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ABSTRACT. This work concerns the moment map p associated with the stan-
dard representation of a classical Lie algebra. For applications to deformation
quantization it is desirable that S/(u), the coordinate algebra of the zero fibre
of u, be Koszul. The main result is that this algebra is not Koszul for the
standard representation of sl,, and of sp,,. This is deduced from a computa-
tion of the Betti numbers of S/(u) as an S-module, which are of interest also
from the point of view of commutative algebra.

1. INTRODUCTION

If one squeezes a nice and regular object into a mold that is too small, the
object will crack and fold and exhibit irregularities. This is precisely what happens
when one is representing a reductive complex Lie algebra g on a low dimensional
complex vector space V. The irregularities become apparent when studying the
moment map p: V x V* — g* of the representation; see Section 2. When dim(V')
is small the zero fibre ~1(0) cannot have codimension dim(g), which translates to
the statement that the moment map cannot be a complete intersection in V' x V*.

When V is spacious enough to properly host g, the moment map has a lot of
good features. Tools to measure the size of the representation have been developed
by Schwarz [22, 21] in connection with the modularity, also known as modality [25].
Specifically, the moment map is a complete intersection if and only if the represen-
tation is 0-modular. A stronger condition is 1-largeness; then p=1(0) is irreducible
and the ideal (i) generated in S := C[V x V*] by the components of y is radical.
If the representation is even 2-large, then u~1(0) is also a normal variety. When g
is simple, all but finitely many representations are 2-large; for details, see [12].

This work reported in this paper concerns the Koszul property for the algebra
S/(p) and the following question:

For which representations g : V is the algebra S/(u) Koszul?

The motivation to study this question comes from the Batalin-Fradkin-Vilkovisky
approach to symplectic reduction [11]. It has been observed by the second author
that the BFV-quantization scheme of [5] can be generalized to the situation when
S/(p) is a Koszul algebra. The main reason for this is that in the Tate model [24]
of S/(u) over S, the internal degree is linked to homological degree; see [3]. In the
non-Koszul case however it appears that the BFV-quantization is unfeasible as the
degrees proliferate which makes it is impossible to control anomalous terms.
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When g : V is 0-modular, the ideal (u) is a complete intersection of quadrics
and then it is well known that S/(u) is a Koszul algebra; see, for example, [18].
So the question is moot only for representations that are not 0-modular. For any
representation g : V, the ideal () is homogeneous quadratic, which is a necessary
for S/(u) to be Koszul. However, this condition is far from sufficient, and detecting
when an algebra is Koszul is a notoriously difficult problem.

In this paper we develop methods to test when the algebra S/(u) is not Koszul.
We focus on the smallest (that is to say, the most ‘squeezed’) nontrivial represen-
tations: the standard representations of the classical Lie algebras gl,,, sly, 50, 5p,,.
Here is summary of our results.

Theorem 1.1. Let g : V denote the standard representation of the Lie algebras
considered above, and let R = S/(u) be the coordinate algebra of the zero fibre. The
following statements hold for each n > 1.

(1) For g = gl,, the algebra R is Koszul, dim R = n and depth R = 1.

(2) For g = so,, the algebra R is Koszul and dim R = n + 1 = depth R.

(3) For g = sl, the algebra R is not Koszul, dim R = n and depth R = 0.
(4) For g = sp,, the algebra R is not Koszul, dim R = 2n and depth R = 0.

For gl,, : C™ the ideal (p1) is generated by quadratic monomials, and this implies
the Koszul property. For so,, : C™ for n > 3 the components of the moment map
(also known as angular momentum) are the 2x2 minors of a generic 2xn matrix and
it is well-known that the corresponding algebra S/(u) is Koszul. These assertions,
and the claims about the dimension and depth, are justified in Section 4.

The proofs of the assertion that S/(u) is not Koszul for sl,, : C"* and sp,, : C*" for
each n > 2 take up the bulk of this paper and require computing the Betti numbers
of the corresponding algebra S/(u), viewed as a module over the polynomial ring S;
see Sections 5 and 6. Another crucial input in the proofs are certain obstructions
to the Koszul property in terms of Betti tables, described in Section 3.

The Betti tables of these algebras are also of interest from a purely commutative
algebra point of view, for they exhibit intriguing combinatorial patterns; this is
discussed in Section B of the Appendix.

There is another family of small representations for which S/(u) is known not to
be Koszul: the adjoint representations gl,, : gl,, for n > 3. Here the zero locus of the
moment map is essentially the commuting variety, that is to say, the variety of pairs
of commuting matrices in gl,, x gl,,. The first few syzygies have been calculated by
F. Hreinsdottir [13] and it follows from Remark 3.6 that the corresponding algebra
is not Koszul. A similar consideration also rules out soy : 2k* and slz : 2k3, for
their Betti tables can be computed using, for example, Macaulay 2.

2. MOMENT MAPS

Let g be a finite dimensional reductive Lie algebra over the field k of characteristic
zero and g — gl(V), £ — (v — &€.v) a finite dimensional representation of g; we write
g : V to indicate this situation. The moment map associated to this representation
is the bilinear form

w:Vxve—g" given by
v, a)(§) == (a,&v) forveV,aeV*and{€g.
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Here (, ) denotes the dual pairing between V* and V. Its dual is the map

g — V xV* with & — e, where
pe (v, @) == (a, &) .

The map { — e extends to a Lie algebra homomorphism g — S = E[V x V*]
when S is equipped with the unique Poisson bracket {, } such that

{v,a} :=(a,v) and {v,v'}:=0=:{a,a'}

for all v,v" € V and a,a’ € V*. We are interested in the ideal of S generated by
the components of the moment map:

Ii=(u) ={pe | € € g}

This is a subalgebra with respect to the Poisson bracket {, }, but typically not an
ideal with respect to the Poisson bracket. Since the p¢ are quadratic forms, I is
homogenous, when S is viewed as a graded ring with S; = V' x V*; in fact, there
is a natural N2-grading on S, and I is homogenous also with respect to this finer
grading; this will prove to be useful in what follows.

Let us explain the coordinates expressions used for V* x V', g, S and pu.

2.1. Standard representation of gl,. The Lie algebra gl,, is the space of n x n
matrices over k, with bracket [A, B] = AB— BA. Let gl,, : k™ be the representation
given by the obvious action of gl,, on k™.

With respect to the canonical bases eq,es, ..., e, for V.= k™ and its dual basis
fi, fay .- fn apoint in V x V* is identified with its linear coordinates

(plap2a"'7pn7ql7q2a" 7qn) = Zqiei +p7,f7,

Accordingly we identify k[V x V*] with

skl .
qaq ... (Qn

For i,j € {1,2,...n}, let E;; denote the n x n-matrix with 1 in the ith row and jth
column, and zero elsewhere. These matrices form a basis for gl,,, and it is not hard
to verify that the components of the moment map are p;q; for ¢,7 =1,2,...,n.

2.2. Standard representation of sl,,. The Lie algebra sl,, is the Lie subalgebra
of gl,, consisting of matrices of trace zero. The representation gl,, : £™ from 2.1 thus
restricts to one of sl,,. A basis for s, is given by Fj; ; where 1 <4, j <n with ¢ # j,
and E;; — Fj4q1,41 for i = 1,2...,n — 1. Hence the components of the moment
map are p;q; for (1 <i,j <nwithi# j) and p;¢; —piy1gi+1 for 1 =1,2... ,n—1).

2.3. Standard representation of so,,. Recall that so,, is the Lie subalgebra of gl,,
consisting of anti-symmetric matrices. The matrices F; j—F;; where1 <i<j<n
are a basis for so0,,. Restricting the standard representation of gl,, to so,, yields a
moment map with components p;q; — p;¢; (1 < ¢ < j < n), that is to say, the
2 X 2-minors of the generic 2 X n-matrix.
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2.4. Standard representation of sp,. The Lie algebra sp,, consists of 2n x 2n-
matrices A such that

t _ _ 0 In
A'S =SA where S = |:_In 0]

Here I,, is the n x n identity matrix. A basis for sp,, is given by the 2n x 2n matrices

E’i,j _En—i-j,n-i-'i for Z,] = 1,...771
Ei’nJ’»i and EnJri’i for i = 1, oy
Ei,n—i-j + Ej,n-H and En+i,j + En+j,1' for 1 <1 <j <n
We use (P11, -« s D1ns P21y« -« s P20 Q115 -+, Q1ns G215 - - - 5 §2n) Tor linear coordinates

for V* x V and identify k[V x V*] with

S =k b1 .- Pin P21 -.-- P2n
qun .-+ qin 421 ... (42n

The corresponding components of the moment map are

DP1iq1; — P2iqi fori,j=1,....n
P1iG2i and p2;qu; fori=1,...,n
P1iq2; + P15qe: and p2;qi; + P2;qui for1<i<j<n

3. KOSZUL ALGEBRAS

In this section we recall the definition of certain invariants of modules over graded
rings. The focus will be on Koszul algebras and some obstructions to this property.

3.1. Fine grading. The algebras and modules that we study will be equipped
with a N2-grading and the arguments exploit this structure. We prepare for this
by introducing notation concerning N¢-graded objects, for a positive integer ¢ > 1.

Let X be an N¢-graded set. When we speak of an element = in X, it should be
understood that z is homogeneous: = € X, for some v € N¢. Then v is the degree
of x, that we denote degx. For any v in N¢ set

C
lv] :== Zvi where v = (v1,...,v.).
i=1

This is the total degree of v. When k is a field X is a N°-graded k-vector space, set

Hilbx (s1,...,8c) = Z ranky (X, )87 -+ - s0¢
veNe

the Hilbert series of X, viewed as an formal power series over Z in indeterminates
S1,---,8.. We will also need the version based on total degrees

Hilbx (s) := » rank(X;)s’ = Hilbx(s,...,s).
jEeN



KOSZUL PROPERTIES OF MOMENT MAPS 5

3.2. Graded rings. Let & be a field (of arbitrary characteristic) and R a standard
N¢-graded k-algebra, meaning;:

(1) R® = k;

(2) R is an N°-graded commutative k-algebra;

(3) ranky (D=1 ) is finite

(4) R is generated by elements in R, with ||v|| = 1.

These conditions imply R is noetherian and that ranky R, is finite for each v € N¢.
This ring is also local, in the graded sense: The set {r € R | || deg(r)|| > 1} is the
unique homogeneous maximal ideal of R.

Any finitely generated N¢-graded R-module M is noetherian, and hence ranky, M,
is finite for each v € N°. The socle of M is the k-vector subspace

{me M |r-m=0for all r € R with ||r|| > 1}.

Let M, N be Ne-graded R-modules. Each Tor’(M, N) is endowed with a N¢-
grading compatible with the action of R. Thus Tor® (M, N) is (N x N¢)-graded.
We write || for the homological grading. For example, for any a in Tor™ (M, N)

la) =i and deg(a) = v means a € Tor’*(M, N),
where v € N¢. Then || deg(a)|| is the total (internal) degree of a.

3.3. Betti numbers. Let M be a finitely generated N°-graded R-module. The
graded Betti numbers of M are the integers

R (M) := ranky, Torl(k, M), for i € N and v € N¢

7,0

and the associated generating function

P (51,0 8e,u) = > B (M)si -+ steu
7,V

viewed as an element in Z[sq, . .., s¢][|u|], is the graded Poincaré series of M. Often,
one is interested only in homological degrees and the associated Poincaré series:

BROM) = 3 RO and P = 38R0

veNe

In what follows, we often compute the Poincaré series of M as the Hilbert series of
Extr(M, k). The natural grading on this k-vector space is cohomological and so,
when dealing with them, we will tacitly switch to this one, by setting

Exth (M, k)Y := Exth (M, k) _,

for any finitely generated N°-graded R-module M.
We will also need to consider the following integers:

tE(M) := sup{|jv|| € N | Tor®(k, M), # 0} for each ¢ € N.

This is the highest total degree of a Betti number of M in homological degree i.
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3.4. Koszul algebras. When R is regular (that is to say, isomorphic to the sym-
metric k-algebra on Rp) one has t¥(k) =i for 0 < i < dimR. Even when R is
singular (meaning, not regular) it is not hard to see that

th(ky>i  fori>0.

When equality holds for each ¢ one says that the k-algebra R is Koszul. In this
case, it is not hard to verify that there is an equality of formal power series

P{(—u) Hilbg(u) = 1.

It is known that the converse also holds; see, for example, [8, Theorem 1].

When R is Koszul, the relations defining R must be quadratic; in other words,
there is an isomorphism of k-algebra R = S/I, where S is a standard graded
polynomial ring over k and I can be generated by quadratic forms. The converse
holds if I is monomial—see, for example, [7, Theorem 15]—but not in general.

Remark 3.5. If for some integer s > 0 one has ¢{ (R) < i + 1 for each i < s, then
th(k)<i fori<s+1.

Moreover, if s = pdg R, the projective dimension of R over S, then R is Koszul.

These results are immediate from the graded version of a coefficientwise inequal-
ity [2, Proposition 3.3.2] due to Serre, relating the Poincaré series of k over R, and
of k and R over S.

The next result is sometimes helpful is detecting when a k-algebra is not Koszul.
Remark 3.6. If R is Koszul, then 7 (R) = 37 (R)2 and
B7(R)

BY(R)a; < ( ; ) for each integer i > 1.

This inequality is due to Avramov, Conca, and Iyengar [4, Theorem 5.1].

A different obstruction to the Koszul property involves Massey products on the
Koszul homology of R.

3.7. Matric Massey products. Let R be a standard N°-graded k-algebra. Let
K be the Koszul complex of R and set H := H(K). The canonical DG (= Differ-
ential Graded) R-algebra structure on K is compatible with the N¢-grading. More
precisely, for elements a,b in K one has

|ab| = |a| +]b] and deg(ab) = deg(a) + deg(b)
|[d(a)| =|a|] —1 and deg(d(a)) = deg(a).
We recall the notion of Massey products on H, for which Kraines [15] is a good

reference, keeping track of the finer grading involved. To begin with, for any element
a in K, one sets

a:= (—1)l*q.
Let wy,...,ws be elements in H>1; as always, these are assumed to be homogenous

with respect to the (N x N¢)-grading on H. The Massey product (ws,...,ws) is
said to be defined if there is a collection of elements a;; in K, for 1 <i < j <'s
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and (i,7) # (1, s) such that, for each i the element a;; is cycle representing w; and
for each pair (i, ) as above, one has

j—1
(371) d(aij) = ZEiTaH_Lj .
r=1
Such a collection {a;;} of elements is a defining system for (wi,...,ws). Given a
defining system, it is readily verified that the element
s—1
(3.7.2) are = A1rlrg1e
r=1
isacyclein K. The Massey product (wy, ..., ws), when it is defined, is the collection

of all elements in H that can be represented by cycles of the form a;, for some
defining system {a;;} as above. Observe that these lie in H,, where

S S
p= Z |wi| + (s —2) and v = Zdeg(wi).
r=1 r=1

We need an extension of all this to matrices with coefficients in H. These matric
Massey products where introduced by May [16] in the context of general DG algebras
and brought to bear to study commutative rings (specifically, Koszul homology) by
Avramov [1]. In this context, one considers matrices Wy, ..., W with entries in H
with appropriate restrictions on their sizes and the degrees (both homological and
internal) of the entries in them to ensure that the products involved in (3.7.1) and
(3.7.2) are permissible; each a;; is replaced by a matrix A;; with entries in K.

Elements of the matric Massey product (Wy,..., W), when it is defined, are
matrices with entries in H>q. For any matrix W in (Wi,..., W), the degrees of
W, ;, the entry in position (¢, j) of W, are given by

Wisl =Y 1We)i i, | + (5 = 2)
r=1

deg(Wy,) = 3 deg(W0)i,_s,)

where ig =i and i, = s, and 1,...,is_1 are any permissible choice of integers; for
example, 1,...,1.

An element w in H is decomposable as a matric Massey product if it belongs to
(Wh,---,W,) for some system of matrices with entries in H>1; necessarily, W1 is
then a row matrix and Wy is a column matrix.

Lemma 3.8. Let R be a standard N¢-graded k-algebra and H its Koszul homology.
If s is an integer such that tf(k) < for each i < s, then the elements of H;, are
decomposable as matric Massey products when 2 <i <s—1 and | degv| > i+ 2.

Proof. In what follows, we set
T := Tor®(k, k) /(Torf(k, k)) .

This inherits from Tor®(k, k) a structure of a (N x N¢)-graded k-algebra, and our
hypothesis translates to T; , = 0 when 7 < s and || degv| > ¢ + 1. The crux of the
argument is that there is a k-linear map o: Hy; — T of homological degree one,
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called the suspension; see, for example, [10, Definition 3.7]. This map respects the
internal gradings, that is to say, for each i > 1 and v € N one has

Ojw: Hi,v — E+1,U .

Thus, the hypothesis on then tZ(k) entails T}41, = 0 whenever 1 <i < s—1 and
|| degv|| > i+ 2. Therefore for these i, v one has H;, C Ker(o). It remains to note

that Ker(o) consists precisely of elements decomposable as matric Massey products
in Hsq; see [10, Corollary 5.13]. O

4. THE GENERAL LINEAR AND THE SPECIAL ORTHOGONAL CASE

In this section we describe the Betti numbers of the moment maps associated
to canonical representation of the general linear, and the special orthogonal, Lie
algebra. The moment maps in question are described in 2.1 and 2.3. These results
are special cases of general results in commutative algebra. The main reason for
describing the computations carefully is that they get used in the later sections.

4.1. The general linear group. Let k be a field and S the polynomial ring over
k in indeterminates p := p1,...,p, and q := q1,...,qn. Thus

seifr o n]
qg --- 4n

We view S as an N2-graded k-algebra with each p; of degree [1,0] and each g; of
degree [0,1]. Set
I'=(p)N(qg) and A=S/I.
Since [ is generated by quadratic monomials, the k-algebra A is Koszul; see Defi-
nition 3.4. Next we compute the Betti numbers of A as an S-module.
As I is homogenous, the k-algebra A inherits the N2-grading of S. Noting that
(p) + (q) is the maximal ideal of S, the standard Mayer-Vietoris sequence for the

ideals (p) and (g) reads

(4.1.1) 0—A5C5k—0, whereC:S/(Q)@S/(g).
From this it follows that the bigraded Hilbert series of A is

1 1
(4.1.2) Hilb(s,t) = +

—1
(I=s)»  (A-1)"
Next we compute the Poincaré series of A, viewed as an S-module.
4.2. Structure of Extg(A, k) as module over Extg(k, k). Set m = (p, ¢); this is
the homogenous maximal ideal of S. The residue classes modulo m? of the sequence

p,q is a basis for the k-vector space m/m2. Let e1,...,en, f1,.-., fn be the dual
basis, of the k-vector space

V := Homy(m/m? k).

We view this as a N2-graded k-vector space with (upper grading) deg(e;) = [1, 0]
and deg(f;) = [0, 1], in cohomological degree one. Then one has

A:=Extg(k, k) AV and Extg(C,k) = A/(f)©A/(e),
and the map Extg(m, k), with 7 as in (4.1.1), is the canonical map

A — AJ(f) @ A/(e).
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It is easy to check that this map is surjective in homological degrees > 1; for
example, in degree one the map is an isomorphism and, as A-modules, the source
and target are generated by their components in homological degree zero. It follows
that (4.1.1) induces an exact sequence of graded k-vector spaces

(42.1) 0 — Extz' (A, k) — BExtZ*(k, k)[0,0,1] — ExtZ*(C, k)[0,0,1] — 0.

Noting that Extg(k, k) is an exterior algebra on 2n generators, half of which have
(upper) degree (1,0,1) and the rest have degree (0,1,1). Thus one gets

(4.2.2) P(s,t,u) == (1+su)"(1+tu)” and PZ(s,t,u) = (14su)"+ (1+tu)"
This discussion leads to the following result.

Theorem 4.3. Let k be a field and let S and A be the k-algebras introduced in 4.1.
The trigraded Poincaré series of A over S is

PS5 (s, t,u) =14+ u" (14 su)” — 1)((1 +tu)" —1).
The nonzero graded Betti numbers of A over S are

B85 (4) = 1 fori=0 and v = [0,0]
v - (:1)(”) fori>1,v;>1, andvi +va=1i+1

V2

The Poincaré series is 1 +u~((1 +u)™ — 1)2. The Betti numbers of A over S are

< 1 fori=20
Br(A) = {(ffl) ~2(,")  foriz1.

Moreover, dim A = n and depth A = 1.

Proof. The claims about the Poincaré series are immediate from (4.2.1) and (4.2.2).
The ones about the dimension and the depth of A are from (4.1.1). O

For later use, we record that following result that is immediate from (4.2.1).

Lemma 4.4. As a A-module, EX‘C?(A7 k)[0,0, —1] is isomorphic to the ideal
(e Nfi11<i,57<n)ofA O
This completes our discussion on the general linear Lie algebra.

4.5. Special orthogonal Lie algebra. Let k be a field and S the polynomial ring

over k in indeterminates p := p1,...,p, and ¢ :=q1,...,q,. Thus
seifp o on]
qg  --- 4n

As before, S is to be viewed as an N2-graded k-algebra with each p; of degree [1,0]
and each ¢; of degree [0,1]. Let I be the 2 x 2 minors of the matrix above and set
A = S/I. The bigraded Hilbert series of A is

1— st S0 (=1)0 (1) hils, )
(=) (1=t
where h;(s,t) is the sum of all monomials of degree 7 in s and ¢. In particular

Hilba(s) = W
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The minimal free resolution of A over S is given by the Eagon-Northcott complex;
see, for example, [6, Section 2C]. It yields ¢7(A) < i+ 1 for each 4, and hence A is
Koszul; see Remark 3.5 From this one gets that the Poincaré series of k over A is

U n+1
Pic () = 1(12(73— 1)

5. THE SPECIAL LINEAR CASE

In this section we study the moment map associated to the canonical represen-
tation of the special linear Lie algebra, sl,,; see 2.2.

Let k be a field; for what follows, its characteristic has to be zero, or at least larger
than (n + 1)/2, for we need Lemma A.1. As in Section 4, let S be the polynomial
ring over k in indeterminates p := p1,...,p, in degree [1,0], and ¢ := q1,...,¢y, in
degree [0,1]. Set

B =S/I where I = ({piqj,pi¢i —p;jq; |1 <i,j <nwithi#j,}).

The ideal I is homogenous, with respect to the N? grading on S, and hence the
k-algebra B inherits this grading.

It is straightforward to check that p; ¢ is in the socle of B and that B/(p1q1) = A,
the k-algebra encountered in Section 4. There is thus an exact sequence of N2-
graded S-modules

(5.0.1) 0— k[-1,-1] =29, By 450
and from this one and (4.1.2) one obtains that the bigraded Hilbert series of B:
1 1
Hilbp (s, t) = + — 1+ st.

(1=s)m Q=0
Next we determine the Poincaré series of B, as an S-module. To this end we

compute Extg(B, k), exploiting the fact that this is a N3-graded module over the
N3-graded k-algebra

A = Extg(k, k).
By (4.2.2) one gets

Hilba (s, t,u) = (1 4 su)™(1 + tu)"”

where u is the cohomological degree. The exact sequence (5.0.1) induces an exact
sequence of graded A-modules

S A[-1, -1, —1] 5 Extg(A, k) —s Extg(B, k) — A[-1, —1,0] 1,

This gives an equality of formal power series
P (s, t,u) = Hilbooker(s) (8, t,u) + uwt. Hilbger(g) (8, t, 1) -

It thus remains to compute the Hilbert series of Ker(8) and Coker(f3).

Let C be the S-module S/(p) ®S/(q), encountered in Section 4; see (4.1.1). The
exact sequence (4.2.1), reproduced in the top row of the diagram below, is one of
graded A-modules:

0 —— Ext2' (A, k) —— A[0,0, 1] —— Extg(C, k)[0,0,1] — 0

BT vﬁT

A[-1,-1,-1] = A[-1,-1,-1]



KOSZUL PROPERTIES OF MOMENT MAPS 11

The Snake Lemma then gives Ker(8) = Ker(v8) and an exact sequence
0 — Coker(8) — Coker(y8) — Ext¢(C, k)[0,0,1] — 0,
of graded A-modules. It thus remains to study the map
A[-1,-1,-1] 25 A[0,0, 1]

This map is A-linear, so it is determined by v5(1), where 1 € A. To identify this
element, as in Section 4, let ey, ..., en, f1,..., fn be the basis of

A' = Homy,(m/m?, k)
dual to that of the images of p, ¢ in m/m?; here m = (P, q)-

Claim. vB(1) = 3" ;cp €ifi in A%

Indeed, B(1) is the element in Ext}(A, k) corresponding to the exact sequence
(5.0.1), and + is the map defined by concatenation with the sequence (4.1.1). It
follows that 3(1) is the element of A? corresponding to the exact sequence

(5.0.2) 00— k[-1,-1] =%, B 0 "k — 0

To identify this element in A, let E' be the Koszul complex of p,q. We view it as
the exterior algebra A\ @,(SP; @ SQ;) with P; — p; and @Q; — ¢;. The first steps
of a lifting of the natural morphism E — k to the complex above is given below:

1—=pig1 L

00— k[-1,-1] B C——k 0
KQT KlT KOT H
@, ;SPQ; —— B, (SP @ SQ) S k 0

where the maps «; are given by xo(1) = (0,1), and
k1(P;) =p; and k1(Q;) =0 for each i
ko(PiPj) =0, k2(Q:iQ;) =0, and ro(PQ;)=1 foreachdi,j.
The claim follows as (5.0.2) corresponds to the class of kg in A2 = H_o(Homg (E, k)).

From the preceding claim and Proposition A.2, it follows that the map 3 has
maximal rank, and hence that

Hilbxer g(s, t,u) = uf(stu® — 1)(1 + su)™(1 + tu)"]4
Hilbooker 5(8, ¢, 1) = u[(1 — stu?)(1 + su)™(1 + tu)"]+ — u((1 + su)™ + (1 + tu)™)

where [h(s,t,u)]+ denotes positive part of h(s,t,u); namely, those terms whose
coeflicients are negative integers are omitted.

Summing up one gets the result below.

Theorem 5.1. Let k be a field, and let S and B the k-algebras introduced at the
beginning of this section; in particular, the characteristic of k is zero, or greater
than (n+1)/2. The trigraded Poincaré series of B over S is

2 — (14 su)™ — (14 tu)™ + [(1 — stu?)(1 4 su)™(1 + tu)"];
+ u?[(stu® — 1)(1 4 su)™(1 + tu)"],
The Poincaré series is thus

1T=2[1+w)" =1 +u (1 —u?)(1+u)*" =1y + u 2 [(u? = 1)1 +u)*]4
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So the Betti numbers of B over S are

1 fori=20
87 (B) = (zinl) - (12?1) - 2(:‘11) forl<i<n-—1
) = () forn<i<2n
Moreover, dim B = n and depth B = 0. ([l

Next we focus on the (lack of) the Koszul property of B.

Proposition 5.2. One has t2(k) =i for 0 < i < n and t2, (k) = n+2; in
particular, the k-algebra B is not Koszul.

Proof. From Theorem 5.1 yields t¥(B) =i+ 1 for i < n — 1, and hence t? (k) = i
for 0 <4 < n, by Remark 3.5. It remains to verify the assertion about tZ_, (k).

Let H denote the Koszul homology algebra of B. This is a (N x N?)-graded
algebra, with

H;, = Tor? (B, k), forie Nandwve N

Thus Hilbg (s, t, u) is the Poincaré series of B over S, computed in Theorem 5.1. Tt
follows from that result if v; = 0 or v = 0, then H;,v = 0. Thus, for any element
h € H;, that is decomposable as a matric Massey product, one must have v; > 2
and vy > 2. On the other hand, one has

Hyt1,2k forv=[n+1,1 and v =[1,n+1].

Thus, elements in these subspaces of H are indecomposable as matric Massey prod-
ucts. It now remains to apply Lemma 3.8 to deduce that ¢5 (k) > n + 1. O

6. THE SYMPLECTIC CASE

In this section we study the moment map associated to the canonical represen-
tation of the symplectic Lie algebra, sp,,; see 2.4. Let k be a field of characteristic
not equal to two and S the polynomial ring in 4n indeterminates:

S =k pPix .-+ Pin P21 --- DPon
qgin .-+ qin 421 ... (42n

Set p = {pij}i; and ¢ = {q;;}i ;. As before, we view S as an N2-graded k-algebra
with the p of degree [1,0] and the g of degree [0,1]. Let I be the ideal generated
by the 2n? + n homogenous quadratic forms

(6.0.1) priqi; — p2iq2; 1<4,5<n
(6.0.2) P1iq2i,p2iqii 1 <i<n
(6.0.3) P1ig2j +p1jq2i 1 <i<j<n
(6.0.4) D2iqi; +p2jqui 1 <i<j<mn

The focus of this section is on the k-algebra Z := S/I, which is also N2-graded.

Lemma 6.1. The socle of Z is J := (p)(q), viewed as an ideal in Z. It is a vector
space of rank 2n? —n, concentrated in degree [1,1].

Proof. The main task is to verify that J is in the socle of Z; then, since the ring
Z/J is reduced (it is isomorphic to S/(p)(g)) it would follow that J is equal to the
socle of Z. Moreover, then the assertion about the rank of J is clear.
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For the proof, it is convenient to relabel the variables p and ¢ as follows:
a; :==p1i, bi:=qi, c¢i=py, di=gqy foreachi.

Since the characteristic of k is not two, it is easy to verify that the ideal I can be
generated by the elements

(1) aibj — cid;

(2) aid; + d;a;

(3) Cibj + bicj
where 1 < 4,j < n. Recall that Z is N2-graded, with each a; and ¢; have degree
[1,0] while each b; and d; has degree [0, 1]. The desired result is that the component
Z[1,1) is the socle of Z. This is equivalent to the assertion that Zp 1) =0 = Zy 9.
By symmetry it suffices to prove that Zp5 1) = 0, that is to say, that the monomials
of the type

aab, aad, acb, acd, ccb, ccd

are all zero in Z. By virtue of equation (1) above, monomials of the type aab,
respectively ach, are equal to those of the type acd, respectively ced. It thus suffices
to consider the following types of monomials: aad, acd, ccb, and ccd.

Types aad and cch: Using equation (2), one gets that
aiajdk = —aidjak = —akaidj .

Note that the indices on the right can be obtained from the left by applying the
three cycle (123), and this involves a change of sign. So, applying the same rule
three time one gets that

aiajdk = —aiajdk

and hence that a;a;dy = 0; recall that the characteristic of k is not two.
A similar argument, now using (3), shows that ¢;c;b, = 0 for all 4, j, k.

Type acd: Now using equation (1) twice and then equation (2), one gets
aidek = aiajbk = ciajdk = —cidjak = —akcidj

Once again, the indices on the right are obtained from those on the left by applying
a three cycle, along with a change of sign. So applying this thrice we deduce that
a;cjdy = 0, as desired.

Type ced: Applying (1), then (3), and then again (1) yields
Cicjdk = ciajbk = —biajck = —diCjCk = —C]'dei
so arguing as before one deduces that c;cjdy = 0. (]

Set A= S5/(p)(¢q). By Lemma 6.1 one has an exact sequence

(6.1.1) 0—J—272-"3A—0
of N%2-graded S-modules. Thus the bigraded Hilbert series of Z is
1
Hilby(s,t) = — 1+ (2n* —n)st.

s (1)

We compute the Poincaré series of Z. The crucial computation is the following.
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Lemma 6.2. The exact sequence (6.1.1) induces the following isomorphisms and
exact sequences of N?-graded k-vector spaces:
Ext(A, k) — Ext%(Z, k)
0 — Homy(J, k) — Ext§(A, k) — Ext§(Z, k) — 0
Exth(J, k) — Ext3(A, k)
0 — Ext(Z, k) — BExti(J, k) — BExtS (A, k) — 0
for each i > 2.

Proof. Indeed, the first isomorphism is clear. Given this, applying Homg(—, k) to
the exact sequence (6.1.1) yields an exact sequence

0 —» Homy (J, k) — Exts(A, k) — ExtL(Z, k) -5 ExtL(J, k) - Ext3(4, k)
of N?-graded k-vector spaces. We claim n = 0 and 8 is an isomorphism, which
justifies all but the last assertion in the statement. To verify the claim, note that

ranky, 1) = ranky, Ext(Z, k) — rank, Ext§(A, k) + rank;, Homyg (J, k)
= (2n% +n) — 4n% + (2n? — n)
=0
where the second equality comes from Lemma 6.1. Thus n = 0 and hence the map

d is injective. As Exty(J, k) is isomorphic to Exty(k, k) @5 Homy(J, k), one gets
the first equality below

ranky Ext}(J, k) = (2n* — n) ranky, Ext§(k, k) = (2n® — n)4n
4 2
ranky Extz (A4, k) = ( ;) - 2( ;) = (2n® — n)dn

The second equality is from Theorem 4.3; keep in mind that the p and ¢ have been
doubled. Thus it follows that @ is an isomorphism, as desired. ;

To verify the exactness of the last family of sequences, it suffices to prove that
the map

ExtZ'(J, k) — Ext3”(A, k)

induced by (6.1.1) is surjective. This map is linear with respect to the action of
A = Extg(k, k). Since Ext?(A k) is generated by Ext%(A, k) as a A-module, by
Lemma 4.4, it suffices to verify that the map of k-vector spaces

Ext§(J, k) — Ext%(A, k)
is surjective. This is the map 0 that we already know is an isomorphism. O
Lemma 6.2 implies that the minimal resolution of Z over S is pure, and in fact

linear after the second syzygy. From the previous claim and Theorem 4.3 (for 2n)
one gets the following result.

Theorem 6.3. Let k be a field, and let S and A the k-algebras introduced at the
beginning of this section; in particular, the characteristic of k is zero, or odd. The
nonzero graded Betti numbers of A over S are

1 i =0 and v =10,0]
iS,U(A): (2n? +n) i=1andv=[1,1]

(2n27n)( n )( 2n ) - (2")(2") 1>2,v;,>1, andvy +vy=1+2

v1—1/ \va—1 v1/ \vg
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The Betti numbers of Z over S are
1 fori=0
BP(A)={2n%2+n fori=1
(2n® —n)(*}") — (;5:12) + 2(i2f2) fori>2
Moreover, dim Z = 2n and depth Z = 0.

Proof. The assertions about the (graded) Betti numbers have already been justified.
The dimension and the depth of Z are from (6.1.1). O

This has the following corollary.
Proposition 6.4. The k-algebra Z is not Koszul.

Proof. From Theorem 6.3 one gets the first equality below
5 1 2z
B3 (Z)s = B5(2Z) = §n2(4n? -1) > 5(2n2 +n)(2n® +n—1)= ('31; >)
The inequality is readily verified. Now apply Remark 3.6. ([l

APPENDIX A. QUADRATIC EXTERIOR FORMS AND MAXIMAL RANK

The main task of this section is to prove Proposition A.2, which was used in the
proof of Theorem 5.1. Throughout k will be a field. For elements @ = x1,...,x, in
a commutative ring, we write s;(x) for the i-th elementary symmetric polynomials
in & with the convention that so(x) =1 and s;(x) =0 for ¢ < 0 or ¢ > u.

Lemma A.1. Ink[zy,...,%u,y1,...,Yu)/J, where J = (y3,... 92, 2%, ...,22), for
every d > 0 there is an equality
d

(s1(2) +51()) D _(~1)"KUd—=k)lsi(@)sa—r(y) = (d+1)(sar1(y) +(=1)sas1(@)).
k=0

Proof. 1t is not hard to verify that there is an equality
si(@)sk(w) = (k+ 1)sp1(2);

by symmetry, this implies also that s1(y)sq—r(y) = (d — k + 1)sq—r+1(y). Using
these one gets equalities

(51(@) + 1() S (~1)FRIA — k)i (@)sa-i(y)
d
= (DRI 4 1~ )i (@) (3)

d
+ ) (=DF(k + D — k) sppr (2) 50—k ()
k=0

= (d + 1)!(sa+1(y) + (=1)%saz1(x))

Let V be a k-vector space of dimension 2n, and A the exterior algebra on V. Let
€1,---5€n, f1,---, fn be a basis of V and set

n
wi=Y_eifi;
i=1

0
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this is an element in As. The result below is well known when chark = 0 and
can be deduced as a special case of the Hard Lefschetz Theorem; see [9, page 122].
However, we have been unable to find an argument that covers also the case of
positive characteristics in the literature.

Proposition A.2. If chark = 0 or chark > (n + 1)/2, then the multiplication
map w: A; = Ao has mazimal rank for every i; in other words, w: Ay — A1 o is
injective for i <n — 1 and surjective for i >n — 1.

Proof. To begin with, there is an isomorphism Homyg (A, k) = A(2n) of A-modules
and from this it follows that it suffices to verify that multiplication by w is injective
in degrees < n — 1. Moreover, it suffices to verify injectivity for i = n — 1.

Indeed, assume w: A; — A;y 2 is injective for some ¢ < n — 1. For any nonzero
element A of degree i — 1, there exists an element v in A; for which Av # 0; this is
because the socle of A is Ag,. Then wAv # 0 implies wA # 0. An iteration yields
the desired result.

To reiterate: It suffices to verify that w: A,—1 — A,41 is injective. Since the
ranks of the source and target coincide, this is equivalent to verifying that the map
is surjective. We prove this by an induction on n, the base case n = 1 being obvious.

Suppose n > 2. Then A, 41 has a k-basis consisting of monomials

p=ei i, fi - S

where 1 <a,b<nwitha+b=n-+1,and i1 <--- <i, and j; < ...Jp,

If for some h we have i, & {j1,...,J»}, then e;, w = e;, w1 with
n
w1 = Z ey fo
v=1,v#ip

and, by induction on n, there exists A € A,,_o(U) such that
Ay =€, ... &, ...€ fi ... [ -
Here U is the k-subspace of V' generated by {e1,...,en, f1,--., fn}\{€,, fi, }- Then
ve;, w = ve;, wi; = Ee;, vwy = .

A similar argument settles the case when there exists h with jp & {i1,..., 04}

It remains to consider the case a = b and {i1,...,ia} = {j1,---,Jp}- Set m =
a = b so that n = 2m — 1. We can assume (renaming the indices) that i, = j, = h
for h =1,...,m, that is to say, u = [[/~, e fi.

We apply Lemma A.1 as follows: we set v =m, u=m —1 and d =m — 1 and

Ti = €mtifmti fori=1,....m—1
Yi — € fi fori=1,...,m.
Such a specialization makes sense because the elements x;y; have square zero and

commute among themselves. Since s1(s') + s1(t') = w, s, (t') = [~ s:fi and
$m/(s") = 0 we obtain:

[

w Y (=1)FE(m =1 = E)sp(s)sm_1_x(t) :m!ﬁsifi.
0 i=1

3

=~
Il
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Since we are assuming that chark = 0 or chark > (n + 1)/2 we have that m! is
invertible and hence we may conclude that wyv = Hgl s; fi with

3

V= (=1)*EN(m — 1 — k)sp(s))sm_1_x(t).
(m!) pors

This completes the proof. O

APPENDIX B. BETTI TABLES AND NUMEROLOGY

In this section we collect some observation, and questions, concerning the alge-
bras studied in this work. To begin with, consider the following Betti tables for the
representations sl,, : k™, computed in Theorem 5.1, for the first few values of n.

0o 1 2 3 4 5 6 7 8 9 10 11 12
sh:kZ[0]1 — — - -
1l- 3 - - -
2| - - 41
sl:k3 01 - — - - - -
1/- 8 12 - - - -
2| - - - 14 6 1
skt lo] 1 - - - - - - - -
1|- 15 40 40 - - - - -
2 - - - 48 27 8 1
sl:k> [0 1 — — - - - - - - - -
1 24 90 155 130  — - - - - =
2 - - - — [132] 165 110 44 10 1
sl k6 o] 1 — — - - - - - - - - - C
1] - 35 168 399 560 427 — - — - — — -
2 - - - - - 572 420 208 65 12 1

The framed numbers in the table are the Catalan numbers; see [17, A000108].
This is true for each n, and what is more, the Catalan triangle introduced by
Shapiro [20], appears as well.

Indeed, the sequence (Cy,)n>0 of Catalan numbers, which has numerous combi-
natorial interpretations [23, 14], can be defined as follows:

e ()= (- ()

The Segner’s recursion formula Cp4q1 = Zi’j:iﬂ-:n C;Cj can be rewritten in terms
of the generating function C(z) = ", <, Cra™ as follows: z C?*(z) = C(z) — Cp.

The entries B(N,r) of the Catalan triangle, with N,r > 1, are defined by the
higher moments 7" (z) =: >y, B(N,7) 2 of the generating function v(z) =
C(x) — Cy = C(x) — 1. In other words,

B(N,r) = Z C;,Ciy - Ci .
11,0200 21

Ej ij=N

It has been shown in [20] that B(N,r) = + (ﬁjfr), which also makes sense for r < 0.
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The Catalan triangle can be recovered when taking differences of columns in the
Pascal triangle:

2n 2n 2n—9)(2n—i—1)\ (2n
(z‘)‘(z’w):(“ G+ 1 +2) )()
i+ 1=n)2n+1) 2n
) <)
_z+1n(2n+1)(2n+2)( >
n+1 i+ 1)(i+2) i
i1+1—-n (2n+2
T n+1 (z+2)

=B(n+1,i+1—n)

This proves the occurrence of the Catalan triangle in the Betti table of sl : k™;
compare Theorem 5.1. The many combinatorial interpretations of the Catalan
triangle [14, 20] raise the question: Is there a minimal free resolution of the moment
map of sl,, : k™ that underlies the occurrence of the Catalan triangles?

The Betti tables of the moment map for the representations sp,, : £*", computed
in Theorem 6.3, are also worth pointing to. For n = 1 the Betti table is the same
as that of sly : k2. For n = 2,3 one gets the following.

1 2 3 4 5 6 7 8 9 10 11 12
spprkt o1 — - - - - - - -
1|—- 10 - - - - - - -
2| - — 100 280 392 328 167 48 6
sps kS [0 1 —  — - - - - - - - - - -
11— 21 - - - - - - - - - - =
2| — — 525 2520 6503 11088 13365 11660 7359 3288 989 180 15

The noteworthy feature here is that the Betti table has only two strands, and
the jump from one to the next occurs after the second step.

Poincaré series. Finally we discuss the Poincaré series of k over the coordinate
algebra of the zero fibre. Let R be a standard graded algebra, as in Section 3. For
simplicity, we focus on the N-graded case. We are interested in the Betti numbers
of k as an R-module. A basic question is when the corresponding Poincaré series
PkR(u) is rational; it is not so for a general graded ring R; see [2, §4.3]. What about
for algebras of the form S/(u), for a moment map p?

The Poincaré series for a complete intersection is rational [2, Theorem 9.2.1], so
this takes care of O-modular representations. Thus, as for the Koszul property, the
question is moot only for small representations. Rationality also holds when R is
Koszul, for then there is an equality Pf(s,u) = Hilbg(—su)~'. This settles the
case of the standard representations gl,, : k" and so,, : k™.

We do not know the answer for sl,, : k" and sp,, : k™. For sly : k* Grébner
basis calculations (using Macaulay2) suggest that the Betti table of the minimal
free resolution of k is upper triangular, with a new strand appearing after every 3
steps in the homological degree. The following formula for the Poincaré series best
fits the available numerical data

pS/n)( (1+ us)? _
(1 —us)3(1 4 us) — 2u3s*

s,u) =
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For sls : k3 we also encounter a triangular shape but we have been unable to guess
what the Poincaré series might be.

Following the arXiv posting of an earlier version of this manuscript, Jan-Erik
Roos wrote to us (email, dated 17 June 2017) that he could answer some of the
questions posed in the preceding paragraphs. Pointing to his paper [19], he writes
“I have in principle solved “all” cases of the Homological Behaviour of families of
quadratic forms in four variables...” Roos notes that for sly : k% the ring S/(u)
is isomorphic to the one in [19, Case 7, pp. 427], and that the corresponding
Poincaré series is precisely the one we proposed above. Furthermore, he proposes
the following formula for the Poincaré series for the case of sl3 : k3

(1 + us)?
(1 —us)(1 — 2us — 4u2s? — 2u3s3 + utst) — 2utsd
and suggests a method to tackle sl,, : k™, for arbitrary n; we hope to develop these
ideas in due course.

Pi/(#)(s7 u) =
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