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Abstract Let p be a prime ideal in a commutative noetherian ring R. It is proved that if an R-
module M satisfies TorR

n (k(p), M) = 0 for some n � dim Rp , where k(p) is the residue field at p, then
TorR

i
(k(p), M) = 0 holds for all i � n. Similar rigidity results concerning Ext∗

R
(k(p), M) are proved, and

applications to the theory of homological dimensions are explored.
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1. Introduction

Flatness and injectivity of modules over a commutative ring R are characterized by
vanishing of (co)homological functors and such vanishing can be verified by testing on
cyclic R-modules. We discuss the flat case first, and in mildly greater generality: For any
R-module M and integer n � 0, one has flat dimR M < n if and only if TorR

n (R/a,M) = 0
holds for all ideals a ⊆ R. When R is noetherian, and in this paper we assume that it is,
it suffices to test on modules R/p where p varies over the prime ideals in R.

If R is local with unique maximal ideal m, and M is finitely generated, then it is
sufficient to consider one cyclic module, namely the residue field k := R/m. Even if R is
not local and M is not finitely generated, finiteness of flat dimR M is characterized by
vanishing of Tor with coefficients in fields, the residue fields k(p) := Rp/pRp to be specific.
While vanishing of TorR

∗
(k(p),M) for any one particular residue field does not imply that

flat dimR M is finite, one may still ask if vanishing of a single group TorR
n (k(p),M) implies

vanishing of all higher groups, a phenomenon known as rigidity. While this does not hold
in general (cf. Example 4.2), we prove that it does hold if n is sufficiently large; see
Theorem 4.1 for the proof.
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Theorem 1.1. Let p be a prime ideal in a commutative noetherian ring R and let

M be an R-module. If one has TorR
n (k(p),M) = 0 for some integer n � dim Rp, then

TorR
i (k(p),M) = 0 holds for all i � n.

As flat dimR M < n holds if and only if one has TorR
i (k(p),M) = 0 for all primes p and all

i � n, Theorem 1.1 provides for an improvement of existing characterizations of modules
of finite flat dimension.

In parallel to the flat case, the injective dimension of an R-module M is less than n
if Extn

R(R/p,M) = 0 for every prime ideal p. Moreover the injective dimension can be
detected by vanishing locally of cohomology with coefficients in residue fields. That is,
inj dimR M < n holds if and only if one has Extn

Rp
(k(p),Mp) = 0 for all primes p. By the

standard isomorphisms TorR
∗
(k(p),M) ∼= TorRp

∗
(k(p),Mp) there is no local/global dis-

tinction for Tor vanishing. The following consequence of Proposition 3.2 is, therefore, a
perfect parallel to Theorem 1.1.

Theorem 1.2. Let p be a prime ideal in a commutative noetherian ring R and let

M be an R-module. If one has Extn
Rp

(k(p),Mp) = 0 for some integer n � dimRp, then

Exti
Rp

(k(p),Mp) = 0 holds for all i � n.

In contrast to the situation for Tor, the cohomology groups Ext∗Rp
(k(p),Mp) and

Ext∗R(k(p),M) can be quite different, and it was only proved recently, in [6, Theorem 1.1],
that the injective dimension of an R-module can be detected by vanishing globally of
cohomology with coefficients in residue fields. That is, inj dimR M < n holds if and only
if one has Exti

R(k(p),M) = 0 for all i � n and all primes p. One advantage of this global
vanishing criterion is that it also applies to complexes of modules; per Example 6.3
the local vanishing criterion does not. For the proof of the following rigidity result for
Ext∗R(k(p),M), see Remark 5.8.

Theorem 1.3. Let p be a prime ideal in a commutative noetherian ring R and let

M be an R-module. If one has Extn
R(k(p),M) = 0 for some integer n � 2 dim R, then

Exti
R(k(p),M) = 0 holds for all i � n.

The case when p is the maximal ideal of a local ring merits comment, for the bound on
n in Theorems 1.2 and 1.3 differs by a factor of 2. The proof shows that it is sufficient
to require n � dim Rp + proj dimR Rp in Theorem 1.3, and that aligns the two bounds in
this special case. For a general prime p however the number proj dimRp may depend on
the Continuum Hypothesis; see Osofsky [14].

In this introduction, we have focused on results that deal with rigidity of the Tor and
Ext functors. In the text, we also establish results that track where vanishing of these
functors starts, when indeed they vanish eventually.
Throughout R will be a commutative noetherian ring. Background material on homo-
logical invariants and local (co)homology is recalled in § 2. Rigidity results for Ext and
Tor over local rings are proved in § 3, and applications to homological dimensions follow
in §§ 4 and 5. The final section explores, by way of examples, the complicated nature of
injective dimension of unbounded complexes.
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2. Local homology and local cohomology

Our standard reference for definitions and constructions involving complexes is [2]. We
will be dealing with graded modules whose natural grading is the upper one and also
those whose natural grading is the lower one. Therefore, we set

inf H∗(M) := inf{i | Hi(M) �= 0} and inf H∗(M) := inf{i | Hi(M) �= 0}

for an R-complex M , and analogously we define sup H∗(M) and sup H∗(M). We often
work in the derived category of R-modules, and write � for isomorphisms there. A mor-
phism between complexes is a quasi-isomorphism if it is an isomorphism in homology;
that is to say, if it becomes an isomorphism in the derived category.

The following paragraphs summarize the definitions and basic results on local
cohomology and local homology, following [1,13].

2.1. Local (co)homology

Let R be a commutative noetherian ring and a an ideal in R. The right derived functor
of the a-torsion functor Γa is denoted RΓa, and the local cohomology supported on a of
an R-complex M is the graded module

H∗

a(M) := H∗(RΓa(M)).

There is a natural morphism RΓa(M) → M in the derived category; M is said to be
derived a-torsion when this map is an isomorphism. This is equivalent to the condition
that H∗(M) is degreewise a-torsion; see [7, Proposition 6.12].

The left derived functor of the a-adic completion functor Λa is denoted LΛa and the
local homology of M supported on a is the graded module

Ha

∗
(M) := H∗(LΛa(M)).

There is a natural morphism M → LΛa(M) in the derived category and we say M is
derived a-complete when this map is an isomorphism. This is equivalent to the con-
dition that for each i, the natural map Hi(M) → Ha

0(H
i(M)) is an isomorphism; see

[7, Proposition 6.15].
The morphisms RΓa(M) → M and M → LΛa(M) induce isomorphisms

Ext∗R(R/a,M) ∼= Ext∗R(R/a,RΓaM) and

TorR
∗
(R/a,M) ∼= TorR

∗
(R/a, LΛaM).

(2.1)

Indeed, the first one holds because the functor RΓa is right adjoint to the inclusion of
the a-torsion complexes (that is to say, complexes whose cohomology is a-torsion) into
the derived category of R; see [13, Proposition 3.2.2]. Thus one has

RHom(R/a,RΓaM)
�

−−→ RHom(R/a,M), (2.2)
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and this gives the first isomorphism. As to the second isomorphism, consider the
commutative square in the derived category

RΓaM ��

�

��

M

��

RΓaLΛaM ��
LΛaM

induced by the vertical morphism on right. The isomorphism on the left is part of
Greenlees–May duality; see, for example, [1, Corollary (5.1.1)]. Applying the functor
R/a ⊗L

R (−) yields the commutative square

R/a ⊗L

R RΓaM
�

��

�

��

R/a ⊗L

R M

��

R/a ⊗L

R RΓaLΛaM
�

�� R/a ⊗L

R LΛaM

The horizontal maps are isomorphisms by (2.2) and [7, Proposition 6.5]. Thus the vertical
map on the right is also an isomorphism; in homology, this is the desired isomorphism.

Let C(a) denote the Čech complex on a set of elements that generate a. The values of
the functors LΛa and RΓa on an R-complex M can then be computed as

LΛa(M) = RHomR(C(a),M) and RΓa(M) = C(a) ⊗L

R M.

See for example [1, Theorem (0.3) and Lemma (3.1.1)].

2.2. Depth and width

In the remainder of this section (R,m, k) will be a local ring. This means that R is a
commutative noetherian ring with unique maximal ideal m and residue field k := R/m.

The depth and width of an R-complex M are defined as follows:

depthR M = inf Ext∗R(k,M) and widthR M = inf TorR
∗
(k,M).

One has depthR M � inf H∗(M) and if i = inf H∗(M) is finite, then equality holds if
and only if HomR(k,Hi(M)) �= 0. Similarly, one has widthR M � inf H∗(M) and if j =
inf H∗(M) is finite, then equality holds if and only if k ⊗R Hj(M) �= 0.

If flat dimR M is finite, then one has an equality

depthR M = depthR − sup TorR
∗
(k,M). (2.3)

This is an immediate consequence of [2, Lemma 4.4(F)]. For finitely generated modules
it is the Auslander–Buchsbaum formula.

Similarly, if inj dimR M is finite, then one has

widthR M = depthR − sup Ext∗R(k,M). (2.4)

This is a consequence of [2, Lemma 4.4(I)]. For finitely generated modules the equality
above yields Bass’ formula inj dimR M = depthR.
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From [9, Definitions 2.3 and 4.3] one gets that the depth and width of an R-complex
can be detected by vanishing of local (co)homology:

depthR M = inf H∗

m(M) and widthR M = inf Hm

∗
(M).

Combining this with (2.1) and the isomorphisms

RΓmLΛm(M) � RΓm(M) and LΛm
RΓm(M) � LΛm(M)

from [1, Corollary (5.1.1)] one gets equalities

depthR RΓmM = depthR M = depthR LΛmM (2.5)

widthR RΓmM = widthR M = widthR LΛmM. (2.6)

For later use, we note that for each R-complex M there are inequalities

sup H∗

m(M) � dimR + sup H∗(M) and sup H∗

m(M) � sup Ext∗R(k,M). (2.7)

The first is immediate as one has H∗

m(M) = H∗(C(m) ⊗L

R M) where C(m) is the Čech
complex on a system of parameters for R; the second is immediate once one recalls the
isomorphism H∗

m(M) ∼= lim
−→i

Ext∗R(R/mi,M).

The next result is a direct extension of [16, Proposition 2.1] by Simon. Concerning
the last assertion: TorR

i (R,M) = Hi(M) �= 0, so n cannot equal sup H∗(M), unless both
are infinite. However, for later applications it is convenient to have the statement in this
form.

Lemma 2.1. Let M be a derived a-complete R-complex with inf H∗(M) > −∞ and

n an integer. If TorR
n (R/p,M) = 0 all prime ideals p ⊇ a, then TorR

n (−,M) = 0.

When in addition n � sup H∗(M), one has flat dimR M � n − 1.

Proof. First we claim that for any finitely generated R-module L and integer i, if
a TorR

i (L,M) = TorR
i (L,M), then TorR

i (L,M) = 0. Indeed, let F be a free resolution
of L with each Fi finitely generated and equal to zero for i < 0. Let G be a semi-flat
resolution of M with Gi = 0 for i 
 0; this is possible as inf H∗(M) is finite. Since M is
derived a-complete, the complex ΛaG, which computes LΛaM , is quasi-isomorphic to M .
Thus

TorR
i (L,M) = Hi(F ⊗R ΛaG).

Note that F ⊗R ΛaG is a complex of a-adically complete R-modules; this is where we
need that each Fi is finitely generated and that Fi and Gi are zero for i 
 0. It remains
to apply [16, Proposition 1.4].

For the stated result, it suffices to prove that the set

{b ⊂ R an ideal | TorR
n (R/b,M) �= 0}

is empty. Suppose it is not. Pick a maximal element; say, q. We claim that this is a prime
ideal. The argument is standard (see, for example, [12, 2.4]) and goes as follows. If the
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set is not empty, let q′ be an associated prime ideal of R/q, and x ∈ R an element such
that q′ = {r ∈ R | xr ∈ q}. This then yields an exact sequence

0 −→ R/q′
1 �→x
−−−→ R/q −→ R/((x) + q) −→ 0.

Since both q′ and (x) + q strictly contain q, one obtains that

TorR
n (R/q′,M) = 0 = TorR

n (R/((x) + q),M),

and hence TorR
n (R/q,M) = 0, contradicting the choice of q. Thus q is prime.

By hypothesis, q does not contain a, so choose an element a in a but not in q and
consider the exact sequence

0 −→ R/q
a

−−→ R/q −→ R/((a) + q) −→ 0.

Noting that TorR
n (R/((a) + q),M) = 0 by the choice of q, it follows from the exact

sequence above that the map TorR
n (R/q,M)

a
−→ TorR

n (R/q,M) is surjective. By the claim
in the first paragraph, this implies that TorR

n (R/q,M) = 0, which is a contradiction. �

3. Local rings

In this section (R,m, k) is a local ring. Note from (2.7) that in the next statement n
cannot equal sup H∗(M), but, as with Lemma 2.1, this formulation is convenient for later
applications.

Lemma 3.1. Let M be a derived m-torsion R-complex with inf H∗(M) > −∞. If one

has Extn
R(k,M) = 0 for some integer n � sup H∗(M), then inj dimR M � n − 1.

Proof. Let I be the minimal semi-injective resolution of M . One has

Extn
R(k,M) = Hn(HomR(k, I)) = HomR(k, In).

As M is derived m-torsion, each module Ii is a direct sum of copies of the injective
envelope of k, so Extn

R(k,M) = 0 implies In = 0. It follows from the assumption on n
and minimality of I that Ii = 0 holds for all i � n; in particular, one has inj dimR M �

n − 1. �

The result below extends (2.4); its proof would be significantly shorter under the
additional hypothesis that inf H∗

m(M) is finite.

Proposition 3.2. Let M be an R-complex. If Extn
R(k,M) = 0 holds for some integer

n � sup H∗

m(M), then one has Exti
R(k,M) = 0 for all i � n and

sup Ext∗R(k,M) = depthR − widthR M.
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Proof. Let J be the minimal semi-injective resolution of M and set I := Γm(J). For
every integer i one has

Hi
m(M) = Hi(I) and Exti

R(k,M) = HomR(k, J i) = HomR(k, Ii).

Let d be any integer with n � d � sup H∗

m(M) and set Z := Zd(I), the submodule of
cycles in degree d. Vanishing of Hi

m(M) and the identifications above yield

Exti
R(k,M) ∼= Exti−d

R (k, Z) for all i � d.

In particular, one has Extn−d
R (k, Z) = 0. Since Z is an m-torsion R-module, Lemma 3.1

and the isomorphisms above yield Exti
R(k,M) = 0 for all i � n.

It remains to verify the claim about the supremum of Ext∗R(k,M). To this end, let K
be the Koszul complex on a minimal set of generators for m. It follows from [9, Definition
2.3] that one has the second equivalence below

sup Ext∗R(k,M) = −∞ ⇐⇒ Ext∗R(k,M) = 0

⇐⇒ H∗(K ⊗R M) = 0

⇐⇒ widthR M = ∞.

The first one is by definition while the last one is by [9, Theorem 4.1]. We may thus
assume that s := sup Ext∗R(k,M) and w := sup H∗(M ⊗R K) are integers. Because K is
a bounded complex of finitely generated free R-modules, there is a quasi-isomorphism

RHomR(k,M) ⊗L

R K � RHom(k,M ⊗R K).

From this and the fact that Ext∗R(k,M) is a graded k-vector space, it follows that

s = sup H∗(RHomR(k,M) ⊗L

R K) = sup Ext∗R(k,M ⊗R K).

Let E be the minimal injective resolution of M ⊗R K. Since M ⊗R K is derived m-
torsion, one has ΓmE = E. From Ext∗R(k,M ⊗R K) = Hom∗

R(k,E) it thus follows that
Es �= 0 and Ei = 0 for all i > s. On the other hand, as w = sup H∗(E) the complex E�w

is the minimal injective resolution of the module W := Zw(E) of cycles in degree w, so
one has inj dimR W = s − w.

It remains to show that inj dimR W = depthR. Evidently one has inj dimR W =
sup Ext∗R(k,W ), so by (2.4) it suffices to show that W has width 0, that is to say, that
k ⊗R W �= 0. But this is clear because Hw(E) is non-zero and annihilated by m, whence
mW ⊆ Bw(E) � W . �

Proposition 3.3. Let M be an R-complex with TorR
n (k,M) = 0 for some integer n,

and assume that one of the following conditions is satisfied:

(1) n � sup Hm

∗
(M) and inf H∗(M) > −∞;

(2) n � sup H∗

m(HomR(M,E(k))) where E(k) is the injective envelope of k.

One then has TorR
i (k,M) = 0 for all i � n and

sup TorR
∗
(k,M) = depthR − depthR M.



312 L. W. Christensen, S. B. Iyengar and T. Marley

Proof. Assume first that (1) is satisfied. From (2.1) one gets TorR
n (k, LΛmM) = 0. The

complex LΛmM is m-adically complete and

inf H∗(LΛmM) � inf H∗(M) > −∞.

Thus Lemma 2.1 applies and yields that flat dimR(LΛmM) is at most n − 1. Now (2.1)
yields TorR

i (k,M) = 0 for all i � n, and then (2.3) and (2.5) yield the second and third
equalities below

sup TorR
∗
(k,M) = sup TorR

∗
(k, LΛmM)

= depthR − depthR(LΛmM)

= depthR − depthR M.

Assume now that the hypothesis in (2) holds, and set (−)∨ := HomR(−, E(k)). For
each integer i, there is an isomorphism

TorR
i (k,M)∨ ∼= Exti

R(k,M∨).

The hypothesis and Proposition 3.2 yield TorR
i (k,M) = 0 for all i � n and

sup TorR
∗
(k,M) = sup Ext∗R(k,M∨) = depthR − widthR M∨.

Finally one has widthR M∨ = depthR M ; see [9, Proposition 4.4]. �

The final result of this section fleshes out a remark made by Fossum et al. at the end
of § 1 in [8]. They phrase it as statement about non-vanishing: If M is an R-module and
Extn

R(k,M) is non-zero for some n � depthR + 1 then one has Exti
R(k,M) �= 0 for all

i � n. The formulation below makes for an easier comparison with Proposition 3.2.

Proposition 3.4. Let M be an R-complex. If Extn
R(k,M) = 0 holds for some integer

n � sup H∗(M) + depthR + 1, then one has

Exti
R(k,M) = 0 for every i in the range sup H∗(M) + depthR + 1 � i � n.

Proof. We may assume that n > sup H∗(M) + depthR + 1 holds. It suffices to verify
that when Extn

R(k,M) is zero, so is Extn−1
R (k,M).

Let x be a maximal regular sequence in R, set S := R/(x) and n := m/(x). Thus,
(S, n, k) is a local ring of depth 0; in particular, (0 : n), the socle of S, is non-zero. Thus,
there exists a positive integer, say s, such that (0 : n) is contained in ns but not in ns+1.
Said otherwise, the composite of canonical maps

(0 : n) −→ ns −→ ns/ns+1

is non-zero. Since the source and the target are k-vector spaces, this implies that k is a
direct summand of ns. It thus suffices to verify that Extn−1

R (ns,M) = 0.
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The Koszul complex on x is a minimal free resolution of S over R, so one has
proj dimR S = depthR and hence

Extj
R(S,M) = 0 for j � depthR + 1 + sup H∗(M).

Given this, the exact sequence

0 −→ ns −→ S −→ S/ns −→ 0

yields an isomorphism

Extn−1
R (ns,M) ∼= Extn

R(S/ns,M).

Since the length of S/ns is finite, Extn
R(k,M) = 0 implies Extn

R(S/ns,M) = 0, and hence
the isomorphism above yields Extn−1

R (ns,M) = 0, as desired. �

4. Flat dimension

Let R be a commutative noetherian ring, M be an R-complex, and n be an integer.
Avramov and Foxby [2, Proposition 5.3.F] prove that flat dimR M < n holds if and only

if one has Tor
Rp

i (k(p),Mp) = 0 for every prime p in R and all i � n. That is,

flat dimR M = sup{i ∈ Z | Tor
Rp

i (k(p),Mp) �= 0 for some p ∈ Spec R}. (4.1)

By way of the isomorphisms

Tor
Rp

i (k(p),Mp) ∼= TorR
i (k(p),M) (4.2)

this result compares—or may be it is the other way around—to [6, Theorem 1.1]; see
(5.1). Combining (4.1) and (4.2) with (2.3) one gets

flat dimR M = sup
p∈Spec R

{depth Rp − depthRp
Mp} (4.3)

for every R-complex M of finite flat dimension. For modules of finite flat dimension this
equality is known from the work of Chouinard [5].

For rings of finite Krull dimension, the next theorem, which contains Theorem 1.1,
represents a significant strengthening of (4.1).

Theorem 4.1. Let R be a commutative noetherian ring and M be an R-complex.

If for a prime ideal p and n � dimRp + sup H∗(M) one has TorR
n (k(p),M) = 0, then

sup TorR
∗
(k(p),M) = depthRp − depthRp

Mp < n.

In particular, if there exists an integer n � dim R + sup H∗(M) such that

TorR
n (k(p),M) = 0 holds for every prime ideal p in R,

then the flat dimension of M is less than n.

Proof. It suffices to prove the first claim; the assertion about the flat dimension of M
is a consequence, given (4.1).
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Fix p and n as in the hypotheses. Given (4.2), this yields TorRp

n (k(p),Mp) = 0. One
has the following (in)equalities

sup H∗ (M) � sup H∗ (Mp) = sup H∗ HomRp
(Mp, E(k(p))).

Since dimR � dimRp, it follows from (2.7) and Proposition 3.3 that

sup TorRp

∗
(k(p),Mp) = depthRp − depthRp

Mp < n.

This is the desired result. �

The next example shows that the constraint on n in Theorem 4.1 is needed.

Example 4.2. Let (R,m, k) be a local ring, N a finitely generated Cohen–Macaulay
R-module of dimension d, and set M := Hd

m(N). There are isomorphisms

TorR
i (k,M) ∼= TorR

i−d(k,N) for all i.

To see this, let F be the Čech complex on a maximal N -regular sequence x. The com-
plex (ΣdF ) ⊗R N is quasi-isomorphic to M , for inf H∗

m(N) = sup H∗

m(N) = d, by the
hypothesis on N . Thus, there are quasi-isomorphisms

k ⊗L

R M � k ⊗L

R ((ΣdF ) ⊗L

R N) � Σ
dk ⊗L

R N.

The isomorphisms above follow. Thus one has

TorR
i (k,M) =

{

0 for i < d,

N/mN for i = d.

In particular, one has inf TorR
∗
(k,M) = d, while TorR

∗
(k(p),M) = 0 for every prime ideal

p �= m, since M is m-torsion.
Now, if in addition the inequality d > depthR holds, then flat dimR M is infinite. To see

this, apply Matlis duality TorR
i (k,M)∨ ∼= Exti

R(k,M∨) and conclude from Proposition 3.4
that TorR

i (k,M) is non-zero for all i � d.
It remains to remark that such R and N exist: Let k be a field, d be a positive integer,

and set

R := k[[x1, . . . , xd+1]]/(x2
1, x1x2, . . . , x1xd+1).

This R is a local ring of dimension d and depth 0. The R-module N = R/(x1) is
Cohen–Macaulay of dimension d.

5. Injective dimension

Let M be an R-complex, by [6, Theorem 1.1] one has

inj dimR M = sup{i ∈ Z | Exti
R(k(p),M) �= 0 for some p ∈ Spec R}. (5.1)

In view of (4.2) this is a perfect parallel to the formula for flat dimension (4.1).
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The equality flat dimR M = supp∈Spec R{flat dimRp
Mp} is immediate from (4.1) and

(4.2). The corresponding equality for the injective dimension only holds true under
extra conditions, and the whole picture is altogether more complicated. If M satisfies
inf H∗(M) > −∞, then [2, Proposition 5.3.I] yields

inj dimR M = sup{i ∈ Z | Exti
Rp

(k(p),Mp) �= 0 for some p ∈ SpecR}

= sup
p∈Spec R

{inj dimRp
Mp}.

(5.2)

Without the boundedness condition on H(M) the injective dimension may increase
under localization; an example is provided in 6.3.

The next statement, which still requires homological boundedness, is folklore but not
readily available in the literature.

Theorem 5.1. Let R be a commutative noetherian ring and M an R-complex with

inf H∗(M) > −∞. If there exists an integer n � sup H∗(M) such that

Extn+1
Rp

(k(p),Mp) = 0 holds for every prime ideal p in R,

then the injective dimension of M is at most n.

Proof. Let I be a minimal semi-injective resolution of M ; as inf H∗(M) > −∞ holds
one has In = 0 for n 
 0. For every integer i one has Ii =

∐

p∈Spec R E(R/p)(µi(p)), and
to prove that inj dimR M is at most n it is sufficient to show that the index set µn+1(p)
is empty for every prime p. Fix p. Since Ip is a complex of injectives with (Ip)

n = 0 for
n 
 0, it is a minimal semi-injective resolution of Mp, so one has

0 = Extn+1
Rp

(k(p),Mp)

= Hn+1 HomRp
(k(p), Ip)

= HomRp
(k(p), (Ip)

n+1)

= HomRp
(k(p), E(k(p))(µn+1(p))).

It follows that µn+1(p) is empty. �

The next result corresponds to (4.3). It removes a restriction on the boundedness of
M in Yassemi’s version [17, Theorem 2.10] of Chouinard’s formula [5, Corollary 3].

Proposition 5.2. For every R-complex M of finite injective dimension one has

inj dimR M = sup
p∈Spec R

{depth Rp − widthRp
Mp}.

Proof. Without loss of generality, we can assume that M is semi-injective with M i = 0
for all i > d := inj dimR M . For every u � d there is an exact sequence of semi-injective
complexes

0 −→ M�u −→ M −→ M�u−1 −→ 0 (1)
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with inj dimR M�u−1 � u − 1 and inj dimR M�u = d. The complex M�u is bounded, so
(2.4) and (5.2) conspire to yield

d = sup
p∈Spec R

{depthRp − widthRp
M�u

p }. (2)

First we establish the inequality

inj dimR M � sup
p∈Spec R

{depthRp − widthRp
Mp}. (3)

Let p be a prime. There are inequalities

widthRp
Mp � inf H∗(Mp) � inf H∗(M) = − sup H∗(M) � −d,

and without loss of generality one can assume that widthRp
Mp is finite. Consider (1)

for u = −widthRp
Mp and localize at p. The associated exact sequence of Tor groups

yields widthRp
Mp = widthRp

M�u
p , so the desired inequality d � depthRp − widthRp

Mp

follows from (2). It remains to prove that the equality holds for some prime.
Consider (1) for u = d − 1 and choose by (2) a prime p with

d = depthRp − widthRp
M�d−1

p .

The second inequality in the next display is (3) applied to the complex M�d−2.

d − 2 � inj dimR M�d−2
� depthRp − widthRp

M�d−2
p .

Eliminating d and depthRp between the two displays one gets the inequality

widthRp
M�d−1

p � widthRp
M�d−2

p − 2.

Finally, one gets widthRp
Mp = widthRp

M�d−1
p from the exact sequence of Tor groups

associated to (1). �

We now aim for a characterization of complexes of finite injective dimension that
does not require homological boundedness. It is based on the following observation, of
independent interest.

Lemma 5.3. Let M be an R-complex and m a maximal ideal in R. The localization

maps ρ : M → Mm and σ : R → Rm induce quasi-isomorphisms

RHomR(k(m), ρ) : RHomR(k(m),M)
�

−−→ RHomR(k(m),Mm) and

k(m) ⊗L

R RHomR(σ,M) : k(m) ⊗L

R RHomR(Rm,M)
�
−→ k(m) ⊗L

R M.

Proof. In the derived category of R, consider the distinguished triangle

M
ρ
−→ Mm −→ C −→ ΣM.

The induced morphism k(m) ⊗L

R ρ is a quasi-isomorphism, so k(m) ⊗L

R C is acyclic. Then
RHomR(k(m), C) is also acyclic, by [3, Theorem 4.13], whence the map RHomR(k(m), ρ)
is a quasi-isomorphism, as claimed.
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In the same vein, the distinguished triangle R → Rm → D → ΣR induces a distin-
guished triangle

RHomR(D,M) −→ RHomR(Rm,M)
RHomR(σ,M)
−−−−−−−−−→ M −→ ΣRHomR(D,M).

By adjunction RHomR(k(m),RHomR(σ,M)) is a quasi-isomorphism, so that

RHomR(k(m),RHomR(D,M))

is acyclic. Thus the complex k(m) ⊗L

R RHomR(D,M) is acyclic by [3, Theorem 4.13],
which justifies the second of the desired quasi-isomorphisms. �

Proposition 5.4. Let M be an R-complex and m a maximal ideal in R. If one has

Extn
R(k(m),M) = 0 for some n � dimRm + sup H∗(Mm), then Exti

R(k(m),M) = 0 holds

for all i � n and there are equalities

sup Ext∗R(k(m),M) = depthRm − widthRm
Mm

= depthRm − widthRm
RHomR(Rm,M).

Proof. The first isomorphism below is by Lemma 5.3; the second is by adjunction.

Ext∗R(k(m),M) ∼= Ext∗R(k(m),Mm) ∼= Ext∗Rm
(k(m),Mm).

In view of these isomorphisms and the assumption on n, Proposition 3.2 now yields

sup Ext∗R(k(m),M) = depthRm − widthRm
Mm < n.

It remains to observe that the width of Mm and RHomR(Rm,M) coincide, by the second
quasi-isomorphism in Lemma 5.3. �

Corollary 5.5. Let R be an artinian ring and M an R-complex. If there exists an

integer n � sup H∗(M) such that

Extn
R(k(p),M) = 0 holds for every prime ideal p in R,

then the injective dimension of M is less than n.

Proof. Every prime ideal p in R is maximal and there are inequalities

n � sup H∗(M) � sup H∗(Mp) = dimRp + sup H∗(Mp).

Thus the claim follows from (5.1) and Proposition 5.4. �

Remark 5.6. In the sequel we require the invariant

splf R = sup{proj dimR F | F is a flat R-module}.

Every flat R-module is projective if and only if R is artinian, so splf R > 0 holds if
dim R > 0, and from work of Jensen [11, Proposition 6] and Raynaud and Gruson
[15, thm. II.3.2.6] one gets the upper bound splf R � dimR. A result of Gruson and
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Jensen [10, Theorem 7.10] yields another bound on the invariant splf R: If R has car-
dinality at most ℵm for some natural number m, then one has splf R � m + 1. Thus
for countable rings, and for 1-dimensional rings, the bound in the theorem below is
n � dim R + sup H∗(M).

Theorem 5.7. Let R be a commutative noetherian ring with dim R � 1 and M an

R-complex. If there exists an integer n � dim R − 1 + splf R + sup H∗(M) such that

Extn
R(k(p),M) = 0 holds for every prime ideal p in R,

then the injective dimension of M is less than n.

Proof. Fix a prime ideal p and consider the Rp-complex N := RHomR(Rp,M). One
has

Hi(N) = Exti
R(Rp,M) = 0 for i > proj dimR Rp + sup H∗(M),

and standard adjunction yields

Ext∗R(k(p),M) ∼= Ext∗Rp
(k(p), N).

Since Rp is a flat R-module, proj dimR Rp is at most splf R. Given this, (2.7) yields

Hi
pRp

(N) = 0 for i > dimRp + splf R + sup H∗(M).

Thus, if n � dimRp + splf R + sup H∗(M) holds, then Proposition 3.2 yields

sup Ext∗R(k(p),M) = depthRp − widthRp
N < n.

The same equality also holds when n < dim Rp + splf R + sup H∗(M), for then the
assumption on n forces dim Rp = dimR, so p is a maximal ideal and so Proposition 5.4
applies. Now the desired conclusion follows from (5.1). �

Remark 5.8. As noted in Remark 5.6, one has splf R ≤ dim R. Thus Theorem 1.3 is
a consequence of Corollary 5.5 and Theorem 5.7.

Confer the following result and Proposition 5.2.

Corollary 5.9. For every R-complex of finite injective dimension one has

inj dimR M = sup
p∈Spec R

{depthRp − widthRp
RHomR(Rp,M)}.

Proof. Given Lemma 5.3, the desired equality is restatement of Proposition 5.2 in case
R is artinian. If R is not artinian, then one has dimR � 1 and the equality is immediate
from (5.1) and the last display in the proof of Theorem 5.7. �

Remark 5.10. Let R be a complete local domain of positive dimension. One has
widthR(0)

R(0) = 0, but the complex RHomR(R(0), R) is acyclic, see [3, Example 4.20],
so widthR(0)

RHomR(R(0), R) = ∞. We do not know how the numbers widthRp
Mp and

widthRp
RHomR(Rp,M) from Proposition 5.2 and Corollary 5.9 compare in general.
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6. Examples

In this section we describe examples to illustrate that, for complexes whose cohomol-
ogy is not bounded below, finiteness of injective dimension does not behave well under
localization or passage to torsion subcomplexes. This builds on [4].

Remark 6.1. Let R be a ring. A complex I of injective R-modules is semi-injective
if and only if for each (equivalently, for some) integer n the quotient complex I�n is
semi-injective. This is immediate from the exact sequence of complexes

0 −→ I>n −→ I −→ I�n −→ 0

since I>n is always semi-injective.

Remark 6.2. Let (R,m, k) be a local ring and E be the injective envelope of k. One has
(EN)p �= 0 for every prime ideal in R. Indeed, the claim is trivial if R is artinian. If R is not
artinian, then one can choose an element e = (en)n∈N in EN with mn ⊆ (0 : en) �⊇ mn−1.
The map R → EN given by 1 �→ e is injective by Krull’s intersection theorem, so R is a
submodule of EN.

Example 6.3. Let (R,m, k) be a local ring such that (0 : x) = (x) holds for some
x ∈ m; set S = R/(x). The complex

· · ·
x

−−→ R
x

−−→ R
x

−−→ R −→ 0

concentrated in non-negative degrees has homology S in degree 0 and zero elsewhere.
Dualizing with respect to E, the injective envelope of k over R, yields a complex

I := 0 −→ E
x

−−→ E
x

−−→ E
x

−−→ · · ·

of injective R-modules. It is the minimal injective resolution of ES := HomR(S,E) over R.
By periodicity, every injective syzygy of ES is ES . Consider the complex J =

∏

n>0 Σ
nI,

which is a semi-injective resolution of
∏

n>0 Σ
nES .

Claim. The complex M := J�0 has injective dimension 0, whereas for each prime

ideal p �= m, one has that inj dimRp
Mp is infinite.

Indeed, since J is semi-injective, so is M , by Remark 6.1. Since the cohomology module
H0(M) ∼= (ES)N is non-zero, it follows that inj dimR M = 0 holds.

Fix a prime ideal p �= m. For i < 0 one has Hi(M) = Hi(J) = ES and, therefore,
Hi(Mp) = Hi(M)p = 0. This justifies the first quasi-isomorphism in the computation
below; the rest are standard.

RHomRp
(k(p),Mp) � RHomRp

(k(p), ((ES)N)p)

� RHomR(R/p, (ES)N)p
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� (RHomR(R/p, ES)N)p

� (HomR(R/p, I)N)p

∼=

((

∐

i�0

Σ
−i HomR(R/p, E)

)N)

p

∼=
∐

i�0

Σ
−i(HomR(R/p, E)N)p.

The first isomorphism holds because x = 0 in R/p, for x2 = 0, and hence the induced
differential on the complex HomR(R/p, I) is zero.

The module ER/p := HomR(R/p, E) is the injective envelope of k over the domain
R/p. The computation above shows that for every i � 0 there is an isomorphism as
R/p-modules

Exti
Rp

(k(p),Mp) ∼= ((ER/p)
N)(0).

Thus Remark 6.2 yields Exti
Rp

(k(p),Mp) �= 0 for all i � 0; hence inj dimRp
Mp is infinite,

as claimed.

Example 6.4. Let k be a field and R := k[|x, y|]/(x2). Since (0 : x) = (x), we are in
the situation considered in the previous example. Let M be the complex of injectives
with injective dimension zero constructed there. We claim that the injective dimension
of the complexes My and Γ(y)M are infinite.

Indeed, observe that My
∼= Mp where p is the prime ideal (x) of R, so inj dimR My is

infinite, by the claim in the previous example. Since C(y) ⊗R M is quasi-isomorphic to
Γ(y)M and there is an exact sequence

0 −→ Σ
−1My −→ C(y) ⊗R M −→ M −→ 0,

it follows that the injective dimension of Γ(y)M is infinite as well.
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