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ABSTRACT. Conditions on the Koszul complex of a noetherian local ring R
guarantee that Torf:"‘(M7 N) is nonzero for infinitely many 4, when M and N are
finitely generated R-modules of infinite projective dimension. These conditions
are obtained from results concerning Tor of differential graded modules over
certain trivial extensions of commutative differential graded algebras.

INTRODUCTION

This paper is motivated by, and feeds into our work in [7], which is concerned
with the following problem: Given a commutative noetherian ring R and a finitely
generated R-module M, does TorX (M, M) = 0 for i > 0 imply that the projective
dimension of M s finite? Similar questions have arisen in the literature, also in
certain non-commutative contexts; we refer the reader to [7] for a discussion.

When R is complete intersection, by using their theory of cohomological support
varieties Avramov and Buchweitz [3] answered that question in the positive and
showed the failure in codimension two or higher of the following stronger property:

(¥)  Torf(M,N) =0 for i > 0 implies projdimp M < 0o or projdimp N < oc.

On the other hand, work of Huneke and Wiegand [11] and Jorgensen [12] shows
that (x) does hold for Golod rings. More recently, Nasseh and Yoshino [13] proved
it for local rings whose maximal ideal requires a generator from the socle. Such
rings are trivial extensions of the form S x W, where S is a local ring and W is a
nonzero finitely generated S-module, annihilated by the maximal ideal of S.

Even when a local ring is not a trivial extension, its Koszul complex—viewed as a
differential graded (DG) algebra—may have such a structure. The goal of this paper
is to prove that then the implication () still holds. This is achieved in Theorem
5.3, which is deduced from much more general results concerning non-vanishing of
Tor of DG modules over certain trivial extensions of DG algebras.

The substance of the paper is the development of techniques needed to state and
prove this result; see Theorems 3.1 and 4.2, which in Proposition 5.2 give unified
proofs of the results in [11, 12, 13]. Along the way, in Theorem 1.5, we obtain for
retracts of augmented DG algebras a result that implies Herzog’s [10] computation
of Poincaré series of modules over retracts of local rings; see Proposition 5.1.
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1. RETRACTS OF DG ALGEBRAS

In this section we establish statements concerning Tor functors of differential
graded (DG) modules over retracts of DG algebras. Some basic definitions and
constructions concerning DG algebras and their DG modules are recapped in an
appendix to the paper, to which there are frequent references throughout the text.

In the following paragraphs, we often consider bimodules: When B,C are DG
algebras, by a DG BC-bimodule we mean a complex of abelian groups with com-
patible structures of a left DG B-module and a right DG C-module.

1.1. Let 8: B — C be a morphism of DG algebras and M a left DG C-module.
We write M for M viewed as a left DG B-module by restriction of scalars along
B; similarly for right DG modules. It is a routine verification that the maps

MiPM — P(CP @5 P M) pM: CP op PM — M
(1.1.1) " and v
M(m) = 1@m pc®@m) = cm
are morphism of left DG B-modules and DG C-modules, respectively. Note that

o~ 8
(1.1.2)  the composed map °M — B®p M SECLIEUIN F(CP op PM) is M

(1.1.3)  the composed map ™ o™ is the identity map of M .

Lemma 1.2. When A % B 25 € are morphisms of DG algebras, L a right DG

A-module, and M a left DG C-module, there is an isomorphism of complexes
(L®aC) @pPM = (L®sP"M)® (L ®a*(Coker(8) @5 M)).

Proof. Consider the exact sequence of DG BB-bimodules:

B0 — Coker(8) — 0.
Applying (?®@p5° M) to it, in view of (1.1.2) we get a sequence of left DG B-modules

LM
0— M +—F(CP o M) — Coker(8) @ "M — 0.

Its exactness is clear except at M, and (1.1.3) shows that (™ is a split monomor-
phism. Thus, by restriction along «, one gets an isomorphism of left DG A-modules

Fe(CP @ PM) =P M @ *(Coker(8) ®p P M) .

The desired result is obtained by applying (L®47?), then invoking the canonical
isomorphism L ®4 #*(CP @5 M) = (L ®4°*C)° 25 M. O

1.3. Let 8: B — C be a morphism of DG algebras and M a left DG C-module.
When £ is a quasi-isomorphism and either C? or # M is semiflat, the morphisms
of left DG modules :* and p™, defined in (1.1.1) are quasi-isomorphisms.
Indeed, 3 ®p P M is a quasi-isomorphism by A.6, so (1.1.2) shows that (™ is a
quasi-isomorphism, and then (1.1.3) implies that so is p™.

Proposition 1.4. Let A B By € be morphisms of DG algebras, L a right DG
C-module, and M a semiflat left DG C-module such that ®M is semiflat.

If Bav is a quasi-isomorphism and the DG module LP* or *C is semiflat, then
there is a quasi-isomorphism of complexes

LP @pPM ~ (L®c M) @ (LP* @4 “(Coker(8) ®p P M)).
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Proof. By (the analogue for right DG modules of) 1.3 the map
LP*®,7°C — L

is a quasi-isomorphism of right DG C-modules and thus also one of right DG
B-modules. This, and the hypotheses on M, give the first and the last quasi-
isomorphisms of complexes in the following string

LP ®p P M E(LP 04 52C)P @5 P M
~ (Lﬂa R BaM) (Lﬁa ®4 “(Coker(8) ®p BM))
(LP* @4 P2C) @c M) @ (LP* ® 4 “(Coker(B) @5 P M))
i>(L ®c M) @ (LP* @4 *(Coker(B) @ P M))

I

The second one is Lemma 1.2, applied to L?%; the third one is canonical. O

Here is a first application of Proposition 1.4. Note that the DG algebras in the
statement are graded-commutative.

Theorem 1.5. Let B 25 C 5 k be morphisms of graded-commutative DG algebras,
where k is a field, and let L be a DG C'-module.

If there exists a morphism of DG algebras a: A — B, such that fa: A — C' is
a quasi-isomorphism, then there is an isomorphism of graded k-vector spaces:

Tor®(L?,%Pk) = Tor® (L, k) @ Tor? (C7,*Pk).

Proof. Referring to A.9, form a commutative diagram of DG algebras
B
/ B

where A % B 5 B is a semiflat DG algebra resolution of o and B4 ¢ Sc

%

Q«in

Tk

is one of the composed morphism B = B2 ¢ In view of A.4, it suffices to
establish the desired isomorphism for the morphism of DG algebras B — C' — k.
Thus, replacing B — C' — k by B—C =k we may assume that B and #C are
semiflat. Moreover, replacing L with a resolution, we may further assume that L
is semiflat. Note that #*C and LA® are semiflat, by A.7.

One has an exact sequence of DG B-modules

0— B 24 ¢ — Coker(8) — 0.
Applying Tor? (7,Pk) one gets an isomorphism of graded k-vector spaces
(1.5.1) k @ Tor® (Coker(B), %P k) = Tor®(C?,Pk).

Let M = k be a semiflat resolution over C. Since Coker(j) is semiflat, by
construction, it induces a quasi-isomorphism of DG B-modules

Coker(8) ®p M = Coker(8) ®p Bl
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By restriction of scalars, this is also a morphism of DG A-modules. Since LA is
semiflat, the preceding quasi-isomorphism induces the one below:

LP* ® 4 *(Coker(B) @p M) ~ LP* @4 *(Coker(8) ®p k)
~ (Lﬁrx ®a 6l3ak) ®y (Coker(B) ®@p Eﬁk)

The isomorphism holds because the action of B on Coker(8)® gk through Coker(5)
coincides with is action through k, and hence so do the induced actions of A.

The quasi-isomorphisms above and the Kiinneth formula yield the first one of
the following isomorphisms of graded k-vector spaces:

H(LP* ® 4 *(Coker(B) @p P M)) = Tor® (L *,°°k) @ Tor® (Coker(B), k7)
=~ Tor’ (L, °k) @y, Tor” (Coker(B), k°P)

The second one holds by A.4, since Sa is a quasi-isomorphism.
The last display justifies the third isomorphism in the next string:

Tor®(LP, k%%) = H(LP 5 P M)
~H(L ®c M) @ H(LP* ®4 *(Coker(8) @5 * M))
=~ Tor”(L,k) @ (Tor® (L, k) ®j, Tor? (Coker(B), k7))
=~ Tor(L, k) @y (k ® Tor” (Coker(B), k7))
= Tor®(L, k) ®j Tor®(C? kP)

Proposition 1.4 gives the second isomorphism, and formula (1.5.1) the last one. O

2. TRIVIAL EXTENSIONS

For the rest of the article all DG algebras are assumed to be graded-commutative.

Let A be a DG algebra and W a DG A-module.

The trivial extension A x W is the DG algebra with underlying complex A & W
and product given by (a,w)(a/,w’) = (ad’,aw’ + (—1)*1¢l¢’w). Note that the
canonical maps A — A x W — A are morphisms of DG algebras.

Theorem 2.1. Let A be a DG algebra, and let M and N be DG A-modules.
Let k be a field, W a DG k-module, and £: A — k a morphism of DG algebras.
Set B=AxE W and let f: B — A be the canonical surjection.
There is then a natural isomorphism of graded H(A)-modules:

Tor®(MP, P N) = Tor® (M, N) @ (Tor™® (M, k) @ (X H(W)) ®;, Tor® (7, P N))..
Corollary 2.2. When H;(W) # 0 holds for some i # —1, the condition
Tor™ (M, k) # 0 # Tor (k, N)
implies Torf (MP,PN) # 0 for infinitely many integers i.
In the proofs we use basic properties of mapping cones, which we recall next.

2.3. Let ©: S — T be a morphism of DG A-modules.

The cone of ¢ is the DG A-module Cone(%)), with Cone(w)h =¥YS"® T? and
differential given by (s,t) — (0%%(s), 07 (t) + 1(s)).

If ¢ is injective, then there is a quasi-isomorphism of DG A-modules

(2.3.1) 7: Cone(p) —» Coker(¢)) given by (s,t) — t + Im(¢)).
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Indeed, then 7 is surjective with Ker(:) = Cone(id®), and Cone(id?) is acyclic.
If 9 is surjective, then there is a quasi-isomorphism of DG A-modules
(2.3.2) v: X Ker(¢)) —» Cone(y)) given by s (s,0).

Indeed, then ¢ is injective with Coker(z) 2 Cone(id”), and Cone(id”) is acyclic.
If there is a commutative square of morphisms of DG A-modules

SLT

R
with o, 7 quasi-isomorphisms, then there is a quasi-isomorphism of DG A-modules
(2.3.3) 1: Cone(v) = Cone(y') is given by (s,t) — (o(s), 7(t)).
Indeed, this follows from the Five-Lemma applied to the commutative diagram
0 —— T —— Cone()) P 0
TJAJ UJJ/ z{~

0 —— T —— Cone(¢y))) —— X5 ——0

Proof of Theorem 2.1. By using A.9, we construct a diagram of DG algebras

A B c

E
Bl wa— i

where ¢ is canonical e is a semiflat resolution of ¢, and "yB is one of S5t.

Let M = M” and N =5 "N be semiflat resolutions over C. In view of A. 7, the
maps MP = MP = MP7 and PN =5 %N = 7N are semiflat resolutions over B.
They explain the first isomorphisms below, and A.4 gives the second ones:

H(M? @5 °N) = Tor® (MP7, FTN) = Tor® (M?, P N)
H(M ©c N) = Tor®(M?,"N) = Tor* (M, N) .

In view of these isomorphisms, Proposition 1.4 applied with A % B C' yields
(24.1)  Tor®(MP,PN) = Tor (M, N) @ H(M ® 4 *(Coker(B) 5 *N)).

The rest of the argument goes into computing the homology on the right hand side.
Since 3 is injective and 3 is surjective, (2.3.1) and (2.3.2) give quasi-isomorphisms

Coker(B) ~ Cone(f) and Cone(8) ~ LW<# respectively. From (2.3.3) we further

obtain Cone(g) ~ vaCone(,é’), so we get a quasi-isomorphism of DG B-modules

Coker(B) ~ SW=F" = s =18 |
Since N is semiflat, it induces a quasi-isomorphism of DG A-modules

*(Coker(B) ®5 PN) ~ *(ZW="P @z AN) .
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As MPe s semiflat, the preceding quasi-isomorphism induces the one in the display

MP* @ 4 *(Coker(B) @5 N) ~ MP* © 4 *(TW8 @2 AN)
> (MP* @ 5 °k) @, (EW) @5, (K7 05 PN).
From the semiflat resolution PN = 57N and A.6, we get isomorphisms
H(k* @5 PN) = Tor® (k7 FTN) 2= Tor® (k°8, P N) .
Finally, the semiflat resolution MPe = M yields
H(MP* ® 4 k) = Tor® (M, k).

The formulas in the last three displays and the Kiinneth isomorphism give
(2.4.2)

H(MP* @ 4 *(Coker(8) ® 5 N)) 2 Tor* (M, *k) @ ¥ H(W) @y, Tor® (k%% N .

Combining (2.4.1) and (2.4.2) yields the isomorphism in the statement of Theo-
rem 2.1. It is natural, as it was obtained as a composition of natural morphisms. [

Proof of Corollary 2.2. To simplify notation, we let k stand also for k and for *%k.

We have Tor® (M, k) # 0 # H(W) by hypothesis, so by Theorem 2.1 it suffices
to prove Tor? (k,”N) # 0 for infinitely many i. From Tor? (k,” N) = Tor? (N? k)
and another reference to Theorem 2.1, we see that it suffices to show Torj3 (k,k)#£0
for infinitely many 4; that is, the validity of the following alternative:

(2.5.1) sup Tor? (k, k) = oo or inf Tor®(k, k) = —c0.
We start by proving that there are inequalities
(2.5.2) sup Tor? (k,k) > 0 and inf Tor®(k, k) < 0.

Let A — A — k be a semiflat resolution of the DG A-algebra k; see A.9. It induces
the first two arrows in the next string, where the last one is multiplication:

k=A@ak — A4k —k@ak — k.

The composed map sends 1 to 1, so is the identity map of k. The induced maps

k — Tor”(k, k) — k also compose to id". We get Tory (k, k) # 0, so (2.5.2) holds.
Suppose, by way of contradiction, that (2.5.1) fails, so that sup Tor®(k, k) and

inf Tor? (k, k) are both finite. The isomorphism of graded k-vector spaces

(2.5.3)  Tor®(k, k) = Tor™ (k, k) @ (Tor” (k, k) @ TH(W) @ Tor”(k, k)),

given by Theorem 2.1, then implies that sup Tor” (k, k) and inf Tor” (k, k) are finite,
ditto for sup H(W) and inf H(W).
If inf H(W) < —2, then (2.5.2), and the corresponding estimates for B, imply

inf Tor? (k, k) = 1 + inf Tor® (k, k) + inf H(W) + inf Tor? (k, k) ,

which contradicts inf Tor(k, k) < 0. We conclude that inf H(W) > —1 holds.
Then sup H(W) > 0, by the hypothesis on W. Again from (2.5.3) one gets

sup Tor? (k, k) = 1 4 sup Tor (k, k) + sup H(W) 4 sup Tor? (k, k) .

Once again, this is impossible, this time because sup TorA(k:, k) > 0.
This gives the desired contradiction, and completes the proof of the corollary. [

The next example shows that in Corollary 2.2 the hypothesis on W is necessary.
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Example 2.6. When k is a field and W = 71k, one has

k() fori=0

Tor¥™*W (k, k) = i
0 fori#0

where k{x) denotes a divided powers algebra on an indeterminate x.

3. LocAL DG ALGEBRAS

In this section, as in the preceding one, we consider DG modules over a DG
algebra B quasi-isomorphic to A x W when A is augmented to a field, k, and W
is a DG k-module. The goal here is to prove that the boundedness of Tor? (M, N)
for DG B-modules M and N implies strong structural restrictions on M or N. In
order to do this, we need additional hypotheses on A.

The notion of a local DG algebra used in the next result, is defined in B.4,
whereas perfect DG modules are defined in A.2.

Theorem 3.1. Let B be a DG algebra that is quasi-isomorphic to A x W, where
(A, m, k) is a local DG algebra with H(A) bounded, and W is a DG k-module with
H(W) finite and Heo(W) = 0 £ H(W).

If M and N are DG B-modules such that H(M) and H(N) are finite over Ho(B),
and Tor? (M, N) is bounded, then M or N is perfect.

The proof utilizes the following auxilliary result.

Proposition 3.2. Let (B,n, k) be a local DG algebra and M o DG B-module with
H(M) finite over Ho(B). There exists an exact sequence of DG B-modules

0—M —F—M—0
with F finite semifree, M’ C nF, and M" ~ M with inf M = inf H(M).

Proof. Using Proposition B.7 we can replace M with a minimal semifree resolution
and assume it has a semibasis e and satisfies (M) C nM. Setting f ={p € e:
le] < s}, where s = supH(M), and F = Bf, note that f is a semibasis of F, it is
finite by ??, and 9(F) C nF holds.

The subset L = M>411 U 9(Ms41) is a DG B-submodule of M with H(L) = 0.
Thus, M"” = M/L has M/ =0 for i > s+ 1, and the natural map M — M" is a
surjective quasi-isomorphism of DG B-modules.

The composed map F — M — M" is a surjective morphism of DG B-modules.
Let M’ denote its kernel. By construction one then has

0 fori <s—1;
M =< 0(Fyy1) for i = s;
F;, = 2221 BpF;_;, fori>s+1.

In particular, M’ C nF. Thus, the DG modules M’, F and M" yield the desired
exact sequence. (I

Proof of Theorem 3.1. As k is a field there is a quasi-isomorphism W ~ H(W) of
DG k-modules. It yields one between the DG A-modules W and € H(W') and hence
a quasi-isomorphism A x W ~ A x EH(W) of DG algebras. Thus, we obtain a
composite quasi-isomorphism B ~ A x € H(W) of DG algebras.

In view of A.5, it suffices to prove the theorem for B = A x W, where W is a
nonzero finite DG k-module with (W) = 0 and Wy = 0. In particular, (B,n, k)
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is a local DG algebra with n = B(m, W) is local. Since H(A) is bounded, the same
is true of H(B), and hence any finite semifree DG B-module is homologically finite
over Hy(B); this remark will be used in what follows.

Proposition 3.2 gives finite semifree DG B-modules F' and G and exact sequences
of DG B-modules

(3.3.1) 0—M —F-—M"-—0
(3.3.2) 0— N —G—N"—0

where M’ C nF and N’ C nG hold, and M"” and N” are quasi-isomorphic to M
and N, respectively. In particular, for ¢ > 0 we have

(3.3.3) Tor? (F,N") = H;(F @3 N") =0
(3.3.4) Tor?(M",G) =~ H;(M" @5 G) =0
(3.3.5) Tor? (M",N") = Tor? (M,N) =0

Due to (3.3.3) and (3.3.5), the exact sequence (3.3.1) yields Tor?(M’,N”) =0
for i > 0. By using the latter equalities and (3.3.4), from the exact sequence (3.3.2)
we obtain Tor?(M’, N') = 0 for i > 0. In addition, Tor?(M’, N') = 0 holds for
1< 0, as H(M) and H(N) are bounded. The DG module M’ and N’ satisfy

(CW)M' C (CW)nF=0= ("W)nG 2 (*W)N',
so we have M’ = )M’ and N’ = P*N’ where A = B 2, A are the natural maps.

Corollary 2.2 gives Tor” (*M’, k) = 0 or Tor(k,*N’) = 0. In view of (??), this
means that *M’ ~ 0 or *N’ ~ 0. Thus F ~ M" ~ M or G~ N" ~ N, by (3.3.1),
respectively, (3.3.2). We have proved that M or N is perfect, as desired. ([l

Remark 3.4. Let C' be a local DG algebra with residue field k, and let L be a
DG C-module with H(L) degreewise finite and bounded below. The graded vector
space TorC(L, k) then has the same properties, see B.8, so a formal Laurent series
PE(t) = ranky(Tor{ (L, k))t' € Z((t)
i€
is defined. It is known as the Poincaré series of L over C.

Let B be a local DG algebra with residue field k£ and f: B — C a morphisms
of local DG algebras commuting with the canonical augmentations. If there is a
morphism of DG algebras a: A — B, such that S« is a quasi-isomorphism, then
(3.4.1) PZ(t) = PE() PL(1)

holds in Z((t)), due to the isomorphism in Theorem 1.5.
This formula holds, in particular, when C is a DG algebra retract of B.

4. KOSZUL EXTENSIONS

Here we widen the range of applications of Theorem 3.1 by weakening some of its
hypotheses, by means of the classical construction of adjunction of indeterminates.

4.1. Let B be a commutative DG algebra and z a cycle with |z| even.
A DG algebra B,(z) is defined by Bz<ac>h = BY% ®z Z{x), where Z(z) is the
exterior algebra of a free Z-module Zz with |z| = |z| 4+ 1, and

A(b+ cx) = A(b) + d(c)x + (—1)cz.
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A Koszul extension of B is a DG algebra of the form B(X), where X = z1,...,z,
is a sequence of indeterminates of odd degrees, and for ¢ = 1,...,n there are cycles
z; € B(zx1,...,xi—1), such that B(z1,...,2z;) = B,,(x1,...,Ti—1){x;).

The inclusion B C B(X) is a morphism of DG algebras.

When M is a DG B-module we let M (X) denote the B(X)-module B(X)®p M.

The terminology adopted above is a reminder that the Koszul complex on a
sequence of elements 21, ..., z, in a commutative ring R is a Koszul extension of R.

Theorem 4.2. Let (B,n, k) be a local DG algebra.
Assume that some Koszul extension of B is quasi-isomorphic to A x €W, where
A is a local DG algebra with H(A) bounded, and W is a DG k-module with H(W)

nonzero and bounded.
If M and N are DG B-modules, such that H(M) and H(N) are finite over Ho(B)

and Tor? (M, N) is bounded, then M or N is perfect.

The next result collects standard properties of Koszul extensions needed in the
proof of the preceding theorem; proofs are included for ease of reference.
Lemma 4.3. Let B be a DG algebra and B(X) a Koszul extension of B.
Let M and N be DG B-module.
(1) If H(M) is bounded, then so H(M(X)).
) If Tor® (M, N) is bounded, then so is Tor?X) (M (X), N(X)).
) If N is a DG B(X)-module, then Tor® X (M (X), N) = Tor® (M, N) holds.
) If Ho(B) is noetherian and H(M) is degreewise finite, then Ho(B(X)) is
noetherian and H(M (X)) is degreewise finite.
(5) If (B,n, k) is local and By N 0X Cn, then (B(X), B(X)(n, X),k) is local.

Proof. By induction, it suffices to treat the case X = {z}; set |z| =d + 1.
Applying (?) ® g M to the exact sequence of DG B-modules
0 — B— B{z) — 2B —0
yields, in homology, an exact sequence of Hy(B)-modules
0 — H;y(M)/2H;_q(M) — H;(M(x)) — (0: 2)u, , ,(m) — 0

for every i € Z. Parts (1) and (4) follow, and the latter implies part (5).
In the remainder of the proof we may assume that the DG B-module M is
semiflat. The DG B{X)-module M (X) then is semiflat, by A.7, so we have

Tor®(M,?) 2 H(M®p?) and Tor®X)(M(X),?) = H(M(X)®px)?).
The definition of Koszul extensions gives an isomorphism
M(X) ®px) N(X) = (M @5 N)(X)
of DG B(X)-modules, which proves (2). Part (3) follows from the isomorphisms
M(X) ®pxy N = (B(X)®p M) @p(xy N =M ®p N . O

One advantage of local DG algebras is that perfection can be detected by ho-
mology. This is the content of the next result, a variation on [4, 4.8 and 4.10].

Proposition 4.4. Let (B,n,k) be a local DG algebra and M a left DG B-module.
The following conditions are equivalent:

(i) M is perfect.
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(ii) M is quasi-isomorphic to a finite semifree DG B-module.
(iii) H(M) is bounded below and degreewise finite, and Tor® (M, k) is bounded.

Proof. The definition yields (ii) = (i). For (i) = (iii), since the conclusions in
(iii) are inherited by direct summands, we may assume M is finite semifree; then
Tor? (M, k) is isomorphic to H(M ®p k), and thus bounded, while induction on
rankg: M?, using that each H;(M) is noetherian, shows that H(M) is bounded
below and degreewise finite. For (iii) == (ii), let F = M be a minimal semifree
resolution and note that by (??) F has a finite semifree basis. O

Proof of Theorem 4.2. Let B’ be the Koszul extension of B offered by the hypothe-
sis, and set M’ = B'®@p M and N' = B’®p N. By parts (1) and (4) of Lemma 4.3,
the Ho(B’')-modules H(M’) and H(N") are finite and Tor” (M’, N') is bounded, by
part (2) of that lemma. By Lemma 4.3(5), B’ is a local DG algebra with residue
field k. Since B’ is quasi-isomorphic to A x W it follows that H(W) is degreewise
finite and Hoo(W) = 0. As H(W) is nonzero and bounded, by hypothesis, Theo-
rem 3.1 applies and yields that one of the DG B’-modules M’ and N’ is perfect;
assume that the first one is.

The inclusion B € B’ commutes with the canonical augmentations to k. Thus,
Lemma 4.3(3) yields Tor” (M, k) = Tor?’ (M’ k). Recalling that M’ is perfect over
B’, we conclude that M is perfect over B by referring, twice, to Proposition 4.4. [

5. LOCAL RINGS

We say that (R,m, k) is a local ring if R is commutative noetherian ring with
unique maximal ideal m, and k = R/m is the residue field. Let e denote the minimal
number of generators of m, and recall that e —depth R is non-negative. We fix some
minimal generating set of m and let K? denote the Koszul complex on this set.

Clearly, local rings are precisely those local DG algebras, in the sense of B.4,
which are zero in nonzero degrees. In particular, the results of the preceding section
apply directly to complexes over local rings with finitely generated homology. Note
that a perfect DG R-module is simply one that is quasi-isomorphic to a bounded
complex of finite free R-modules.

As a first application, we recover some known results about modules over local
rings. Formula (3.4.1) specializes to the following result of Herzog [10, Theorem 1]:

Proposition 5.1. If (R,m,k) and (S,n, k) are local rings, and a: S — R and
B: R — S are homomorphisms of rings, such that Sa = id®, then for every finite
S-module N there is an equality of formal power series

PN (1) = P§(t) PX(1). O

Among the original characterizations of Golod rings, which appear in the next
result, is the property that Massey products are defined for every finite set of
elements of Hx1(K%): This is one direction of Golod’s theorem in [9].

Proposition 5.2. Let (R,m, k) be a local ring satisfying one of the conditions
(a) R is Golod; or
(b) RS x k for some local ring (S,n, k).

If M and N are finite R-modules and TorR(M7 N) is bounded, then M or N has
finite projective dimension.
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Remark. Case (b) of the proposition is due to Nasseh and Yoshino, [13, 3.1]
In case (a), the conclusion is evident when e = edim R, as then R is regular. If
e = depth R+ 1, then R is a hypersurface ring, and the result is due to Huneke and
Wiegand [11, 1.9]. For e > depth R + 2 the result is proved by Jorgensen [12, 3.1].
FEach one of those theorems required a different proof.

Proof. In case (b) the conclusion follows directly from Theorem 3.1.

It is proved in [1, 2.3] that all Massey products on Hsq(K%) exist if and only
K% ~ k x W holds with some graded k-vector space W. We may assume R is not
regular, so that W is nonzero. As K% is a Koszul extension of R, Theorem 4.2
applies and shows that M or N is quasi-isomorphic to a bounded complex of free
R-modules; that is, projdimp M or projdimp N is finite. O

The value for local rings of the general form of Theorem 4.2 is demonstrated by
the proof of the next theorem, on which much of our work in [7] depends.

As usual R denotes the m-adic completion of R. Cohen’s Structure Theorem
yields R~ P/I for some regular local ring (P, p, k) and ideal I contained in p?; any
such isomorphism is called a minimal Cohen presentation of R.

TheoremA5.3. Let R be a local ring. Assume there exists a minimal Cohen pre-
sentation R = P/I satisfying
(a) some minimal free resolution ofﬁ over P has a structure of DG algebra; and
(b) the k-algebra B = Tor” (R, k) is isomorphic to the trivial extension A x W
of a graded k-algebra A by a graded A-module W # 0 with A>; - W = 0.

If M and N are finite R-modules and TorR(M7 N) is bounded, then M or N has
finite projective dimension.

Proof. In view of the faithful flatness of completions, the canonical isomorphisms
Torﬁ(é R M7E®R N) E@R TorR(M,N)
Torﬁ(ﬁ ®pr M, k) = R QR TorR(M, k) = TorR(M7 k)

show that we may assume that R is complete, and hence R = P/I.

Let K denote the Koszul complex on a minimal set of generators of p. It is a
local DG algebra, in the sense of B.4, and as P is regular it has H(K) & k.

By (a), there is a DG P-algebra B, semifree as a DG P-module, with H(B) = R
and O(B) C pB. These properties yield the equality and the last isomorphism in
the following string

KR~Rop K «— Bop KP = Bepk=H(B®p k)= Tor" (R, k)

of morphisms of DG algebras. The quasi-isomorphisms are obtained by tensoring
the augmentations B = R and K¥ = k with the bounded complexes of free
P-modules K and B, respectively. Due to (b), we get KTt ~ A x W.

As K is a Koszul extension of R, Theorem 4.2 yields the desired conclusion. [

APPENDIX A. TOR FOR DG MODULES

This section is a collection of basic facts concerning DG modules over DG al-
gebras used in the body of the article. Most of them are stated in [6, Section 1],
where arguments are only sketched; for details we refer to [2] and [8].
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A.1. Let B be a DG algebra and M a DG B-module. Both are Z-graded and all
their elements are homogenous. We say that M is bounded below if M; = 0 for
i < 0, bounded if M; =0 for |i| > 0, and non-negative if M; = 0 for i < 0. Set
inf M :=inf{i | M; #0} and supM :=sup{i| M; # 0}.

We write XM for the left DG B-module with M,,_; as component of degree n,
™M (m) = —0Mm, and B acting by b-m = (—1)®lbm, where || is the degree of b.

The homology H(M) is a graded module over the graded ring H(B). In particu-
lar, Ho(B) is a ring and each H;(M) is a left Hyo(B)-module. When these modules
are finite for all ¢ € Z, we say that H(M) is degreewise finite over Hyo(B); when
H(M) is also bounded, we say it is finite over Ho(B). Morphisms of DG objects
that induce isomorphisms in homology are called quasi-isomorphisms.

The graded ring underlying B is denoted by Bf, and M?% denotes the graded left
BP-module underlying M.

A.2. Let F be left DG B-module. A semibasis of F is a well-ordered subset {f}
of F, which is a basis of F* over R? and satisfies d(f) € > e<y Be for each fin f.

A DG B-module that has a (finite) semibasis is said to be (finite) semifree.

A DG B-module that is quasi-isomorphic to a direct summand of some finite
semifree DG B-module is said to be perfect.
A.3. A semifree resolution of a (left) DG B-modules M is a quasi-isomorphism
F = M of (left) DG with F' semifree. Every left DG B-module admits such a
resolution; see [8, 6.6(i)]. Choosing a resolution F'™ for each M, one sets

Tor®(L, M) = H(L @5 FM)

for every right DG B-module L. All choices of resolutions yield canonically isomor-
phic results, because any two resolutions are homotopy equivalent; see [8, 6.6(ii)].

A.4. Let f: B — C be a morphism of DG algebras. Let L and L’ be right DG
modules and M and M’ be a left DG modules, over B and C, respectively.
Morphisms of complexes A\: L — L’ and p: M — M’ are called -equivariant if

(W) = ADB®) and  pu(bm) = AB)u(m)
hold for all b€ B, € L and m € M. Such maps define a natural homomorphism
Tor® (A, u): Tor®(L, M) — Tor(L/, M").
of graded abelian groups. It is bijective if H(8), H()), and H(u) are; see [8, 6.10].
A.5. Two DG algebras B and C' are said to be quasi-isomorphic if there exists

a chain f of quasi-isomorphisms of DG algebras linking B and C. Such a chain
f defines an isomorphism f,: H(B) =N H(C) of graded rings. To each right DG
B-module L and left DG B-module M it assigns a right DG C-module fL, a left
DG C-module fM, isomorphisms H(L) = H(fL) and H(M) =N H(fM) that are
f,-equivariant, and an isomorphism Tor? (L, M) = Tor®(fL,fM).

In addition, M is perfect over B if and only if fM is perfect over C.

These statements reflect various properties of a triangle equivalence, induced
by f, of the derived categories of DG B-modules and DG C-modules; see [4, 3.6.2].

A.6. A left DG B-module F is said to be semiflat if the functor (? @ F') pre-
serves injective quasi-isomorphisms of right DG B-modules; equivalently, (? @ 5 F)
preserves quasi-isomorphisms and the graded Bf-module F! is flat.
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If FF — (@ is a quasi-isomorphism of semiflat left DG B-modules, then the induced
map L ®p F — L ®p G is a quasi-isomorphism for every right DG B-module L.

Semifree DG modules are semiflat. If F =» M is a quasi-isomorphism with F'
semiflat, then for any right DG B-module L, there is an isomorphism

Tor®(L, M) = H(L ®5 F).

A.7. Let B: B — C be a morphism of DG algebras.
If M is a semiflat left DG B-module, then C®p M is a semiflat left DG C-module.
If AC is semiflat and N is a semiflat left DG C-module, then N is semiflat.

A.8. A DG algebra B is graded-commutative if all b, b’ in B satisfy
b-bv = (=)l . b and b* =0 when [b] is odd
Every right DG B-module M then is canonically a left DG B-module, with action
b-m:=(=1)"Mlmb forbe Band me M,

so when speaking of DG B-modules, we drop references to ‘left’ or ‘right’; in particu-
lar, this refers to semifreeness and semiflatness. When L and M are DG B-modules,
Tor® (L, M) is a graded H(B)-module and there is an H(B)-linear isomorphism

Tor®(L, M) = Tor® (M, L).
We record a basic fact on the existence of resolutions that are also DG algebras.

A.9. For each morphism : B — C of graded-commutative DG algebras there is a
graded-commutative DG algebra C and a morphisms B — C 5 Cof DG algebras
with e. = [ such that ¢ is injective, € is a surjective quasi-isomorphism, and C and
Coker(:) are semiflat as DG B-modules; see [2, 2.1.9].

Any such factorization is called a semiflat DG algebra resolution of 5.

APPENDIX B. FINITENESS AND MINIMALITY FOR SEMIFREE RESOLUTIONS

In this appendix, B denotes a DG algebra and M a DG module over it. In some
cases, semifree resolutions can be chosen to reflect certain finiteness properties of
H(M) over H(B). The constructions described below come from [5].

B.1. A graded module M over a graded ring A is said to be degreewise finite (over
A) if M has a generating set containing only finitely many elements in each degree.
Since M is also a graded module over A, degreewise finiteness over Ay is defined
as well, but neither property implies the other one in general.

For any set @, let B'Z denote a B-module with basis T = {T},c; the degrees
of the basis elements can be specified as needed.

Proposition B.2. Let B be a DG algebra with H;(B) =0 for i <0 and M a DG
B-module with inf H(M) = j > —ooc.
There is a resolution F =» M where F has a semibasis f with fn=0 forn<j.
If, in addition, Ho(B) is noetherian and H(B) and H(M) are degreewise finite
over Ho(B), then there exists such an F with f degreewise finite.
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Proof. When H(M) = 0 set F = 0. Else, it suffices to argue the case j = 0. The
strategy is to construct a commutative diagram of DG B-modules

t(n—1)

F(0) F(1) - F(n—1) F(n)
B.2.1 «(1)
(B-21) «(0) e("_l)l %
M

that has the following properties for every integer n > 0:
(1) F%(n)is a direct sum of F(n—1) and a B%-module with basis f,, in degree n;
(2) vin— 1)h is the canonical inclusion;
(3) H,(e(n)) is bijective for j <mn — 1 and surjective for j = n.
Given such a diagram, the set f = |_|n>0 f., is a semibasis for the DG B-module
F =, F(n) and the maps €(n) define a quasi-isomorphism e: F' — M.
Set B := H(B). To construct the desired modules and morphisms, choose cycles
Y, in My whose residue classes in Ho(M) generate it as a Bp-module. Set
F(0)=Bf, where f,=79y, and |f|=0 for fe€ f,.

The map y — y for every y € y, defines a morphism €(0): F(0) — M of DG
B-modules. Clearly, f is a semibasis for F'(0) and Hy(e(0)) is surjective.
Assume, by induction, that for some n > 1 a portion of diagram (B.2.1) with the
desired properties has been constructed up through e(n — 1). Choose sets of cycles
Y, C M, and z,, C F(n —1),_1 whose residue classes generate the Bo-modules

(B.2.2) Coker(H,,(€,-1)) and Ker(Hp—1(tn—1))
respectively. Define F'(n) to be the DG B-module with underlying Bf-module
F(n)*=F(mn-1f®B'f, where f,=%,U%,, and |f|=n for fef,

and differential extending that of F(n — 1) and satisfying d(y,,) = 0 and 9(2) = z
for z € z,,. Evidently, f,, is a semibasis of F'(n). For each z, pick m, € M, with
d(m;) = €,(2). The map F(n)u — M? that extends e(n — 1)h and sends y and Z to
y and m, respectively, defines a morphism of DG B-modules €¢(n): F(n) — M.

With €: F/ — M, «: F/ — F”, and ¢’: F"" — M denoting e(n — 1), t(n — 1),
and €(n), respectively, and writing f,, for the set of residue classes of f,,, we obtain
the following commutative diagram of DG B-modules, where the row is exact:

0 F’ L F" Bf
(B.2.3) l
M

By construction, we have d(f,,) = 0, whence H(Bf,,) = H(B) f,, = B f,,, so for
each i € Z we get an induced commutative diagram of By-modules with exact row

0

n

1"

i —_— — i Hi—1(e E>) )
Hy(F) — Y 1, (P — By 25 He o (F) 2% 1, (P = By 1T

H; (M) H;—1(M)
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For every cycle b € B;,_; and each f € f,, the map 3; sends the homology class of
bf to zero if f =y with y € y,,, and to the class of bz if f =2 with z € zy,.
As B; = 0 holds for j < n—1, the exact row of the diagram yields isomorphisms

H;(F') =2 H;(F") for j<n-2 and H,_(F)/Im®,) = H,_1(F"),

induced by H;(t). The computation of d gives Im(d,,) = Ker(H,_1(¢')). By the
induction hypothesis, H;(€') is bijective for j < n — 2 and surjective for j =n — 1,
so the triangle on the right with ¢ = n shows that H;(€¢”) is bijective for j < n — 1.
The triangle on the left and the definition of ¢ imply that H, (") is surjective.

Now the induction step in the construction of (B.2.1) is complete, and hence the
first assertion of the theorem has been proved.

To finish the proof, we revisit the construction under the hypothesis that By is
noetherian and B and H(M) are degreewise finite over By. It is clear that then
Y, can be chosen finite, so we may assume by induction that for some n > 1 the
set f,,_1 has been chosen to be finite, and H(F'(n — 1)) is degreewise finite over
B. The Bo-modules in (B.2.2) then are finitely generated, so y,, and z, can be
chosen to be finite; then f,, is finite, and the homology exact sequence shows that
H(F(n)) is degreewise finite over Bj. O

In the rest of this section, we focus on non-negatively graded DG algebras.

B.3. If B be a DG algebra with B¢y = 0, and F' is a bounded below DG B-module
F such that the Bf-module F? is free, then F is semifree. More precisely, if f is
any basis of F over BY, then can be ordered so as to become a semibasis of F.
This can be achieved by choosing some well-ordering for each f;, and extending
these orderings to a well-ordering of f by setting f < f’ whenever |f| < |f’| holds.

B.4. We say that (B,n, k) is a local DG algebra if the following hold:
(a

(b
(c
(d

) B is a graded-commutative DG algebra with B¢ = 0, and n; = B; for i # 0.
) Bp is a noetherian ring with unique maximal ideal ng, and k = By /ng.
) H(B) is degreewise finite over Ho(B).
) Ho(B) is not equal to 0.
In particular, n is a DG ideal, called the mazimal ideal of B, and the natural map
B — k is a morphism of DG algebras, called the canonical augmentation.

A semifree resolution F' = M satisfying (F) C nF is said to be minimal.

To prove an existence result for such resolutions, we recall some properties of
graded modules over certain types of graded rings. Local DG algebras with zero
differential are called local graded rings. Nakayama’s Lemma holds over them.

Lemma B.5. Let M be a graded module over a local graded ring, (Q,q,k).
If M is bounded below and degreewise finite, then qM = M implies M = 0.

Proof. Suppose that M is not zero, and choose j so that M; = 0 for ¢ < j and
M; # 0 hold. By hypothesis, M has a generating set = |_]Z.>j x; with x; finite for
each ¢. One then has M; = ermj Qox, and hence the Qp-module M; is finitely

generated. As M = qM one gets M; = qoM;, and so the classical version of
Nakayama’s Lemma implies M; = 0, which is a contradiction. O

We need the following standard consequences of Nakayama’s Lemma.

Lemma B.6. Let (Q,q,k) be a local graded ring, F be a bounded below, degreewise
finite, free Q-module, m: F — k ®q F the canonical map, and x a subset of F.
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(1) If w|g is injective and w(x) is a k-basis, then x is a Q-basis of F.
(2) If | is injective and 7(x) is linearly independent over k, then x is linearly
independent over @ and the Q-module F/Qx is free.

Proof. (1) One has an exact sequence of graded @-modules

0 — Ker(¢) — Q& —2+ F — Coker(¢) —» 0

where ¢(Z) = x (see B.1). By construction, k ®¢ ¢ is bijective, and this implies
k®g Coker(¢) = 0. Since F is degreewise finite and bounded below, so is Coker(¢),
and Lemma B.5 yields Coker(¢) = 0. As F is free, the exact sequence above splits,
and hence Ker(¢) is degreewise finite and bounded below and k ®¢g Ker(7) = 0.
Lemma B.5 now yields Ker(¢) = 0, so that ¢ is an isomorphism, as desired.

(2) Choose in F a subset y such that 7(x)Un(y) is a k-basis and 7|, is injective.
By (1), the set x LIy is a Q-basis of F'. In particular, the @Q-submodule Qx of F is
a direct summand, and F/Qx is isomorphic to the free @Q-module Qy. ([

Proposition B.7. Let (B,n, k) be a local DG algebra and M a DG B-module such
that H(M) is degreewise finite over Ho(B) and inf H(M) = j > —oc0.

There exists a minimal semifree resolution €: G = M over B, where G has a
semibasis f with f, finite for each n, and equal to & for n < j.

Proof. Proposition B.2 yields a resolution F =» M with F having a semibasis
having the desired finiteness; we will obtain a minimal resolution by modifying F'.
Set V. = k ®p F; this is a complex of k-vector spaces. Consider the canonical
surjective maps F — V — 9(V) and choose e C F to map bijectively onto some
basis of the k-vector space d(V). Let E be the B*-submodule Y . (B% + B%(e))
of F% since 9(E) C F holds, E is a DG B-submodule of F. Set G = F/E.

By Lemma B.6, the graded B%-modules Ef, F, and G? are all free; they are also
bounded below, by construction. In particular, G is a semifree DG B-module; see
B.3. Moreover O(F) C qF + E holds, again by construction; this yields (G) C gG.

From the linear independence of {e, d(e)}ece over B one easily gets H(E) = 0;
thus the surjective map F' — G is a quasi-isomorphism. As G is semifree, the iden-
tity map G = G lifts to a morphism G — F; it is necessarily a quasi-isomorphism,
so the composed map G — F = M is a minimal semifree resolution. O

Finally, we collect some standard consequences of the existence of minimal free
resolutions B.7 and Nakayama’s Lemma B.5.

B.8. Let (B,n, k) be a local DG algebra and M a DG B-module such that H(M)

is degreewise finite over Hy(B) and bounded below. Let €: F =, M be a minimal
semifree resolution.

(1) Ife: F’ =5 M is a semifree resolution, then any morphism ¢: F — F’ of DG
B-modules lifting € is split-injective. In particular, when F” is also minimal,
 is an isomorphism.

(2) Any basis e of the graded Bf-module F¥ is degreewise finite, and

Tory (M, k) = H,(F @p k) = (F @4 k)n = € ke,
ece,

for each integer n.
(3) If Tor® (M, k) = 0, then M ~ 0.
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