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Abstract  Let p be a prime ideal in a commutative noetherian ring R. It is proved that if an R-
module M satisfies Torf(k(p), M) = 0 for some n > dim R, where k(p) is the residue field at p, then
Torf(k(p), M) = 0 holds for all 4 > n. Similar rigidity results concerning Ext% (k(p), M) are proved, and
applications to the theory of homological dimensions are explored.
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1. Introduction

Flatness and injectivity of modules over a commutative ring R are characterized by
vanishing of (co)homological functors and such vanishing can be verified by testing on
cyclic R-modules. We discuss the flat case first, and in mildly greater generality: For any
R-module M and integer n > 0, one has flat dimp M < n if and only if Tor’(R/a, M) = 0
holds for all ideals a € R. When R is noetherian, and in this paper we assume that it is,
it suffices to test on modules R/p where p varies over the prime ideals in R.

If R is local with unique maximal ideal m, and M is finitely generated, then it is
sufficient to consider one cyclic module, namely the residue field & := R/m. Even if R is
not local and M is not finitely generated, finiteness of flat dimp M is characterized by
vanishing of Tor with coefficients in fields, the residue fields k(p) := R, /pR), to be specific.
While vanishing of Tor® (k(p), M) for any one particular residue field does not imply that
flat dimp M is finite, one may still ask if vanishing of a single group Tor(k(p), M) implies
vanishing of all higher groups, a phenomenon known as rigidity. While this does not hold
in general (cf. Example 4.2), we prove that it does hold if n is sufficiently large; see
Theorem 4.1 for the proof.
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Theorem 1.1. Let p be a prime ideal in a commutative noetherian ring R and let
M be an R-module. If one has Tor(k(p), M) = 0 for some integer n > dim R, then
Tor!(k(p), M) = 0 holds for all i > n.

As flat dimp M < n holds if and only if one has Tor!*(k(p), M) = 0 for all primes p and all
1 = n, Theorem 1.1 provides for an improvement of existing characterizations of modules
of finite flat dimension.

In parallel to the flat case, the injective dimension of an R-module M is less than n
if Ext’y(R/p, M) =0 for every prime ideal p. Moreover the injective dimension can be
detected by vanishing locally of cohomology with coefficients in residue fields. That is,
injdimp M < n holds if and only if one has Exty (k(p), My) = 0 for all primes p. By the

standard isomorphisms Tor(k(p), M) = Tor™ (k(p), M) there is no local/global dis-
tinction for Tor vanishing. The following consequence of Proposition 3.2 is, therefore, a
perfect parallel to Theorem 1.1.

Theorem 1.2. Let p be a prime ideal in a commutative noetherian ring R and let
M be an R-module. If one has Extf, (k(p), M,) =0 for some integer n > dim Ry, then

Extf% (k(p), M,) = 0 holds for all i > n.

In contrast to the situation for Tor, the cohomology groups Extp (k(p),M,) and
Exty(k(p), M) can be quite different, and it was only proved recently, in [6, Theorem 1.1],
that the injective dimension of an R-module can be detected by vanishing globally of
cohomology with coefficients in residue fields. That is, injdimp M < n holds if and only
if one has Ext(k(p), M) = 0 for all i > n and all primes p. One advantage of this global
vanishing criterion is that it also applies to complexes of modules; per Example 6.3
the local vanishing criterion does not. For the proof of the following rigidity result for
Extr(k(p), M), see Remark 5.8.

Theorem 1.3. Let p be a prime ideal in a commutative noetherian ring R and let
M be an R-module. If one has Ext}(k(p), M) =0 for some integer n > 2dim R, then
Ext (k(p), M) = 0 holds for all i > n.

The case when p is the maximal ideal of a local ring merits comment, for the bound on
n in Theorems 1.2 and 1.3 differs by a factor of 2. The proof shows that it is sufficient
to require n > dim R, + projdimp R, in Theorem 1.3, and that aligns the two bounds in
this special case. For a general prime p however the number projdim R, may depend on
the Continuum Hypothesis; see Osofsky [14].

In this introduction, we have focused on results that deal with rigidity of the Tor and

Ext functors. In the text, we also establish results that track where vanishing of these
functors starts, when indeed they vanish eventually.
Throughout R will be a commutative noetherian ring. Background material on homo-
logical invariants and local (co)homology is recalled in §2. Rigidity results for Ext and
Tor over local rings are proved in § 3, and applications to homological dimensions follow
in §§4 and 5. The final section explores, by way of examples, the complicated nature of
injective dimension of unbounded complexes.
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2. Local homology and local cohomology

Our standard reference for definitions and constructions involving complexes is [2]. We
will be dealing with graded modules whose natural grading is the upper one and also
those whose natural grading is the lower one. Therefore, we set

inf Hy (M) := inf{i | H;(M) # 0} and inf H*(M) := inf{i | H'(M) # 0}

for an R-complex M, and analogously we define sup H.(M) and sup H*(M). We often
work in the derived category of R-modules, and write ~ for isomorphisms there. A mor-
phism between complexes is a quasi-isomorphism if it is an isomorphism in homology;
that is to say, if it becomes an isomorphism in the derived category.

The following paragraphs summarize the definitions and basic results on local
cohomology and local homology, following [1,13].

2.1. Local (co)homology

Let R be a commutative noetherian ring and a an ideal in R. The right derived functor
of the a-torsion functor I, is denoted RI,, and the local cohomology supported on a of
an R-complex M is the graded module

HY (M) = H* (REL(M)).
There is a natural morphism RI,(M) — M in the derived category; M is said to be
derived a-torsion when this map is an isomorphism. This is equivalent to the condition
that H*(M) is degreewise a-torsion; see [7, Proposition 6.12].

The left derived functor of the a-adic completion functor A% is denoted LA® and the
local homology of M supported on a is the graded module

HY (M) := H,(LA®(M)).

There is a natural morphism M — LA%(M) in the derived category and we say M is
derived a-complete when this map is an isomorphism. This is equivalent to the con-
dition that for each i, the natural map H'(M) — H§(H'(M)) is an isomorphism; see
[7, Proposition 6.15].

The morphisms R, (M) — M and M — LA*(M) induce isomorphisms

Ext’(R/a, M) = Ext(R/a,R[,M) and

(2.1)
Tor®(R/a, M) = Tor®(R/a, LA M).

Indeed, the first one holds because the functor RI7, is right adjoint to the inclusion of
the a-torsion complexes (that is to say, complexes whose cohomology is a-torsion) into
the derived category of R; see [13, Proposition 3.2.2]. Thus one has

RHom(R/a,RI,M) — RHom(R/a, M), (2.2)
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and this gives the first isomorphism. As to the second isomorphism, consider the
commutative square in the derived category

RI\ M —— M

-| |

RIGLLA*M —— LA*M

induced by the vertical morphism on right. The isomorphism on the left is part of
Greenlees—May duality; see, for example, [1, Corollary (5.1.1)]. Applying the functor
R/a®Y% () yields the commutative square

R/a @ RILM ——— Rja@k, M

-| |

R/a @l RIGLASM —— Rja@b LAM

The horizontal maps are isomorphisms by (2.2) and [7, Proposition 6.5]. Thus the vertical
map on the right is also an isomorphism; in homology, this is the desired isomorphism.

Let C(a) denote the Cech complex on a set of elements that generate a. The values of
the functors LA® and Ry on an R-complex M can then be computed as

LA®(M) = RHomp(C(a), M) and RIG(M)=C(a)®% M.
See for example [1, Theorem (0.3) and Lemma (3.1.1)].

2.2. Depth and width

In the remainder of this section (R, m, k) will be a local ring. This means that R is a
commutative noetherian ring with unique maximal ideal m and residue field k := R/m.
The depth and width of an R-complex M are defined as follows:

depthp M = inf Ext(k, M) and widthg M = inf Torf(k, M).

One has depthy M > inf H*(M) and if ¢ = inf H*(M) is finite, then equality holds if
and only if Homp(k, H'(M)) # 0. Similarly, one has widthg M > inf H,(M) and if j =
inf H, (M) is finite, then equality holds if and only if k ® g H; (M) # 0.

If flat dimp M is finite, then one has an equality

depthp M = depth R — sup Tor® (k, M). (2.3)

This is an immediate consequence of [2, Lemma 4.4(F)]. For finitely generated modules
it is the Auslander—Buchsbaum formula.
Similarly, if injdimp M is finite, then one has

widthg M = depth R — sup Exty(k, M). (2.4)

This is a consequence of [2, Lemma 4.4(T)]. For finitely generated modules the equality
above yields Bass’ formula injdimp M = depth R.
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From [9, Definitions 2.3 and 4.3] one gets that the depth and width of an R-complex
can be detected by vanishing of local (co)homology:

depthy M = infH, (M) and widthg M = inf HJ'(M).
Combining this with (2.1) and the isomorphisms

RIWLA™(M) ~ RIw(M) and LA™RI (M) ~ LA™ (M)
from [1, Corollary (5.1.1)] one gets equalities

depthy RI' M = depthy M = depthy LA™ M (2.5)
widthg RI'w M = widthg M = widthg LA™ M. (2.6)

For later use, we note that for each R-complex M there are inequalities
supHy (M) < dim R +supH*(M) and supH (M) < sup Exty(k, M). (2.7)

The first is immediate as one has HX (M) = H*(C(m) ®% M) where C(m) is the Cech
complex on a system of parameters for R; the second is immediate once one recalls the
isomorphism Hy, (M) 2 lim, Ext}(R/m’, M).

The next result is a direct extension of [16, Proposition 2.1] by Simon. Concerning
the last assertion: Tor?(R, M) = H;(M) # 0, so n cannot equal sup H, (M), unless both
are infinite. However, for later applications it is convenient to have the statement in this
form.

Lemma 2.1. Let M be a derived a-complete R-complex with inf H,(M) > —co and
n an integer. If Torff(R/p, M) = 0 all prime ideals p 2 a, then Torf(—7 M) =0.
When in addition n > sup H, (M), one has flat dimg M < n — 1.

Proof. First we claim that for any finitely generated R-module L and integer i, if
a Tor®(L, M) = Tor®(L, M), then Tor!*(L, M) = 0. Indeed, let F be a free resolution
of L with each F; finitely generated and equal to zero for ¢ < 0. Let G be a semi-flat
resolution of M with G; = 0 for ¢ < 0; this is possible as inf H, (M) is finite. Since M is
derived a-complete, the complex A*G, which computes LA* M, is quasi-isomorphic to M.
Thus

Torf (L, M) = H;(F @ A°G).
Note that FF ®pr A°G is a complex of a-adically complete R-modules; this is where we
need that each Fj is finitely generated and that F; and G; are zero for ¢ < 0. It remains

to apply [16, Proposition 1.4].
For the stated result, it suffices to prove that the set

{b C R an ideal | Tor(R/b, M) # 0}

is empty. Suppose it is not. Pick a maximal element; say, q. We claim that this is a prime
ideal. The argument is standard (see, for example, [12, 2.4]) and goes as follows. If the
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set is not empty, let g’ be an associated prime ideal of R/q, and x € R an element such
that g = {r € R | zr € q}. This then yields an exact sequence

0— R/q' == R/q — R/((x) +q) — 0.
Since both g’ and (z) + q strictly contain g, one obtains that
Tor, (R/q', M) = 0 = Tor; (R/((x) +a), M),
and hence Tor®(R/q, M) = 0, contradicting the choice of q. Thus q is prime.

By hypothesis, q does not contain a, so choose an element a in a but not in q and
consider the exact sequence

O—>R/qL>R/q—>R/((a)+q) — 0.

Noting that Torf(R/((a) +q), M) =0 by the choice of q, it follows from the exact
sequence above that the map Tor®(R/q, M) % Tor®(R/q, M) is surjective. By the claim
in the first paragraph, this implies that Torff (R/q, M) = 0, which is a contradiction. O

3. Local rings

In this section (R, m,k) is a local ring. Note from (2.7) that in the next statement n
cannot equal sup H* (M), but, as with Lemma 2.1, this formulation is convenient for later
applications.

Lemma 3.1. Let M be a derived m-torsion R-complex with inf H* (M) > —oco. If one
has Ext'z(k, M) = 0 for some integer n > sup H* (M), then injdimp M < n — 1.

Proof. Let I be the minimal semi-injective resolution of M. One has
Exty(k, M) = H"(Hompg(k,I)) = Hompg(k, I").
As M is derived m-torsion, each module I is a direct sum of copies of the injective
envelope of k, so Exty(k, M) =0 implies I"™ = 0. It follows from the assumption on n

and minimality of I that I* = 0 holds for all i > n; in particular, one has injdimz M <
n— 1. U

The result below extends (2.4); its proof would be significantly shorter under the
additional hypothesis that inf H: (M) is finite.

Proposition 3.2. Let M be an R-complex. If Ext(k, M) = 0 holds for some integer
n = sup Hy, (M), then one has Exty(k, M) = 0 for all i > n and

sup Exty (k, M) = depth R — widthp M.
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Proof. Let J be the minimal semi-injective resolution of M and set I := I'z(J). For
every integer ¢ one has

H: (M)=H(I) and Ext%(k, M) = Hompg(k,J") = Homg(k, I').

Let d be any integer with n > d > supHy (M) and set Z := Z%(I), the submodule of
cycles in degree d. Vanishing of Hy, (M) and the identifications above yield

Extly(k, M) = Extiy%(k, Z) for alli > d.

In particular, one has Ext, %(k, Z) = 0. Since Z is an m-torsion R-module, Lemma 3.1
and the isomorphisms above yield Ext% (k, M) = 0 for all i > n.

It remains to verify the claim about the supremum of Exty(k, M). To this end, let K
be the Koszul complex on a minimal set of generators for m. It follows from [9, Definition
2.3] that one has the second equivalence below

sup Exti(k, M) = —00 <= Extp(k,M) =0
— H'(K®@rM)=0
<= widthgr M = oc0.

The first one is by definition while the last one is by [9, Theorem 4.1]. We may thus
assume that s := sup Exty(k, M) and w :=sup H"* (M ®p K) are integers. Because K is
a bounded complex of finitely generated free R-modules, there is a quasi-isomorphism

RHomp(k, M) % K ~ RHom(k, M @ K).
From this and the fact that Exty(k, M) is a graded k-vector space, it follows that
s = sup H*(RHompg(k, M) @% K) = sup Ext}(k, M @ K).

Let E be the minimal injective resolution of M ®z K. Since M ®pr K is derived m-
torsion, one has I'yE = E. From Exth(k, M ®g K) = Homp(k, E) it thus follows that
E* #0and E' =0 for all i > 5. On the other hand, as w = sup H*(E) the complex EZ%
is the minimal injective resolution of the module W := Z"¥(E) of cycles in degree w, so
one has injdimz W = s — w.

It remains to show that injdimp W = depth R. Evidently one has injdimp W =
sup Exty (k, W), so by (2.4) it suffices to show that W has width 0, that is to say, that
k®r W # 0. But this is clear because H” (F) is non-zero and annihilated by m, whence
mW C B¥(E) C W. O

Proposition 3.3. Let M be an R-complex with Torff(k, M) = 0 for some integer n,
and assume that one of the following conditions is satisfied:

(1) n =z supHY (M) and inf H, (M) > —o0;
(2) n > supH;, (Hompg(M, E(k))) where E(k) is the injective envelope of k.
One then has Torf'(k, M) = 0 for all i > n and
sup Tor®(k, M) = depth R — depth, M.
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Proof. Assume first that (1) is satisfied. From (2.1) one gets Tor?(k, LA™ M) = 0. The
complex LA™ M is m-adically complete and

inf Hy(LA™M) > inf H, (M) > —oc.
Thus Lemma 2.1 applies and yields that flat dimg(LA™M) is at most n — 1. Now (2.1)

yields Torf(k, M) = 0 for all i > n, and then (2.3) and (2.5) yield the second and third
equalities below

sup Torf(k, M) = sup Tor (k, LA™ M)
depth R — depth (LA™ M)

= depth R — depth M.

Assume now that the hypothesis in (2) holds, and set (—)Y := Hompg(—, E(k)). For
each integer ¢, there is an isomorphism

Tor2(k, M)V = Ext', (k, MV).
The hypothesis and Proposition 3.2 yield Torfq‘(k:7 M) =0 for all i > n and
sup Tor®(k, M) = sup Ext(k, M") = depth R — widthp M".
Finally one has widthg M"Y = depthp M; see |9, Proposition 4.4]. O

The final result of this section fleshes out a remark made by Fossum et al. at the end
of §1 in [8]. They phrase it as statement about non-vanishing: If M is an R-module and
Ext%(k, M) is non-zero for some n > depth R + 1 then one has Ext(k, M) # 0 for all
1 = n. The formulation below makes for an easier comparison with Proposition 3.2.

Proposition 3.4. Let M be an R-complex. If Ext'z(k, M) = 0 holds for some integer
n > sup H*(M) + depth R + 1, then one has

Ext%(k, M) =0 for every i in the range sup H*(M) + depth R+ 1 <i < n.

Proof. We may assume that n > sup H* (M) + depth R + 1 holds. It suffices to verify
that when Ext’(k, M) is zero, so is Ext’y ' (k, M).

Let  be a maximal regular sequence in R, set S:= R/(x) and n:=m/(x). Thus,
(S,n, k) is a local ring of depth 0; in particular, (0 : n), the socle of S, is non-zero. Thus,
there exists a positive integer, say s, such that (0 : n) is contained in n® but not in ns+1.
Said otherwise, the composite of canonical maps

(0:n) — n® — n®/n*t!
is non-zero. Since the source and the target are k-vector spaces, this implies that k is a
direct summand of n®. It thus suffices to verify that Ext7, ' (n®, M) = 0.
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The Koszul complex on @ is a minimal free resolution of S over R, so one has
projdimp S = depth R and hence

Extfyé(S7 M) =0 for j > depth R+ 1+ sup H*(M).
Given this, the exact sequence
0—n"—S5—S5n—0
yields an isomorphism
Extly ' (n®, M) = Ext}(S/n*, M).
Since the length of S/n? is finite, Ext (k, M) = 0 implies Ext,(S/n®, M) = 0, and hence
the isomorphism above yields Ext7, ' (n®, M) = 0, as desired. O

4. Flat dimension

Let R be a commutative noetherian ring, M be an R-complex, and n be an integer.
Avramov and Foxby [2, Proposition 5.3.F] prove that flat dimp M < n holds if and only

if one has Torfp (k(p), M,) = 0 for every prime p in R and all ¢ > n. That is,
flatdimp M = sup{i € Z | TorlR'D (k(p), M) # 0 for some p € Spec R}. (4.1)
By way of the isomorphisms
Tor;™ (k(p), M,) = Tor/ (k(p), M) (4.2)

this result compares—or may be it is the other way around—to [6, Theorem 1.1]; see
(5.1). Combining (4.1) and (4.2) with (2.3) one gets

flat dimp M = sup {depth R, —depthp My} (4.3)
peESpec R

for every R-complex M of finite flat dimension. For modules of finite flat dimension this
equality is known from the work of Chouinard [5].

For rings of finite Krull dimension, the next theorem, which contains Theorem 1.1,
represents a significant strengthening of (4.1).

Theorem 4.1. Let R be a commutative noetherian ring and M be an R-complex.
If for a prime ideal p and n > dim Ry, + sup H, (M) one has Tor (k(p), M) = 0, then

sup Torf (k(p), M) = depth R, — depthp M, <n.
In particular, if there exists an integer n > dim R + sup H, (M) such that
TorZ(k(p), M) = 0 holds for every prime ideal p in R,
then the flat dimension of M is less than n.

Proof. It suffices to prove the first claim; the assertion about the flat dimension of M
is a consequence, given (4.1).
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Fix p and n as in the hypotheses. Given (4.2), this yields Tor® (k(p), M,) = 0. One
has the following (in)equalities

sup Hy (M) > sup H, (My) = sup H" Homp,, (My, E(k(p))).
Since dim R > dim Ry, it follows from (2.7) and Proposition 3.3 that
sup Torf™» (k(p), M,) = depth R, — depthp M, <n.
This is the desired result. ]
The next example shows that the constraint on n in Theorem 4.1 is needed.

Example 4.2. Let (R, m, k) be a local ring, N a finitely generated Cohen—Macaulay
R-module of dimension d, and set M := Hi(N ). There are isomorphisms

Tor®(k, M) = Tor® ,(k,N) for all i.

To see this, let F be the Cech complex on a maximal N-regular sequence . The com-
plex (X¢F)®pg N is quasi-isomorphic to M, for inf H} (N) = sup H,(N) = d, by the
hypothesis on N. Thus, there are quasi-isomorphisms

kEeh M~koh (Z9F) @5 N) ~ 2% ok N.
The isomorphisms above follow. Thus one has

0 for i < d,

Tor®(k, M) =
or:"(k, M) {N/mN for i = d.

In particular, one has inf Tor®(k, M) = d, while Tor®(k(p), M) = 0 for every prime ideal
p # m, since M is m-torsion.

Now, if in addition the inequality d > depth R holds, then flat dimp M is infinite. To see
this, apply Matlis duality Tor/(k, M) = Ext (k, M) and conclude from Proposition 3.4
that Tor’(k, M) is non-zero for all i > d.

It remains to remark that such R and N exist: Let k be a field, d be a positive integer,
and set

R:=k[[z1,...,0q01]]/ (23, 2120, ..., 21Ta41).

This R is a local ring of dimension d and depth 0. The R-module N = R/(z1) is
Cohen—Macaulay of dimension d.

5. Injective dimension

Let M be an R-complex, by [6, Theorem 1.1] one has
injdimgy M = sup{i € Z | Ext’y(k(p), M) # 0 for some p € Spec R}. (5.1)

In view of (4.2) this is a perfect parallel to the formula for flat dimension (4.1).
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The equality flat dimp M = sup,cgpec g{flat dimg, M} is immediate from (4.1) and
(4.2). The corresponding equality for the injective dimension only holds true under
extra conditions, and the whole picture is altogether more complicated. If M satisfies
inf H* (M) > —oo, then [2, Proposition 5.3.1] yields

injdimp M = sup{i € Z | Exty (k(p), My) # 0 for some p € Spec R}
(5.2)

= sup {injdimp M,}.
pESpec R P

Without the boundedness condition on H(M) the injective dimension may increase
under localization; an example is provided in 6.3.

The next statement, which still requires homological boundedness, is folklore but not
readily available in the literature.

Theorem 5.1. Let R be a commutative noetherian ring and M an R-complex with
inf H* (M) > —oo. If there exists an integer n > sup H* (M) such that

Ext%‘:l(k:(p), M,) = 0 holds for every prime ideal p in R,
then the injective dimension of M is at most n.

Proof. Let I be a minimal semi-injective resolution of M; as inf H* (M) > —oo holds
one has I" = 0 for n < 0. For every integer i one has I' = [, cg e & E(R/p)#®)  and
to prove that injdimp M is at most n it is sufficient to show that the index set pi,11(p)
is empty for every prime p. Fix p. Since I, is a complex of injectives with (I,)” = 0 for
n < 0, it is a minimal semi-injective resolution of M, so one has

0 = Extf" (k(p), M)
= H"" Homg, (k(p), I,)
= Hompg, (k(p), (I,)"*")
= Homp, (k(p), E(k(p)) =+ ().
It follows that s, 1(p) is empty. O

The next result corresponds to (4.3). It removes a restriction on the boundedness of
M in Yassemi’s version [17, Theorem 2.10] of Chouinard’s formula [5, Corollary 3].

Proposition 5.2. For every R-complex M of finite injective dimension one has

injdimp M = sup {depth R, — widthr M, }.
R P p p
pESpec R

Proof. Without loss of generality, we can assume that M is semi-injective with M*® = 0
for all ¢ > d :=injdimp M. For every u < d there is an exact sequence of semi-injective
complexes

0— M?* — M — MS"' — 0 (1)
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with injdimy MS*~! <y —1 and injdimz MZ% = d. The complex M=" is bounded, so
(2.4) and (5.2) conspire to yield

d= sup {depthR, — widthg, M;"}. (2)
pESpec R

First we establish the inequality

injdimgp M > sup {depth R, — widthg, M,}. (3)
peSpec R

Let p be a prime. There are inequalities
widthg, M, > inf H,(M,) > inf H,(M) = —supH* (M) > —d,

and without loss of generality one can assume that widthg, M, is finite. Consider (1)
for u = —widthg, M, and localize at p. The associated exact sequence of Tor groups
yields widthg, M, = widthg, Mp?”, so the desired inequality d > depth R, — widthg, M,
follows from (2). It remains to prove that the equality holds for some prime.

Consider (1) for u = d — 1 and choose by (2) a prime p with

d = depth R, — widthg, M.
The second inequality in the next display is (3) applied to the complex M <92,
d -2 > injdimp MSY? > depth R, — widthg, M2,
Eliminating d and depth R, between the two displays one gets the inequality

widthg, M7 < widthg, M7 — 2.

Finally, one gets widthg, M, = widthg, Mp> =1 from the exact sequence of Tor groups
associated to (1). O

We now aim for a characterization of complexes of finite injective dimension that
does not require homological boundedness. It is based on the following observation, of
independent interest.

Lemma 5.3. Let M be an R-complex and m a maximal ideal in R. The localization
maps p: M — My and o: R — Ry, induce quasi-isomorphisms

RHomg (k(m), p): RHompg(k(m), M) — RHompg(k(m), M) and
k(m) ®% RHomg (o, M) : k(m) @% RHompg(Ry, M) = k(m) @% M.
Proof. In the derived category of R, consider the distinguished triangle
ML My, — C— TM.

The induced morphism k(m) ®% p is a quasi-isomorphism, so k(m) ®k% C is acyclic. Then
RHomp(k(m), C) is also acyclic, by [3, Theorem 4.13], whence the map RHompg(k(m), p)
is a quasi-isomorphism, as claimed.
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In the same vein, the distinguished triangle R — Ry, — D — LR induces a distin-
guished triangle

RHom (D, M) — RHomp(Rm, M) ~20mm(M),

M — Y RHompg (D, M).
By adjunction RHompg(k(m), RHompg (o, M)) is a quasi-isomorphism, so that
RHompg (k(m), RHomg(D, M))

is acyclic. Thus the complex k(m) ®% RHomp(D, M) is acyclic by [3, Theorem 4.13],
which justifies the second of the desired quasi-isomorphisms. [

Proposition 5.4. Let M be an R-complex and m a maximal ideal in R. If one has
Exts (k(m), M) = 0 for some n > dim Ry, + sup H*(My,), then Ext’z(k(m), M) = 0 holds
for all i > n and there are equalities

sup Extp (k(m), M) = depth Ry, — widthpg,, My
= depth Ry, — widthg,, RHompg (R, M).

Proof. The first isomorphism below is by Lemma 5.3; the second is by adjunction.
Extp(k(m), M) = Extyp(k(m), My) = Exty _(k(m), My,).
In view of these isomorphisms and the assumption on n, Proposition 3.2 now yields
sup Exty (k(m), M) = depth Ry, — widthp,, My < n.

It remains to observe that the width of My, and RHompg (R, M) coincide, by the second
quasi-isomorphism in Lemma 5.3. (]

Corollary 5.5. Let R be an artinian ring and M an R-complex. If there exists an
integer n > sup H* (M) such that

Ext's(k(p), M) = 0 holds for every prime ideal p in R,
then the injective dimension of M is less than n.
Proof. Every prime ideal p in R is maximal and there are inequalities
n = sup H* (M) > supH"(M,) = dim R, + sup H*(M,).
Thus the claim follows from (5.1) and Proposition 5.4. O
Remark 5.6. In the sequel we require the invariant
splf R = sup{projdimg F' | F' is a flat R-module}.

Every flat R-module is projective if and only if R is artinian, so splf R > 0 holds if
dim R > 0, and from work of Jensen [11, Proposition 6] and Raynaud and Gruson
[15, thm. I1.3.2.6] one gets the upper bound splf R < dim R. A result of Gruson and
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Jensen [10, Theorem 7.10] yields another bound on the invariant splf R: If R has car-
dinality at most X, for some natural number m, then one has splf R < m + 1. Thus
for countable rings, and for 1-dimensional rings, the bound in the theorem below is
n > dim R + sup H* (M).

Theorem 5.7. Let R be a commutative noetherian ring with dim R > 1 and M an
R-complex. If there exists an integer n > dim R — 1 + splf R + sup H*(M) such that

Ext's (k(p), M) = 0 holds for every prime ideal p in R,
then the injective dimension of M is less than n.

Proof. Fix a prime ideal p and consider the R,-complex N := RHompg(Ry, M). One
has

H'(N) = Extiz(Ry, M) =0 for i > projdimp R, + sup H*(M),
and standard adjunction yields
Extip(k(p), M) 2 Bxty, (k(p), N).
Since R, is a flat R-module, projdimp R, is at most splf R. Given this, (2.7) yields
Hyp (N) =0 fori> dim Ry + splf R+ sup H*(M).
Thus, if n > dim Ry, + splf R + sup H* (M) holds, then Proposition 3.2 yields
sup Exti (k(p), M) = depth R, — widthg, N < n.

The same equality also holds when n < dim R, + splf R +sup H*(M), for then the
assumption on n forces dim R, = dim R, so p is a maximal ideal and so Proposition 5.4
applies. Now the desired conclusion follows from (5.1). O

Remark 5.8. As noted in Remark 5.6, one has splf R < dim R. Thus Theorem 1.3 is
a consequence of Corollary 5.5 and Theorem 5.7.

Confer the following result and Proposition 5.2.

Corollary 5.9. For every R-complex of finite injective dimension one has

injdimp M = pessup R{depth Ry, — widthr, RHompg(Ry, M)}.
pec

Proof. Given Lemma 5.3, the desired equality is restatement of Proposition 5.2 in case
R is artinian. If R is not artinian, then one has dim R > 1 and the equality is immediate
from (5.1) and the last display in the proof of Theorem 5.7. O

Remark 5.10. Let R be a complete local domain of positive dimension. One has
widthg, Ry = 0, but the complex RHompg(R (), R?) is acyclic, see [3, Example 4.20],
so widthp RHompg(R(g), R) = co. We do not know how the numbers widthp, M, and
widthgr, RHompg(R,, M) from Proposition 5.2 and Corollary 5.9 compare in general.
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6. Examples

In this section we describe examples to illustrate that, for complexes whose cohomol-
ogy is not bounded below, finiteness of injective dimension does not behave well under
localization or passage to torsion subcomplexes. This builds on [4].

Remark 6.1. Let R be a ring. A complex I of injective R-modules is semi-injective
if and only if for each (equivalently, for some) integer n the quotient complex IS™ is
semi-injective. This is immediate from the exact sequence of complexes

0—I"" —T—1IS"—0

since I°" is always semi-injective.

Remark 6.2. Let (R, m, k) be alocal ring and E be the injective envelope of k. One has
(EM), # 0 for every prime ideal in R. Indeed, the claim is trivial if R is artinian. If R is not
artinian, then one can choose an element e = (€,)nen in EN with m™ C (0:e,) 2 m"~ L
The map R — EN given by 1 — e is injective by Krull’s intersection theorem, so R is a
submodule of EV.

Example 6.3. Let (R, m,k) be a local ring such that (0:z) = (z) holds for some
x € m; set S = R/(x). The complex

LRV R R0

concentrated in non-negative degrees has homology S in degree 0 and zero elsewhere.
Dualizing with respect to E, the injective envelope of k over R, yields a complex

I=0—E-">F " E ..
of injective R-modules. It is the minimal injective resolution of Es := Hompg(S, E) over R.

By periodicity, every injective syzygy of Eg is Eg. Consider the complex J =[] "],
which is a semi-injective resolution of [[ _, X" Es.

n>0
n>0

Claim. The complex M := JSY has injective dimension 0, whereas for each prime
ideal p # m, one has that injdimp M, Is infinite.

Indeed, since J is semi-injective, so is M, by Remark 6.1. Since the cohomology module
HO(M) = (Es)Y is non-zero, it follows that injdimp M = 0 holds.

Fix a prime ideal p # m. For i <0 one has H (M) =H'(J) = Es and, therefore,
H'(M,) = H (M), = 0. This justifies the first quasi-isomorphism in the computation
below; the rest are standard.

RHomp, (k(p), M,) ~ RHomp, (k(p), (Es)™),)
~ RHompg(R/p, (Es)"),
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~

RHomp(R/p, Es)V),
Hompg(R/p, 1Y),

(Hz—iﬂomR(R/p,m)N)p

i>0

(
(

12

1
7~

1%

¥ '(Hompg(R/p, E)V),.
0

v

The first isomorphism holds because x = 0 in R/p, for 22 = 0, and hence the induced
differential on the complex Homp(R/p, I) is zero.

The module Ep/, := Homg(R/p, E) is the injective envelope of k over the domain
R/p. The computation above shows that for every i > 0 there is an isomorphism as
R/p-modules

Extiz, (k(p), My) = (Eryp)™)(0)-

Thus Remark 6.2 yields Extﬁép (k(p), M,) # 0 for all ¢ > 0; hence inj dimp M, is infinite,
as claimed.

Example 6.4. Let k be a field and R := k[|z,y|]/(2?). Since (0: 2) = (x), we are in
the situation considered in the previous example. Let M be the complex of injectives
with injective dimension zero constructed there. We claim that the injective dimension
of the complexes M, and I',,)M are infinite.

Indeed, observe that M, = M, where p is the prime ideal (z) of R, so injdimp M, is
infinite, by the claim in the previous example. Since C(y) ® g M is quasi-isomorphic to
I'yyM and there is an exact sequence

0— ¥ 'M, — Cly) @ M — M — 0,
it follows that the injective dimension of I',)M is infinite as well.
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