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ABSTRACT. This paper concerns the homological properties of a module M
over a ring R relative to a presentation R = P/I, where P is local ring. It
is proved that the Betti sequence of M with respect to P/(f) for a regular
element f in I depends only on the class of f in I/nl, where n is the maximal
ideal of P. Applications to the theory of supports sets in local algebra and in
the modular representation theory of elementary abelian groups are presented.

INTRODUCTION

This work concerns an analogue for commutative rings of Carlson’s theory of
rank varieties for elementary abelian groups [8]. It takes the following form: Given
a (noetherian, commutative) local ring R that is a quotient of a local ring P, so
that R := P/I for an ideal I, the goal is to study an R-module M by its restrictions
to hypersurfaces P/(f) where f € I is a regular element (that is to say, not a zero
divisor). The rationale is that homological algebra over such hypersurfaces is well-
understood, especially when P is a regular ring; then one can, for example, take
recourse to the theory of matrix factorizations initiated by Eisenbud [9].

In this endeavor a basic question is how the properties of M change as we vary
the element f. The result below, contained in Theorem 2.1, addresses this issue.

If f,g in I are reqular elements with f — g in nl, where n is the maximal ideal
of P, then for any R-module M there are isomorphisms of k-vector spaces

Torf/(f)(k;, M) = Torf/(g)(k, M) for each i > 0.

It follows that when M is finitely generated, its projective dimension as a module
over P/(f) and over P/(g) are simultaneously finite. This latter result was proved
by Avramov [2] when P is regular and I is generated by a regular sequence; it is
part of the theory of cohomological support varieties for modules over complete
intersections [1]. Jorgensen [12] generalized this to any ideal I in a domain P.

The isomorphism above yields more: the Betti numbers of M over P/(f) and
over P/(g) are equal. Moreover the statement carries over to the context of graded
rings and implies that the graded Betti numbers and hence also invariants derived
from them, like regularity, are equal.
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That said, the motivation for writing this manuscript is not so much the greater
generality of the result; rather, it is to give an alternative point of view—one that
lays bare the structural reason behind the numerical coincidences. The proof, given
in Section 2, uses a modicum of Differential Graded (henceforth abbreviated to DG)
homological algebra, recapped in Section 1.

As one application of the theorem, in Section 5 we describe how to deduce from
it certain results of Carlson [8], Friedlander and Pevtsova [11], and Suslin [15], that
underlie the theory of rank varieties for finite groups and group schemes.

The theorem above also leads to the notion of a support set of M with respect
to the homomorphism 7: P — R, denoted V,;(M). It is a subset of k¢, where c is
the minimal number of elements required to generate the ideal I. We prove:

When I contains a regular element and M is finitely generated, the subset
V(M) C k€ is closed in the Zariski topology.

This result is contained in Theorem 3.9 which identifies the support set of M as

the algebraic set defined by the annihilator of a certain module, over a polynomial

ring k[s1,...,s.], naturally associated to M. Up to radical this annihilator ideal
can be described explicitly, as we illustrate in Section 4.

1. DIFFERENTIAL GRADED ALGEBRA

In this section we recall what little is needed, by way of constructs and results
concerning DG algebras and DG modules. Our reference for this material is [3].

Let P be a commutative ring and A a DG P-algebra; it will be implicit that A
is graded-commutative and satisfies A; = 0 for i < 0.

1.1. Tensor products. When A and B are DG P-algebras, so is A ® p B, with
standard differential and products

a®b)(d @V) = (=1)l""aa’ @ bb' .
(
We identify A and B with their images in A ® p B and write ab instead of a ® b.

1.2. Divided powers. For w € Ayy with d > 1, we say that (w(i) € Asgi)izo is a
sequence of divided powers of w if w(® =1, w) = w, and there are equalities

wDwl) = @ w7 and  A(w®) = d(w)w Y forall i,j>0.
ilj!

Induction on i yields w® = ilw® for i > 0. Thus w has a unique sequence of
divided powers if char(k) = 0, or if char(k) =p > 0 and A; = 0 for j > 2dp — 1.
However, not every element of even positive degree has divided powers in general.

If v and w have divided powers, then so do aw, for a € P, and v + w with

(aw)' = a'w® and (v 4 w)M = Z 0@l
i+j=h
1.3. The Koszul complex. Let t1,...,t, be elements in P and K the Koszul
complex on t. Thus K is a DG P-algebra with underlying graded algebra the
exterior algebra Ap K1, where K, is a free P-module with basis z1,...,z,, and
differential 0 defined by the condition d(z;) = t;. Then Ho(K) = P/(t), so K
comes equipped with a canonical morphism of DG P-algebras ¢: K — P/(t).
Every element of K33 with d > 1 has a sequence of divided powers. Only those
for d = 1 are needed here, and we proceed to define them ad hoc.
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Write each w € Ko as w = ), o, cp<p, Tab TaTp With 74 € P and set

i) . .
w® = g (Payby = Tas,b;) Tay Toy - - Tq, Ty, for i>1.
1<a;<b;<n
1<5<i

The right-hand side is well defined because the expression of w is unique. A direct
computations shows that d(w®) = d(w)w*~1) holds for i > 0.

1.4. The Tate construction. Let P(y) be a graded free P-module with basis
{yD};>0, where |y(?)| = 2i, and define a P-linear multiplication table by
. . ] O
y® =1 and yWyl) = G+ yt) forall 4,5 >0.

ilj!
By construction, the element y has a sequence of divided powers, namely, {y(i)}.
Let A be a DG P-algebra and z € A; a cycle. We write A{y | d(y) = z) for
the DG P-algebra with underlying graded algebra A ®p P(y), with differential
extending the one on A and satisfying
AyD) =2y Y foralli>1

We abbreviate A(y | d(y) = z) to A(y) if the differential on y is clear, or irrelevant.
If an element a € As has a sequence of divided powers, then so do elements of
the P-submodule of A(y) generated by a and y; see 1.2.
The map A — A(y) assigning a € A to ay'®) is one-to-one and a morphism of
DG P-algebras. For i > 0, it induces a homomorphism
H;(A) — Hi(A(y))

that is bijective for ¢ = 0 and surjective for ¢ = 1, with kernel the ideal generated
by the class of z. The result below and its proof are standard; see [3, §6]. Details
of the proof are given for ease of reference.
Lemma 1.5. Let z be a cycle in A;.
(1) If an element w € As has a sequence of divided powers, then the DG P-
algebras Ay | O(y) = z) and Ay | O(y) = z + O(w)) are isomorphic.
(2) If the class of z is a basis for the Hyo(A)-module Hi(A) and H;(A) = 0 for
i > 2, then the canonical map
Aly | 0(y) = z) — Ho(4)
18 a quasi-isomorphism.
Proof. Tt is readily verified that the A-linear map
Aly [0(y) = z) — Ay | 9(y) = z + O(w))
that assigns y* to (y + w)(i) is a morphism of DG P-algebras; it is bijective, with
inverse the A-linear map that assigns 3 to (y — w)®. This justifies (1).
The A-linear map ©: A(y) — Y?A(y) assigning ¥ to y~1) is a morphism of
DG A-modules, with kernel A, identified as the DG A-submodule Ay(®) of A(y).
Thus, there is an exact sequence of DG A-modules

0— A— Aly) -2 T2A(y) — 0.
In homology, this yields that Ho(A(y)) = Hy(A), an exact sequence

0 — Ha(A(y)) — Ho(A(y)) 2+ Hy(A) — Hy(A(y)) — 0
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of Hg(A)-modules where @ maps the class of 1 to the class of z, and isomorphisms
H;(A(y)) = H;_2(A(y)) fori> 3.

The hypothesis yields that 0 is an isomorphism, so Hao(A(y)) = 0 = H; (A(y)) and
then the isomorphisms above entail H;(A(y)) = 0 for all 4 > 1. O

1.6. Acyclic closures. Let t be a finite set of elements generating an ideal n of P
and K the Koszul complex on t. Let z1,..., 2. be cycles in K; that generate the
Ho(K)-module H; (K). Iterating the construction from 1.4 yields a DG P-algebra

T:=K(yi,.-Yec | Oy:) = z) .
By construction Ho(T) = P/n and Hy(T) = 0. A repetition of this procedure,
involving also the adjunction of exterior variables leads to a DG P-algebra A con-
taining T' as a DG subalgebra and satisfying H;(A) = P/n and H;(A) = 0 for ¢ > 1.
This is an acyclic closure of P/n; see [3, Chapter 6.

As noted in 1.3, in the DG P-algebra K each element of even positive degree
has a system of divided powers; the ones on K5 were described explicitly. These
induce a sequence of divided powers on the elements of degree two in T, see 1.4,
and hence also in A.

2. HYPERSURFACES

Let P be a commutative noetherian ring, n a maximal ideal of P; set k = P/n.
We fix an ideal I of P contained in n and set R = P/I. For every f € I, let
mrs PJ() — R
be the canonical homomorphism of rings.
Theorem 2.1. Let I C P be an ideal containing a reqular element, set R := P/I
and let M be an R-complex.
(1) For each f € I there exists an h € nl such that f + h is P-regular.
(2) Let f and g be regular elements lying in I. If f — g is in nl, then there is an
isomorphism of graded k-vector spaces
Tor?/P) (k, M) = Tor™/ 9 (k, M) .
(3) If f is a regular element lying in nl, then there is an isomorphism of graded
k-vector spaces
Tor™/ P (k, M) = Tor® (k, M) @ k(y), with |y| = 2.

The proof is given at the end of this section. Part (1) is well-known and part (3)
is essentially contained in the work of Shamash [14, Theorem 1].

Throughout the rest of the section ¢t :=t4,...,t, denotes a finite generating set
for the ideal n and A denotes an acyclic closure of k over P; see 1.6.

2.2. Degree one cycles. Set C := A®p R; this is a DG R-algebra. As A is a free
resolution of k, there is an isomorphism of graded k-spaces

H(C) = Tor” (k, R).

Expressing elements of I as linear combinations of t1, . .., t, gives rise to degree one
cycles of C'. We give a compact description of that process by using the P-module

Z:={(fix)eI® A | f=0(x)};
this is the fiber product of the maps [ < P + A; : 0.



RESTRICTING HOMOLOGY TO HYPERSURFACES 5

Lemma 2.3. The assignments f<i(f,xz) — x ® 1 define surjective P-linear maps
1<% Z -5 7,(0).
An element z € Z satisfies €(z) € nl if and only if {(2) is in O2(C).

Proof. Let x be an arbitrary element of A;.

The element z ® 1 is a cycle in Cy if and only if d(x) lies in I. It follows that ¢
is well-defined and that both ¢ and e are surjective.

Fix z := (f,z) in Z, so {(#) = 2 ® 1. Then ( is in 9(C) if and only if = lies in
0(A) 4+ IAy. Thus ((2) in 9(C) yields f = I(x) € O(IA;1) =nl.

Conversely, f in nl gives f = 0(>_ a;x;) with {z;}1; in Ay and {a;}}"_, in I, so
that  — > a;x; is a cycle in Ay. As Hy(A) is zero, we get © — > a;x; = d(w) for
some w € A, whence x ® 1 = d(w ® 1). O

2.4. Hypersurfaces. Fix an element f in I, set P := P/(f)P and consider the DG
P-algebra A := A®@p P = A/fA. Choose an element z; € Ay such that 9(z¢) = f.
The residue class of zy in Ais a cycle, denoted Zg. Set

By = Ay | 0(y) = %) .
This has a canonical augmentation By — k, which is a morphism of DG A-algebras.

Lemma 2.5. If f is a reqular element, then By — k is a quasi-isomorphism.

Proof. Applying Lemma 2.3 with (f) in place of I, we see that H;(A) is generated
by the class of z; and is zero if and only if f lies in nf; the latter possibility is ruled
out by the hypothesis that f is regular. By using the resolution

0—>PL>P—>0,
of P over P we get

— k fori=0,1
TorP (h, Py = L F ri=
0 otherwise
Since H(A) = Tor” (k, P), it remains to apply Lemma 1.5 O
Proof of Theorem 2.1. The zero-divisors in P are the elements of its associated
primes; call them pq,...,p,. Since I has a regular element so does nl, and hence
the latter is not contained in U?_;p;. Thus, (1) follows from [13, Theorem 124].

In the next steps the notation and constructions from 2.2 and 2.4 will be used.
In particular, 4 is a DG P-algebra resolution of k, and C' := A ®@p R. Moreover
By is a DG P-algebra resolution of k.

Claim 1. Tor™/ ) (k, M) is the homology of the DG R-module
Cly|0y) =zp@1) @r M

Indeed Tor”/ ) (k, M) is the homology of the DG R-module By ®pyg) M. As-
sociativity of tensor products yields isomorphisms of R-complexes

By @pypy M = ((A/fA)y | 0(y) =Zf) ®py() R) ©r M
=Cy|0y) =z ®1)@r M
This justifies the claim.
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(3) When f € nI holds, the element z; is in TA and hence its residue class in C
is zero. The preceding claim then yields
Tor™ ) (k, M) = H(C(y | 8(y) = 0) @r M)
=H(C @r M) ®@r R(y)
=H(A®p M) ®@r R(y)
=~ Tor” (k, M) @ R{y)
= Tor” (k, M) @y, k(y)
(2) Recall that the element g is also a regular element in I, with f — g in nl.

Claim 2. There is an isomorphism of DG R-algebras
Cly|dly)=2z,21)=C(y|0(y) =2,1).

Indeed, Lemma 2.3 provides elements (f,z) and (g,y) in the module Z defined
in §2.2, and w in Cy satisfying z ® 1 —y ® 1 = (w). Since w has a sequence of
divided powers (see §1.6), Lemma 1.4 yields the desired isomorphism.

The isomorphism in the Claim 2 induces an isomorphism of R-complexes

Clyloy) =2z, @1) @r M =Cy | 9(y) =2, ® 1) ®r M.
Taking homology, and recalling Claim 1, yields the desired isomorphism. U

3. SUPPORT SETS

Let (P, n, k) be a (commutative noetherian) local ring, with maximal ideal n and
residue field k. Let 7: P — R be a surjective homomorphism of rings such that the
ideal I := Ker(7) contains a regular element. Throughout, M will be an R-module;
the results presented below all carry over to complexes; see Remark 3.10.

3.1. Support sets. We view the k-vector space I/nl as endowed with the Zariski
topology. Given f € I we write [f] for its residue class in I/nI. The homological
support set of M with respect to 7 is the subset of I/nl described by

there exists a regular element g € I with

Vo(M) = [fl €I/nl| f— g€ nl such that Torf/(g)(k,M) £0 pU{0}.
for infinitely many integers 4

Thanks to Theorem 2.1, one can test whether [f] € V(M) holds by considering
Tor™/ 9 (k, M) for any regular element ¢ in I with [f] = [¢]. Evidently, if [f] is in
V. (M), then so is [A\f] for any non-zero element A in k. Hence V(M) is an affine
cone with vertex at {0}. Therefore one could also consider the homological support
set as a subset of the projective space associated to I/nl. See Remark 3.11 for
antecedents of this construction.

The condition on the vanishing of Tor appearing in the definition of the homolog-
ical support set of M has a more familiar interpretation, at least under additional
conditions on the module M. This is explained in the next paragraph.

3.2. Projective dimension. We write projdimp M for the projective dimension
of the R-module M. If M is finitely generated, then

3.2.1 projdimp M < oo <= Tor®(k,M)=0 fori>0;
R i

see, for example, [0, Proposition 5.5(P)].
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3.3. Alternative description of support. Fix a minimal generating set f1, ..., f.
for the ideal I. The residue classes [fi],...,[fc] form a basis for I/nI as a k-vector
space. We will use this to identify I/nI with k¢ whenever necessary, or convenient.
Given a point a := (a1, ...,a.) in k¢ it follows from Theorem 2.1(1) that there

is an element a’ := (af,...,a.) in P° such that

(1) @} =a; modnfori=1,...,¢

(2) > alf; is regular in P.
We will call such an element a’ a lifting of a to P. When M is finitely generated,
one can also describe the subset V(M) from 3.1 as

there exists a lifting @’ of @ with
projdimp, s (M) = oo for f = Za;fi

In particular, the right hand side does not depend on the choice of a minimal
generating set for I. The subset V(M) C k€ is closed when M is finitely generated;
this is contained in Theorem 3.9. For the proof of this result, we require a statement
about complexes over regular rings, presented below.

Ve(M) = {a € k°

3.4. Complexes over regular rings. By a regular ring we mean a commutative
noetherian ring S such that the local rings S, are regular for all p in SpecS. For
any p € Spec S, We write k(p) for the residue field, (S/p),, at p.

Lemma 3.5. Let S be a regular ring and let X be a complex of S-modules such
that H;(X) is finitely generated for each i and equals 0 for i < 0. Fiz a prime ideal
p in S. The following conditions are equivalent.

(1) Tor} (k(p), X) = 0 for i > 0;

(2) k(p) ®s Hi(X) =0 fori>0;

(3) Hi(X), =0 fori>0.

Proof. Since the action S on k(p) factors through the localization homomorphism
S — Sy, and S, is flat as an S-module, one has isomorphisms

Tor® (k(p), X) = Tor™ (k(p), X,)
k(p) @5 Hi(X) = k(p) ®s, Hi(X)

Moreover, X, is a complex of S,-modules with (X,); = 0 for ¢ < 0. Thus, replacing
S and X by their localizations at p, we assume S is local and p is its maximal ideal.

(1) <= (3) Let E be the Koszul complex on a finite set of generators of the
ideal m. Since FE is in the thick subcategory of the derived category of S generated
by k, the hypotheses in (1) implies H;(E ®¢ X) = 0 for ¢ > 0. Using the fact
that the S-modules H;(X) are finitely generated, a standard argument now implies
H;(X) =0 for i > 0; see, for example, [10, 1.3].

(2) <= (3) This is by Nakayama’s Lemma. O

p

3.6. On being closed. Let P[s] be the polynomial ring over P in indeterminates
s:=81,...,8. and

Q= Plsl/(J) where Ji= Y sifi.
i=1
The ideal I contains a P-regular element so there is no non-zero element in P that
annihilates each of fi,..., f.. Therefore f is a regular element in P[s]; see, for
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example, [1, Chapter 1, Exercise 2]. Thus the complex of P[s]-modules

(3.6.1) 0 — Pls] -1 P[s] — 0

is a free resolution of @
For each a’ := (a},...,a.) in P° form the homomorphism of P-algebras
£q: P[s] — P given by s; — aj.
In what follows, we write P, for P viewed as a P[s]-module via ,/. Base change
along the canonical surjection P[s] — @ gives a commutative square

Eaql
Pls] —— P

||

Q——Q=P/(f)
where f =3 alf;.
Lemma 3.7. When the element f := > a.f; is P-regular, one has
Q fori=0

0 otherwise

Torf[s] (Por,Q) = {

Proof. Using the free resolution (3.6.1) of Q over P[s], one gets that Tor”*)( Py, Q)
is the homology of the complex

0—P-LsP—0 O
Set M[s] := P[s| ®p M. Evidently f - M[s] = 0 so M][s] is an Q-module.

Proposition 3.8. With notation as above, the following statements hold.
(1) When p := projdimp M is finite, for any Q-module N one has

Tor? (N, M[s]) = Tor2 (N, M[s]) fori > p.

(2) When Y, a,f; is regular in P, one has

Torl(Q, M[s)) = { M T =0
0 otherwise

Proof. The argument uses the standard first quadrant change of rings spectral
sequence associated to the homomorphism P[s] — @, and a P[s]-module L.

Q P[s ~ P[s
Efj = ToriQ(Torj [ ](L, Q),M[s]) = Tori_ir[j] (L, M(s])

(1) Set L := N in the spectral sequence. From (3.6.1) and fN = 0 one gets that
o~ N fori=0,1
Tor/ (N, Q=g "
’ 0  otherwise

Thus the Ef ; = 0for g # 0,1 so the spectral sequence unwinds to an exact sequence

o Tor BN, M) — Tor® (N, M(s]) — Tor(N, M(s])

— Torl *N(N, M(s]) — - -
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Since projdimp M = p, one has projdimp M][s] = p, so the first and the last
modules in the sequence above are zero for ¢ > p. This yields (1).

(2) Consider the spectral sequence above with L := P,/. In view of Lemma 3.7,
this spectral sequence collapses on the second page and yields isomorphisms

Tor?(Q, M]s]) = TOYZP[S] (Par, M[s]) for each i.

Let F be a free resolution of M as a P-module; then F[s] := P[s] ®p F is a free
resolution of M|[s] over P[s]. Associativity of tensor products yields

Pa ®pps) F[s] = P@p M = M
of P-complexes. This yields

M fori=0

Tor; ) (Pas, Mls]) = |
0  otherwise
The preceding computations justifies the assertion in (2). O

The statement and proof of the next result involve constructions introduced
in 3.6. We identify k[s] and the ring of k-valued algebraic functions on I/nl by
mapping s; to the ith coordinate function of the k-basis {[f1],-- -, [fc]} of of I/nI.

Theorem 3.9. Assume that k is algebraically closed and that I contains a reqular
element. Fix an integer d > depth P. Let M be a finitely generated R-module and
J the annihilator of the k[s]-module

Tor? (k[s], M[s]) @ Tor$, , (k[s], M[s]).
If projdimp M = oo, then V(M) = k°. Otherwise it is given by
V(M) ={(a1,...,a.) € k°| h(a) =0 for all polynomials h(s) € J}.
In particular, V(M) is a Zariski-closed subset of k°.

Proof. Set p := projdimp M. If proj dimp ) M is finite for some regular element
f €1, then p is finite as well. Therefore V(M) = k° when p = co; see 3.3. For the
rest of the proof we assume that p is finite.

Fix a point @ € Af. Let a’ € P¢ be a lifting of a, as in 3.3, and set Q := P/(f),
where f = 3. d/f;. Let G be a free resolution of M|[s] over Q and set

X =k[s]®sG.
By construction, this is a complex of free k[s]-modules and satisfies
H(X) = Tor® (k[s], M[s]).
In particular, the k[s]-module H;(X) is finitely generated for each ¢, and 0 for ¢ < 0.

Claim 1. Let €4: k[s] — k be the homomorphism of k-algebras with £4(x;) = a;
for each ¢. There is an isomorphism of graded k-vector spaces

Tor® (k, M) = Tor*®) (kq, X) .
Indeed, by Proposition 3.8(2) the complex @ ®g G of free Q-modules is a resolution
of M, so Tor® (k, M) is the homology of the complex

k®g (Q ®5 G)=k ®5 G = kq ®ps) (K[s] ®5 G) = ka Qg X -
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The second isomorphism holds because the composed map @ — @ — k factors as
Q — k[s] =% k. Taking homology and keeping in mind that the k[s]-complex X
consists of free modules and is concentrated in non-negative degrees, one gets the
stated isomorphism.

Claim 2. Set mg := Ker(g4). One has
acV,(M) < myg2J.

Indeed, consider the following chain of equivalences, where the first one holds by
definition, and the second is by Claim 1.

a & V(M) < Tor?(k,M)=0fori>0

= Torf[s} (ka,X)=0fori>0
< H;(X),, =0fori>0.

m
The last one is given by Lemma 3.5, applied with S := k[s] and p := m,. Since
projdimp M = p is finite, the Auslander-Buchsbaum Equality implies d > p.
Proposition 3.8(1) then gives the first equivalence below.
Hi(X),, =0 fori >0 <= Hy(X), & Ha1(X),, =0
= my 2 J.

m

The second one is standard. Putting together the string of equivalences above yields
the contrapositive of the desired claim.

Since k is algebraically closed, Hilbert’s Nullstellensatz implies that every max-
imal ideal of k[s] is of the form mg, for some a € k¢, and that

mg 2 J <= h(a) =0 for all polynomials h(s) € J.

Combining this with the conclusion in Claim 2 yields the desired result. ]

Remark 3.10. Theorem 3.9 carries over, with essentially the same proof, to the case
when M is an R-complex with H(M) finitely generated. The crucial point is that,
in the notation above, the natural morphism of Q-complexes

Q@%M[s]—>M

is a quasi-isomorphism. This can be verified using a spectral sequence as in the
proof of Proposition 3.8(2).

Remark 3.11. When P is a domain the homological support set of M, asin 3.1, is the
one introduced by Jorgensen [12], which extends the notion of varieties for modules
over complete intersections due to Avramov [2]. The last part of Theorem 3.9— that
V(M) is closed—was proved by Jorgensen [12, Theorem 2.2] under the additional
assumption that P is a domain. The argument in op. cit. is quite different from
the one presented above, which builds on a idea in the proof of [4, Theorem 3.1].

4. DEFINING EQUATIONS

The main result of this section, Theorem 4.4, gives equations that define the
homological support set of modules over complete intersections. The statement,
and its proof, involves some linear algebra over commutative rings, recalled below.



RESTRICTING HOMOLOGY TO HYPERSURFACES 11

Remark 4.1. Let S be a local ring and §: U — V a homomorphism of finite free
S-modules. For an integer » > 0, let I.(0) denote the ideal generated by the
r X r minors of a matrix representing ¢ in some bases for U and V; the ideal I,.(9)
is independent of these choices. The following conditions are equivalent for any
integer r > 1.

(1) I.(6) = S;

(2) Im(d) shares with V' a free direct summand of rank r;

(3) Coker(d) can be generated, as an S-module, by rankg V' — r elements.
Assume in addition that S is a domain. With Sy the field of fractions of S, the
rank of an S-module M is the rank of the Sp-vector space Sy ®s M. Then, when
rank Im(0) < r the conditions above are equivalent to

(4) Coker(9) is free of rank equal to rankg V' — 7.

These assertions are easy to verify, given that I,.(§) = S if and only if there exists
a choice of bases for U and V such that § is represented by a matrix of the form

I. 0
0 B
where I, is the identity matrix of size r; see also [7, Lemmas 1.4.8, 1.4.9].

The result below, where v/J denotes the radical of an ideal J, concerns differ-
ential modules; cf. [5, Remark 1.6], and also [5, Example 1.7] that shows that the
hypothesis that S is regular is needed.

Proposition 4.2. Let S be a regular ring and 6: S*™ — S?" an S-linear map with
62 = 0. The annihilator J of the S-module Ker(d)/Im(d) satisfies

VI =/I.05).

Proof. Set H := Ker(d)/Im(d). The radical of an ideal is the intersection of the
prime ideals containing it, and a prime ideal p of S contains J precisely when H,
is non-zero. Thus, the desired statement is equivalent to:

Hy=0 <<= I,(0)¢Zvp.

Replacing S by Sy and ¢ by d, it thus suffices to prove that when S is a regular
local ring, one has H = 0 if and only if I,.(§) = S.
There are exact sequences of S-modules

(4.2.1) 0 — Ker(d) — S%" — Im(5) — 0,
(4.2.2) 0 — Im(6) — Ker(6) — H — 0,
(4.2.3) 0 — H — Coker(d) — Im(d) — 0.

In particular there are (in)equalities
rankg Ker(d) 4+ rankg Im(d) = 2r and rankg Ker(d) > rankg Im(d).
Therefore one has
rankg Ker(d) > r > rankg Im(9),

and both inequalities become equalities when H = 0.

Assume H = 0 so that rankg Im(§) = r. Since the S-modules Coker(§) and Im(9)
are isomorphic, by (4.2.3), it remains to prove that Im(d) is free; then Remark 4.1
would yield I,.(0) = S.
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For each integer n > 1 there is an exact sequence of S-modules
0 — Im(8) — S%" — ... — §* — Im(§) — 0,

of length n. In particular for n = dim S + 2, one sees that Im(J) is a (dim S)-th
syzygy module and hence free, as S is a regular local ring. This is as desired.

Assume I,.(6) = S. Since S is a domain and rankgIm(d) < r, it follows from
Remark 4.1 that Coker(d) is free of rank r. This implies that, with { the residue
field of S, the natural maps

Coker(8) ®g | — Coker(§ ®g 1) and Im(8) ®g 1 — Im(d ®g 1)

are isomorphisms. Thus, applying (—) ®g [ to (4.2.3) and keeping in mind that
Im(d) is free, one then gets an exact sequence

0— H®gl— Coker(d ®s 1) = Im(6 ®s!) =0,

The isomorphisms above imply that both [-vector spaces on the right have rank r.
It follows that H ® g = 0; thus H = 0, by Nakayama’s Lemma. O

4.3. Complete intersections. Let (P, n, k) be a regular local ring of Krull dimen-
sion d and containing its residue field, k, as a subring. Let I be the ideal generated
by a P-regular sequence fi,..., f. in n? and set R := P/I.

Asin 3.6, let P[s] be the polynomial ring over P in indeterminates s := s1, ..., S,
set f == >, sifi and Q = P[s]/(f) Since Q is a hypersurface, the Q-module
@/n@ 2 [[s] has a free resolution G with the property that G; = @2d_1
0; = 019 for all i > c so that the complex G>. has the form

and

B A B A
e — GC+3 — GC+2 — GC+1 — GC

The matrices A and B come from a matrix factorization of f; see [J].
Given an R-module M, the matrices A and B define @-linear endomorphisms of
M[s]>*"" and hence an endomorphism
{0 A

B 0} : Ms]* — M[s]>" .

When M has finite rank as a k-vector space, one can view this as an endomorphism
of free k[s]-modules of rank (rank; M)2%; we write C'(M) for this map.

Theorem 4.4. Let R be as in 4.3. If M is an R-module with ranky M finite,
Vr(M) is defined by the vanishing of the ideal I.(C(M)), where r := (ranky M)2¢-1.

Proof. Note that Tor? (k[s], M([s]) is the homology of the complex G®5M(s], which
for ¢ > ¢ reads

9d-1 B

L M A

—— M][s]

o — M]s] 247

Since depth P = d > ¢, it follows that Torgﬂ(k:[s], Mls]) ® Toréj (k[s], M[s]) is the
middle homology of the sequence

c(M) cM)

M[s]*" M[s]2 =2 arfs)

of k[s]-modules. The desired statement is thus a consequence of Theorem 3.9, and
Proposition 4.2 applied with S := k[s] and ¢ := C'(M). O
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Remark 4.5. Theorem 4.4 should be compared to [4, Theorem 3.2] that describes
equations defining Vg(M) in terms of data derived from a free resolution, say
F, of M over P, instead of the resolution of k[s] over @ In detail: One can
construct a system of higher homotopies, a family of endomorphism (not chain
maps) of F that encode the data that, because M is an R-module, multiplication
by f1,..., fc on F is a commuting family of morphisms that are homotopic to zero.
Then [1, Theorem 3.2] expresses V(M) as the zero-set of appropriate minors of
the matrix involving these higher homotopies. In contrast, the C(M) appearing in
Theorem 4.4 is universal, in that it involves only a matrix factorization of f, and
matrices describing the action of the elements of P on M, viewed as k-vector space.

We finish by describing the free resolution of k[s] over @ and, in particular,
the matrices A and B, when R is a truncated power series ring; group algebras of
abelian p-groups over a field of positive characteristic p have this form.

Example 4.6. Let k be a field, P := k[|t1,...,tq|] the power series ring over k in
indeterminates t :=tq,...,t4, and set
R:= kHtla s atd”/(t?lv' .- ’tzc) )

where u; > 2 for each 1.

Let E be the Koszul complex over Q on t; thus E = Q(x | d(z;) = t;). The
element ), sit?ﬁlxi in E; is evidently a cycle. Since t is a regular sequence in
P[s] and f is a regular element contained in (£), the complex

Ey | 0(y) = sit" i)

is a @—free resolution of @/(t), that is to say, of k[s]; see Lemma 2.4. For any
integer n > ¢ one has

Elyhn := @Di>o £2i when n is even
o @D,>0 F2i+1 when n is odd

In either parity, it is a finite free @-module of rank 2¢~!. Moreover, after a suitable
choice of bases, the differential on E(y) is given by

Ooven := A and 0O,qq := B.

with A, B are square matrices of size 2¢~1, and coefficients in @, described below.
The rows and columns of A and B are indexed by subsets of the sequences

U:={h=(hy,....ho) | h €{0,1}°}

ordered weighted lexicographically.

The matrix A has rows indexed by sequences h in U with Y h; odd and columns
indexed by sequences j with > j; even. The entry in A in position (h, j) is 0 when
> ;i 1Ji = hil # 1; otherwise, there is a unique integer p such that |j, — h,| = 1, and
setting n = ZKp ji, one has

Any e {(—1)nsptgpl if hy=1and j, =0
(—1)™¢, ifh,=0and j, =1

The rows of B are indexed by sequences h with > h; even and the columns are
indexed by sequences j with > j; odd. Its entries are defined exactly as for A.
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5. GROUP ALGEBRAS OF ELEMENTARY ABELIAN GROUPS

Let k be a field of positive characteristic p, and P := k[s] the polynomial ring in
indeterminates s := sy,...,s.. Set I := (s7,...,s?) and R := P/I. The k-algebra
R is the group algebra of an elementary abelian p-group and, more generally, of a
quasi-elementary finite group scheme [11]. The ring R admits a coproduct making
it into a Hopf algebra, but this structure plays no role in what follows.

Set n:= (s); this is a maximal ideal of P. Each u € n yields a homomorphism

N k[t]/(tP) — R such that n,(t) =« mod I.
For such a u one has uP € I and hence also a surjective homomorphism
yr: P/(uP) — R

of k-algebras; see Section 2. In what follows it is expedient to write M [, for
M viewed as a k[t]/(t*)-module via 7,. The proof of the next result extracts an
argument from that for [4, Theorem 3.2], and is given after Lemma 5.7.

Theorem 5.1. For any R-module M one has
M, is free <= flat dimp(,»)(M) < 0.
In the equivalence above, the invariant on the right is the flat dimension.

5.2. Flat dimension. Let Q) be a commutative noetherian ring and N a -module.
Recall that flat dimg (IV), the flat dimension of N, is the length of the shortest flat
resolution of N over Q. Evidently flat dimg(N) < projdimg(NN); equality holds
when N is finitely generated.

The @-module N is J-torsion, for some ideal J in @, if for each u € N there is
an integer [ such that J'u = 0. If N is n-torsion for a maximal ideal n of @, then

(5.2.1) flat dimg N < 0o <= Tor?(Q/n,N) =0 fori>0.

This follows form [6, Propositions 5.3.F], keeping in mind that for any prime ideal
q of Q, when q # n, one has Tor?((Q/q)q, Nq) = 0.
We record a few consequences of Theorem 5.1.

Corollary 5.3. If an element w € n satisfies u — w € n?, then M, is free if and
only if is M,,.

Proof. Evidently n! annihilates R, and hence M, for [ > 0; thus M is n-torsion.
Given (5.2.1), the desired result follows from Theorems 2.1(2) and 5.1. O

5.4. Rank Varieties. In this paragraph we assume that k is algebraically closed.
Let Af, be the affine space over k, of dimension c¢. We write a for a point (a1, ..., a.)
in this space. For each R-module M set

Vi (M) == {a € Af | M/, is not free for u = Zaisi} u{0}.

(]
This is called the rank variety of M. It was introduced by Carlson who also proved
that it is a closed subset of A¢; see [8, §4]. The result below, which relates the
rank variety of M to its homological support set in the sense of 3.1, is contained
in [2, Theorem 7.5]. The argument in op. cit. gets to the stated bijection via the
cohomological variety of M. Our proof, using Theorems 2.1 and 5.1, is more direct.
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Corollary 5.5. The map A — A§ sending (a1, ..., a.) to (a},...,aP) is bijective
and for each R-module M it restricts to a bijection

Vi (M) — Vr(M).
Proof. The given map is a bijection on A§ because k is algebraically closed. The

assertion about the varieties associated to M is a translation of Theorem 5.1. O

A classical observation—see [13, Part III]—will be used in the proof of Theo-
rem 5.1. It is a special case of a statement that holds for smooth morphisms.

5.6. Polynomial extensions. Let S be a commutative ring, S[x] a polynomial
ring in d indeterminates x, and M a S[x]-module.

Lemma 5.7. The following inequalities hold:
flat dimg M < flat dimg, M < flat dimg M +d.

Proof. The inequality on the left holds because any flat resolution over S[xz] is also
a flat resolution over S, due to the freeness of S[x] as a S-module.

For the inequality on the right, we may assume that flat dimg M is finite. Induc-
tion on d then shows that it suffices to deal with the case when S[z] is a polynomial
ring in a single indeterminate. In the ring S[z] ®g S[z], the element z ® 1 — 1@ x
is regular, so we have an exact sequence of S[z] ® s S[z]-modules

0 — (S[x] @5 S[a]) 21225 (S[z] @5 S[a]) — S[z] = 0
It splits as a sequence of right S[z]-modules, so (—® g, M) yields an exact sequence

rR1—1Qx
_—

0 — (S[z] ®s M) (S[z] ®@s M) — M — 0

of S[z]-modules, with S[z] acting from the left. The desired inequality follows. O
Proof of Theorem 5.1. Assume v is in n2. Then nu(ttpTHW) = 0 so no R-module is
free as an k[t]/(t?) module. Moreover, since (a + b)? = a? + b? for all a,b € P, one
has u? € nI. Thus Theorem 2.1(3) yields flat dimp(,») (M) = oc.

In the rest of the proof we assume u lies in n '\ n?. Consider the commutative
diagram of homomorphisms of k-algebras

k ]

tr—>/' \7":‘?

(t)

The condition on u implies that the map k[t]/(t?) — k[s]/(uP) is a polynomial
extension. Thus, from Lemma 5.7 one gets the first equivalence below:

flat dimp () (M) < 0o <= flat dim(M|,) < oo
<~ M|, is free

The second equivalence holds because k[t]/(tP) is artinian. O

The preceding results can be reinterpreted as statements about p-nilpotent op-
erators on k-vector spaces.
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5.8. Nilpotent operators. Let V be a k-vector space and a: V — V a k-linear
map such that a™ = 0 # o™ ! holds for some integer n > 1. Evidently, one then
has aV C Ker(a™1); when equality holds we say that o has mazimal image. We
need an elementary lemma concerning the standard correspondence between linear
operators a: V' — V of nilpotency degree at most n and k[t]/(t")-module structures
on V. The proof is straightforward linear algebra, and so is omitted.

Lemma 5.9. For a k-linear map o: V — V with o™ = 0 # o™~ for some integer
n > 1, the following conditions are equivalent.

(1) aV = Ker(a"1).

(2) a" 'V = Ker(a).

(3) a'V =Ker(a""%) fori=1,...,n—1.

(4) V is free as a k[x]/(z™)-module. O

The next theorem is due to Friedlander and Pevtsova [11, Proposition 2.2], ex-
tending work of Carlson [8, Lemma 6.4] and Bendel, Friedlander, and Suslin [16,
Lemma 6.4]. Tt is a key ingredient in the theory of m-points for finite groups schemes,
which subsumes the theory of rank varieties for elementary abelian p-groups.

Theorem 5.10. Let k be a field of characteristic p > 0, let V' be a k-vector space,
and let a, B,7v: V =V be commuting k-linear maps that satisfy
o? =0 and [P =0.
Then a has mazximal image if and only if o + B~y has mazimal image.
Proof. Form the k-algebras
P
(a?, b?)

Due to the hypotheses one has an R-module structure on V', with a, b, and c acting
on V via «, 3, and - respectively. Consider the homomorphism of k-algebras

P :=Ek[a,b,c] and R:=

éct[,f]) :; R where 0,(t) = a and o4 4pc(t) = a + be.

Ta+be

In view of Lemma 5.8 the desired result is that the module V', is free if and only
if so is V|44pe- This follows from the chain of equivalences below where the first
and the last ones hold by Theorem 5.1.

Vi is free <= flat dimp 4y (V) < 00
<~ flat dimp/(ap+bpcp)(V) < o0
< Vgt is free

In view of (5.2.1), the one in the middle is given by Theorem 2.4(2), since bPc? lies

in (a,b,c)(a?, bP). O
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