OPENNESS OF THE REGULAR LOCUS AND
GENERATORS FOR MODULE CATEGORIES
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ABSTRACT. This work clarifies the relationship between the openness of the regular locus
of a commutative Noetherian ring R and the existence of generators for the category of
finitely generated R-modules, the corresponding bounded derived category, and for the
singularity category of R.

1. INTRODUCTION

This note concerns the relationship between the openness of the regular locus of a
commutative Noetherian ring R and the existence of (classical) generators, in the sense of
Bondal and Van den Bergh [2], of its bounded derived category, D (modR). The regular
locus of R, denoted RegR, is the subset of SpecR consisting of prime ideals p such that
the local ring Ry, is regular, whereas a generator for the bounded derived category is an
R-complex in D®(mod R) from which one can build every R-complex in D®(mod R) using
finite direct sums, direct summands, and exact triangles. It is not hard to check that when
such a generator exists, RegR is an open subset of Spec R; see Lemma 2.9. We suspect that
the converse does not hold, but are unable to find an example to validate this hunch. What
we can prove is the following statement, proved in Section 2.

Theorem 1.1. The conditions below are equivalent for a commutative Noetherian ring R.

(1) Reg(R/p) contains a nonempty open subset for each p € SpecR.

(2) Reg(R/p) is open for each p € SpecR.

(3) The abelian category mod (R/p) has a generator for each p € SpecR.

(4) The triangulated category D®(mod (R/p)) has a generator for each p € SpecR.
(5) The triangulated category Dsg(R/p) has a generator for each p € SpecR.

When these hold, the abelian category mod R and the triangulated categories D®(modR),
Dsg(R), have generators.

Here Dqg(R/p) is the singularity category of R/p introduced by Buchweitz [3], namely
the Verdier quotient of D®(mod (R/p)) by the full subcategory of perfect complexes; see 2.1
and 2.4. One corollary of the theorem is that the bounded derived category of any excellent
ring has a generator. The result also gives another perspective on Nagata’s criterion for the
openness of the regular locus; see Corollary 2.10.
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2. SINGULAR LOCI AND GENERATORS

Throughout this work R will be a commutative Noetherian ring with identity. We write
modR for the (abelian) category of finitely generated R-module and D®(modR) for its
derived category, viewed as a triangulated category; see, for instance, [5, Chapter IV].

2.1. Perfect complexes. An R-complex (that is to say, a complex of R-modules) is perfect
if it is quasi-isomorphic to a bounded complex of finitely generated projective R-modules.

Remark 2.2. Given any R-complex X in D°(modR) and integer s > sup{i | H;(X) # 0},
there is an exact triangle

P—X—XM—

in D?(mod R) where M is a finitely generated R-module, and P is a perfect complex with
P, =0 for i > s; moreover, one can choose P such that P, = 0 for n < inf{i | H;(X) # 0}.
Indeed, replacing X by a suitable projective resolution, one can assume that each X; is a
finitely generated projective, and X,, = 0 for n < inf{i | H;(X) # 0}. The subcomplex X of
X is perfect and the quotient complex X, := X /X<, has homology only in degree s, by the
choice of s, hence it is quasi-isomorphic to X* Hg(X>;). The exact sequence of R-complexes

0 —Xy—X—X>,—0
induces an exact triangle in D®(mod R) with the desired properties.

Let SpecR denote the spectrum of prime ideals of R, with the Zariski topology. The
support of an R-module M is denoted SupprM; when M is finitely generated, this consists
precisely of the prime ideals containing the annihilator ideal of M, and in particular a closed
subset of SpecR. In what follows, for any R-module M and an integer n > 0, we write
Q%M, or just Q"M when the ring in question is clear, for an n-th syzygy of M.

For any R-complex X we write perfz X for the locus of prime ideals where X is perfect:

perfr X := {p € SpecR | the R,-complex X, is perfect.}
The observation below is well-known, at least for finitely generated modules.
Lemma 2.3. For any X in D®(modR), the subset perfx X of SpecR is open.

Proof. Set s := sup{i | H;(X) # 0} and let M be the finitely generated R-module in the
exact triangle in Remark 2.2. Since localization is an exact functor, for each p € SpecR,
one gets an exact triangle

Py — X, — M, —

in the bounded derived category of Ry,. Since the Ry-complex P, is perfect, it follows that
Xy is perfect if and only if M}, is perfect. It thus suffices to verify the desired claim when
X is a finitely generated R-module. In this case, X is prefect if and only if it is of finite
projective dimension. For any integer n > 1, one has Exti(M,Q"M) = 0 if and only if the
projective dimension of M is < n — 1; see, for example, [7, Lemma 2.14]. It follows that

SpecR \ perfM = () Suppy Exti(M,Q"M).

n>1

It remains to observe that since M is finitely generated, so is each Ext(M,Q"M). ]
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2.4. Singularity category. The perfect complexes form a thick subcategory of DP(modR).
The corresponding Verdier quotient is the singularity category of R, introduced by Buch-
weitz [3] under the name ‘the stabilized derived category of R’. It follows from Remark 2.2
that any object in D (R) is isomorphic to a finitely generated R-module. By construction
an R-complex is zero in D, (R) if and only if it perfect.

The singularity category is a measure of singularity of R, in that D¢z (R) = 0 if and only
if R is regular, by which we mean the local ring Ry, is regular for each p in SpecR.

Indeed, when D, (R) =0, each finitely generated R-module is perfect, that is to say, of
finite projective dimension, and this implies that R is regular. Conversely, when R is regular,
it follows from [ |, Lemma 4.5] that the projective dimension of each finitely generated
R-module is finite; equivalently, that each complex in D (mod R) is perfect; see Remark 2.2.

2.5. Generators. Let <7 be an abelian category, for example, modR. A thick subcategory
of &7 is a full subcategory . that is closed under direct summands, and has the two-out-of-
three property for exact sequences: Given any exact sequence

0—X—Y—Z—0

in &7, if two of X,Y, and Z are in ., then so is the third. Given an object G in &7, we
write thick ./ (G), or just thick(G) when the underlying abelian category is clear, for the
smallest thick subcategory of .o containing G; see, for example, [7, §4.3] for a constructive
definition of this category. The object G is a generator for < if thick(G) = .

One has an analogous notion of a thick subcategory of a triangulated category, and of a
generator of a triangulated category; see [2, Section 2.1], where these are called “classical
generators”. It is easy to verify that any generator for modR is a generator for D®(modR),
and that any generator for the latter is a generator for Dgg (R).

Lemma 2.6. If mod (R/p) has a generator for each p € MinR, then so does modR. The
analogues for the bounded derived category, and the singularity category, also hold.

Proof. There exists a filtration 0 = Iy C I} C --- C I, = R by ideals such that for each i one
has I;/I,_; = R/q; with q; € SpecR. For each i, fix a minimal prime p; of R contained in
;. Given an R-module M, the sequence 0 = IpM C 1M C --- C I,M = M of R-submodules
gives rise to exact sequences

0O— L. M—IM—M —0

of R-modules where M; is an (R/p;)-module.

Assume that for 1 < i < n there exists an (R/p;)-module G; that generates mod (R/p;).
Set G := &;G;. Using the exact sequences above, an obvious inductive argument yields that
G is a generator for modR.

A similar argument applies also in the case of the bounded derived category and the
singularity category. (]

Next we call the definitions concerning the regular locus RegR of the ring R.

2.7. The J-conditions. Let R be a commutative Noetherian ring. Following Matsumura [8,
§32.B] we say that

(1) Ris J-0if RegR contains a nonempty open subset of SpecR.
(2) RisJ-1if RegR is open in SpecR.
(3) RisJ-2if it satisfies the following equivalent conditions.

(a) Any finitely generated R-algebra is J-1.

(b) Any module-finite R-algebra is J-1.
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We record a few remarks concerning these notions.

Remark 2.8. Tt is easy to verify that a ring is J-0 if and only if Spec R\ RegR is not dense in
SpecR, if and only if there exists p € SpecR and f € R\ p such that the ring R is regular.

An artinian local ring that is not a field is not J-0 since the regular locus is empty. There
is an example of a one-dimensional domain that is not J-0; see [6, Example 1].

A regular ring is J-1, and so is a local isolated singularity of positive dimension. The
J-1 condition does not imply J-0: the regular locus might be empty. However, every J-1
domain is J-0, for then the zero ideal belongs to RegR. On the other hand, there exists a
3-dimensional local domain R that is J-0 but not J-1; see [4, Proposition 3.5].

When R is J-2, it is J-1. Excellent rings, Artinian rings, 1-dimensional local rings and
1-dimensional Nagata rings are J-2; see [8, Remark 32.B].

Lemma 2.9. If an R-complex G generates Dsg(R), then RegR = perf G and R is J-1.

Proof. When G generates Dz (R), the Ry-complex Gy, generates Deg (Ry,) for any p € SpecR;
this is straightforward to verify. This implies Deg(Rp,) = 0 if and only if G, = 0 in Dsg(Ry),
that is to say, if and only if the Ry-complex G, is perfect. Since Dgg (R} ) = 0 holds precisely
when Ry, is regular, the equality Reg R = perf G follows. The latter is open, by Lemma 2.3,
and hence the ring R is J-1. O

We are now prepared to prove Theorem 1.1 stated in the Introduction.

Proof of Theorem 1.1. For a start, (3) = (4) = (5) are clear, while (5) = (2) is by Lemma
2.9, and (2) = (1) is clear, for R/p is a domain; see Remark 2.8.

(1) = (3): Assume that (3) does not hold and let p be a maximal element, with respect to
inclusion, with the property that mod R/p does not have a generator. Replace R by R/p, we
may then assume that mod R does not have a generator, but that mod (R/q) does for each
nonzero prime ideal ¢ in R. Since R is a domain, the J-0 condition entails the existence of a
nonzero element f° € R such that Ry is regular; see Remark 2.8. If R is regular, then R would
be a generator for mod R. We may thus assume that f is not a unit. Since mod (R/q) has a
generator for any prime ideal q of R containing f, Lemma 2.6 implies that mod (R/(f)) has
a generator, say G.

We claim that R ® G generates mod R, which is a contradiction.

Indeed, let M be a finitely generated R-module. Since the ring R is regular, the projective
dimension of the Ry-module My is finite, say equal to d; this is again by [1, Lemma 4.5].
For n =max{1,d} and N = Q}M one has

1 ~ n+1 —
EXtR(N,.Q.N)f = EXtRf (Mf, (QN)f) =0.
Hence f“-Exth(N,QN) = 0 for an integer a > 1. It follows that there is an exact sequence
0— (0:n f*) — NB®QRN — Qr(N/fN) — 0,

of R-modules; see, for example, [7, Remark 2.12]. Since f“ is N-regular, forn > 1 and R is
a domain, one obtains that N is isomorphic to a direct summand of Qg(N/f*N).
For each integer i > 1 there is an exact sequence

0— fIN/FIN— N/f'N— N/f'N —0.
Since each f/~!N/fIN is an R/(f)-module, it is generated by G as an R/(f)-module, and
hence also as an R-module. Using the exact sequences above, a standard induction on i then
yields that N/ f'N, and in particular N/ f“N, is generated by G as an R-module. Therefore

QRr(N/f%N) is generated by R® G, as R-modules. Finally, since N is an nth syzygy of M,
it follows that M itself is generated by R @ G, as claimed.
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This completes the proof of the claim of the equivalences of conditions (1)—(5).
The last assertion in the theorem is a consequence of Lemma 2.6. O

One consequence is Nagata’s criterion for regularity; see [8, 32.A]

Corollary 2.10. If Reg(R/p) contains a nonempty open subset for each p in SpecR, then
the subset RegR is open.

Proof. The hypothesis implies that Dez(R) has a generator, by Theorem 1.1, and hence that
RegR is open, by Lemma 2.9. (]

Theorem 1.1 yields also a characterization of the J-2 property.

Proposition 2.11. The following conditions are equivalent.

(1) The ring R is J-2.

(2) Any module-finite R-algebra domain is J-0.

(3) For any module-finite R-algebra (equivalently, and a domain) A, the abelian category
modA has a generator.

(4) For any module-finite R-algebra (equivalently, and a domain) A, the triangulated
category D®(modA) has a generator.

(5) For any module-finite R-algebra (equivalently, and a domain) A, the triangulated
category Dsg(A) has a generator.

Proof. (1) = (2): This implication follows from the fact that any J-1 domain is J-0.

(2) = (3): Let A be a module-finite R-algebra. For any prime ideal p of A, the residue
ring A/p is a module-finite R-algebra domain, and hence is J-0 by hypothesis. Theorem 1.1
then implies that mod A has a generator.

(3) = (4) = (5): These implications are obvious.

(5) = (1): The hypothesis is that the singularity category of any module-finite R-algebra
domain has a generator. Let A be a module-finite R-algebra. For any prime ideal p of A, the
ring A/p is a module-finite R-algebra and a domain, and hence D¢z (A/p) has a generator.
Therefore Dsg(A) has a generator, by Lemma 2.6, and then Proposition 2.9 implies that A is
J-1. This proves that R is J-2. (I

Remark 2.12. For application, it is often important that D (modR) and D (R) have strong
generators. Roughly speaking, a strong generator of a triangulated category 7 is a object G
such that, for some integer d, each object in .7 can be built out of add G, the additive closure
of G, using d exact triangles; see [2, Section 2.2] or [7, Section 7] for a precise description.
The reason for caring about them is that when they exist, under certain reasonable hypothesis
on 7, cohomological functors on .7 are representable; see [2, Theorem 1.3].

It would be also of interest to find an analogue of Theorem 1.1 dealing with strong
generators. The existence of a generator does not imply that of a strong generator. For
example, when R is regular, D®(mod R) has a generator (namely, R itself), but it has a strong
generator if and only if the Krull dimension of R is finite. One can prove that, at least when
R is reduced, the existence of a strong generator implies that dimR is finite. We do not know
whether, when dim R is finite, the existence of a generator implies that of a strong generator.
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