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Abstract. Motivated by a conjecture of Huneke and Wiegand concerning
torsion in tensor products of modules over local rings, we investigate the ex-
istence of ideals I in a one-dimensional Gorenstein local ring R satisfying
Ext1

R
(I, I) = 0.

1. Introduction

In their study [17] of torsion in tensor products of modules over noetherian,
commutative rings, the first and third authors write, in the last line of page 473:
It seems reasonable to conjecture that if [a commutative, noetherian, ring] R is
one-dimensional and Gorenstein and M is a finitely generated R-module such that
M ⊗R M∗ is torsionfree, then M∗ is projective. Here and throughout this paper
we set M∗ = HomR(M,R). An R-module is torsionfree if no regular element of R
kills a nonzero element of the module. Very little progress has been made on this
conjecture, even when R is a domain, so for the moment we focus on that case. By
a standard localization argument, to settle the conjecture above, it suffices to treat
the case when R is a local ring; moreover, arguing as in the proof of [1, Lemma 3.1],
we can assume M is torsionfree; since R is Gorenstein, this condition is equivalent
to M being reflexive. Thus the roles of M and M∗ are interchangeable, and we are
left with the following:

Conjecture 1.1. Let R be a Gorenstein local domain of dimension one and M a
finitely generated, torsionfree R-module such that M ⊗R M∗ is torsionfree. Then
M is free.

An R-module M is rigid provided Ext1R(M,M) = 0, that is to say, every self-
extension of M splits. It is well-known that over a Gorenstein local domain R
with dimR = 1, a finitely generated torsionfree R-module M is rigid if and only if
M ⊗RM∗ is torsionfree; see Proposition 4.4. Hence Conjecture 1.1 is equivalent to:

Conjecture 1.2. Over a one-dimensional local Gorenstein domain, every finitely
generated torsionfree rigid module is free.

Conjecture 1.1 holds for abstract hypersurfaces; see [17, Theorem 3.1]. Celik-
bas [8, Proposition 4.17] has shown that Conjecture 1.1 holds if R is a complete
intersection and the module M is torsionfree and has bounded Betti numbers.
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Both conjectures fail without the hypothesis that R be one-dimensional; see Ex-
amples 2.2 and 2.3. A plausible way to extend Conjecture 1.1 to higher dimensions
is to replace “torsionfree” with “reflexive”, but in fact that version of the conjecture
reduces to the one-dimensional case; see, for example, [9, Propostion 8.6].

In this paper we concentrate chiefly on ideals in one-dimensional rings. The
condition that R is a Gorenstein domain is relaxed to the condition that it is
Cohen-Macaulay, and that the ideal in question is primary to the maximal ideal
and reflexive. In such an R, an ideal is primary to the maximal ideal precisely when
it contains a regular element, so if R is Gorenstein this implies the ideal is reflexive.
Without such hypotheses, there are easy counterexamples; see Example 2.1.

The notation (R,m) means that R is a (noetherian, commutative) local ring with
maximal ideal m. For such an R, we write embdimR for embedding dimension,
and e(R) for the multiplicity. The minimal number of generators required for an
R-module M is denoted νRM . Our main results are summarized below:

Theorem 1.3. Let R be a Cohen-Macaulay local ring with dimR = 1. Let I be
an m-primary, reflexive ideal such that I ⊗R I∗ is torsionfree. The ideal I is then
principal under each of the following conditions:

(1) νRI ≤ 2 and νRI
∗ ≤ 2;

(2) e(R) ≤ 8;
(3) e(R) ≤ embdimR+ 2;
(4) R is a complete intersection and e(R) ≤ 10;
(5) R is a complete intersection and the pair (R, I) can be smoothed;
(6) R is a complete intersection with embdimR ≤ 3 and R/I is Gorenstein.

Parts (1) and (2) are Proposition 3.1 and Theorem 3.8 respectively. Part (3) is
proved as Corollary 3.12; part (4) is contained in Theorem 5.13. Part (5) is the
content of Theorem 5.12. As to (6), when embdimR ≤ 2, that is to say, when R
is a hypersurface, the desired conclusion is by [17, Theorem 3.7], while the case
embdimR = 3 is covered by Corollary 5.11.

The paper is organized as follows. Section 2 contains some examples justifying
the hypotheses in the conjectures. In Section 3 we prove a number of estimates
on the number of generators of rigid ideals or modules for general one-dimensional
rings, in terms of the maximum number of generators of any ideal containing the
trace ideal of the module studied. These are used throughout the remainder of the
paper, and in particular in Section 3 to prove parts (1)–(3) of Theorem 1.3. These
results extend, and were inspired by, work of S. Goto, R. Takahashi, N. Taniguchi,
and H. Le Truong [12, Theorem 1.4], which covers the case e(R) ≤ 6.

The key result of Section 4 is a necessary and sufficient criterion for an ideal I
in a one-dimensional Gorenstein ring to be rigid, in terms of the lengths of certain
associated modules, especially the twisted conormal module, I⊗RωR/I . This result
is used in Section 5 to prove that rigid smoothable ideals are principal if the ambient
ring is a complete intersection. This criterion leads to our results on rigidity for
complete intersections of multiplicity at most 10.
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2. Notation and examples

Throughout the paper, (R,m, k) is a local (for us, this means also commutative
and noetherian) ring and Q(R) denotes the ring of fractions of R. We deal only
with finitely generated modules. An R-module M has rank if Mp is free of constant
rank r for all associated primes p of R; in this case, we write rankR(M) = r. We
say M is Cohen-Macaulay (abbreviated to CM) if it satisfies depthR M ≥ dimM ,
and maximal Cohen-Macaulay (abbreviated to MCM) if depthR M ≥ dimR. In
both cases, equality holds if M is nonzero.

In this section we present some examples to justify the assumptions on the rings
and modules in the conjectures stated in the introduction. The first one shows why
the conjectures would fail without the assumption that R is a domain. Actually,
we typically get by with the weaker assumption that the module in question is
torsionfree, and also of positive rank, a condition that fails in this example.

Example 2.1. Let R = C[[x, y]]/(xy). Put M = R/(x) ∼= (y). Then M ∼= M∗ and
M is not free, but M ⊗R M∗ ∼= M , which is torsionfree.

In dimensions greater than one, Conjecture 1.1 can fail without stronger depth
conditions on the depth of the tensor product.

Example 2.2. For the ring S = C[[x, y, u, v]]/(xy − uv) and the ideal I = (x, u),
the tensor product I ⊗R I∗ is isomorphic to the maximal ideal m and hence is
torsionfree (but not reflexive). See [17, Example 4.1].

As noted in the Introduction, Conjectures 1.1 and 1.2 are equivalent if dimR = 1.
The general statement is that when dimR = d ≥ 1 and M is an R-module that is
maximal Cohen-Macaulay and locally free on the punctured spectrum of R, the R-
module M ⊗R M∗ is torsionfree precisely when ExtdR(M,M) = 0; this follows from
a duality theorem due to Auslander [2]. Nevertheless, one may ask if Conjecture 1.2
remains valid in higher dimensions, but it does not, even if we assume the module
in question is maximal Cohen-Macaulay.

Example 2.3. With R = C[[x, y]]/(xy) andM = R/(x) as in Example 2.1, put S =
C[[x, y, u, v]]/(xy−u2−v2) ∼= C[[x, y, u, v]]/(xy−uv). The stable category of MCM
S-modules is equivalent to that of MCM R-modules, by Knörrer periodicity [19].
One can check directly that M is a rigid R-module. Thus S, a three-dimensional
Gorenstein domain, has a rigid MCM module that is not free.

Remark 2.4. The Gorenstein hypothesis in Conjecture 1.2 is essential. In fact, if R
is any CM ring with canonical module ωR, then ωR is rigid, and it is free only if R
is Gorenstein.

3. Local rings of small multiplicity

We begin with a result, Proposition 3.1, proved in [13] and attributed to the
first and third authors of this paper. We will sketch the proof here, since we have
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replaced the hypothesis, in [13], that R is Gorenstein with the weaker one that I is
reflexive. The proof is the same.

Proposition 3.1. Let R be a local ring with dimR = 1 and I a reflexive ideal
containing a regular element. If both I and I∗ are two-generated, but not principal,
then the R-module I ⊗R I∗ has nonzero torsion.

Proof. Assume to the contrary that I ⊗R I∗ is torsionfree. In the proof, we work
with I−1 rather than I∗; keep in mind that they are isomorphic. Also, we identify
I−1 with the submodule {α ∈ Q(R) | αI ⊆ R}.

By hypothesis one has νR(I) = 2 = νR(I
−1). Using prime avoidance, write

I = (a, b) and I−1 = (f, g), where a, b, f, g are units of Q(R). Let ε : I−1 → R2 be

the map that assigns α to

[

αb
−αa

]

. It is easy to check that the sequence

0 −→ I−1 ε
−−→ R2

[

a b
]

−−−−−→ I −→ 0

is exact. There is a similar exact sequence

0 −→ I
σ

−−→ R2 τ
−−→ I−1 −→ 0 ,

where σ(c) =

[

gc
−fc

]

and τ(

[

x
y

]

) = fx+gy . Splicing these exact sequences together

in two ways, one obtains the following periodic minimal resolution for I−1:

(3.1.1) F • · · · −→ R2 Ψ
−→ R2 Φ

−→ R2 Ψ
−→ R2 Φ

−→ R2 −→ 0 ,

where, with r = ga, s = gb, t = −fa, and u = −fb, one has

Φ =

[

r s
t u

]

and Ψ =

[

−u s
t −r

]

.

Since I is not invertible, the entries of these matrices are elements of the maximal
ideal m. Let J = −fI = (t, u). Since J and I are isomorphic R-modules, we see
that J ⊗R I−1 is torsionfree.

Tensoring the exact sequence

0 −→ J −→ R −→ R/J → 0

with I−1, we get an injection TorR1 (R/J, I−1) ↪→ J ⊗R I−1. Since TorR1 (R/J, I−1)
is killed by the regular element t and J ⊗R I−1 is torsionfree, we must have

(3.1.2) H1

(

(R/J)⊗R F •

)

= TorR1 (R/J, I−1) = 0 .

The maps in the complex (R/J)⊗R F • are given by the reductions

Φ =

[

r s
0 0

]

and Ψ =

[

0 s
0 −r

]

.

of the matrixes Φ and Ψ modulo the ideal J . We will build a element α ∈ kerΦ \
imΨ, to obtain the desired contradiction.

If s = 0, we can take α = [ 01 ], so assume s 6= 0. Since s is nilpotent and r is not

a unit of R = R/J , there is a positive integer n such that sn ∈ Rr but sn−1 /∈ Rr.
Write sn = xr, where x ∈ R. Then α =

[ x
−sn−1

]

belongs to kerΦ. If there were

elements y, z ∈ R with Ψ [ yz ] = α, one would have rz = sm−1, a contradiction.
Thus α /∈ imΨ. �
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In the context of two-generated ideals, we should mention the following result of
Garcia-Sanchez and Leamer [11]: If a monomial ideal I in a complete intersection
numerical semigroup ring R is two-generated and rigid, then I is principal.

Remark 3.2. Let R be a Cohen-Macaulay local ring and M a maximal Cohen-
Macaulay R-module with positive rank. There is then an inequality

νR(M) ≤ e(R) rankR(M) ,

where e(R) denotes the multiplicity of R; for a proof of this assertion see, for
example, [17, Lemma 1.6].

3.3. Trace. The trace of a module M is the image trR(M) of the canonical map

M∗ ⊗R M −→ R

that assigns an element f ⊗ x to f(x).

Proposition 3.4. Let R be a local ring with dimR = 1 and M a nonzero finite
R-module with positive rank. If M ⊗R M∗ is torsionfree, then for each ideal J ⊇
trR(M) there are inequalities

νR(J) ≤ e(R)(1− ρ) +
νR(M ⊗R M∗)

νR(M)2
≤ e(R)(1− ρ+ ρ2)

where ρ = rankR(M)/νR(M). In particular, if M is not free, then νR(J) ≤ e(R)−1.

Proof. We may assume R is Cohen-Macaulay, since otherwise every module with
rank is free, and then it is easy to verify that the desired inequalities hold.

Set ν = νR(M), and consider a presentation

0 −→ N −→ Rν −→ M −→ 0

Thus N is the first syzygy module of M . Since the ideal J contains trR(M), one has
HomR(M,J) = M∗, so applying HomR(−, J) to the exact sequence above yields
exact sequences

0 −→ M∗ −→ Jν −→ X −→ 0(3.4.1)

0 −→ X −→ HomR(N, J) −→ Ext1R(M,J) −→ 0(3.4.2)

Since M has rank, the R-module Ext1R(M,J) is torsion and hence (3.4.2) yields

rankR(X) = rankR(HomR(N, J)) = rankR(N) = ν − rankR(M)

For the second equality, we have used the fact that J contains trR(M) and hence is
of rank one. This computation and Remark 3.2 yield the second inequality below

ν · νR(J) = νR(J
ν) ≤ νR(X) + νR(M

∗)

≤ e(R)(ν − rankR(M)) +
νR(M ⊗R M∗)

ν

≤ e(R)(ν − rankR(M)) +
e(R) rankR(M)2

ν

The first inequality is from (3.4.1). The last inequality is also by Remark 3.2; it
applies as M ⊗R M∗ is torsionfree. Dividing by ν yields the stated inequalities.

When M is not free rankR M < ν so 0 < ρ < 1, which implies 1−ρ+ρ2 < 1. �
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Remark 3.5. Proposition 3.4 leads one to consider the parabola y = 1 − x + x2,
which has its vertex at the point (1/2, 3/4). In our context x = rankR(M)/νR(M)
and hence, assuming M is not free, one has 0 < x < 1. In this range, the parabola
satisfies y < 1.

Corollary 3.6. Let (R,m) be a Cohen-Macaulay local ring with dimR = 1. Let
M be a finite R-module with positive rank. If there exist an element x in R and
an integer n ≥ 1 such that trR(M) ⊆ mn and xmn = mn+1, then M ⊗R M∗ has
nonzero torsion. This holds, in particular, when M has no nonzero free summands
and R has minimal multiplicity.

Proof. There are equalities

ν(mn) = ν(mn/mn+1) = λ(mn/xmn) = e(mn) = e(R)

where the last two hold as mn is Cohen-Macaulay of rank 1. The last statement of
Proposition 3.4 then implies M ⊗R M∗ has nonzero torsion.

When M has no nonzero free summands, trR(M) ⊆ m holds, and when R has
minimal multiplicity there exists an element x such that xm = m2, so we are in a
situation where the first part of the result applies. �

Lemma 3.7. Let R be a local ring and I an ideal containing a regular element. If
the R-module I ⊗R I∗ is torsionfree, then the canonical map I ⊗R I∗ → trR(I) is
bijective, and hence

νR(I)νR(I
∗) = νR(trR(I)) .

When in addition dimR = 1, one has νR(I
∗)νR(I) ≤ e(R).

Proof. The map in question is surjective by definition, and generically an isomor-
phism since I contains a regular element. Since I⊗R I∗ is torsionfree it follows that
the map is an isomorphism; this justifies the stated equality. It also implies that
trR(I) has rank one. When in addition dimR = 1, the R-module trR(I) is MCM,
and 3.2 yields the desired inequality. �

Theorem 3.8. Let (R,m) be a Cohen-Macaulay local ring with dimR = 1. Let
I be an m-primary ideal that is reflexive and such that I ⊗R I∗ is torsionfree. If
e(R) ≤ 8, then the ideal I is principal.

Proof. Set ν := νR(I) and ξ := νR(I
∗); suppose ν ≥ 2, contrary to the desired

conclusion. Since I is reflexive, we have ξ ≥ 2 as well. If ν = 2 = ξ, we apply
Proposition 3.1. Otherwise, we may assume by symmetry that ξ ≥ 3. The equality
below is from Lemma 3.7.

νξ = νR(trR(I)) ≤ e(R)(1−
1

ν
) +

νξ

ν2

The inequality is from the first inequality in Proposition 3.4 applied to J = trR(I);
note that the rank of I is one. This simplifies to an inequality

ξ(ν + 1) ≤ e(R) ,

which contradicts the assumption e(R) ≤ 8. �

Remark 3.9. Theorem 3.8 extends and was inspired by [12, Theorem 1.4], that
states, in our notation, that e > (ν + 1)ξ ≥ 6 if I is not principal. The main new
parts of our theorem are the cases of e = 7, 8.



RIGID IDEALS 7

Remark 3.10. It is important in Theorem 3.8 that we are tensoring I with its
dual. For example, in [17, 4.3] the following example is given: let R = k[[t4, t5, t6]],
I = (t4, t5)R, J = (t4, t6)R. ThenR is a one-dimensional complete intersection (and
so all ideals are reflexive), I and J are two-generated, but I ⊗R J is torsionfree.
However, J is not isomorphic to the dual of I.

Proposition 3.4 can be significantly enhanced for reflexive ideals. Later on, we
will apply this result when R is Gorenstein, in which case the hypothesis that I is
reflexive becomes superfluous.

Proposition 3.11. Let (R,m) be a CM local ring with dimR = 1. Let I be an
m-primary reflexive ideal such that I ⊗R I∗ is torsionfree. Set

δ := e(R)−max{νR(J) | J ⊇ trR(I)}.

When I is not principal the following inequalities hold:

(1) δ ≥ νR(I) and δ ≥ νR(I
∗);

(2) δ ≥ (e(R)− νR(I
∗))/νR(I);

(3) δ2 ≥ e(R)− δ ≥ νR(I)νR(I
∗) ≥ 6.

Moreover the equality δ2 = e(R)− δ holds if and only if δ = νR(I) = νR(I
∗).

Proof. Set e := e(R), ν := νR(I) and ξ := νR(I
∗). Since I is reflexive, but not

principal, we can assume that 2 ≤ ν ≤ ξ.

(2) From the first inequality in Proposition 3.4 applied with M = I and J some
ideal containing trR(I) with νR(J) = e−δ, one gets, after a rearrangement of terms,
the desired inequality:

e ≤ νδ + ξ .

Since e − δ is the maximum of the number of generators of an ideal containing
trR(I), Lemma 3.7 yields

e− δ ≥ νξ

which is the second inequality in (3).

(1) It suffices to verify δ ≥ ξ. The first inequality below has been justified.

νξ + δ ≤ e ≤ νδ + ξ ;

The second inequality is from the already established part (2). It follows that
(ν − 1)ξ ≤ (ν − 1)δ, and hence that ξ ≤ δ; recall ν ≥ 2.

(3) Since I is not principal, Proposition 3.1 yields that at least one of ν or ξ
is greater than or equal to 3, and hence that νξ ≥ 6. It remains to verify that
δ2 ≥ e− δ. The already verified inequalities δ ≥ ξ and δ ≥ ν yield the first and the
last of the following inequalities:

e− δ ≤ e− ξ ≤ νδ ≤ δ2 ;

the one in the middle is from (2). It remains to observe that e − δ = δ2 holds if
and only if both equalities δ = ν and δ = ξ hold. This completes the proof. �

Here is a first application of Proposition 3.11.

Corollary 3.12. Let (R,m) be a CM local ring with dimR = 1. Let I be an m-
primary reflexive ideal such that I ⊗R I∗ is torsionfree. If e(R) ≤ embdimR + 2
holds, then I is principal.
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Proof. Assume I is not principal. We use the notation and conclusions of Propo-
sition 3.11. Since I is not free, trR(I) is contained in the maximal ideal of R, and
hence δ ≤ e(R)− embdimR ≤ 2, which contradicts δ2 ≥ 6. �

4. Gorenstein rings

From this section on the focus will be on one-dimensional Gorenstein local rings.
Let (R,m, k) be one such. Given nonzero R-submodules A,B ⊆ Q(R), each con-
taining a unit of Q(R), we identify HomR(A,B) with

H(A,B) := {α ∈ Q(R) | αA ⊆ B}.

In particular, A∗ = H(A,R). If A is a subring of Q(R) containing R, we usually
write CA (for “conductor”) instead of H(A,R). These considerations apply to an
ideal I containing a regular element; in particular, we identify I∗ with H(I, R),
that is to say, with I−1, and EndR(I) with the subring H(I, I) of Q(R).

Lemma 4.1. Let R be a Gorenstein ring and I a proper ideal containing a regular
element. Set S := H(I, I). The following statements hold.

(1) CS = trR(I).
(2) H(I−1, I−1) = S.
(3) CS is the largest ideal of R whose endomorphism ring is S.
(4) If A,B are R-submodules of Q(R) with A ∼= B, then H(A,A) = H(B,B).

Proof. (1) Hom-⊗ adjointness and the fact that R is Gorenstein yield

(trR I)∗ = (I∗I)∗ = (I∗ ⊗R I)∗ = HomR(I, I
∗∗) = S.

Therefore trR I = S∗ = CS , as claimed.
(2) For any element α ∈ Q(R) \ {0}, it is easy to check that αI ⊆ I implies

αI−1 ⊆ I−1, and conversely (by symmetry).
(3) Observe that EndR(S

∗) = EndR(S) = EndS(S) = S; this is by (2) and the
fact that S is isomorphic to an ideal of R. Suppose next that J is an ideal of R
with EndR(J) = S. Then

S = HomR(J, J) ⊆ HomR(J,R) = J∗ .

Therefore CS = S∗ ⊇ J∗∗ = J .
(4) There exists an element β ∈ Q(R) such that B = βA. Then, for α ∈ Q(R)

we have αA ⊂ A ⇐⇒ αβA ⊂ αβA, so H(A,A) = H(B,B). �

4.2. Two-generated ideals and Gorenstein ideals. In what follows we use
some results on linkage of ideals. Recall that the ring R is assumed to be Gorenstein.
Proper ideals I, J of R are linked provided there is regular sequence x = x1, . . . , xg,
contained in I ∩ J and such that

J = ((x) :R I) and I = ((x) :R J) .

For details see [22, Section 2]. There is a correspondence between two-generated
ideals and Gorenstein ideals. Here’s how it works [16, Proposition 2.5]:

Lemma 4.3. Let R be a Gorenstein local ring and I a height-one unmixed ideal
containing a regular element. Then I is two-generated if and only if it is linked to
a height one Gorenstein ideal which is not principal; in this case any height-one
Gorenstein ideal linked to I is isomorphic to I∗.
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Proof. Assume ν(I) = 2; thus I = (a, b), where we can assume that a is a regular
element. Set J :=

(

(a) :R b
)

=
(

(a) :R I). Since I is unmixed, by [22, Section 2],

one has I =
(

(a) :R J
)

, so I and J are linked. Moreover ωR/J
∼= I/(a), which is

cyclic, so J is a Gorenstein ideal of R.
Conversely, let J be a nonzero height one Gorenstein ideal of R that is not

principal. Choose a regular element element a ∈ J and set I :=
(

(a) :R J
)

. Again,
I and J are linked via (a), and I/(a) ∼= ωR/J , which is cyclic; therefore I = (a, b)
for some b ∈ I.

With I two-generated and linked to a Gorenstein ideal J as above, we have

I∗ ∼= I−1 =
1

a
J and J∗ ∼= J−1 =

1

a
I .

This justifies the assertions. We note that if I is a principal ideal, then any ideal
linked to I is also principal. �

There is a useful reinterpretation of Conjecture 1.1 in term of rigidity: A module
M over a ring R is rigid if Ext1R(M,M) = 0. The following result is well-known; we
record it for ease of reference. We write Ωn

RM for the nth syzygy (defined only up
to projective summands) of M ; when R is Gorenstein and M is MCM, this makes
sense for all n ∈ Z.

In the next result, the hypothesis on the rank of M can be relaxed to the con-
dition that the Rp-module Mp is free for each minimal prime p of R.

Proposition 4.4. Let R be a Gorenstein local ring with dimR = 1 and M a finite
torsionfree R-module with positive rank. The following conditions are equivalent:

(1) M ⊗R M∗ is torsionfree;

(2) TorR1 (Ω
−1M,M∗) = 0;

(3) M is rigid.

Proof. For R as in the statement, a nonzero finitely generated module is torsionfree
if and only if it is MCM. Thus (1) ⇐⇒ (3) is a special case of [18, Theorem 5.9].

(1) ⇐⇒ (2) By definition of Ω−1M , there is an exact sequence

0 −→ M −→ F −→ Ω−1M −→ 0

where F is finite free. Tensoring with M∗ yields an exact sequence

0 −→ TorR1 (Ω
−1M,M∗) −→ M ⊗R M∗ f

−−→ F ⊗R M∗

Since M∗ is torsionfree, so is F ⊗R M∗, and since M has rank so does M∗, and
hence TorR1 (Ω

−1M,M∗) is torsion. It follows that the latter module is zero precisely
when M ⊗R M∗ is torsionfree. �

In view of the preceding result Conjecture 1.1 translates to: Over a Gorenstein
local ring of dimension one, any finitely generated rigid module is free. In the
remainder of this section we once again focus on the case of an ideal. The new
ingredient will be its endomorphism ring. Given an ideal I containing a regular
element, when needed its endomorphism ring EndR(I) will be viewed as a subring
of the integral closure of R; see the remarks at the beginning of Section 4.

The observation below is due to Bass [4, Section 7].

Remark 4.5. Let (R,m) be a Gorenstein local ring with dimR = 1 and I an m-
primary ideal. If EndR(I) = R, then I is principal.
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Indeed, we assume R is not regular, that is to say, m is not principal. Then the
endomorphism ring E of m is equal to m∗. Similarly, if I is not principal, then
I∗ = HomR(I,m), which is an E-module. Therefore I = I∗∗ is an E-module too,
so E ⊆ R. Applying (−)∗ to the exact sequence

0 → m → R → k → 0

we see that E/R ∼= Ext1R(k,R) ∼= k, so E is a proper extension of R.

The next observation is contained in [12, Lemma 2.2, Proposition 2.3]; see
also [21, Theorem 6.4]. A simpler proof is available in our special case.

Proposition 4.6. Let (R,m) be a Gorenstein local ring with dimR = 1 and I
an m-primary ideal. If I is rigid and the ring EndR(I) is Gorenstein, then I is
principal.

Proof. Set S := EndR(I), viewed as a subring of the integral closure of R. Re-
mark 4.5 implies that I is a principal ideal of S, whence I ∼= S: Even if S is not
local, we simply apply the remark to each local ring of S, and then use the Chinese
Remainder Theorem.

The canonical surjection π : I⊗R I∗ � I⊗S I∗ is bijective, because the injection
I ⊗R I∗ → Q(R)⊗R I ⊗R I∗ factors through π. It follows that

νR(I)νR(I
∗) = νR(I ⊗S I∗) = νR(S ⊗S I∗) = νR(I

∗) .

Canceling the factor νR(I
∗), we get the equation νR(I) = 1. �

Remark 4.7. It follows from Proposition 4.6 that if all rings between R and its
integral closure are Gorenstein then there are no non-principal rigid ideals—but
much more is known in this case; see [4].

Remark 4.8. Let I be an ideal in R that contains a regular element and is rigid; set
S := EndR(I). Applying HomR(−, R) and HomR(I,−), respectively, to the exact
sequence 0 → I → R → R/I → 0, induces the rows of the following commutative
diagram of R-modules:

(4.8.1) 0 // R //

��

I∗ // Ext1R(R/I,R) //

γ

��

0

0 // S // I∗ // HomR(I, R/I) // Ext1R(I, I) = 0

The vertical map on the left is the canonical homothety; it is one-to-one because I
contains a regular element. The map γ is induced by the other two vertical arrows.

The Snake Lemma applied to the diagram above implies that γ is surjective and
identifies ker γ with S/R. One thus gets an exact sequence

(4.8.2) 0 −→ S/R −→ Ext1R(R/I,R) −→ HomR/I(I/I
2, R/I) −→ 0 .

Suppose now that (R,m, k) is one dimensional, Gorenstein. The canonical mod-
ule of R/I is given by

(4.8.3) ωR/I = Ext1R(R/I,R) ;
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see, for example, [6, Theorem 3.3.7]. Moreover, we have

(4.8.4)
HomR/I(I/I

2 ⊗R/I ωR/I , ωR/I) = HomR/I(I/I
2,HomR/I(ωR/I , ωR/I))

= HomR/I(I/I
2, R/I) .

Therefore the exact sequence (4.8.2) becomes

(4.8.5) 0 −→ S/R −→ ωR/I −→ ((I/I2)⊗R/I ωR/I)
∨ −→ 0 ,

where (−)∨ denotes the ωR/I -dual HomR/I(−, ωR/I).
Denote the length of an R-module M by λR(M).

Proposition 4.9. Let (R,m) be a Gorenstein local ring with dimR = 1 and I an
m-primary ideal. We have the following equality:

(4.9.1) λR(Ext
1
R(I, I)) + λR(R/I) = λR(S/R) + λR((I/I

2)⊗R/I ωR/I) .

In particular, the ideal I is rigid if and only if

λR(R/I)− λR(S/R) = λR((I/I
2)⊗R/I ωR/I)

if and only if

λ ((trR I)/I) = λR

(

(I/I2)⊗R ωR/I

)

.

Proof. As R is Gorenstein and I contains a regular element, Ext1R(I, R) = 0 holds.
Thus, applying HomR(I,−) to the exact sequence 0 → I → R → R/I → 0 yields
an exact sequence

0 → S → I∗ → HomR/I(I/I
2, R/I) → Ext1R(I, I) → 0 .

Given (4.8.4) this translates to an exact sequence

(4.9.2) 0 → S/R → I∗/R → ((I/I2)⊗R/I ωR/I)
∨ → Ext1R(I, I) → 0 .

The top row of the commutative diagram (4.8.1) shows that I∗/R ∼= ωR/I . Thus

λR(I
∗/R) = λR(R/I) .

Also, by duality, we have

λR(((I/I
2)⊗R/I ω)

∨) = λR((I/I
2)⊗R/I ω) .

Using these equalities and counting lengths in (4.9.2) yields (4.9.1). �

Corollary 4.10. Let R be a Gorenstein local ring R with dimR = 1 and I = (a, b)
an ideal such that a and b are regular elements. Then I is rigid if and only if

((a) : b) ∩ ((b) : a) = ((a) : b)((b) : a) .

Proof. Set J := ((a) : b) so that I and J are linked via (a). One checks that

bJ = b
(

(a) :R b
)

= (a) ∩ (b) = a
(

(b) : a
)

.

Therefore

trR J = trR I = (a, b)I−1 = a
1

a
J + b

1

a
J =

(

(a) :R b
)

+
(

(b) :R a
)

.

Now, by Proposition 4.9 J is rigid if and only if

λR(
trR J

J
) = λR(

J

J2
) ,
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if and only if

λR(

(

(a) :R b
)

+
(

(b) :R a
)

(

(a) :R b
) ) = λR(

(

(a) :R b
)

(

(a) :R b
)2

) ,

if and only if

λR(

(

(b) :R a
)

(

(a) :R b
)

∩
(

(b) :R a
) ) = λR(

b
(

(a) :R b
)

b
(

(a) :R b
)2

) ,

if and only if

λR(

(

(b) :R a
)

(

(a) :R b
)

∩
(

(b) :R a
) ) = λR(

a
(

(b) :R a
)

a
(

(b) :R a
)(

(a) :R b
) ) ,

if and only if

λR(

(

(b) :R a
)

(

(a) :R b
)

∩
(

(b) :R a
) ) = λR(

(

(b) :R a
)

(

(b) :R a
)(

(a) :R b
) ) ,

if and only if
(

(a) :R b
)

∩
(

(b) :R a
)

=
(

(a) :R b
)(

(b) :R a
)

. �

Remark 4.11. Corollary 4.10 is rather remarkable, for it shows that the existence
of a two-generated rigid ideal is equivalent to the existence of isomorphic ideals I
and J such that R/I and R/J are Gorenstein and TorR1 (R/I,R/J) = 0. It seems
unlikely that such ideals exist.

The preceding results highlight the importance of studying endomorphism rings
of rigid ideals. The result below, though not strictly necessary in the sequel, antic-
ipates the key role linkage plays in the next section.

Lemma 4.12. Let I and J be ideals of a Noetherian ring S. Assume each contains
a regular element, and identify their endomorphism rings A and B, respectively,
with subrings of the integral closure of S. If I and J are linked, then A = B.

Proof. We have J = ((x :S I) and I = ((x :S J), where x is a regular sequence.
Suppose t ∈ A, that is, t is in the integral closure of S and tI ⊆ I. If z ∈ J , we
have tzI = z(tI) ⊆ zI ⊆ (x). This shows that tz ∈ ((x) :R I) = J ; thus t ∈ B. We
have shown that A ⊆ B. By symmetry, the two endomorphism rings coincide. �

5. Smoothable ideals

From now on the focus will be on complete intersection rings. In this section we
verify Conjecture 1.1 for ideals that deform to smoothable ideals. To this end we
recollect some basic properties of twisted conormal modules.

5.1. The twisted conormal module. Consider a pair (Q, J) where Q is a Goren-
stein local ring and J ⊂ Q an ideal such that Q/J is Cohen-Macaulay. The hy-

potheses on Q and J imply that ExtdQ(Q/J,Q), where d = height I, is the canonical
module of Q/J . Motivated by Proposition 4.9, we consider the Q/J-module

C(Q, J) := (J/J2)⊗Q/J ωQ/J ,

which Buchweitz [7] calls the twisted conormal module. We are particularly inter-
ested in the situation when Q/J has finite length, and satisfies an inequality

(5.1.1) λQ(C(Q, J)) > (dimQ)λQ(Q/J) .
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In this case ωQ/J is the injective hull of k as a module over Q/J . Thus, by Matlis
duality, the preceding inequality is equivalent to

λQ(HomQ/J(J/J
2, Q/J)) > (dimQ)λQ(Q/J) .

While such an inequality does not hold in general—see Example 5.15—the main
agenda in this section is to identify various classes of ideals for which it does. We
begin with the following simple observation.

Remark 5.2. In the context of (5.1.1), since Q/J has finite length one has

νQ/J(J/J
2) = νQ(J) ≥ dimQ

Thus when J is generated by a regular sequence, the Q/J-module J/J2, and hence
also its dual, is free and so (5.1.1) holds; in fact, we get an equality. This observation
can be extended to cover the case when Q is regular and J can be deformed to a
ideal that is generically complete intersection; see Proposition 5.10.

Our interest in (5.1.1) is explained by the next result.

Corollary 5.3. Let (R,m) be a Gorenstein local ring with dimR = 1 and I an m-
primary rigid ideal. If C(R, I) satisfies the inequality in (5.1.1), then I is principal.

Proof. If I is rigid and C(R, I) satisfies the inequality in (5.1.1), it follows from
Proposition 4.9 that R = EndR(I), and so Remark 4.5 yields that I is principal. �

A special case of this result seems worth highlighting.

Corollary 5.4. Let (R,m) be a Gorenstein local ring with dimR = 1 and I an m-
primary rigid ideal. If the R/I-module HomR/I(I/I

2, R/I) contains a submodule
isomorphic to R/I, then I is principal.

Proof. The hypothesis implies the inequality below

λR C(R, I) = λR HomR/I(I/I
2, R/I) ≥ λR(R/I)

the equality is by Matlis duality. It remains to recall Corollary 5.3. �

5.5. Linkage. Ideals I, J in a Gorenstein ring are said to be in the same linkage
class provided there is a sequence I = I0, I1, . . . , In = J of ideals such that for each
0 ≤ r ≤ n− 1 the ideals Ir and Ir+1 are linked, in the sense of 4.2. An ideal is licci
provided it is in the linkage class of a complete intersection ideal, that is to say one
that can be generated by a regular sequence.

The result below, attributed to Buchweitz in [14], asserts that for ideals of finite
projective dimension the validity of (5.1.1) is invariant under linkage.

Proposition 5.6. Let (R, I) be a pair as in 5.1 with R/I of finite length and of
finite projective dimension. If J ⊂ R is in the linkage class of I, then

λR(C(R, I))− (dimR)λR(R/I) = λR(C(R, J))− (dimR)λR(R/J) .

Remarks in place of a proof. See the proof of [14, Theorem (2.4)], in particular, the
second display after the statement of Theorem (2.5). Also, it is shown in the proof
of [14, Theorem (2.2)] that finite projective dimension is preserved by linkage, so
that all ideals in the chain of links from I to J have finite projective dimension.
Moreover, all of them are m-primary and hence have grade equal to the common
lengths of the regular sequences forming the links. �
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5.7. Deformations. The pair (R, I) deforms to (Q, J), where Q is a local ring
and J is an ideal in Q, if there exists a sequence x in Q that is regular both on Q
and Q/J , and there are isomorphisms

Q

(x)
∼= R and

Q

J + (x)
∼=

R

I
.

We say R deforms to Q if (R, 0) deforms to (Q, 0), that is to say, R ∼= Q/x for a
Q-regular sequence x. In these cases R is Gorenstein if and only if Q is Gorenstein,
and R/I is CM if and only if Q/J is CM; thus C(R, I) is defined if and only if
C(Q, J) is defined. These are remarks will be used without further comment.

The proof of the following result is standard, so is omitted.

Lemma 5.8. When (R, I) deforms to (Q, J) there is a natural isomorphism of
R-modules C(R, I) ∼= R⊗Q C(Q, J) . �

5.9. Smoothability. As before, let R be a Gorenstein ring and I ⊂ R an ideal.
We say that I is smoothable provided the pair (R, I) deforms, in the sense of 5.7, to
(Q, J) where J is generically complete intersection, that is to say, for each prime q

in Q associated to J , the ideal Jq is generated by a regular sequence. Observe that
the ring Q is also Gorenstein. When in addition, Q is a quotient of a regular local
ring, the pair (Q, J), and hence also the pair (R, I), can be further deformed to a
pair (Q′, J ′), where J ′ is reduced; see [15, Theorem 3.10]. This remark reconciles
our notion of smoothability with the one introduced in [16, Definition 4.2].

Proposition 5.10. Let (R, I) be a pair as in 5.1 with R/I of finite length. Then
C(R, I) satisfies the inequality in (5.1.1) when any of the following conditions holds:

(1) R deforms to Q and with K the inverse image of I under the quotient map
Q � R, the Q/K-module C(Q,K) satisfies (5.1.1);

(2) (R, I) is smoothable;
(3) I is licci.

Proof. In either case R ∼= Q/(x), where x is a Q-regular sequence, say of length c.
(1) Let ω denote the canonical module of S := R/I. Since I = K/(x) there is

an exact sequence

K2 + (x)

K2
⊗S ω −→

K

K2
⊗S ω −→

I

I2
⊗S ω −→ 0 ,

of S-modules. Noting that Sc maps onto (K2 + (x))/K2 and that Q/K = R/I,
one gets an exact sequence of S-modules:

ωc −→ C(Q,K) −→ C(R, I) −→ 0 .

This yields the first of the following (in)equalities

λ(C(R, I)) ≥ λ(C(Q,K))− cλ(ω)

≥ (dimQ)λ(S)− cλ(S)

= (dimQ− c)λ(S)

= (dimR)λ(S) .

The second inequality is by our hypothesis that C(Q,K) satisfies (5.1.1), and the
fact that λ(ω) = λ(S), which is a consequence of Matlis duality. The equalities are
clear. This gives the desired conclusion.
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(2) By hypothesis, (R, I) deforms to (Q, J) with J generically complete inter-
section. In particular, both (Q/J)-modules J/J2 and ωQ/J have rank, equal to
height J and 1, respectively. Therefore one gets equalities

rankQ/J(C(Q, J)) = dimQ− dim(Q/J) = dimR− dim(R/I) = dimR ,

where the first and the last one hold because Q and R are Gorenstein, and the
second one holds because (Q, J) is a deformation of (R, I). This computation will
be used further below. For the remainder of the proof, we employ the multiplicity
symbol e(x;−) on Q/J-modules. This is valid since x is a (regular) system of
parameters for Q/J ; recall that R/I has finite length. From Lemma 5.8 and [6,
Theorem 4.7.10(1)] one gets the first inequality below.

λQ(C(R, I)) ≥ e(x,C(Q, J))

= e(x,Q/J) rankQ/J(C(Q, J))

= e(x,Q/J)(dimR)

= λ(R/I)(dimR)

The first equality is by [6, Corollary 4.7.9], which applies since C(Q, J) has rank,
equal to dimR. The other ones are clear.

(3) This follows from Proposition 5.6 and Remark 5.2. �

Corollary 5.11. Let (R,m) be a complete intersection local ring with dimR = 1
and I an m-primary rigid ideal. If embdimR ≤ 3 and R/I is Gorenstein, then I
is principal.

Proof. We may assume that R is complete. By hypothesis, one can find a regular
local ring Q of dimension three mapping onto R. The preimage K in Q of the
ideal I is also of codimension three, and Q/K is Gorenstein. An argument due to
J. Watanabe, implicit in the proof of [23, Theorem], shows K is licci. Thus C(R, I)
satisfies (5.1.1), by Proposition 5.10(3). It remains to recall Corollary 5.3. �

Theorem 5.12. Let (R,m) be a complete intersection local ring with dimR = 1
and I an m-primary rigid ideal. Let π : Q � R be a surjective local homomorphism
with Q a regular local ring and set K := π−1(I).

If I is rigid and C(Q,K) satisfies the inequality in (5.1.1), in particular, if (Q,K)
is licci or smoothable, then I is principal.

Proof. By Proposition 5.10(1) the R/I-module C(R, I) also satisfies (5.1.1), so the
desired result is a consequence of Corollary 5.3. �

Here is an application of the preceding results.

Theorem 5.13. Let (R,m) be a complete intersection local ring with dimR = 1
and I an m-primary rigid ideal. If e(R) ≤ 10, then I is principal.

Proof. Given Theorem 3.8 we only have to treat the case when e(R) is 9 or 10. We
assume that I is not principal. We consider the integer

δ := e(R)−max{νR(J) | J ⊇ trR(I)}.

Since I is not principal, from Proposition 3.11 one gets inequalities

6 ≤ νR(I)νR(I
∗) ≤ e(R)− δ ≤ δ2 ,
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Since e(R) ≤ 10, these imply that δ is one of {3, 4}, and in either case one has
equality on the left, so that νR(I) = 3 and νR(I

∗) = 2, or vice versa. We can assume
without loss of generality that νR(I

∗) = 2, so I is Gorenstein, by Lemma 4.3. Then,
given Corollary 5.11, one can assume also that embdimR ≥ 4.

By passing to completions, if necessary, we can ensure that R is of the form
Q/(f1, . . . , fc), with Q a regular local ring and f a Q-regular sequence contained
in n2, where n is the maximal ideal of Q; note that c = embdimQ − 1. Let
K be the inverse image of I under the surjection Q → R. We will prove that
K is licci, contradicting Theorem 5.12. To that end note that if d1, . . . , dc are
nonnegative integers such that fi ∈ ndi \ ndi+1, then it follows from [5, Chapter
VIII, §7, Proposition 7] that

e(R) ≥ d1 · · · dc .

Since di ≥ 2 and c = embdimR − 1 ≥ 3, the hypothesis e(R) ≤ 10 implies c = 3,
so that embdimR = 4, and that di = 2 for each i. In particular, the number of
generators of m2 is 7; here m is the maximal ideal of R. This will be used later on.

Assume e(R) = 9, so that δ = 3. Since the number of generators of m2 is 7 and
δ = 3, it follows from the definition of δ that trI(R) contains an element not in m2.
Write I∗ = (a, b) for elements a, b ∈ R. Then I = ((a) : b), and the trace ideal is
((a) : b) + ((b) : a). Since the trace ideal is not contained in m2, without loss of
generality we may assume that ((a) : b) is not contained in m2. Choose an element
c ∈ ((a) : b) such that c /∈ m2. Write cb = da. Then I = ((a) : b) = ((c) : d), so after
changing notation we may assume that a /∈ m2. We have shown that Q/K ∼= R/I
is Gorenstein and that K is not contained in the square of the maximal ideal of Q.
Lift a to Q and by abuse of notation, call that element a as well. Then Q/(a) is a
three-dimensional regular local ring, and K/(a) is a grade-three Gorenstein ideal.
As noted in the proof of Corollary 5.11, such an ideal is licci. It follows that K
is also licci: do the links in Q/(a) and lift back to Q by taking the same regular
sequences and throwing in a. This is the desired result.

Assume e(R) = 10. When δ = 3 inequality (2) in Proposition 3.11 is violated for

νR(I
∗)δ + νR(I) = 2(3) + 3 = 9 .

Therefore δ = 4. As in the case of e(R) = 9 and δ = 3 we deduce that trR(I) is not
in m2, so that K is licci. �

Our thanks to the editor for the following observation.

Remark 5.14. The preceding results have implications also for the case e(R) = 11,
namely, if in addition embdimR ≤ 3, then there are no nontrivial m-primary rigid
ideals. Indeed, assuming I is a rigid m-primary ideal that is not principal, one can
argue as in the first paragraph of the proof of Theorem 5.13 to deduce that

3 ≤ δ ≤ 11− νR(I)νR(I
∗) .

This implies that one of I or I∗ is two-generated; without loss of generality, sup-
pose νR(I) = 2. Then I is linked to an m-primary ideal J that is Gorenstein
and not principal; see Lemma 4.3. Since I is rigid so is J , and that contradicts
Corollary 5.11, since embdimR ≤ 3.

Example 5.15. D. Eisenbud and B. Ulrich provided us with examples that show
that inequality (5.1.1) does not hold in general, even when Q is a regular ring and
J is a Gorenstein ideal.
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One such example is obtained by letting Q be the polynomial ring (say over C)
in six variables, and J the Gorenstein ideal with dual socle element a general cubic.
The Hilbert function Q/J is then 1, 6, 6, 1. The length of J/J2, and hence also of
C(Q, J), is 76 so that

λQ(C(Q, J))− (dimQ)λQ(Q/J) = 76− 6 · 14 = −8 .

This example is part of a family appearing in the work of J. Emsalem and A.
Iarrobino [10], in which they study smoothing of algebras via their tangent spaces.
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