Z-Dedup:A Case for Deduplicating Compressed Contents in Cloud

Zhichao Yan, Hong Jiang
University of Texas Arlington
zhichao.yan@mavs.uta.edu
hong.jiang @uta.edu

Yujuan Tan

Abstract

Lossless data reduction techniques, particularly compression
and deduplication, have emerged as effective approaches to
tackling the combined challenge of explosive growth in data
volumes but lagging growth in network bandwidth, to improve
space and bandwidth efficiency in the cloud storage environ-
ment. However, our observations reveal that traditional dedu-
plication solutions are rendered essentially useless in detecting
and removing redundant data from the compressed packages
in the cloud, which are poised to greatly increase in their
presence and popularity. This is because even uncompressed,
compressed and differently compressed packages of the exact
same contents tend to have completely different byte stream
patterns, whose redundancy cannot be identified by comparing
their fingerprints. This, combined with different compressed
packets mixed with different data but containing significant
duplicate data, will further exacerbate the problem in the cloud
storage environment. To address this fundamental problem, we
propose Z-Dedup, a novel deduplication system that is able
to detect and remove redundant data in compressed packages,
by exploiting some key invariant information embedded in the
metadata of compressed packages such as file-based checksum
and original file length information. Our evaluations show that
Z-Dedup can significantly improve both space and bandwidth
efficiency over traditional approaches by eliminating 1.61%
to 98.75% redundant data of a compressed package based
on our collected datasets, and even more storage space and
bandwidth are expected to be saved after the storage servers
have accumulated more compressed contents.

I. INTRODUCTION

Information explosion has significantly increased the
amount of digital contents in the big data era [1] [2]. For
example, the world’s technological capacity to store infor-
mation grew from 2.6 (optimally compressed) exabytes (EB)
in 1986 to 15.8 EB in 1993, over 54.5 EB in 2000, and to
295 (optimally compressed) EB in 2007. In fact, we create
2.5 quintillion bytes (EB) of data every day, and 90% of the
current world’s digital data are created in the last two years
alone [3]. These ever-increasing digital contents require a large
amount of storage capacity to keep them available for future
accesses. To meet performance, reliability, availability, power,
and cost efficiency requirements, cloud storage service is be-
coming a core infrastructure to host these data. However, with
the Cloud, network bandwidth becomes a bottleneck because
of the need to upload and download massive amounts of data

Chongqing University
tanyujuan @ gmail.com
Corresponding Author

Stan Skelton Hao Luo
NetApp Twitter
Stan.Skelton@netapp.com hluo@twitter.com

between clients and the servers, and the upload bandwidth
is usually an order of magnitude smaller than the download
bandwidth. Therefore, how to manage such incredible growth
in storage demand has become the most important challenge
to the cloud storage service providers [2].

Lossless data reduction techniques, most notably, compres-
sion and deduplication, have emerged to be an effective way
to address this challenge. Compression finds repeated strings
within a specific range of a given file and replaces them with
a more compact coding scheme with intensive computations.
For example, the deflation algorithm used in gzip checks
the repeated strings within a limited 32K B window and the
longest repeated string’s length is limited to 258 bytes [4].
On the other hand, deduplication divides a file into fixed-size
(e.g., 4KB in fixed chunking) or variable-size chunks (e.g.,
content defined chunking), identifies (i.e., lookup the hash
table) and removes the duplicate chunks across all existing
files by comparing chunks’ unique fingerprints (e.g., secure
hash values), and reassembles the chunks to serve the subse-
quent access operations. Therefore, compression can achieve
the best data reduction ratio but at both high computation
and memory costs, rendering it most suitable for reducing
individual files and data items at small volumes locally. On
the other hand, deduplication can remove redundant data at a
much coarser granularity to obtain a good data reduction ratio
with a much lower computation cost, thus making it most
effective in eliminating much larger volumes of redundant
data across files and data items globally. In order to design
an efficient cloud storage system, designers need to combine
these two techniques to detect and remove redundant data by
exploiting both global and local redundancies with acceptable
computation costs.

However, existing deduplication approaches cannot detect
and remove the redundancy wrapped by different compression
approaches because they only rely on bitstream fingerprint-
based redundancy identification. As a result, they are unable
to identify redundant data between the compressed and uncom-
pressed versions of the exact same contents as the compressed
contents, being encoded by a compression algorithm, will
have very different bitstream patterns from their uncompressed
counterparts. In fact, we find that they also cannot detect
any redundant data compressed by different compression algo-
rithms because they will generate different compressed data at
the bitstream level of the same contents. Furthermore, different
versions or input parameters of the same compression tool
may generate different bitstreams of the same contents (e.g.,

different metadata information or compressed bitstream will
be embedded in the compressed files), whose redundancy can-
not be identified by fingerprint-based detection. Finally, very
similar but slightly different digital contents (e.g., different
versions of an open source software), which would otherwise
present excellent deduplication opportunities, will become
fundamentally distinct compressed packages after applying
even the exact same compression algorithm.

In a multi-user cloud storage environment, the aforemen-
tioned compression scenarios are arguably widespread, which
prevent the cloud servers from detecting and removing any
data redundancy among these compressed packages. There are
more complicated scenarios that chain multiple compression
algorithms and pre-processing filters together to gain higher
compression ratios [5]. All these scenarios indicate that several
factors limit the applicability of deduplication in the cloud
storage environment, leading to failures in identifying and
removing potentially significant data redundancy across differ-
ent compressed packages. These factors include compression
algorithms, compression parameters, input file stream, etc. In
general, two users can generate the same compressed pack-
ages only when they compress the same files with the same
compression parameters by the same version of a compression
tool. Obviously, it is impractical to assign the exact same
specific compression mode to all the users in the cloud storage
environment. This is also the reason why traditional data
deduplication systems try to skip deduplicating compressed
archives because they may share little redundant data in their
binary representations with the original uncompressed or other
differently compressed files, even though they may have the
same semantic contents [6]. If there are 10 compression tools
that are widely used for a cloud storage environment, where
each has 10 versions and 5 sets of compression parameters,
then a given file can in theory have up to 500 different
compressed instances in the cloud, yet with no redundancy
detectable by conventional deduplication. Moreover, if this file
is compressed in conjunction with other different files (e.g., by
solid compression detailed in Section II-B1), we can expect
even more compressed instances of this particular file stored
in the cloud. This kind of data redundancy is concealed by
different compressed packages. As cloud storage is poised
to become a digital content aggregating point in the digital
universe, it is arguable that this type of hidden data redundancy
already exists widely in deduplication-based storage systems
and will likely increase with time. Thus, it is necessary to
detect and remove this kind of data redundancy for a more
efficient cloud storage ecosystem.

In our recent work [7], we proposed X-Ray Dedup, re-
porting the preliminary results on deduplicating the redundant
contents concealed only in the non-solid compressed packages,
and without addressing any of the solid compression, hash
collision and security issues. In this paper, we propose Z-
Dedup that expands and improves X-Ray Dedup substantially
to support deduplication for both non-solid and solid com-
pressed packages. In addition to evaluating the data dedu-
plication benefits under these two compression schemes, Z-

TABLE I: Broadband speed greater than 10 Mbps, 25 Mbps and
100 Mbps (2015-2020) [8].

Region >10 Mbps >25 Mbps >100 Mbps
2015 | 2020 | 2015] 2020 | 2015 | 2020
Global 53% | 77% | 30% | 38% | 4% 8%
Asia Pacific 53% | 83% | 30% | 52% | 4% 8%
Latin America 27% | 39% 10% 15% 1% 2%
North America 64% | 88% | 38% | 52% | 5% 9%
Western Europe 54% | T4% | 32% | 43% | 5% 11%
East-Central Europe 58% | 83% | 33% | 41% | 3% 6%
Middle East & Africa 17% | 20% | 7% 8% 03% | 1%

Dedup fundamentally addresses the hash collision problem of
the CRC code used in X-Ray Dedup by replacing it with SHA-
256. This enables Z-Dedup to be seamlessly integrated into
the cloud storage environment at an acceptable hash collision
rate. Moreover, we added an ownership verification scheme to
defend against possible known-hash attacks at the client side.
Our experimental results show that Z-Dedup can significantly
improve both space and bandwidth efficiency over traditional
approaches by eliminating 1.61% to 98.75% more redundant
data among various compressed packages, and more storage
space and network bandwidth are expected to be saved after
the cloud storage servers hosting enough compressed contents.
The rest of the paper is organized as follows. Section II
describes the necessary background to motivate this work.
Section III elaborates on the design and implementation of
the Z-Dedup system. We present the evaluation and analysis of
Z-Dedup in Section IV and conclude the paper in Section V.

II. MOTIVATION
A. Background

There are two main motivations for both users and cloud
storage providers to compress their data, leading to more
compressed packages in the cloud. One is to reduce the
amount of data actually stored in the system and the other
is to reduce the time spent transferring a large amount of data
over the networks. While the former helps reduce cost, both
hardware and operational, the latter improves performance,
both upload and download, and network bandwidth utilization.

1) Cloud Storage in Face of Slow Networks: Table 1
lists the percentages of broadband connections faster than 10
Mbps, 25 Mbps, and 100 Mbps by region in 2015 and 2020,
indicating the broadband speeds are still quite low considering
that each person accounts for a considerable amount of digital
contents. Moreover, upload and download bandwidths are usu-
ally asymmetric, with the former being one order of magnitude
smaller than the latter. As a result, network bandwidth remains
one of the main limiting factors in using cloud storage.

2) Compressions Are Increasingly Common: In order to
deal with the incredible digital explosion, the application of
data compression technologies, especially lossless data com-
pression, is expected to become a commonplace throughout
the life cycle of digital contents. In fact, a lot of systems and
applications already perform compression and decompression
without the users even being aware that it has occurred.
However, from a storage perspective, this also means that there
will be increasingly more compressed packages as more com-
pressions of different formats and algorithms are performed.

TABLE II: Data profile of sunsite.org.uk [9].

Popularit Storage Space
Rank Exf. [‘};0 Occur. | Ext. g[‘7§Storage
1 .8z 32.50 rpm | 29.30
2 .rpm 10.60 .8z 20.95
3 .jpg 7.54 .is0 20.40
4 html | 4.83 .bz2 | 6.26
5 .gif 4.43 tbz2 | 5.65
6 - 4.16 raw | 4.44
7 Ism 3.74 tgz 2.66
8 tgz 2.90 .Zip 2.53
9 tgz2 | 2.35 .bin 2.00
10 Z 2.12 .Jpg 0.94
11 .asc 1.84 Z 0.65
12 .Zip 1.59 .gif 0.43
13 .rdf 1.39 tif 0.31
14 .htm 1.21 img | 0.21
15 .0 1.06 .au 0.19
Total - 82.26 - 96.92

Table II shows the compiled results by Calicrates Policro-
niades and Ian Pratt [9] of popular files’ extensions and their
relative popularity in an Internet server, indicating that a sig-
nificant amount of different compressed contents occupy most
of the storage space. This is consistent with our observation
and the reason lies in the fact that the network bandwidth,
particularly of wide-area networks, has become much more
expensive than computing resources, leading more and more
data being compressed before transmitting to the cloud.

With the increasing numbers of compressed packages of
different formats in the cloud, there will be even greater
numbers of redundant files concealed in different compressed
packages. How to organize and store these compressed pack-
ages becomes a challenge as we face a mounting demand
to further reduce storage capacity requirement in light of the
explosive growth of digital contents.

B. Data Compression and Deduplication

1) Dictionary-Based Compression: We focus on dictionary-
based compression, especially the sliding dictionary com-
pression algorithms (LZ77 and LZ78), which were proposed
by Abraham Lempel and Jacob Ziv [10] [11]. These two
algorithms form the basis for a plethora of their variations,
including LZW, LZSS, LZMA and others, that are collectively
referred to as the LZ-family algorithms.

By their initial designs, compression tools only compress in-
dividual files because the compression algorithm only focuses
on a single input data stream. Then some compression tools
allow for the compression of a directory structure that contains
multiple files and/or subdirectories into a single compressed
package. There are two common ways to compress the directo-
ry structure, namely, compressing each file independently and
concatenating a group of uncompressed files into a single file
for compression. The former is called non-solid compression
and widely supported by the zip format [12], while the latter
is called solid compression and natively used in the 7z and
rar formats [5] [13]. Solid compression is also indirectly used
in tar-based formats such as .tar.gz and .tar.xz, where users
archive a directory containing multiple files first as a single file
that is then compressed. In this paper, we only focus on these
two common compression schemes while considering out of

e @
5 |z s le ¥ sls [§ |2
FIEEIE |2 513 25358
S 25 T lExRE R R
= ‘3| £ 2:47‘-:: 2 2“3“*5
¢ |Z g = |=22EE = |28 87 E
Z Ex & |ERS S ~ |ERS 33
S | 2 e €2 2 | [EEFEE

=1 = [2 = 27E =
g |E° P ER N
Block
4 buffer N

processed block

dictionary
cursor - p
<+——data movement direction

Pointers to duplicated
Literal Bytes Table

Compressed Block

input block ‘

Literal Bytes Table

Fig. 1: Sliding dictionary compression.

scope schemes that chain multiple compression algorithms and
filters to gain higher compression ratios.

As shown in Figure 1, a compressed archive is organized
in a data package consisting of an archive header, an op-
tional archive header, several compressed blocks with the
corresponding file metadata and optional block metadata, and
optional archive information. Archive header maintains the
basic information on this compressed package. Block is the
basic, atomic unit of compression, which can be of variable
size and contain either some parts of a file or some files. Op-
tional archive information contains the necessary information
about directory’s structure. A cursor will scan the input block
and some parts of an already processed block to constitute a
dictionary window that is used for the subsequent read buffer
to find the longest repeated literal bytes. This process will
generate an adaptive dictionary, as illustrated in Algorithm 1.
After the cursor has scanned a whole block, it will generate
another table containing literal bytes and a table containing
pointers to duplicated literal bytes. Finally, these two tables
will be compressed into a compressed block.

Algorithm 1 Adaptive dictionary compression.

while Not the end of block do
Word = readWord(InputFile)
DictionaryIlndex = lookup(Word, Dictionary)
if (DictionaryIndex IS VALID) then
output(DictionaryIndex, OutputFile)
else
output(Word, OutputFile)
addToDictionary (Word, Dictionary)
end if
end while

2) Deduplication: Deduplication is a special kind of loss-
less data compression, which aims to detect and remove
the extremely long repeated strings/chunks across all files. It
becomes popular in storage systems, particularly in backup
and archiving systems, because of the datasets in these systems
have significant amount of duplicative data redundancy.

Deduplication’s basic idea is to divide the data stream into
independent units, such as files or data chunks, and then use
some secure hash values of these units, often referred to as
fingerprints, to uniquely represent them. If the fingerprints
of any two units match, these two data units are considered
duplicate of each other. With this compare-by-hash approach,

duplicate contents within a single storage system or across
multiple systems can be quickly detected and removed.
Deduplication relies on secure hash algorithms to limit the
hash collision rate to avoid false positives, where units of
different data contents produce the same hash values and thus
are mistakenly considered duplicates. It adds extra operations,
such as hash computation and hash index table lookup, to
the I/O critical path. Another key issue of deduplication is its
heavy reliance on the format of the digital content itself for
the hash value calculation. For example, two identical files
in different formats (e.g., due to compression or encryption)
will generate essentially different hash values, completely
preventing their data redundancy being detected and removed.

C. Research Problems

In above analysis, more and more compressed archives are
expected to be stored in the cloud. In fact, some systems, such
as ZFS and Flash Array, have already integrated compression
and deduplication [14] [15]. Meanwhile, the cloud will be a
convergence point to which increasing numbers of end users
and systems upload their compressed packages. Within these
compressed archives, there can be a great number of redundant
files across different users, particularly if they happen to
have similar interests in certain specific topics. However,
due to the different ways in which compressed archives are
generated, which can substantially hide the data redundancy
detectable by the conventional deduplication technology, these
problems arise when dedupication interplays with compression
to motivate this work. First, how to construct a fingerprint for
each compressed file across the different compressed packages
to help detect redundant files? Second, how to remove such
redundant files compressed in different packages? Third, how
to integrate it into existing data deduplication system to detect
and remove redundant data between compressed packages and
uncompressed files? Fourth, how to deduplicate the redundant
files among solid compression packages?

D. Related Works

Deduplication was proposed to remove redundant data in
backup application [16]. As more and more data migrates to
the cloud, it has been integrated within the cloud platform [17].
Different from the backup storage systems where chunk-
level deduplication dominates, there exists strong evidence
indicating that file-level deduplication can achieve comparable
compression ratio to chunk-level deduplication in the cloud
environment [18] [19]. However, it remains a challenge to
find redundant data within a compressed package or among
different compressed packages because conventional methods
for detecting data redundancy usually scan the compressed
bitstream itself without touching its internal information.
Existing approaches, such as Migratory compression [20]
and Mtar [21], must reorganize the internal structure of the
compressed block, which makes them more suitable for a
non-cloud-like, controllable environment of a private compa-
ny/organization. More importantly, to ensure deduplicability,

they require the same compression algorithm and parameter-
set to be used to generate the same compressed blocks from the
duplicate input files, something Z-Dedup is designed to avoid.
X-Ray Dedup [7] has correctly identified the problem of the
hidden redundancy among compressed packages and proposed
a preliminary solution that combines file’s size and CRC-
32 metadata as its signature to detect and remove potential
redundant files only for the non-solid compression scheme.
However, it fails to provide a complete and generalizable
system design. More importantly, it lacks an in-depth and
comprehensive study of the collision problem and completely
ignores the security issue. For example, we find that the 32-
bit CRC checksum is not sufficient to avoid hash collisions
in a large-scale system. By the birthday paradox theory, the
collision rate of X-Ray Dedup will be 0.1% when there
are 1.9 x 10® different files stored in the system. It also
may suffer from security vulnerabilities such as the known-
hash attacks. Z-Dedup expands and improves X-Ray Dedup
substantially to support deduplication for both non-solid and
solid compressed packages. In addition to evaluating the data
deduplication benefits under these two compression schemes,
Z-Dedup fundamentally addresses the hash collision problem
by adding SHA-256 as the new checksum for compression.
This enables Z-Dedup to be seamlessly integrated into the
cloud storage environment at an acceptable hash collision
rate. Z-Dedup also adds an ownership verification scheme to
defend against possible known-hash attacks at the client side,
which can be extended to handle possible side-channel attacks
like the “confirmation-of-a-file” attack by injecting random
latencies.

III. DESIGN AND IMPLEMENTATION
A. Main Idea

A compression algorithm will encode an input stream into
an essentially different output stream, which makes it difficult
to generate a simple but unique indicator for mapping between
the input stream and the output stream. However, a critical
observation we gained through our analysis is that most
compression algorithms will pack files’ metadata informa-
tion within the compressed packages and, importantly, some
metadata, such as original file’s size and checksum, will be
invariant across all compressed packages. Therefore, the main
idea here is to combine this file-level invariant information as
a new and unique indicator for the mapping to help detect
redundant files across all the compressed packages globally.

This approach can be integrated into existing deduplication
systems to help remove redundant files if these files are com-
pressed in the non-solid compression method (SectionII-B1).
For solid compression, we can leverage this feature to estimate
the content similarity with any existing compressed packages.
If the incoming compressed package is considered sufficiently
similar to existing compressed packages, meaning that many
(but not all) of the individual files within the packages are
possibly identical to the files in existing stored compressed
packages, then the system can decide to deduplicate by first
uncompressing and then detecting and removing redundancy in

1 Package Parser

A Compressed Package

~ ClientSide
Deduplicator
Client

[

I Metadata
2 Signature Store

~ ChunkLevel ek &:’
Deduplicator

I~

=Y

File Chunker

Redundant File List

Similar Package List

3 !
5. Ownership Verifier = =
the Decompress the
2| Compressed Package | | © Solid Package

B Deduplicate .
2 Redundant Files -

Fig. 2: Z-Dedup’s main modules and workflow.

Compressed Package

2| Redundant File Filter

Server

the conventional way. This approach helps data deduplication
system quickly find out the solid compressed packages that
contain significant data redundancy. Otherwise, the system
will either ignore deduplicating solid compressed packages
or uncompressing every solid compressed package to perform
deduplication work.

B. System Design and Implementation

1) An System Overview of Z-Dedup: In Z-Dedup, once a
compressed package is ready to be uploaded to the cloud,
the client and the cloud server will exchange some metadata
information and perform deduplication at the client side, which
will generate a deduplicated compressed package. This scheme
not only decreases the cloud capacity requirement, but also
reduces the upload time from the client to the cloud server.

Figure 2 shows 7 main functional modules of Z-Dedup, each
enclosed by a dashed gray box. The numerical numbers next
to them both label them and indicate the order in which they
process the incoming compressed package. Package Parser is
responsible for parsing each compressed package to extract
its file-level signature metadata list. Redundant File Filter
detects duplicate files by looking up the file metadata signature
store, and for solid package, it also helps query its similar
package list. Client Side Deduplicator is responsible for either
removing compressed files in a non-solid package or deciding
whether or not to decompress a solid package and duplicate
redundant files at the client side. Compressed Package Recipe
Constructor books the necessary information for recovering a
deduplicated compressed package back to its original format.
Ownership Verifier verifies the client’s ownership to prevent
an attacker from illegally accessing the file by uploading a
fake metadata list. File Chunker and Chunk-level Deduplicator
perform conventional chunk-level deduplication.

2) Deduplicating Non-Solid and Solid Packages: Figure 2
also describes an overview of how Z-Dedup handles different
packages generated by the non-solid or solid compression
method to remove the redundant files. We list the main
functional modules’ labels (numbers) next to the structure
maintained by Z-Dedup to indicate the interactive relation-
ship between a particular functional module and its different
operational steps. More details are discussed in Figure 3.

For the non-solid compression, each individual file is com-
pressed independently. As a result, a non-solid compressed
package has already embedded sufficient metadata information
(i.e., each file’s original length and checksum information) to

easily locate a specific compressed file within the compressed
package. Z-Dedup can directly detect and remove the redun-
dant files within such a compressed package. On the other
hand, for the solid compression scheme, multiple files are first
combined into a single file by concatenating them in a certain
order, then compression is performed on the single file to store
the compressed stream into a compressed block. As such, a
solid compressed package lacks adequate information to locate
a specific compressed file within its compressed block because
multiple files are scattered across the compressed block and
boundaries between files are blurred at best.

In Z-Dedup, we inject metadata information (i.e., each
file’s original length and checksum information) per file into
each compressed block, as detailed in Section III-B4, so
as to help estimate the content similarity between any two
different compressed packages by the percentage of the shared
redundant files, (e.g., the higher the percentage the more
similar to the two packages are to each other). The similarity
detection in Z-Dedup entails estimating the likelihood of
finding many duplicate files between the incoming package
and those already stored in the cloud. Since extracting and
separating the compressed stream of a specific file from a
solid package incur very high overheads, Z-Dedup’s similarity
detection of solid compressed packages aims to ensure that an
incoming solid compressed package is uncompressed only if
it is likely to contain a sufficient number of duplicate files.

3) Workflow and Key Operations: Figure 3 illustrates an ex-
ample of deduplicating and restoring a non-solid compressed
package without considering the security issue that is dis-
cussed in Section III-C2. Initially, two non-solid compressed
packages, P1 and P2, are stored in the cloud server, and their
invariant metadata is stored in the File Metadata Signature
Store. Now, a non-solid package P3 is ready to be stored to
the cloud. P3 is parsed by the Package Parser to extract its
files’ metadata. Moreover, it also detects the locally redundant
file (i.e., E) within P3. Meanwhile, files’ compression order
is implicitly maintained by the Metadata List. Based on File
Metadata Signature Store, the Redundant File Filter can divide
files into two different groups: redundant files’ list (i.e., B, C
and E) and unique files’ list (i.e., A and D), where the former
also records each file’s order and pointer of the corresponding
file. The Client Side Deduplicator will remove duplicated files
to generate a Deduplicated Compressed Package that only
contains A and D. At the server side, the compressed package
recipe is generated and appended to the end of package by
the Compressed Package Recipe Constructor. Finally, it will
update the File Metadata Signature Store to incorporate P3’s
metadata information.

In order to restore a deduplicated non-solid package, Z-
Dedup must reassemble a package whose files’ order is the
same as the original compressed package. It will scan from
both sides of a deduplicated compressed package, in which the
left side contains compressed unique files within itself and the
right side contains the order and pointer information of the re-
dundant files. These redundant files can be decompressed from
other packages. Then based on files’ order information, the o-

File Metadata Signature Store

Files' List

Dea "l‘,”‘:“é g"‘“" . File Mctadata Signature Store opend package
eduplicated Compresse - append package
file2 B@ P1's B : . N y -
2 - - @ recipe at th f File Name Length Checksum @
Packages File Name Length Checksum @ file 3 C @ P2's C “,l,:,']',;qwd I,mk“;ﬂ» B zum? 00003456 P1
B 2000 00003456 P1 file 5 E @ P3's A ¥ 1800 00654321 P1
B,F,G F 1800 00654321 P1 § -
zip G 2400 00557281 P1
initial stat ¢ 200 o0ssTasl P c 500 00005678 P2
initial state s 5 5
p: ¢ 00 00005678 P2 Unique Files' List H 3500 0089ab12 P2
H 3500 0089abl2 P2
" 1 900 0000cd89 P2
@ 1 900 0000cd89 P2 file 1 A A 1000 00001234 B3
(@) fier redundant AT D 1500 00007890 P3
Server Side files update file metadata signature store
p:
. . package]
Clientsie ©
File Name Length =R Restore Exactly The Same Package
filel | A 1000 00001234 1) scan from the package recipe
file2 | B 2000 00003456 2) locate duplicated files in other
file3 | C 500 00005678 ABCDE;, Ei> AD 4 K d d d th
filed | D 1500 00007890 packages and decompressec them
file5 | E 1000 00001234 D 3) merge files to reconstruct files'

find duplicated files
within the package

™

FileName Length Checksum

filel | A 1000 0000123,

file2 | B 2000 00003456

file3 | C 500 00005678 | [
- filed | D 1500 00007890

file 5

E(A'S copy)

files' compression order
within the Packages

\
removed duplicated fi
compressed package

order of original data stream
4) compress the stream to restore

AB.CD.E exactly the same compressed package

compress the stream

A,B,L,D.Ezi

within the

—
merge files from two sides

®

Fig. 3: An example on a non-solid package’s deduplication and restoration.

riginal data stream will be reconstructed, and then compressed
by the original set of compression parameters to restore the
originally uploaded non-solid compressed package. We have
summarized the main restoration process in Algorithm 2.

Now we assume that the incoming package P3 is a solid
compressed one, whose file-level metadata information is
already injected at the end of the package as described in Sec-
tion I1I-B4. Once the redundant files’ information is obtained,
Z-Dedup will decide whether to remove the redundant files or
not. This is done by estimating how much redundant data is
contained within the incoming package P3 after querying the
already stored contents in the cloud (Section III-B2). Based on
the characteristics of source code packages, which are chosen
to evaluate the effectiveness of Z-Dedup approach in handling
the solid compression scenario, we find that it is simple but
effective to find the most similar solid compressed packages
to help remove the redundant files (i.e., find the most recent
source code package to help remove redundant file). However,
there is no way of quickly locating the compressed stream
of a particular file in a solid package. Different from directly
removing the redundant files within a non-solid package, once
we have verified that the incoming solid package contains
sufficient redundancy with the existing contents stored in the
cloud, we need to decompress the solid package to locate
and remove the redundant files first and then re-compress the
remaining content into a solid package to send it to the cloud
server. Moreover, it also maintains the concatenation order
of compressed files in the original solid package. During the
restore process, similar to the non-solid case, Z-Dedup will
first restore the file stream and then solid compress these files
to restore the original solid package.

4) Extending Compressed Packages’ Layout: In most com-
pression algorithms, files’ metadata information such as the
sizes of the original files and their checksums is already
packed within the compressed packages for the purpose of
data integrity. In Z-Dedup’s implementation, we choose the
combination of a file’s SHA-256 value and its size to construct
the file’s signature. For those compressed packages that do not
pack this information, we need to extend their data layout to
record this information. It can be implemented by adding an
optional feature to the compression tools to calculate and store

Algorithm 2 Restore a deduplicated compressed package.

FileCursor = 0
while FileStream is NOT FULL do
Left = decompressFile(Package[LeftIndex])
Right = findRedundantFile(Package[RightIndex])
if (toMerge(Package[RightIndex]) is LEFT) then
FileStream[FileCursor++] = Left
LeftIndex++
else
FileStream[FileCursor++] = Right
RightIndex++
end if
end while
Parameter = getCompress(Package)
RestoredPackage = Compress(FileStream, Parameter)

< <
Sl [2 gl [2
o nF = B 2 2= < 2 2
8 8
AR = - R L =~
= =S = @ =5 3= = 1) - IER
252 S < ||22E <€ S | [&SE 8
Z A2 EEER = | |ERE 3
S 2|l E= ERACHER-E= o |E
zl|e & zle = = =
=] =] = = 2
— | =
< oY
£ 5=
0 3|0
=g | - L
Sl |g El |2 S |=
sz 252 |ZF.E: =
2353 2823 . 2523
S SR S |ESE S S |5E3E =
S SIE 228 8 REER
Z2ez = |EHEE ek
SF B EY |zc g7
L |5 Zl |5

>
>«
file order metadata order

Fig. 4: Extending data layout of a compressed package.

this information in the compressed packages.

As shown in Figure 4, there are two different ways to pack
this information. One is inserting it to file’s metadata slot
for each compressed file, which is similar to the structure
of some compression algorithms that have already packed
such metadata in their packages. The other is appending it
at the end of a compressed package with a reverse order of
the input stream. We choose the second way to pack files’
metadata in this paper because it does not incur extra data
movements within a compressed stream, which is compatible
with existing compressed packages. Moreover, at the server
side, each deduplicated compressed package will append its
package recipe at the end of the deduplicated compressed
package to help recover the compressed package, where more
details are given in Section III-B1.

TABLE III: Collision rates for fingerprints of various lengths.

fingerprint number of hashed elements such that {probability of at least one hash collision > p}

checksum [length [| p=10—1% [p=10"15 [p=10"12 [p=10"9 [p=10=%° [p=01% [p=1% [p=25% [p=50%

32 64 6.1 1.9 x 102 6.1 x 103 1.9 x 105 6.1 x 10° 1.9 x 108 6.1 x 108 3.0 x 10° 4.3 x 109
64 96 4.0 x 10° 1.3 x 107 4.0 x 108 1.3 x 1010 | 4.0 x 10T | 1.3 x 10T | 4.0 x 10" | 2.0 x 10T | 2.81 x 101
128 160 1.7 x 107 [5.4 x 10T | 1.7 x 10™® | 5.4 x 10T | 1.7 x 10%T | 5.4 x 10?2 | 1.7 x 10%3 | 8.5 x 10%% | 1.2 x 10*%
160 192 1.1 x 1020 [3.5 x 1021 | 1.1 x 10%3 | 3.5 x 10%% | 1.1 x 1026 | 3.5 x 1027 | 1.1 x 10%® | 5.6 x 10%® | 7.9 x 10?8
224 256 4.8%x10%9 | 1.5 x 1037 | 4.8 x10%% | 1.5 x 103% | 4.8 x 10%° [1.5 x 1037 | 4.8 x 1037 | 2.4 x 1038 | 3.4 x 1038
256 288 32x10%% | 1.0x 1030 | 3.2x 1037 | 1.0 x 1039 | 3.2x 10T | 1.0 x 102 | 3.1 x 10%2 | 1.6 x 10%3 | 2.2 x 10%3
384 416 5.8 x 103 | 1.8 x 10°° | 5.8 x 10°% | 1.8 x 10°% | 5.8 x 10°9 [1.8 x 10%T | 5.8 x 108T | 2.9 x 10%% | 4.1 x 1052

C. Other Design Issues

1) Collision Analysis: Data deduplication requires a hash
function that can generate a unique fingerprint for each unique
data block. Suppose that a system contains N different files
where each file is represented by a b-bit hash value with a
uniform distribution, the probability p that there will be at
least one collision is bounded by the number of pairs of blocks
multiplied by the probability that a given pair will collide,
which is p < YD Loy,

Table III shows our estimated lower bounds on the numbers
of hashed elements with different collision rates under various
lengths of the checksum. For example, we can expect that,
if the total number of unique files (i.e., hashed elements) is
around several millions and the fingerprint is of 64 bits in
length (32-bit chechsum plus 32-bit file length), the collision
rate will be less then 10~%. From this table, we can deduce
that in a large-scale system, we might need to choose a
checksum value whose length is larger than 128. In Z-Dedup,
we propose to store files’ SHA-256 checksum information
at the end of each compressed package, which is explained
in Section III-B4. The extra space overhead is negligible as
explained in the example next. Assuming that the average
file size is 32 KB with an average compression rate of 4,
a 288-bit signature only adds 0.45% extra space overhead
to the compressed package. Moreover, we can integrate the
file metadata signature store into the existing lookup table of
deduplication systems.

2) Security of Client Side Dedup: Z-Dedup performs dedu-
plication at the client side without transferring all compressed
data to the server side, which exposes a common security
vulnerability in which an untruthful client may submit a faked
metadata list to mislead the cloud server into believing that it
owns the specific duplicated files already stored in the cloud
server, enabling it to illegally access such duplicated files.

In order to overcome this security problem, the Ownership
Verifier is added to verify if the client really owns the
duplicated files as indicated by its metadata list. The key idea
is to test whether the client really has the digital contents of the
redundant files by asking the client to send a randomly selected
sample segment of each claimed redundant file as follows. In
Step 2 of Figure 3, when a server has identified redundant files
that are claimed by a client’s metadata list, it will randomly
generate an address range within the size of each redundant
file, i.e., a randomly selected sample segment of the file, and
send this address information to the client. Meanwhile, it will
decompress the corresponding sample data of the redundant
files at the server side. In Step 3 of Figure 3, in addition
to performing client side deduplication, the client needs to

decompress the corresponding sample data of the redundant
files specified by the sample segment address information, and
send this data to the cloud server to verify the ownership of
the corresponding files. A last step is to compare the sample
data at the server side, where a match indicates the true
ownership of the client and a fraudulent claim to ownership
otherwise. Once the client has passed this test, its deduplicated
compressed package will be accepted by the server.

IV. EVALUATION
A. Experimental Environment

We use three desktops to emulate a simple cloud storage
scenario. Two different clients run under Ubuntu14.04 and
Windows7 with the EXT4 and NTFS file systems respec-
tively. Both have installed some common compression tools
that are listed in Table V. Throughout this work, we have
collected the compressed packages generated from both the
Linux and Windows platforms by using Ubuntu14.04 and
Windows7 to emulate such a cloud storage scenario because
they represent the most popular client platforms that will likely
generate and store compressed contents to the cloud. One
storage server runs under Ubuntu16.04 with all necessary
compression tools to access the compressed packages received
from different clients. All these three machines are equipped
with one 7 — 6700K processor, four 16GB DDR4 main
memory, and one 6TB WD black HDD. We use Destor [23] as
the traditional chunk-level deduplication engine. It is designed
for backup applications with various chunk-level data dedu-
plication algorithms. We have added a file-level deduplication
process to implement Z-Dedup in this simulated environment.

Due to the privacy issue, we are not able to collect any
real users’ data in the cloud storage environment. In order to
proof our Z-Dedup concept, we have collected several publicly
available source code packages (i.e., coreutils, gcc, Linux ker-
nel and Silesia corpus) plus some binary files, which include
jpg, pdf, mp3, ppt, doc, and exe files, to form our datasets to
test the effectiveness of integrating Z-Dedup into an existing
deduplication-based storage system to detect and remove the
data redundancy concealed by differently compressed pack-
ages. The reason why we collect these binary files is because
these source code packages have a large number of small files,
lack large files and all are represented by English characters,
whose features make it suitable for them to be compressed
into a solid compression package. Moreover, we randomly
select some binary files to synthetically generate a compressed
package workload (syn_data) to represent the scenario of
multiple users sharing various types of files compressed by
different tools. These binary files are usually used to comprise

TABLE 1V: Sizes (KiB) of different compression formats under

TABLE V: Compression tools in the two client sites.

the Linux and Windows platforms, where the first number in tar gzip | xz zip | 7z rar
each entry represents the size under Ubuntul4.04 and the second windows 7 1.28-1 | 1.6 | 522 3.0 | 15.098 | 531
number represents the size under Windows?7. ubuntu 14.04 || 1.27.1 | 1.6 | 5.1.0cc | 3.0 | 9.20 4.20
coreutils-8.25 | gce-5.3.0 linux-4.5-rc5 silesia corpus ubuntu-16.04 || 1.27.1 | 1.6 5.1.0a | 3.0 | 920 5.3082

tar 49990/49990 601480/601480 | 642550/642550 | 206980/206990 TABLE VI: Redundancy ratio (the total size of detected duplicate
oo TR T | 121332201 | 1326087132609 | GcegiesadoCunks divided by the total size of a compressed package
£z = between any pair of compressed packages of the same content,
7z_|| 6169/5723 72256/71434 93561/89437 48563/48279 indicates the compression one by the corresponding compression
rar 12402/12401 148255/148177 | 156310/155135 | 53454/53451

the lossless data compression corpora, which include various
types of files in different sizes, to evaluate the effectiveness of
compression algorithms. We use several common compression
tools to translate these compressed packages into various
compression formats, which include both non-solid and solid
compression schemes.

B. Results and Analysis

1) Analysis on Compressed Content: Table IV lists the
various sizes of different formats for a specific version of se-
lected datasets under both the Ubuntu and Windows platforms.
We use the default parameters to convert the data package
downloaded from the Internet into different package formats.
We find that compression tools can significantly reduce the
original digital contents’ sizes. Especially, rar generates the
non-solid compressed packages by default while 7z gener-
ates the solid compressed packages. Solid compression has
achieved significantly higher compression ratios than non-solid
compression. Moreover, source code packages have gained
much higher compression ratios than binary files.

As shown in Table VI, we find that nearly all pairs of
compressed packages have 0% data redundancy between them,
a few pairs have 0.05%-7.63% data redundancy. The only
exception is “tar.xz”, which has generated 100% identical
compressed packages from both the Ubuntu and Windows
platforms, indicating xz-5.2.2 and xz-5.1.0c share the same
core algorithm. We further verify that these packages share
0% redundancy with the compressed packages generated by
xz-5.0.8. Although most packages have similar sizes across the
two platforms, our study shows that: (1) except for “tar.xz”,
the compressed packages are fundamentally different from one
another even under the same compression algorithm; (2) for
the same digital contents, different compression algorithms
will generate fundamentally different data streams; (3) a com-
pressed package itself has very low data redundancy (0-0.05%)
at the chunk level. All these results indicate that traditional
data deduplication methods cannot detect data redundancy in
the compressed packages.

2) Hidden Content Redundancy in Compressed Packages:
In order to evaluate the real data redundancy among different
compressed packages, we decompress various versions of
compressed packages and apply the chunk level duduplication
engine on them. As shown in Figure 5, we plot both local
and global data redundancies, where the former represents the
redundancy within the current version and the latter represents
the redundancy among all versions. We find that most pack-
ages have very low local data redundancy within themselves.
Although both the local and global data redundancy rates

algorithm in the Ubuntu platform (row) and the other by the
corresponding algorithm in the Windows platform. A zero or
near-zero entry in the table means that there is no or nearly no
detectable redundancy between the two compressed packages of
the exact same content.

coreutils linux
XZ gz Tz | rar | xz gz 7z | rar
xz | 100 | O 0 0 0 0 0 0.05
coreutils 127 0 76 | O 0 0 0 0 0.05
7z | 0 0 0 0 0 0 0 0.05
rar | 0 0 0 1.0 |0 0 0 0.05
xz | 0 0 0 0 100 | O 0 0.05
linux gz | 0 0 0 0 0 56 | 0 0.05
7z | 0 0 0 0 0 0 0 0.05
rar | 0 0 0 0 0 0 0 0.24

vary over different versions, the global data redundancies
are very high across different versions, indicating that high
data redundancy exists among these packages. The test data
sets are selected in such a way that they represent the most
common types of modifications to data stored in the cloud.
As such, we chose coreutils that selects continuous releases
(including major, minor and patch) to represent small and
frequently modified data sets, gcc that selects a major release
after several minor or patch releases to represent the mixture
of slightly and signifcantly modified data sets, and Linux that
chooses discontinuous major or minor releases to represent the
significantly modified data sets. In particular, the gcc and linux
datasets contain a lot of stale and legacy code compared to
coreutils, so their data redundancy is higher than the coreutils
dataset. As illustrated in Figure 6, coreutils’s data redundancy
is lower than that of gcc and linux, gcc’s data redundancy
will drop when encountering any major release packages,
and linux’s data redundancy is low in the first few packages
and increases in the last few packages, because the last few
packages come from some minor releases that do not have too
many modifications. All these results indicate that there are a
lot of duplicate files within these compressed packages, which
can be detected and removed by Z-Dedup.

3) Performance of Z-Dedup: File level redundancy ranges
from 1.39% to 26.46% in coreutils, 95.21% to 97.55% in
gce, 9.04% to 55.55% in Linux, and 48.50% to 90.75% in
syn_data. Z-Dedup is designed to identify and remove this
kind of hidden redundant data. Our experiments show that Z-
Dedup is able to reduce the size of compressed packages by
1.61%-35.78% in coreutils, 83.12%-98.75% in gcc, 11.05%-
65.59% in Linux and 38.28% to 84.25% in syn_data with
its file-level data deduplication. We find that some coreutils
versions have major modifications made to most files, leading
to a very low file-level redundancy. As a result, Z-Dedup
can scan an incoming compressed package, to estimate the
level of redundancy in the package by checking its metadata

100% - 100%
90% | 90%+ T
-2 80% 4 80% -
5
& 70%4 f
z |
2'60%

=
S 50% 1

70%
60% -
50%
§ 40% 4 40%
30%

& 30%4
s

—=—1local
| —e—global

Data Redundancy Ratio

= 20% 20% |

a

|
10% - 10%

Data Redundancy Ratio
2 32
NS
B
|
/
\7
Data Redundancy Ratio

o001
B e
o

20%+ | —=—local
—e—global

0% 0% +—————T—T— T

(a) coreutils (20 versions) (b) gec (18 versions)

(c) linux (11 versions)

(d) syn_data (15 versions)
Fig. 5: Real data redundancy throughout different versions of decompressed packages.
TABLE VII: Various checksum algorithms’ computation overheads with Intel 6700K processor.

Algorithms CRC32 | CRC32C | MD5 | SHA-1 SHA-256 | SHA3-224 | SHA3-256 | RIPEMD-160 | RIPEMD-256 | BLAKE2s | BLAKE2b
MiB Per Second 610 5271 742 695 341 475 453 302 584 769 1128
Cycles Per Byte 6.3 0.7 5.1 5.5 11.2 8.0 8.4 12.6 6.5 5.0 3.4

information and opt out performing file level deduplication
when there is very little file level redundancy for this package.
However, extracting metadata information from these low-
redundancy compressed packages is still necessary and in fact
important because there could be high file-level redundancy in
the compressed packages of the subsequent versions.

After evaluating the effectiveness of Z-Dedup, we want to
evaluate the extra overheads that come with this approach.
In Table VII, we obtain the computation overheads of several
popular hash algorithms used to generate the checksum values
within the compressed packages with Intel’s 4GHz 6700K
processor. We find that SHA-256 incurs 1.79x computation
overhead than the traditional CRC32 algorithm. By choosing
SHA-256 as the checksum algorithm for Z-Dedup, we can
also reuse the existing fingerprint table, which contains the
SHA-256 hash values, in existing data deduplication systems.

We use the source code packages that contain a large num-
ber of small files to evaluate the overheads on maintaining and
processing the necessary metadata in the Z-Dedup approach.
In general, using a source code package as a target to simulate
deduplicating a non-solid compressed package can incur the
worst overheads in deduplicating compressed contents because
it requires a number of operations proportional to the number
of files in the package but saving very little space because
all the files are small in size. At the same time, we use
the synthesized packages that contain various types of large
size files to more realistically evaluate the overheads on
deduplicating non-solid compressed packages. We find that Z-
Dedup will slightly increase the size of compressed packages
because it needs to inject the SHA-256 checksums within the
compressed packages. In fact, this space overhead is found
to be less than 0.45% of the total compressed package’s
size. All these results indicate that Z-Dedup can reduce a
significant amount of redundant data in compressed packages
in a traditional deduplication-based storage system without
significant overheads.

4) Network Traffic Reduction: We show the amounts of data
transferring to the server side under different workloads in
Figure 6, while each data is normalized to its corresponding
uncompressed package’s size on both non-solid and solid com-
pression modes to learn the benefits of data reduction for net-
work transmission. In particular, the 7z and rar compressions
will reduce the amount of coreutils data to 10.69% and 23.76%

of their original sizes in geometric average, while Z-Dedup
can further reduce these to 4.16% and 9.82% by exploiting
the data redundancy embedded in these compressed packages.
Moreover, the 7z and rar compressions will reduce the amount
of gcc data to 11.30% and 23.28%, linux data to 13.32% and
23.01%, syn_data data to 36.83% and 41.37% in geometric
average; while Z-Dedup can further reduce these data to 0.62%
and 1.28% in gcc, 4.69% and 8.30% in linux, and 4.16%
and 4.70% in syn_data. Note, binaries files in syn_data show
different redundant data curves than source code packages
because these data usually have lower compression ratios than
plain-text files. From this evaluation, we further verify that
Z-Dedup can reduce most data transferring to the network

Besides the reduced data network traffics, we have also
evaluated Z-Dedup’s total processing times that include the
local processing time and network transmission time. Z-Dedup
can reduce the processing time by 10.71% to 31.52% without
verifying file’s ownership. It will reduce this time by 2.74%
to 21.32% after adding the ownership verification.

V. CONCLUSION

In this paper, we designed and implemented Z-Dedup, a
novel deduplication technique designed to detect and remove
data redundancy in compressed packages for which conven-
tional chunk-fingerprint based deduplication approaches have
failed. The main idea of Z-Dedup is to exploit some key
invariant information embedded in the metadata of compressed
packages, such as file-based checksum and original file length-
s, as the unique signatures of individual compressed files. The
design and implementation of Z-Dedup also address a potential
security vulnerability due to client-site compression, as well as
packages generated by both non-solid and solid compression
methods. Our evaluation of a Z-Dedup prototype shows that
it reduces up to 98.75% more redundant data in compressed
packages than traditional deduplication system.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable feedback and constructive suggestions. This research
is partially supported by Chongqing High-Tech Research Pro-
gram (cstc2016jcyjA0274), National Natural Science Founda-
tion of China(61402061), Fundamental Research Funds for
the Central Universities (2018CDXYJSJ0026), research grant
from NetApp and the U.S. National Science Foundation (NSF)

] | TN\
Al
% T

1o e e e e 0000000000000

i

i
—=— 7z(solid) —e— rar(non-solid) g

Z —e— rar(non-solid)
—A— Z-Dedup(non-solid) —v— Z-Dedup(solid)]

—A— Z-Dedup(non-solid) —v— Z-Dedup(solid)

P
¥ /—v
/

A==V YN

(a) coreutils (20 versions) (b) gec (18 versions)

Send to Netw

Normalized Data

S
b
N

. B
*~—o—o o oo 40% 7
—m— 7x(solid) —e— rar(non-solid) 35% |

—4&— Z-Dedup(non-solid) —¥— Z-Dedup(solid)

—&— Tz(solid) —®— rar(non-solid)

—4— Z-Dedup(non-solid) —v— Z-Dedup(solid)

25%9 ||

Normalized Data Send to Network
=

11

(c) linux (11 versions) (d) syn_data (15 versions)

Fig. 6: Data to be sent to the cloud server, while each number is normalized to the total size of its uncompressed package’s size.

under Grant Nos. CCF-1704504 and CCF-1629625. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the funding agencies.

(1]

(2]

(3]

(4]

(51
(6]

(71

(8]

(9]

[10]

[11]

REFERENCES

J. Gantz and D. Reinsel, “The digital universe in
2020: Big data, bigger digital shadows, and biggest
growth in the far east,” https://www.emc.com/collateral/
analyst-reports/idc-the-digital-universe-in-2020.pdf,
2012.

EMC, “Managing storage: Trends, challenges, and
options(2013-2014),” https://education.emc.com/content/
_common/docs/articles/Managing_Storage_Trends_
Challenges_and_Options_2013_2014.pdf, 2013.

B. Walker, “Every day big data statistics - 2.5 quintillion
bytes of data created daily,” http://www.vcloudnews.com/
wp-content/uploads/2015/04/big-data-infographicl.png,
2015.

P. Deutsch, “Rfc1951 deflate compressed data for-
mat specification version 1.3, https://www.ietf.org/rfc/
rfc1951.txt, 1996.

L. Pavlov, “7-zip,” http://www.7-zip.org/.

Y. Tan, H. Jiang, D. Feng, L. Tian, Z. Yan, and
G. Zhou, “Sam: A semantic-aware multi-tiered source de-
duplication framework for cloud backup,” in Proceedings
of the 39th International Conference on Parallel Process-
ing, 2010, pp. 614-623.

Z. Yan, H. Jiang, Y. Tan, and H. Luo, “Deduplicating
compressed contents in cloud storage environment,” in
Proceedings of the 8th USENIX Conference on Hot
Topics in Storage and File Systems, 2016.

Cisco, “Cisco visual networking index: Forecast
and methodology, 2015c¢2020,” http://www.cisco.
com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/vni-hyperconnectivity-wp.
html, 2016.

C. Policroniades and I. Pratt, “Alternatives for detecting
redundancy in storage systems data,” in Proceedings of
the Annual Conference on USENIX Annual Technical
Conference (ATC), 2004, pp. 6-6.

J. Ziv and A. Lempel, “A universal algorithm for sequen-
tial data compression,” IEEE Transactions on Informa-
tion Theory, vol. 23, no. 3, pp. 337-343, 1977.

J. Ziv and A. Lempel, “Compression of individual se-
quences via variable-rate coding,” IEEE Transactions on
Information Theory, vol. 24, no. 5, pp. 530-536, 1978.

[12]

[19]

P. Inc.,, “zip file format specification (version
6.3.4),” https://pkware.cachefly.net/webdocs/casestudies/
APPNOTE.TXT, 2014.

A. Roshal, “Rar,” http://www.rarlab.com/.

J. Bonwick, ‘“Zfs deduplication,” https://blogs.oracle.
com/bonwick/entry/zfs_dedup, 2009.

P. Storage, “Pure storage flasharray,” http:
/finfo.purestorage.com/rs/225-USM-292/images/Pure_
Storage_FlashArray_Datasheet.pdf, 2015.

B. Zhu, K. Li, and H. Patterson, “Avoiding the disk
bottleneck in the data domain deduplication file system,”
in Proceedings of the 6th USENIX Conference on File
and Storage Technologies, 2008, pp. 18:1-18:14.

M. Vrable, S. Savage, and G. M. Voelker, “Cumulus:
Filesystem backup to the cloud,” in Proccedings of the
7th Conference on File and Storage Technologies, 2009,
pp. 225-238.

D. T. Meyer and W. J. Bolosky, “A study of practical
deduplication,” in Proceedings of the 9th USENIX Con-
ference on File and Stroage Technologies, 2011, pp. 1-1.
Y. Tan, H. Jiang, D. Feng, L. Tian, and Z. Yan,
“Cabdedupe: A causality-based deduplication perfor-
mance booster for cloud backup services,” in 2011
IEEE International Parallel Distributed Processing Sym-
posium, 2011, pp. 1266-1277.

X. Lin, G. Lu, F. Douglis, P. Shilane, and G. Wallace,
“Migratory compression: Coarse-grained data reordering
to improve compressibility,” in Proceedings of the 12th
USENIX Conference on File and Storage Technologies,
2014, pp. 257-271.

X. Lin, F. Douglis, J. Li, X. Li, R. Ricci, S. Smal-
done, and G. Wallace, “Metadata considered harmful ...
to deduplication,” in Proceedings of the 7th USENIX
Conference on Hot Topics in Storage and File Systems,
2015, pp. 11-11.

S. Quinlan and S. Dorward, “Venti: A new approach to
archival storage,” in Proceedings of the Conference on
File and Storage Technologies (FAST), 2002, pp. 89-101.
M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia,
Y. Zhang, and Y. Tan, “Design tradeoffs for data dedu-
plication performance in backup workloads,” in Proceed-
ings of the 13th USENIX Conference on File and Storage
Technologies, 2015, pp. 331-344.

