

// · · · // F (n− 1)

ε(n−1)

��

ι(n−1)
// F (n)

ε(n)
xx

// · · ·

M

that has the following properties for every integer n ≥ 0:

(1) F \(n) is a direct sum of F \(n−1) and a B\-module with basis fn in degree n;

(2) ι(n− 1)
\
is the canonical inclusion;

(3) Hj(ε(n)) is bijective for j ≤ n− 1 and surjective for j = n.

Given such a diagram, the set f =
⊔
n>0 fn is a semibasis for the DG B-module

F =
⋃
n>0 F (n) and the maps ε(n) define a quasi-isomorphism ε : F →M .

Set B := H(B). To construct the desired modules and morphisms, choose cycles
y0 in M0 whose residue classes in H0(M) generate it as a B0-module. Set

F (0) = Bf0 where f0 = ỹ0 and |f | = 0 for f ∈ f0 .

The map ỹ 7→ y for every y ∈ y0 defines a morphism ε(0) : F (0) → M of DG
B-modules. Clearly, f0 is a semibasis for F (0) and H0(ε(0)) is surjective.

Assume, by induction, that for some n ≥ 1 a portion of diagram (B.2.1) with the
desired properties has been constructed up through ε(n− 1). Choose sets of cycles
yn ⊂Mn and zn ⊂ F (n− 1)n−1 whose residue classes generate the B0-modules

(B.2.2) Coker(Hn(εn−1)) and Ker(Hn−1(ιn−1))

respectively. Define F (n) to be the DG B-module with underlying B\-module

F (n)
\
= F (n− 1)

\
⊕B\fn where fn = ỹn t z̃n , and |f | = n for f ∈ fn

and differential extending that of F (n− 1) and satisfying ∂(ỹn) = 0 and ∂(z̃) = z
for z ∈ zn. Evidently, f6n is a semibasis of F (n). For each z, pick mz ∈Mn with

∂(mz) = εn(z). The map F (n)
\
→M \ that extends ε(n− 1)

\
and sends ỹ and z̃ to

y and mz, respectively, defines a morphism of DG B-modules ε(n) : F (n)→M .
With ε′ : F ′ → M , ι : F ′ → F ′′, and ε′′ : F ′′ → M denoting ε(n − 1), ι(n − 1),

and ε(n), respectively, and writing fn for the set of residue classes of fn, we obtain
the following commutative diagram of DG B-modules, where the row is exact:

(B.2.3)

0 // F ′

ε′

��

ι
// F ′′

ε′′

yy

// Bfn
// 0

M

By construction, we have ∂(fn) = 0, whence H(Bfn) = H(B)fn = B fn, so for
each i ∈ Z we get an induced commutative diagram of B0-modules with exact row

Hi(F
′)

Hi(ε
′)

��

Hi(ι)
// Hi(F

′′)

Hi(ε
′′)

yy

// Bi−nfn
ði

// Hi−1(F
′)

Hi−1(ε
′)

��

Hi−1(ι)
// Hi−1(F

′′)

Hi−1(ε
′′)

xx

// Bi−n−1fn

Hi(M) Hi−1(M)
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For every cycle b ∈ Bn−i and each f ∈ fn the map ði sends the homology class of
bf to zero if f = ỹ with y ∈ yn, and to the class of bz if f = z̃ with z ∈ zn.

As Bj = 0 holds for j ≤ n−1, the exact row of the diagram yields isomorphisms

Hj(F
′) ∼= Hj(F

′′) for j ≤ n− 2 and Hn−1(F
′)/ Im(ðn) ∼= Hn−1(F

′′) ,

induced by Hj(ι). The computation of ð gives Im(ðn) = Ker(Hn−1(ε
′)). By the

induction hypothesis, Hj(ε
′) is bijective for j ≤ n− 2 and surjective for j = n− 1,

so the triangle on the right with i = n shows that Hj(ε
′′) is bijective for j ≤ n− 1.

The triangle on the left and the definition of ε′′ imply that Hn(ε
′′) is surjective.

Now the induction step in the construction of (B.2.1) is complete, and hence the
first assertion of the theorem has been proved.

To finish the proof, we revisit the construction under the hypothesis that B0 is
noetherian and B and H(M) are degreewise finite over B0. It is clear that then
y0 can be chosen finite, so we may assume by induction that for some n ≥ 1 the
set f6n−1 has been chosen to be finite, and H(F (n − 1)) is degreewise finite over

B. The B0-modules in (B.2.2) then are finitely generated, so yn and zn can be
chosen to be finite; then fn is finite, and the homology exact sequence shows that
H(F (n)) is degreewise finite over B0. �

In the rest of this section, we focus on non-negatively graded DG algebras.

B.3. If B be a DG algebra with B<0 = 0, and F is a bounded below DG B-module
F such that the B\-module F \ is free, then F is semifree. More precisely, if f is
any basis of F \ over B\, then can be ordered so as to become a semibasis of F .
This can be achieved by choosing some well-ordering for each f i, and extending
these orderings to a well-ordering of f by setting f < f ′ whenever |f | < |f ′| holds.

B.4. We say that (B, n, k) is a local DG algebra if the following hold:

(a) B is a graded-commutative DG algebra with B<0 = 0, and ni = Bi for i 6= 0.
(b) B0 is a noetherian ring with unique maximal ideal n0, and k = B0/n0.
(c) H(B) is degreewise finite over H0(B).
(d) H0(B) is not equal to 0.

In particular, n is a DG ideal, called the maximal ideal of B, and the natural map
B → k is a morphism of DG algebras, called the canonical augmentation.

A semifree resolution F
'
−→M satisfying ∂(F ) ⊆ nF is said to be minimal.

To prove an existence result for such resolutions, we recall some properties of
graded modules over certain types of graded rings. Local DG algebras with zero
differential are called local graded rings. Nakayama’s Lemma holds over them.

Lemma B.5. Let M be a graded module over a local graded ring, (Q, q, k).
If M is bounded below and degreewise finite, then qM =M implies M = 0.

Proof. Suppose that M is not zero, and choose j so that Mi = 0 for i < j and
Mj 6= 0 hold. By hypothesis, M has a generating set x =

⊔
i>j xi with xi finite for

each i. One then has Mj =
∑
x∈xj

Q0x, and hence the Q0-module Mj is finitely

generated. As M = qM one gets Mj = q0Mj , and so the classical version of
Nakayama’s Lemma implies Mj = 0, which is a contradiction. �

We need the following standard consequences of Nakayama’s Lemma.

Lemma B.6. Let (Q, q, k) be a local graded ring, F be a bounded below, degreewise

finite, free Q-module, π : F → k ⊗Q F the canonical map, and x a subset of F .
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(1) If π|x is injective and π(x) is a k-basis, then x is a Q-basis of F .
(2) If π|x is injective and π(x) is linearly independent over k, then x is linearly

independent over Q and the Q-module F/Qx is free.

Proof. (1) One has an exact sequence of graded Q-modules

0 −→ Ker(φ) −→ Qx̃
φ
−−→ F −→ Coker(φ) −→ 0

where φ(x̃) = x (see B.1). By construction, k ⊗Q φ is bijective, and this implies
k⊗QCoker(φ) = 0. Since F is degreewise finite and bounded below, so is Coker(φ),
and Lemma B.5 yields Coker(φ) = 0. As F is free, the exact sequence above splits,
and hence Ker(φ) is degreewise finite and bounded below and k ⊗Q Ker(π) = 0.
Lemma B.5 now yields Ker(φ) = 0, so that φ is an isomorphism, as desired.

(2) Choose in F a subset y such that π(x)tπ(y) is a k-basis and π|y is injective.
By (1), the set xt y is a Q-basis of F . In particular, the Q-submodule Qx of F is
a direct summand, and F/Qx is isomorphic to the free Q-module Qy. �

Proposition B.7. Let (B, n, k) be a local DG algebra and M a DG B-module such

that H(M) is degreewise finite over H0(B) and inf H(M) = j > −∞.

There exists a minimal semifree resolution εG : G
'
−→M over B, where G has a

semibasis f with fn finite for each n, and equal to ∅ for n < j.

Proof. Proposition B.2 yields a resolution F
'
−→ M with F having a semibasis

having the desired finiteness; we will obtain a minimal resolution by modifying F .
Set V = k ⊗B F ; this is a complex of k-vector spaces. Consider the canonical
surjective maps F � V � ∂(V ) and choose e ⊂ F to map bijectively onto some
basis of the k-vector space ∂(V ). Let E be the B\-submodule

∑
e∈e

(B\e+B\∂(e))

of F \; since ∂(E) ⊆ E holds, E is a DG B-submodule of F . Set G = F/E.
By Lemma B.6, the graded B\-modules E\, F \, and G\ are all free; they are also

bounded below, by construction. In particular, G is a semifree DG B-module; see
B.3. Moreover ∂(F ) ⊆ qF +E holds, again by construction; this yields ∂(G) ⊆ qG.

From the linear independence of {e, ∂(e)}e∈e over B\ one easily gets H(E) = 0;
thus the surjective map F → G is a quasi-isomorphism. As G is semifree, the iden-
tity map G

=
−→ G lifts to a morphism G→ F ; it is necessarily a quasi-isomorphism,

so the composed map G
'
−→ F

'
−→M is a minimal semifree resolution. �

Finally, we collect some standard consequences of the existence of minimal free
resolutions B.7 and Nakayama’s Lemma B.5.

B.8. Let (B, n, k) be a local DG algebra and M a DG B-module such that H(M)

is degreewise finite over H0(B) and bounded below. Let ε : F
'
−→ M be a minimal

semifree resolution.

(1) If ε′ : F ′ '
−→M is a semifree resolution, then any morphism ϕ : F → F ′ of DG

B-modules lifting ε is split-injective. In particular, when F ′ is also minimal,
ϕ is an isomorphism.

(2) Any basis e of the graded B\-module F \ is degreewise finite, and

TorBn (M,k) ∼= Hn(F ⊗B k) = (F ⊗A k)n ∼=
⊕

e∈en

ke ,

for each integer n.
(3) If TorB(M,k) = 0, then M ' 0.
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