
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019 1017

S

Improving Flash Memory Performance and
Reliability for Smartphones With

I/O Deduplication
Bo Mao , Member, IEEE, Jindong Zhou, Suzhen Wu, Member, IEEE,

Hong Jiang , Fellow, IEEE, Xiao Chen, and Weijian Yang

Abstract—Flash-based storage subsystem is the key compo-
nent that affects the system performance, reliability, and cost
efficiency of Android-based smartphones. In this paper, we first
introduce a trace collection tool specifically designed to capture
the I/O requests with important content features in Android-
based smartphones, which are critically important but rarely
available in content-aware designs and optimizations, such as
JProbe and Netlink. Based on the analysis of the traces collected
from 15 popular mobile applications, we find that 20%–40% of
the I/O requests on the I/O critical path of the storage stack are
redundant and this data redundancy is minimally shared among
different applications. Based on this key observation, we propose
a content-aware optimization, called APP-Dedupe, that applies
data deduplication on the I/O critical path to improve both
performance and efficiency by reducing write amplification and
improving GC efficiency of the flash storage on Android smart-
phones. The evaluation results show that APP-Dedupe reduces
the GC overhead by an average of 41.5%, reduces the response
times by up to 15.4% and reduces the amount of write data by
an average of 45.2%.

Index Terms—Flash-based storage, I/O deduplication, smart-
phones, trace collection.

I. INTRODUCTION

TORAGE is one of the key factors affecting the overall
system performance and reliability of the Android-based

smartphones [6], [18], [19], [28]. The mobile applications,
often referred to as “APP,” in Android-based smartphones
generate I/O requests that have different characteristics than
those generated by nonmobile applications. The storage sub-
system of smartphones usually relies on flash-based embedded
multimedia controller (eMMC) memory, with either a disk

Manuscript received November 11, 2017; revised January 14, 2018 and

March 3, 2018; accepted April 5, 2018. Date of publication May 8, 2018;
date of current version May 20, 2019. This work was supported in part by
the National Natural Science Foundation of China under Grant 61772439,
Grant U1705261, and Grant 61472336, and in part by the U.S. NSF under
Grant CCF-1704504 and Grant CCF-1629625. This paper was recommended
by Associate Editor Z. Shao. (Corresponding author: Bo Mao.)

B. Mao and J. Zhou are with the Software School of Xiamen University,
Xiamen 361005, China (e-mail: maobo@xmu.edu.cn).

S. Wu, X. Chen, and W. Yang are with Computer Science Department,
Xiamen University, Xiamen 361005, China (e-mail: suzhen@xmu.edu.cn).

H. Jiang is with the Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, TX 76019 USA (e-mail:
hong.jiang@uta.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2834395

file system (such as Ext4) or a flash file system (such as
F2FS [23]).

Generally speaking, the storage stack of current smart-
phones faces three challenges. First, the performance tends to
degrade after repeated usages, particularly writes, due to the
physical characteristics of the flash memory, also one of the
reasons why smartphones slow down over time [5], [14], [40].
Second, one of these physical characteristics of flash memory
is its limited life cycles [49], i.e., the number of times each
cell can be programmed/written before it fails, and causes
the flash storage to get sluggish after repeated usages, which
affects the storage reliability of smartphones. Third, the cost of
upgrading the flash capacity from one level to the next level,
e.g., from 16 to 32 GB, amounts to nearly 100 USD for most
smartphones (for example, Apple iPhones). Therefore, these
challenges, pointing to the measures of performance, relia-
bility, and cost, suggest that it is important to 1) understand
the mobile applications and how they interact with the flash-
based eMMC and 2) optimize to reduce write traffic to the
flash-based eMMC in smartphones.

Data deduplication and its applications in flash-based stor-
age systems have been well studied in [36] and [45]. Some
studies have shown that by leveraging the deduplication tech-
nology to reducing the write traffic, the system performance
and reliability of the storage stack of conventional, nonmo-
bile systems can be significantly improved [4], [13]. However,
the unique characteristics of mobile devices and mobile
applications make straightforwardly applying deduplication in
Android-based smartphones both less effective and more chal-
lenging [21]. For example, the mobile devices have much
smaller memory capacity than nonmobile systems, which
implies that mobile applications must be made memory effi-
cient to attain acceptable performance. On the other hand,
the user-facing nature of smartphones implies, and confirmed
by our experimental observation, that only one application
is usually running in the foreground while all the other
opened applications are hung up in the background in the
Android-based smartphones.

To make data deduplication effective and efficient in smart-
phones, we need to understand and gain insight into the data
redundancy and unique characteristics of mobile applications
by collecting and analyzing content-aware application traces.
Unfortunately, due to the dataset privacy leakage risk, content-
aware trace collections are rarely done in storage systems [12],

0278-0070 Qc 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://ieeexplore.ieee.org/
http://www.ieee.org/publications_standards/publications/rights/index.html

1018 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019

let alone publicly available traces with content features, with
the exception of the FIU department traces available in the
SNIA trace repository [22]. To address this problem, we design
a low-overhead content-aware trace collection tool, which can
be used both offline and online. Using this tool, we collected
traces of 15 popular mobile applications. Our workload anal-
ysis of 15 popular mobile applications reveals that an average
data redundancy of 33.1% exists in mobile applications but this
redundancy is minimally shared among these applications.

Therefore, we propose APP-Dedupe for Android-based
smartphones to address the aforementioned challenges. Instead
of treating data chunks from all application streams equally,
APP-Dedupe organizes the hash (fingerprint) index in an
application-aware way, effectively grouping the hash index
of the same application (short for APP) together and divid-
ing the whole hash index into different groups based on the
application types. When an application is running in the fore-
ground, APP-Dedupe loads the corresponding hash index of
the application into the memory, thus improving the efficiency
of the memory for the hash index. Moreover, it groups the
data chunks of the same application together on the flash
to alleviate the read amplification problem (i.e., fragmenta-
tion caused by deduplication) and exploits the spatial locality
to improve the read performance. The extensive trace-driven
experiments conducted on our lightweight prototype imple-
mentation of APP-Dedupe show that APP-Dedupe reduces the
GC overhead by an average of 41.5%, reduces the response
times by up to 15.4% and reduces the amount of write data
by an average of 45.2%.

The main contributions of this paper are threefold.
1) We design a low-overhead content-aware trace collection

tool that captures the I/O requests in the storage stack
in Android-based smartphones.

2) We collect the traces with content features from 15 pop-
ular applications and perform in-depth I/O analysis. We
find that 20% to 40% of the I/O requests on the I/O crit-
ical path of the storage stack are redundant and this data
redundancy is minimally shared among different appli-
cations. To the best of our knowledge, currently no such
study exists for the Android-based smartphones.

3) We propose APP-Dedupe to improve the storage effi-
ciency of Android-based smartphones. The trace collec-
tion tool, the 15 traces and the image of the prototype
system are available for academic purposes.

The rest of this paper is organized as follows. Section II
presents the trace collection tool and workload characteristics
in Android-based smartphones. The design and implementa-
tion of APP-Dedupe is presented in Section III. Section IV
describes the performance results through the extensive evalu-
ations on the APP-Dedupe prototype. The conclusion is given
in Section V.

II. TRACE COLLECTION AND ANALYSIS

In this section, we first present the design of a content-aware
trace collection tool in Android-based smartphones. Then we
analyze the workload characteristics of the traces collected by
this tool to motivate our App-Dedupe study.

A. Content-Aware Trace Collection
While trace collections on enterprise storage systems have

been well studied, there is limited effort on trace collection
in mobile systems. In particular, currently only MOST [16]
and BIOtracer [48] are designed for I/O trace collections in
Android-based smartphones and they only capture the I/O
requests behaviors (e.g., size, read/write patterns, etc.) with-
out including any content values or features. Yet, it is the
content features of the traces that enable one to analyze the
data redundancy characteristics of I/O accesses in Android-
based smartphones. For this reason, we design a content-aware
trace collection tool, called MobileCT. MobileCT collects the
traces that contain the basic I/O request information, the pro-
cess names and the content features. First, it captures the basic
information of an I/O request via the bio structure, includ-
ing time, R/W, offset, and size, and copies the data of the
request for the subsequent hash computing of the content.
Second, it explores the Linux kernel tracepoint infrastructure
to track requests in-flight through the block I/O stack, similar
to the blktrace infrastructure which can capture the process
ID (PID) and process name information [38]. Based on the
process information, the specific application is recorded by
MobileCT. Third, it splits the data into 4KB chunks and cal-
culates the MD5 fingerprint for each chunk. Finally, the basic
information and hash values of the I/O requests are recorded
in the trace file and transferred to the user level.

There are two major challenges facing content-aware trace
collection in Android-based smartphones, namely, how to
anonymize the contents to protect the privacy of the users [36]
and how to minimize the interference between the trace cap-
turing operations and the user I/O requests to reduce collection
overhead [48]. For the first privacy challenge, similar to the
FIU traces [22], we also use the MD5 fingerprints to repre-
sent the content feature for the deduplication research without
leakage of the location or personal information [46]. For the
overhead challenge, since the processing resources in Android-
based smartphones are limited and hash computing for chunk
fingerprints can be resource demanding, the aforementioned
interference, if not avoided or minimized, can adversely affect
the application performance and/or the accuracy of the traces.
To address this challenge, MobileCT uses a circular buffer to
temporarily store the write data and delay the subsequent MD5
computing of the data chunks to avoid the interference and
contention on the CPU resources. Fig. 1 shows the trace collec-
tion workflow in MobileCT. JProbe is a servlet for inspecting
the bio→end_io() function and Netlink_sock is used for the
data transfer between the user space and the kernel space.

B. Workload Characteristics
The traces presented in this paper are collected from 15

applications on the Google Nexus 5 smartphone (running
Android 5.0.1 with Linux Kernel 3.4). We compare the chunk
fingerprints of the 15 data sets using the chunk-level dedupli-
cation with 4 KB chunk size. The trace characteristics are
summarized in Table I, which shows that the data redun-
dancy of the mobile applications is between 20% to 40%, with
an average of 33.1%. Of particular interests are the findings

1026 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019

energy efficiency. On the other hand, the hash computing con-
sumes extra processing power. As a result, another important
objective of APP-Dedupe is to improve the energy efficiency,
in addition to the performance improvement and capacity
saving. As a direction of future work, we will investigate
the power consumption issue associated with deduplication
in smartphones. Second, from our experimental results, we
observe that different applications have different data char-
acteristics. Depending on such characteristics, deduplication
may not always improve the performance. Thus, deduplication
for the mobile applications should be dynamically enabled or
disabled. We will investigate how to dynamically apply dedu-
plication on the smartphone storage at runtime to improve the
flexibility of APP-Dedupe.

ACKNOWLEDGMENT

The authors would like to thank the ASTL members for
their continues support and discussion.

REFERENCES

[1] (2017). A1 SD Bench—SD Card Benchmarking App. [Online]. Available:
http://a1dev.com/sd-bench/

[2] N. Agrawal et al., “Design tradeoffs for SSD performance,” in Proc.
USENIX Annu. Tech. Conf. (ATC), Jun. 2008, pp. 57–70.

[3] J. Bucy, J. Schindler, S. Schlosser, and G. Ganger. (May 2008).
The DiskSim Simulation Environment Version 4.0 Reference
Manual. [Online]. Available: http://www.pdl.cmu.edu/PDL-
FTP/DriveChar/CMU-PDL-08-101.pdf

[4] F. Chen, T. Luo, and X. Zhang, “CAFTL: A content-aware flash trans-
lation layer enhancing the lifespan of flash memory based solid state
drives,” in Proc. 9th USENIX Conf. File Storage Technol. (FAST),
Feb. 2011, p. 6.

[5] R. Chen et al., “Image-content-aware I/O optimization for mobile vir-
tualization,” ACM Trans. Embedded Comput. Syst., vol. 16, no. 1,
pp. 1–24, 2016.

[6] R. Chen et al., “vFlash: Virtualized flash for optimizing the I/O
performance in mobile devices,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 36, no. 7, pp. 1203–1214, Jul. 2017.

[7] J. Courville and F. Chen, “Understanding storage I/O behaviors of
mobile applications,” in Proc. IEEE 32nd Symp. Mass Storage Syst.
Technol. (MSST), Santa Clara, CA, USA, May 2016, pp. 1–11.

[8] (2017). Data Storage Options for Android Developers. [Online].
Available: http://developer.android.com/guide/topics/data/data-
storage.html

[9] A. El-Shimi et al., “Primary data deduplication—Large scale study
and system design,” in Proc. 2012 USENIX Annu. Tech. Conf. (ATC),
Jun. 2012, pp. 285–296.

[10] (2016). FlashReduce Data Reduction in Pure Storage, [Online].
Available: http://www.purestorage.com/flash-array/flashreduce.html

[11] Y. Fu, H. Jiang, N. Xiao, L. Tian, and F. Liu, “AA-Dedupe: An
application-aware source deduplication approach for cloud backup ser-
vices the personal computing environment,” in Proc. IEEE Int. Conf.
Cluster Comput. (Cluster), Austin, TX, USA. Sep. 2011, pp. 112–120.

[12] R. Gracia-Tinedo et al., “SDGen: Mimicking datasets for content gener-
ation in storage benchmarks,” in Proc. 13th USENIX Conf. File Storage
Technol. (FAST), Feb. 2015, pp. 317–330.

[13] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam,
“Leveraging value locality in optimizing NAND flash-based SSDs,” in
Proc. 9th USENIX Conf. File Storage Technol. (FAST), Feb. 2011, p. 7.

[14] S. Hahn et al., “Improving file system performance of mobile storage
systems using a decoupled defragmenter,” in Proc. USENIX Annu. Tech.
Conf. (USENIX), Jun. 2017, pp. 759–771.

[15] J. Huang, A. Badam, R. Chandra, and E. B. Nightingale, “WearDrive:
Fast and energy-efficient storage for wearables,” in Proc. USENIX Annu.
Tech. Conf. (ATC), Jun. 2015, pp. 613–625.

[16] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/O stack optimization
for smartphones,” in Proc. USENIX Annu. Tech. Conf. (ATC), Jun. 2013,
pp. 309–320.

[17] C. Ji et al., “An empirical study of file-system fragmentation in mobile
storage systems,” in Proc. 8th USENIX Workshop Hot Topics Storage
File Syst. (HotStorage), Jun. 2016, pp. 1–5.

[18] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for smart-
phones,” in Proc. 10th USENIX Conf. File Storage Technol. (FAST),
Feb. 2012, p. 17.

[19] S.-H. Kim, J. Jeong, and J. Lee, “Selective memory deduplication for
cost efficiency in mobile smart devices,” IEEE Trans. Consum. Electron.,
vol. 60, no. 2, pp. 276–284, May 2014.

[20] W.-H. Kim, B. Nam, D. Park, and Y. Won, “Resolving journaling of
journal anomaly in android I/O: Multi-version B-tree with lazy split,”
in Proc. 12th USENIX Conf. File Storage Technol. (FAST), Feb. 2014,
pp. 273–285.

[21] Y. Kim, M. Imani, S. Patil, and T. S. Rosing, “CAUSE: Critical appli-
cation usage-aware memory system using non-volatile memory for
mobile devices,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Austin, TX, USA, Nov. 2015, pp. 690–696.

[22] R. Koller and R. Rangaswami, “I/O deduplication: Utilizing content sim-
ilarity to improve I/O performance,” in Proc. 8th USENIX Conf. File
Storage Technol. (FAST), Feb. 2010, pp. 211–224.

[23] C. Lee, D. Sim, J. Y. Hwang, and S. Cho, “F2FS: A new file system
for flash storage,” in Proc. 13th USENIX Conf. File Storage Technol.
(FAST), Feb. 2015, pp. 273–286.

[24] W. Lee et al., “WALDIO: Eliminating the filesystem journaling in
resolvingthe journaling of journal anomaly,” in Proc. USENIX Annu.
Tech. Conf. (ATC), Jun. 2015, pp. 235–247.

[25] C. Li et al., “Nitro: A Capacity-optimized SSD cache for primary stor-
age,” in Proc. USENIX Conf. USENIX Annu. Tech. Conf. (USENIX),
Jun. 2014, pp. 501–512.

[26] H. Luo, H. Jiang, Z. Yan, and Y. Yang, “Fast transaction logging for
smartphones,” in Proc. IEEE 32nd Symp. Mass Storage Syst. Technol.
(MSST), May 2016, pp. 1–5.

[27] B. Mao, H. Jiang, S. Wu, and L. Tian, “POD: Performance oriented
I/O deduplication for primary storage systems in the cloud,” in Proc.
IEEE 28th Int. Parallel Distrib. Process. Symp. (IPDPS), May 2014,
pp. 767–776.

[28] B. Mao, S. Wu, H. Jiang, X. Chen, and W. Yang, “Content-aware trace
collection and I/O deduplication for smartphones,” in Proc. 33rd Int.
Conf. Massive Storage Syst. Technol. (MSST), May 2017, pp. 1–8.

[29] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study
of flash memory failures in the field,” in Proc. ACM SIGMETRICS
Int. Conf. Meas. Model. Comput. Syst. (SIGMETRICS), Jun. 2015,
pp. 177–190.

[30] (2017). Monkey Tool. [Online]. Available: https://developer.android.com/
studio/test/monkey.html

[31] Multi-Window Support–Android Developers. [Online]. Available:
https://developer.android.com/guide/topics/ui/multi-window.html

[32] D. T. Nguyen et al., “Reducing smartphone application delay through
read/write isolation,” in Proc. 13th Annu. Int. Conf. Mobile Syst. Appl.
Services (MobiSys), May 2015, pp. 287–300.

[33] J. Ren, M.-J. M. Liang, Y. Wu, and T. Moscibroda, “Memory-centric
data storage for mobile systems,” in Proc. USENIX Annu. Tech. Conf.
(ATC), Jun. 2015, pp. 599–611.

[34] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash reliability in pro-
duction: The expected and the unexpected,” in Proc. 14th USENIX Conf.
File Storage Technol. (FAST), Feb. 2016, pp. 67–80.

[35] K. Shen, S. Park, and M. Zhu, “Journaling of journal is (almost) free,”
in Proc. 12th USENIX Conf. File Storage Technol. (FAST), Feb. 2014,
pp. 287–293.

[36] P. Shilane, R. Chitloor, and U. Jonnala, “99 deduplication problems,” in
Proc. 8th USENIX Workshop Hot Topics Storage File Syst. (HotStorage),
Jun. 2016, pp. 1–5.

[37] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voruganti, “iDedup:
Latency-aware, inline data deduplication for primary storage,” in
Proc. 10th USENIX Conf. File Storage Technol. (FAST), Feb. 2012,
p. 24.

[38] (2017). The Linux Kernel Tracepoint API. [Online]. Available:
https://www.kernel.org/doc/html/latest/core-api/tracepoint.html

[39] (2016). Tintri VMstore. [Online]. Available: http://info.tintri.com/
vmstore-whitepaper

[40] (2015). Why do Samsung Phones Slow Down After Time of Usage?.
[Online]. Available: https://www.quora.com/why-do-samsung-phones-
slow-down-after-some-time-of-usage

[41] (2016). With Nimble, Less Is More. [Online]. Available: https://
www.nimblestorage.com/its-all-about-data-reduction/

http://a1dev.com/sd-bench/
http://www.pdl.cmu.edu/PDL-
http://developer.android.com/guide/topics/data/data-
http://www.purestorage.com/flash-array/flashreduce.html
http://www.kernel.org/doc/html/latest/core-api/tracepoint.html
http://www.kernel.org/doc/html/latest/core-api/tracepoint.html
http://info.tintri.com/
http://www.quora.com/why-do-samsung-phones-
http://www.nimblestorage.com/its-all-about-data-reduction/
http://www.nimblestorage.com/its-all-about-data-reduction/

MAO et al.: IMPROVING FLASH MEMORY PERFORMANCE AND RELIABILITY FOR SMARTPHONES WITH I/O DEDUPLICATION 1027

[42] G. Wu and X. He, “Delta-FTL: Improving SSD lifetime via exploit-

ing content locality,” in Proc. 7th Eur. Conf. Comput. Syst. (EuroSys),
Apr. 2012, pp. 253–266.

[43] S. Wu, X. Chen, and B. Mao, “Exploiting the data redundancy locality
to improve the performance of deduplication-based storage systems,” in
Proc. 22nd IEEE Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2016,
pp. 527–534.

[44] S. Wu, Y. Lin, B. Mao, and H. Jiang, “GCaR: Garbage collection aware
cache management with improved performance for flash-based SSDs,”
in Proc. 30th Int. Conf. Supercomput. (ICS), Jun. 2016, p. 28.

[45] W. Xia et al., “A comprehensive study of the past, present, and future
of data Deduplication,” Proc. IEEE, vol. 104, no. 9, pp. 1681–1710,
Sep. 2016.

[46] H. Xu, Y. Zhou, C. Gao, Y. Kang, and M. R. Lyu, “SpyAware:
Investigating the privacy leakage signatures in APP execution traces,”
in Proc. 26th IEEE Int. Symp. Softw. Rel. Eng. (ISSRE), Nov. 2015,
pp. 348–358.

[47] S. Yan et al., “Tiny-tail flash: Near-perfect elimination of garbage col-
lection tail latencies in NAND SSDs,” in Proc. 15th USENIX Conf. File
Storage Technol. (FAST), Feb. 2017, pp. 15–28.

[48] D. Zhou, W. Pan, W. Wang, and T. Xie, “I/O characteristics of smart-
phone applications and their implications for eMMC design,” in Proc.
IEEE Int. Symp. Workload Characterization (IISWC), Atlanta, GA, USA,
Oct. 2015, pp. 12–21.

[49] K. Zhou, S. Hu, P. Huang, and Y. Zhao, “LX-SSD: Enhancing the
lifespan of NAND flash-based memory via recycling invalid pages,” in
Proc. 33rd Int. Conf. Massive Storage Syst. Technol. (MSST), May 2017,
pp. 1–13.

Bo Mao (M’10) received the B.E. degree in com-
puter science and technology from Northeastern
University, Shenyang, China, in 2005 and the Ph.D.
degree in computer architecture from the Huazhong
University of Science and Technology, Wuhan,
China, in 2010.

He is an Assistant Professor with the Software
School of Xiamen University, Xiamen, China. He
has over 40 publications in international journals and
conferences, including the IEEE TRANSACTIONS
ON COMPUTERS, the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, the
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ACM-
TOS, USENIX FAST, USENIX LISA, ICS, ICCD, MSST, and IPDPS.
His current research interests include storage system, cloud computing,
and big data.

Dr. Mao is a member of ACM and USENIX.

Jindong Zhou received the B.E. degree in soft-
ware engineering from Xiamen University, Xiamen,
China, where he is currently pursuing the master’s
degree in software engineering.

His current research interests include flash storage
systems and data deduplication.

Suzhen Wu (M’10) received the B.E. degree in com-
puter science and technology and the Ph.D. degree in
computer architecture from the Huazhong University
of Science and Technology, Wuhan, China, in 2005
and 2010, respectively.

She has been an Associate Professor with
Computer Science Department, Xiamen University,
Xiamen, China, since 2014. Her current research
interests include computer architecture and stor-
age system. She has over 40 publications in jour-
nal and international conferences, including the

IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, the
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ACM-
TOS, USENIX FAST, USENIX LISA, ICS, ICCD, MSST, and IPDPS.

Dr. Wu is a member of ACM.

Hong Jiang (F’14) received the B.Sc. degree in
computer engineering from the Huazhong University
of Science and Technology, Wuhan, China, in 1982,
the M.A.Sc. degree in computer engineering from
the University of Toronto, Toronto, ON, Canada, in
1987, and the Ph.D. degree in computer science from
Texas A&M University, College Station, TX, USA,
in 1991.

He served as a Program Director with National
Science Foundation from 2013 to 2015. He has been
with the University of Nebraska–Lincoln, Lincoln,

Nebraska, since 1991, where he was a Willa Cather Professor of com-
puter science and engineering. He is currently the Chair and the Wendell
H. Nedderman Endowed Professor with Computer Science and Engineering
Department, University of Texas at Arlington, Arlington, TX, USA. He
has graduated 16 Ph.D. students who upon their graduations either landed
academic tenure-track positions in Ph.D.-granting U.S. institutions or were
employed by major U.S. IT corporations. His research has been supported
by NSF, DOD, the State of Texas and the State of Nebraska, and industry.
His current research interests include computer architecture, computer storage
systems and parallel I/O, high-performance computing, big data computing,
cloud computing, and performance evaluation. He has over 300 publications
in major journals and international conferences in the above areas, including
the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the
IEEE TRANSACTIONS ON COMPUTERS, Proceedings of IEEE, ACM-TACO,
ACM-TOS, JPDC, ISCA, MICRO, USENIX ATC, FAST, EUROSYS, SOCC,
LISA, SIGMETRICS, ICDCS, IPDPS, MIDDLEWARE, OOPLAS, ECOOP,
SC, ICS, HPDC, INFOCOM, and ICPP.

Dr. Jiang recently served as an Associate Editor for the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. He is a
member of ACM.

Xiao Chen received the master’s degree in computer
science and technology from Xiamen University,
Xiamen, China, in 2017.

Since 2017, he has been a Software Engineer
with Wangsu Science & Technology, Xiamen. He
has published two papers in MSST and ICPADS.
His current research interests include flash storage
systems and data deduplication.

Weijian Yang received the B.E. and master’s
degrees in computer science and technology from
Xiamen University, Xiamen, China, in 2013 and
2017, respectively.

Since 2017, he has been a Software Engineer with
Huawei Technology, Shenzhen, China. He has pub-
lished two papers in MSST and ICA3PP. His current
research interests include flash storage systems and
data deduplication.

