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1. INTRODUCTION

A big Cohen-Macaulay module over a commutative noetherian local ring R is
a (not necessarily finitely generated) R-module C' such that some system of
parameters of R forms a C-regular sequence. In [16] Hochster showed that the
existence of such modules implies several fundamental homological properties
of finitely generated R-modules. In [17], published in [18], he proved that big
Cohen-Macaulay modules exist for algebras over fields, and conjectured their
existence in the case of mixed characteristic. This was recently proved by
Y. André in [2]; as a major consequence many “Homological Conjectures” in
local algebra are now theorems.

A perfect R-complex is a bounded complex of finite projective R-modules.
Its level with respect to R, introduced in [6] and defined in 2.3, measures
the minimal number of mapping cones needed to assemble a quasi-isomorphic
complex from bounded complexes of finite projective modules with differentials
equal to zero.

The main result of this paper, which appears as Theorem 3.3, is the following

TENSOR NILPOTENCE THEOREM. Let f: G — F be a morphism of perfect
complezes over a commutative noetherian ring R.

If f factors through a complex whose homology is I-torsion for some ideal I of
R with height I > level? Hompg(G, F), then the induced morphism

Qpf: RG—>QF
is homotopic to zero for some non-negative integer n.

Big Cohen-Macaulay modules play an essential, if discreet, role in the proof
as a tool for constructing special morphisms in the derived category of R; see
Proposition 3.7.

In applications to commutative algebra it is convenient to use another property
of morphisms of perfect complexes: f is fiberwise zero if H(k(p)®p f) = 0 holds
for every p in Spec R. Hopkins [21] and Neeman [25] have shown that this is
equivalent to tensor nilpotence; this is a key tool for the classification of the
thick subcategories of perfect R-complexes.

It is easy to see that the level of a complex does not exceed its span; see 2.1.
Due to these remarks, the Tensor Nilpotence Theorem is equivalent to the

MORPHIC INTERSECTION THEOREM. If f is not fiberwise zero and factors
through a complex with I-torsion homology for some ideal I of R, then there
are inequalities:

span F' + span G — 1 > level® Homp (G, F) > height I + 1.

In Section 4 we use this result to prove directly, and sometimes to generalize
and sharpen, several basic theorems in commutative algebra. These include
the Improved New Intersection Theorem, the Monomial Theorem and several
versions of the Canonical Element Theorem. All of them are equivalent, but
we do not know if they imply the Morphic Intersection Theorem; a potentially
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significant obstruction to that is that the difference span F' — level® F' can be
arbitrarily big.

Another application, in Section 5, yields lower bounds for ranks of certain
finite free complexes over local rings, related to a conjecture of Buchsbaum
and Eisenbud, and Horrocks.

In [7] we prove a version of the Morphic Intersection Theorem for certain kinds
of tensor triangulated categories. This has implications for morphisms of per-
fect complexes of sheaves and, more generally, of perfect differential sheaves
over schemes.

2. PERFECT COMPLEXES

Throughout this paper R will be a commutative noetherian ring.
This section is a recap on the various notions and construction, mainly concern-
ing perfect complexes, used in this work. Pertinent references include [6, 26].

2.1. CoMPLEXES. In this work, an R-complex (a shorthand for ‘a complex of
R-modules’) is a sequence of homomorphisms of R-modules

X X
Xi= o —X, " Xp 1 — X, 90—

such that ¥0X = 0. We write X? for the graded R-module underlying X.
The ith suspension of X is the R-complex Y'X with (¥'X), = X,_; and
OX'X = (=1)'9X_, for each n. The span of X is the number

span X :=sup{i | X; #0} —inf{i | X; #0} +1

Thus span X = —oco if and only if X = 0, and span X = oo if and only if X; # 0
for infinitely many ¢ > 0. The span of X is finite if and only if span X is an
natural number. When span X is finite we say that X is bounded.

Complexes of R-modules are objects of two distinct categories.

In the category of complexes C(R) a morphism f:Y — X of R-complexes
is a family (f;: Vi — X;)iez of R-linear maps satisfying 97 fi = f;i_10). It
is a quasi-isomorphism if H(f), the induced map in homology, is bijective.
Complexes that can be linked by a string of quasi-isomorphisms are said to be
quasi-isomorphic.

The derived category D(R) is obtained from C(R) by inverting all quasi-isomor-
phisms. For constructions of the localization functor C(R) — D(R) and of the
derived functors ?®%? and RHomg(?,?), see e.g. [13, 31, 24]. When P is a com-
plex of projectives with P; = 0 for ¢ < 0, the functors P®I§? and RHomp (P, ?)
are represented by P®g? and Hompg (P, ?), respectively. In particular, the lo-
calization functor induces for each n a natural isomorphism of abelian groups

(2.1.1) H_,,(RHompg(P, X)) = Hompp) (P, X" X).
2.2. PERFECT COMPLEXES. In C(R), a perfect R-complex is a bounded com-

plex of finitely generated projective R-modules. When P is perfect, the R-
complex P* := Hompg(P, R) is perfect and the natural biduality map

P — P* =Hompg(Hompg(P, R), R)
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is an isomorphism. Moreover for any R-complex X the natural map
ProrX — HomR(P,X)
is an isomorphism. In the sequel these properties are used without comment.

2.3. LEVELS. A length | semiprojective filtration of an R-complex P is a se-

quence of R-subcomplexes of finitely generated projective modules
0=PO)CP)C---CPIl)=P

such that P(i —1)" is a direct summand of P(i)’ and the differential of

P(i)/P(i — 1) is equal to zero, for i = 1,...,l. For every R-complex F set

F is a retract in D(R) of some R-complex P }

level® F = inf { | € N
eve m { that has a semiprojective filtration of length [

By [6, 2.4], this number is equal to the level of F' with respect to R, as defined
in [6, 2.1]. In particular, level”® F is finite if and only if F' is quasi-isomorphic
to some perfect complex. When F' is quasi-isomorphic to a perfect complex P,
one has

(2.3.1) level® F < span P.

Indeed, if P .= 0 —- P, — --- — P, — 0, then consider the filtration by
subcomplexes P(n) := P<ptq. The inequality can be strict; see 2.7 below.
When R is regular, any R-complex F' with H(F') finitely generated satisfies

(2.3.2) level® F < dim R + 1.

For R-complexes X and Y one has

level® (X'X) = level® X for every integer i, and
level® (X @ Y) = max{level™ X, level " Y'}.

These equalities follow easily from the definitions.

(2.3.3)

LEMMA 2.4. The following statements hold for every perfect R-complex P.
(1) level” (P*) = level® P.
(2) For each perfect R-complex Q there are inequalities
level? (PRrQ) < level® P+ level " Q — 1.

level? Homp(P,Q) < level® P+ level " Q — 1.

Proof. (1) If P is a retract of P', then level® P < level® P' and P* is a retract

of (P")*. Thus, we can assume P itself has a finite semiprojective filtration

{P(n)}. _y. The inclusions P(l —i) C P(l —i+ 1) C P define subcomplexes
P*(i) :== Ker(P* — P(l —14)") C Ker(P* — P(l—i+1)) =: P*(i+1)

of finitely generated projective modules. They form a length [ semiprojective

filtration of P*, as P*(i — 1)* is a direct summand of P*(i)* and one has

P*]?;(T—L)w = (P(zl%_l %1))*'
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This gives level® P* < level® P. The reverse inequality follows from P & P**,
(2) Assume first that P has a semiprojective filtration {P(n)},,_, and @ has
a semiprojective filtration {Q(n)}™_,. For all h,i, we identity P(h) ®r Q(%)
with a subcomplex of P ®p Q.

For each integer n > 0 form the subcomplex

C(n):=>_P(j+1)®rQn - j)

j=0
of P®pr Q. A direct computation yields an isomorphism of R-complexes

Cn) _=PG+1) _ Qn—j)
C-1 =2 PG 9"

2 (n=j-1)

Thus {C(n) ij;"g*l is a semiprojective filtration of P @ Q.

The second inequality in (2) follows from the first one, given (1) and the iso-
morphism Hompg (P, Q) = P* ®p Q. Next we verify the first inequality. There
is nothing to prove unless the levels of P and @ are finite. Thus we may assume
that P is a retract of a complex P’ with a semiprojective filtration of length
I = level® P and Q is a retract of a complex @’ with a semiprojective filtration
of length m = level™® Q. Then P®zQ is aretract of P'®@rQ’, and—by what we
have just seen—this complex has a semiprojective filtration of length [4+m —1,
as desired. |

2.5. GHOST MAPS. A morphism g: X — Y in D(R) is a ghost if H(g) = 0; see
[11, §8]. Clearly, composing morphisms with ghosts yield ghosts.

The next result is a version of the “Ghost Lemma”; cf. [11, Theorem 8.3], [29,
Lemma 4.11], and [5, Proposition 2.9].

LEMMA 2.6. Let F be an R-complex and ¢ an integer with ¢ > level® F.
Every composition g: X — Y of ¢ ghosts induces morphisms

Fehg FREX — FeLY and
RHompg(F, g): RHompg(F, X) — RHomp(F,Y)
Proof. For every R-complex W there is a canonical isomorphism
RHompz(F, R) ®% W — RHompg(F, W),

so it suffices to prove the first assertion. For that, we may assume that F'
has a semiprojective filtration {F(n)}! _,, where [ = level® F. By hypothesis,
g = ho f where f: X — W is a (c—1)fold composition of ghosts and h: W — Y
is a ghost. Tensoring these maps with the exact sequence of R-complexes

0—F(1)—F-"5G—0
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where G := F / F
F(1

(1), yields a commutative diagram of graded R-modules
HerX)— HF®rX) —— H(G®r X)

H(F()®f) l lH(F@f) lH(G@f)
H(mr@W
F(1) @ W) H(F or W) 2" (G @ p W)

H(F(1)®h) l lH(F@h) l
(1)

F() @pY) fr—s HF 1Y) ——— H(G @R Y)

H(.QW)

where the rows are exact. Since level” G <l—1 < c¢—1, the induction hypoth-
esis implies G ® f is a ghost; that is to say, H({G ® f) = 0. The commutativity
of the diagram above and the exactness of the middle row implies that

ImH(F® f) CImH( @ W)
This entails the inclusion below.
ImH(F®g)=H(F®h)(InH(F ® f))
CH(F®h)(ImH(:® W))
CImH(®Y)H(F(1)®h))
=0

The second inclusion comes from the commutativity of the diagram. The last
equality holds because F(1) is graded-projective and hence H(h) = 0 implies

H(F(1) ® h) = 0. O
2.7. KOSzZUL COMPLEXES. Let  := x1,...,x, be elements in R.

We write K () for the Koszul complex on . Thus K (z)? is the exterior algebra
on a free R-module K (x); with basis {Z1,...,%,}, and 0¥ is the unique map

that satisfies the Leibniz rule and has 9(z;) = z; for i = 1,...,n. Thus K(x)

is a DG (differential graded) algebra, and so its homology H(K (x)) is a graded

algebra with Ho (K (x)) = R/(«). This implies () H(K (x)) = 0.

Evidently K () is a perfect R-complex; it is indecomposable when R is local;

see [1, 4.7). As K(x); is non-zero precisely for 0,...,n, from (2.3.1) one gets
level® K (x) < span K (z) =n+ 1.

Equality holds if R is local and x is a system of parameters (see Theorem 4.2
below), but span K (x) — level® K () can be arbitrarily large; see [1, Section 3].
For any Koszul complex K on n elements, there are isomorphisms

n
K*=y"K and Kopk=@k()
1=0
See [8, Propositions 1.6.10 and 1.6.21]. It thus follows from (2.3.3) that
(2.7.1) level® Homp (K, K) = level® (K @ K) = level K .

In particular, the inequalities in Lemma 2.4(2) can be strict.
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3. TENSOR NILPOTENT MORPHISMS

In this section we prove the Tensor Nilpotence Theorem announced in the
introduction. We start by reviewing the properties of interest.

3.1. TENSOR NILPOTENCE. Let f: Y — X be a morphism in D(R).
The morphism f is said to be tensor nilpotent if for some n € N the morphism

[ @ f YL - 0RY — X®F @5 X
n
is equal to zero in D(R); when the R-complexes X,Y are perfect this means
that the morphism ®"f: ®%Y — ®%X is homotopic to zero.
When X is perfect and f: X — !X is a morphism such that ®" f homotopic
to zero, the n-fold composition

1 21 nl
X —sylx Ty 2000 E oeniy

is also homotopic to zero. The converse does not hold, even when R is a field
for in that case tensor nilpotent morphisms are zero.

3.2. FIBERWISE ZERO MORPHISMS. A morphism f:Y — X that satisfies
E(p)@% f=0 in D(k(p)) for every p € Spec R

is said to be fiberwise zero. This is equivalent to requiring k ®Ij% f=0in D(k)
for every homomorphism R — k with k a field. In D(k) a morphism is zero if
(and only if) it is a ghost, so the latter condition is equivalent to H(k®% f) = 0.
A morphism in D(k) is tensor nilpotent exactly when it is zero. Thus if f is
tensor nilpotent, it is fiberwise zero. There is a partial converse: If a morphism
f: G — F of perfect R-complexes is fiberwise zero, then it is tensor nilpotent.
This was proved by Hopkins [21, Theorem 10] and Neeman [25, Theorem 1.1].
The next result is the Tensor Nilpotence Theorem from the Introduction. Recall
that an R-module is said to be I-torsion if each one of its elements is annihilated
by some power of I.

THEOREM 3.3. Let R be a commutative noetherian ring and f: G — F a mor-
phism of perfect R-complexes. If for some ideal I the following conditions hold

(1) f factors through some complex with I-torsion homology, and
(2) level” Hompg (G, F) < height I,
then f is fiberwise zero. In particular, f is tensor nilpotent.
The proof of the theorem is given after Proposition 3.7.
Remark 3.4. Lemma 2.4 shows that the inequality (2) is implied by
level® F + level® G < height I + 1

the converse does not hold; see (2.7.1).
On the other hand, condition (2) cannot be weakened: Let (R, m, k) be a local
ring and G the Koszul complex on some system of parameters of R and let

f:G— (G)Gca—1) = TR
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be the canonical surjection with d = dim R. The complex G is m-torsion and
level® G = d + 1; see 2.7. Evidently H(k ®r f) # 0, so f is not fiberwise zero.

In the proof of Theorem 3.3 we exploit the functorial nature of I-torsion.

3.5. TORSION COMPLEXES. The derived I-torsion functor assigns to every X
in D(R) an R-complex RI';X; when X is a module it computes its local co-
homology: H7(X) = H_,,(R[';X) holds for each integer n. There is a natural
morphism ¢: RI';X — X in D(R) that has the following universal property:
Every morphism Y — X such that H(Y) is I-torsion factors uniquely through
t; see Lipman [24, Section 1]. It is easy to verify that the following conditions
are equivalent.

(1) H(X) is I-torsion.

(2) H(X), = 0 for each prime ideal p 2 I.

(3) The natural morphism ¢: RI'; X — X is a quasi-isomorphism.
When they hold, we say that X is I-torsion. Note a couple of properties:

(3.5.1) If X is I-torsion, then X ®% Y is I-torsion for any R-complex Y.
(3.5.2)  There is a natural isomorphism RI';(X @%Y) = (R[;X)@% Y.

Indeed, H(X,) = H(X), = 0 holds for p 2 I, giving X}, = 0 in D(R). Thus
(XhY), =X, kY =0

holds in D(R). It yields H(X ®% Y), 2 H((X ®% Y),) = 0, as desired.
A proof of the isomorphism in (3.5.2) can be found in [24, 3.3.1].

3.6. Bic COHEN-MACAULAY MODULES. Let (R, m, k) be a local ring.

A (not necessarily finitely generated) R-module C is big Cohen-Macaulay if
every system of parameters for R is a C-regular sequence, in the sense of [8,
Definition 1.1.1]. In the literature the name is sometimes used for R-modules
C that satisfy the property for some system of parameters for R; however,
the m-adic completion of C' is big Cohen-Macaulay in the sense above; see [8,
Corollary 8.5.3].

The existence of big Cohen-Macaulay was proved by Hochster [16, 17] in case
when R contains a field as a subring, and by André [2] when it does not; for
the latter case, see also Heitmann and Ma [15].

In this paper, big Cohen-Macaulay modules are visible only in the next result,
and in the proofs of Theorems 3.3 and 3.10.

ProproSITION 3.7. Let I be an ideal in a local ring R and set ¢ := height I.
When C' is a big Cohen-Macaulay R-module the following assertions hold.

(1) The canonical morphism t: RI'yC — C from the I-torsion complex
RI';C (see 3.5) is a composition of ¢ ghosts.

(2) If a morphism g: G — C of R-complexes with level®G < ¢ factors
through some I-torsion complex, then g = 0.
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Proof. (1) There exist elements @ = {z1,...,z.} in I such that height(x) = ¢;
see [8, Theorem A.2]. It is well known that such a sequence & can be extended to
system of parameters for R; see [8, Proposition A.4]. As any I-torsion complex
is (x)-torsion, and the canonical morphism RI';C' — C factors through the
morphism RI'(;)C' — C, we can assume I = (x). The morphism ¢ factors as

RF(xl,___JC)(C) — RF(xl,___7xC_1)(C) — s —> RF(xl)(C) — C.

Since the sequence x is part of a system of parameters for R, it is C-regular
and hence H;(RI'(,,,.. .,)(C)) = 0 for i # —j; see [8, (3.5.6) and (1.6.16)].
Thus every one of the arrows above is a ghost, and hence ¢ is a composition of
c ghosts, as desired.

(2) Suppose g factors as G — X — C with X an I-torsion R-complex. As
noted in 3.5, the morphism X — C' factors through ¢, so g factors as

¢4 x LR e b
In view of the hypothesis level® G < ¢ and part (1), Lemma 2.6 shows that
RHompg(G,t): RHomg(G,RI';C) — RHompg (G, C)
is a ghost. Using brackets to denote cohomology classes, we get
[9] = [tg"g'] = Ho(RHomg(G,1))([g"g']) = 0.
Due to the isomorphism (2.1.1), this means that g is zero in D(R). O

LEMMA 3.8. Let R be a commutative noetherian ring and f: G — F a mor-
phism of R-complexes, where G 1is finite free with G; = 0 for i < 0 and F
is perfect. Let f': F* @ g G — R denote the composed morphism in the next
display, where e is the evaluation map:

FropG -2, prop PS5 R.
If f factors through some I-torsion complex, then so does f’.
The morphism ' is fiberwise zero if and only if so is f.

Proof. For the first assertion, note that if f factors through an I-torsion com-
plex X, then F* ®p f factors through F’* ® g X, and the latter is I-torsion.
For the second assertion, let k be a field and R — k be a homomorphism of
rings. Let (—) and (—)" stand for k®g (—) and Homy(—, k), respectively. The
goal is to prove that f = 0 is equivalent to f/ = 0.
Since F' is perfect, there are canonical isomorphisms

F* @k — Homp(F, k) = Homy(k ®x F, k) = (F)" .
Given this, it follows that f’ can be realized as the composition of morphisms

7)) @r G L2 (F)Y @, F S k.

If Fis zero, then f=0and f’ = 0 hold. When F is nonzero, it is easy to
verify that f # 0 is equivalent to f’ # 0, as desired. O

DOCUMENTA MATHEMATICA 23 (2018) 1587-1605



1596 L. AvrRaMov, S. B. IYENGAR, A. NEEMAN

Proof of Theorem 3.3. Given morphisms of R-complexes G — X — F such
that F' and G are perfect and X is I-torsion for an ideal I with

level® Homp (G, F) < height I,

we need to prove that f is fiberwise zero. This implies the tensor nilpotence of
f, as recalled in 3.1.

By Lemma 3.8, the morphism f’: F* @ g G — R factors through an I-torsion
complex, and if f/ is fiberwise zero, so is f. The isomorphisms of R-complexes

(F* XRr G)* > G"QpF HomR(G,F)

and Lemma 2.4 yield level® (F*®RrG) = level® Hompg (G, F). Thus, replacing
f by f’, it suffices to prove that if f: G — R is a morphism that factors through
an I-torsion complex and satisfies level® G < height I, then f is fiberwise zero.
Fix p in Spec R. When p 2 I we have X, = 0, by 3.5(2). For p D I we have

level™ G, < level”™ G < height I < height I, ,

where the first inequality follows directly from the definitions; see [6, Propo-
sition 3.7]. It is easy to verify that X, is I,-torsion. Thus, localizing at p,
we may further assume (R,m, k) is a local ring, and we have to prove that
H(k ®g f) = 0 holds.

Let C' be a big Cohen-Macaulay R-module. It satisfies mC # C, so the
canonical map n: R — k factors as R 2 C 5 k. The composition
G L R Cis zero in D(R), by Proposition 3.7. We get nf = eyf = 0,
whence H(k @ m) H(k ®r f) = 0. Since H(k ®r m) is bijective, this implies
H(k ®gr f) =0, as desired. O

The following consequence of Theorem 3.3 is often helpful.

COROLLARY 3.9. Let (R,m, k) be a local ring, F a perfect R-complex, and G
an R-complex of finitely generated free modules.
If a morphism of R-complezes f: G — F' satisfies the conditions

(1) f factors through some m-torsion complez, and

(2) sup F% —inf G < dimR — 1,
then H(k ®r f) = 0.
Proof. An m-torsion R-complex X satisfies k(p) ®I}§X = ( for every prime p in
Spec R\ {m}. Thus a morphism, g, of R-complexes that factors through X is

fiberwise zero if and only if k& ®T;% g = 0. This remark is used in what follows.
Condition (2) implies G,, = 0 for n < 0. Let f’ denote the composition

F*®RG—>F*®Rf F*@rF R,

where e is the evaluation map. Since inf (F* ®p G)h = —sup F? +inf G, it
suffices to prove the corollary for morphisms f: G — R; see Lemma 3.8.
As f factors through some m-torsion complex, so does the composite morphism

Ggo‘—)GLR
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It is easy to check that if the induced map H(k® rG<o) — H(k®RrR) = k is zero,
then so is H(k®pg f). Thus we may assume G, = 0 for n ¢ [—d+1, 0], where d =
dim R. This implies level* G < d, so Theorem 3.3 yields the desideratum. O

The following result is a variant of Theorem 3.3—the hypothesis is weaker as is
the conclusion. It is not used in this work. The example in Remark 3.4 shows
that the result cannot be strengthened to conclude that f is fiberwise zero.

THEOREM 3.10. Let R be a local ring and let f: G — F be a morphism of
R-complezes.
If there exists an ideal I of R such that

(1) f factors through an I-torsion complezx, and
(2) level® F < height I,
then H(C ®% ) = 0 for every big Cohen-Macaulay module C.

Proof. Set ¢ := height I and let ¢: RI';C' — C' be the canonical morphism. It
follows from (3.5.1) that C' ®% f also factors through an I-torsion R-complex.
The quasi-isomorphism (3.5.2) and the universal property of derived I-torsion,
see 3.5, imply that C ®% f factors as a composition of the morphisms:

L
Coh G — RI;0) 0k F 220, gl F

By Proposition 3.7(1) the morphism ¢ is a composition of ¢ ghosts. Thus
condition (2) and Lemma 2.6 imply t®I§F is a ghost, and hence so is C®I§f. g
4. APPLICATIONS TO LOCAL ALGEBRA

In this section we record applications the Tensor Nilpotence Theorem to local
algebra. To that end it is expedient to reformulate it as the Morphic Intersec-
tion Theorem from the Introduction, restated below.

THEOREM 4.1. Let R be a commutative noetherian ring and f: G — F a
morphism of perfect R-complexes.

If f is not fiberwise zero and factors through a complex with I-torsion homology
for some ideal I of R, then there are inequalities:

span F + span G — 1 > level? Homp(G, F) > height T 4+ 1.

Proof. The inequality on the left comes from Lemma 2.4 and (2.3.1). The one
on the right is the contrapositive of Theorem 3.3. O

Here is one consequence.
THEOREM 4.2. Let R be a local ring and F' a complex of finite free R-modules:
F= 0—-Fi—F4 31— - —=F—0

For each ideal I such that I-H;(F) =0 fori>1andI-z =0 for some element
z in Ho(F) \ mHo(F'), where m is the mazimal ideal of R, one has

d+1>span F > level® F > height T + 1.
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Proof. The first two inequalities are clear from the definitions. As to third one,
pick Z € Fj representing z in Ho(F') and consider the morphism of complexes
f: R— F given by r — rZz. Since z is not in m Ho(F'), one has

Ho(k®r f) =k®@rHo(f) #0

for k = R/m. In particular, k ®g f is nonzero. On the other hand, f factors
through the inclusion X C F', where X is the subcomplex defined by

X, = Fz~ 1>1
RZ+8(F1) 1=0

By construction, we have H;(X) = H;(F) for ¢ > 1 and I Ho(X) = 0, so H(X)
is I-torsion. The desired inequality follows from Theorem 4.1 applied to f. 0O

The preceding result is a stronger form of the Improved New Intersection The-
orem® of Evans and Griffith [12]; see also [19, §2]. First, the latter is in terms
of spans of perfect complexes whereas the one above is in terms of levels with
respect to R; second, the hypothesis on the homology of F is weaker. The-
orem 4.2 also subsumes prior extensions of the New Intersection Theorem to
statements involving levels, namely [6, Theorem 5.1], where it was assumed
that I - Ho(F') = 0 holds, and [1, Theorem 3.1] which requires H;(F') to have
finite length for ¢ > 1.

In the influential paper [18], Hochster identified certain canonical elements in
the local cohomology of local rings, conjectured that they are never zero, and
proved that statement in the equal characteristic case. He also gave several
reformulations that do not involve local cohomology. The relations between
these statements and the histories of their proofs have been the subject of a
number of detailed discussions; see [20, 28] for the most recent ones.

Some of those statements concern properties of morphisms from the Koszul
complex on some system of parameters to resolutions of various R-modules.
This makes them particularly amenable to approaches from the Morphic Inter-
section Theorem. In the rest of this section we uncover direct paths to various
forms of the Canonical Element Theorem and related results.

We first prove a version of [18, 2.3]. The conclusion there is that f, is not zero,
but the remarks in [18, 2.2(6)] show that it is equivalent to the result below.

THEOREM 4.3. Let (R,m, k) be a local ring, x a system of parameters, K the
Koszul complex on x, and F' a complex of finitely generated free R-modules.
If f: K — F is a morphism of R-complezes with Hyo(k®pg f) # 0, then one has

Hy(S®@r f)#0 for S=R/(x) and d=dimR.

Proof. 1t is easy to verify the result when d = 0 so we assume d > 1.
Recall from 2.7 that K% is the exterior algebra on K;, which has a basis
T1,...,24, and that O(K) lies in (z)K. In particular, K, is a free R-module

3Prior to the appearance of [2], this statement, the Canonical Element Theorem, and the
Monomial Theorem had been proved in equal characteristics and conjectured in general.
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with basis t =71 A--- AZg and Hg(S ®r K) = S(1 ® ), so we need to prove
f(Ka) € (z)Fq + 0(Fatr) -
Arguing by contradiction, suppose that the contrary holds. This means
f@) =@y + -+ + zaya + 0" ()

with y1,...,y¢4 € Fy and y € Fyg41. Let h: K — F denote the degree one
R-linear map defined by setting hq(Z1 A -+ AZg) =y,

hac1(ZTy A  ATj_1 ATjp1 A ATq) = (=1) " 1y; for j=1,...,d,
and h; =0 for ¢ £ d — 1,d. We use h to produce a morphism of complexes
g:=f—0"h—hoK: K - F thathas g¢g4=0.

The last condition implies that g factors as a composition of morphisms

K2 F. o F.
Since f and g are homotopic, and ¢; = g, for i = 0,1 (as d > 1), we have
Ho(k ®r f) =Ho(k ®r g) = Ho(k ®r g').

As K is m-torsion (see 2.7), Corollary 3.9 applies to ¢’ and gives H(k®rg’) = 0.
Thus we get Ho(k ® g f) = 0; this is the desired contradiction. a

A first specialization is the Canonical Element Theorem.

COROLLARY 4.4. Let I be an ideal in R containing a system of parameters x
and K the Koszul complex on x. If F is a free resolution of R/I, any morphism
f: K = F of R-complexes lifting the surjection R/(x) — R/I has f(K4) # 0
for d =dim R. O

As usual, when A is a matrix, I;(A) denotes the ideal of its minors of size d.

COROLLARY 4.5. Let (R, m, k) be a local ring, T a system of parameters for R,
and y a finite subset of m with (y) 2 (x).
If A is a matriz such that Ay = x, then 14(A) € (x) for d = dim R.

Proof. Let K and F be the Koszul complexes on & and vy, respectively. The
matrix A defines a unique morphism of DG R-algebras f: K — F. Evidently,
Ho(k ®p f) is the identity map on k, and hence is not zero. Since f; can be
represented by a column matrix whose entries are the various d X d minors of
A, the desired statement is a direct consequence of Theorem 4.3. O

A special case of the preceding result yields the Monomial Theorem.
COROLLARY 4.6. Ify1,...,yq is a system of parameters in a local ring, one has

(y1---ya)" & (it . yy ™) for every integer n > 1.

DOCUMENTA MATHEMATICA 23 (2018) 1587-1605



1600 L. AvrRaMov, S. B. IYENGAR, A. NEEMAN

Proof. Apply Corollary 4.5 to the inclusion (y]*, ... ,ygﬂ) C (y1,-..,y4) and

yr 0 - 0
0 y2 - 0

A= . . . O
0 0 - "

For the next application of Theorem 4.3 we recall that for any pair (S,T)
of commutative R-algebras the graded module Tor® (S,T) carries a natural

structure of graded-commutative R-algebra, given by the Mm-product of Cartan
and Eilenberg [10, Section XI.4].

LEMMA 4.7. Let R be a commutative ring, I an ideal of R, and set S := R/I.
Let G — S be an R-free resolution, K be the Koszul complexr on some finite
generating set of I, and g: K — G a morphisms of R-complexes lifting the
identity of S.

For every surjective homomorphism v : S — T of of commutative rings there is
a natural in T commutative diagram of strictly graded-commutative S-algebras

LS
Sep K= AgHi(S ®r K) —2% \g Torf(8, S) —— Torf(S, S)

Ny Tor?(S,w)l \TorR(S,w)

Ar Tor?(S, T) LA TOI"R(S7 T)

where a; = Hy(S ®r g), and the maps o and pu* are defined, respectively, by
the functoriality and the universal property of exterior algebras.

Proof. The equality follows from 0% (K) C IK and K* = A, K;. The resolu-
tion G can be chosen to have G¢1 = Ki; this makes o surjective, and the
surjectivity of o follows. The map Tor{% (S,%) is surjective because it can be
identified with the natural map I/I?> — I/1J, where J = Ker(R — T); the
surjectivity of A, Torf¥(S,v) follows. The square commutes by the naturality
of M-products. |

The result below is another form of the Canonical Element Theorem. Roberts
[27] proposed the statement and proved that it is equivalent to the Canonical
Element Theorem; a different proof appears in Huneke and Koh [22].

THEOREM 4.8. Let (R,m,k) be a local ring, I an ideal, and S := R/I. Let
S — T be a surjective homomorphism of rings and let

u’s Ay Torft(S,T) — Tor™(S,T)

be the morphism of graded T'-algebras defined in Lemma 4.7.
If I is a parameter ideal, then p* @7k is injective; in particular, p* is injective.
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Proof. By Lemma 4.7 the canonical surjection 7: T" — k induces a commutative
diagram of graded-commutative algebras

Ay Torf (S, T) L= Torf' (5, T)

A Tori*<s,7r>\ JTOYR(SJ)

k
A, Torf'(S, k) s Torf*(S, k)
It is easy to verify that 7w induces a bijective map
Torf (S, ) @ k: Torl(S,T) @1 k — Torl(S, k),

s0 (Ar Torf'(S, 7)) @ k is an isomorphism. Thus it suffices to show that the
map p” is injective.

Let K be the Koszul complex on a minimal generating set of I. Let G = S and
F =5 k be R-free resolutions of S and k, respectively. Lift the identity map of S
and the canonical surjection 1: S — k to morphisms g: K — G and h: G — F,
respectively. We have pSa = H(S ®@g g) and Tor®(S,+) = H(S ®p h). This
implies the second equality in the string

1k Torf (S, m)aq = Tork (S, v)p5aq = Ha(S ®r hg) # 0.

The first equality comes from Lemma 4.7, with T = k, and the non-equality
from Theorem 4.3, with f = hg. In particular, we get u’; # 0. We have an
isomorphism Tor!*(S, k) = A k% of graded k-algebras, so p* is injective by the
next remark. O

Remark 4.9. If @ is a field, d is a non-negative integer, and \: /\Q Q= Bis
a homomorphism of graded Q-algebras with Ay # 0, then X is injective.
Indeed, the graded subspace /\dQ Q¢ of exterior algebra /\Q Q% is contained in
every non-zero ideal and has rank one, so A\¢q # 0 implies Ker(\) = 0.

5. RANKS IN FINITE FREE COMPLEXES

This section is concerned with DG modules over Koszul complexes on sequences
of parameters. Under the additional assumptions that R is a domain and F' is
a resolution of some R-module, the theorem below was proved in [3, 6.4.1], and
earlier for cyclic modules in [9, 1.4]; background is reviewed after the proof.
The Canonical Element Theorem, in the form of Theorem 4.3 above, is used in
the proof.

THEOREM 5.1. Let (R,m, k) be a local ring, set d = dim R, and let F be a
complex of finite free R-modules with Ho(F') # 0 and F; =0 for i < 0.

If F admits a structure of DG module over the Koszul complex on some system
of parameters of R, then there is an inequality

(5.1.1) rankp(F,) > (d) for each neZ.
n
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Proof. The desired inequality holds when d = 0, for Ho(F') # 0 implies Fy # 0.
We can thus assume d > 1. Let  be the said system of parameters of R and
K the Koszul complex on «. Since F' is a DG K-module, each H;(F) is an
R/(x)-module, and hence of finite length.

First we reduce to the case when R is a domain. To that end, let p be a prime
ideal of R such that dim(R/p) = d. Evidently, the image of « in R is a system
of parameters for R/p. By base change, (R/p) ®g F' is a DG module over
(R/p) ®r K, the Koszul complex on x with coefficients in R/p, with

Ho((R/p) ®r F) = R/p @ Ho(F) #0.

Moreover, the rank of F as an R-module equals the rank of (R/p) ®r F' as
an R/p-module. Thus, after base change to R/p we can assume R is a domain.

Choose a cycle z € Fy that maps to a minimal generator of the R-module
Hy(F). Since F is a DG K-module, this yields a morphism of DG K-modules

f: K—F with f(a)=az.

This is, in particular, a morphism of complexes. Since k ® g Ho(F') # 0, by the
choice of z, Theorem 4.3 applies, and yields f(K4) # 0. As R is a domain, this
implies f(Q ®g Kq) is non-zero, where Q is the field of fractions of R.

Set A := (Q®r K )b and consider the homomorphism of graded A-modules

AN=Qgr [ A—> Qg F°.

As A is isomorphic to /\Q Q%, Remark 4.9 gives the inequality in the display

rankg(Fy,) = rankg(Q ®r F,) > rankg(A,) = <Z> )

Both equalities are clear. O

The inequalities (5.1.1) are related to a major topic of research in commutative
algebra. We discuss it for a local ring (R, m, k) and a bounded R-complex F’
of finite free modules with Fy = 0, homology of finite length, and Ho(F) # 0.

5.2. RANKS OF SYZYGIES. The celebrated and still open Rank Conjecture of
Buchsbaum and Eisenbud [9, Proposition 1.4], and Horrocks [14, Problem 24]
predicts that (5.1.1) holds if F' is a resolution of some module of finite length.
The Rank Conjecture is known to hold for d < 4. Its validity would imply that
>, rankp Fy, > 2¢ holds in all dimensions. For d = 5 and equicharacteristic R,
this inequality was proved in [4, Proposition 1] by using Evans and Griffth’s
Syzygy Theorem [12]; in view of [2], it holds for all R.

In a breakthrough, M. Walker [30] used methods from K-theory to prove that
Zn rankp F,, > 2% holds when R contains %, and is complete intersection (in
particular, regular) or contains a finite field.
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5.3. DG MODULE STRUCTURES ON RESOLUTIONS. Let F' be a minimal reso-
lution of an R-module M of nonzero finite length and x a parameter set for R
with M = 0.

When F admits a DG module structure over K (x) the Rank Conjecture holds,
by Theorem 5.1. It was conjectured in [9, 1.2"] that such a structure exists for
all F and . An obstruction to its existence was found in [3, 1.2], and examples
when that obstruction is not zero were produced in [3, 2.4.2].

On the other hand, in [3, 1.8] it is proved that that obstruction vanishes when
x lies in manng (M), and the question was raised if F' supports a DG K (x)-
module structure for some special choice of x; in particular, for high powers of
systems of parameters contained in anng(M). The answer is not known.

For complexes that are not resolutions the situation is different.

5.4. DG MODULE STRUCTURES ON COMPLEXES. Theorem 5.1 provides a series
of obstructions for the existence of DG module structures on F'. In particular,
it implies that if rankp F' < 2¢ holds with d = dim R, then F supports no
DG module structure over K(x) for any system of parameters &. Complexes
satisfying the restriction on ranks were recently constructed in [23, 4.1]. These
complexes are not resolutions of R-modules as they have nonzero homology in
degrees 0 and 1.
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