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Abstract—Flash-based storage subsystem is the key compo- 
nent that affects the system performance, reliability, and cost 
efficiency of Android-based smartphones. In this paper, we first 
introduce a trace collection tool specifically designed to capture 
the I/O requests with important content features in Android- 
based smartphones, which are critically important but rarely 
available in content-aware designs and optimizations, such as 
JProbe and Netlink. Based on the analysis of the traces collected 
from 15 popular mobile applications, we find that 20%–40% of 
the I/O requests on the I/O critical path of the storage stack are 
redundant and this data redundancy is minimally shared among 
different applications. Based on this key observation, we propose 
a content-aware optimization, called APP-Dedupe, that applies 
data deduplication on the I/O critical path to improve both 
performance and efficiency by reducing write amplification and 
improving GC efficiency of the flash storage on Android smart- 
phones. The evaluation results show that APP-Dedupe reduces 
the GC overhead by an average of 41.5%, reduces the response 
times by up to 15.4% and reduces the amount of write data by 
an average of 45.2%. 

Index Terms—Flash-based storage, I/O deduplication, smart- 
phones, trace collection. 

 
 

I. INTRODUCTION 

TORAGE is one of the key factors affecting the overall 
system performance and reliability of the Android-based 

smartphones [6], [18], [19], [28]. The mobile applications, 
often  referred  to  as  “APP,”  in  Android-based  smartphones 
generate I/O requests that have different characteristics than 
those generated by nonmobile applications. The storage sub- 
system of smartphones usually relies on flash-based embedded 
multimedia controller (eMMC) memory, with either a disk 
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file system (such as Ext4) or a flash file system (such as 
F2FS [23]). 

Generally speaking, the storage stack of current smart- 
phones faces three challenges. First, the performance tends to 
degrade after repeated usages, particularly writes, due to the 
physical characteristics of the flash memory, also one of the 
reasons why smartphones slow down over time [5], [14], [40]. 
Second, one of these physical characteristics of flash memory 
is its limited life cycles [49], i.e., the number of times each 
cell can be programmed/written before it fails, and causes 
the flash storage to get sluggish after repeated usages, which 
affects the storage reliability of smartphones. Third, the cost of 
upgrading the flash capacity from one level to the next level, 
e.g., from 16 to 32 GB, amounts to nearly 100 USD for most 
smartphones (for example, Apple iPhones). Therefore, these 
challenges, pointing to the measures of performance, relia- 
bility, and cost, suggest that it is important to 1) understand 
the mobile applications and how they interact with the flash- 
based eMMC and 2) optimize to reduce write traffic to the 
flash-based eMMC in smartphones. 

Data deduplication and its applications in flash-based stor- 
age systems have been well studied in [36] and [45]. Some 
studies have shown that by leveraging the deduplication tech- 
nology to reducing the write traffic, the system performance 
and reliability of the storage stack of conventional, nonmo- 
bile systems can be significantly improved [4], [13]. However, 
the unique characteristics of mobile devices and mobile 
applications make straightforwardly applying deduplication in 
Android-based smartphones both less effective and more chal- 
lenging [21]. For example, the mobile devices have much 
smaller memory capacity than nonmobile systems, which 
implies that mobile applications must be made memory effi- 
cient to attain acceptable performance. On the other hand, 
the user-facing nature of smartphones implies, and confirmed 
by our experimental observation, that only one application 
is usually running in the foreground while all the other 
opened applications are hung up in the background in the 
Android-based smartphones. 

To make data deduplication effective and efficient in smart- 
phones, we need to understand and gain insight into the data 
redundancy and unique characteristics of mobile applications 
by collecting and analyzing content-aware application traces. 
Unfortunately, due to the dataset privacy leakage risk, content- 
aware trace collections are rarely done in storage systems [12], 
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let alone publicly available traces with content features, with 
the exception of the FIU department traces available in the 
SNIA trace repository [22]. To address this problem, we design 
a low-overhead content-aware trace collection tool, which can 
be used both offline and online. Using this tool, we collected 
traces of 15 popular mobile applications. Our workload anal- 
ysis of 15 popular mobile applications reveals that an average 
data redundancy of 33.1% exists in mobile applications but this 
redundancy is minimally shared among these applications. 

Therefore, we propose APP-Dedupe for Android-based 
smartphones to address the aforementioned challenges. Instead 
of treating data chunks from all application streams equally, 
APP-Dedupe organizes the hash (fingerprint) index in an 
application-aware way, effectively grouping the hash index 
of the same application (short for APP) together and divid- 
ing the whole hash index into different groups based on the 
application types. When an application is running in the fore- 
ground, APP-Dedupe loads the corresponding hash index of 
the application into the memory, thus improving the efficiency 
of the memory for the hash index. Moreover, it groups the 
data chunks  of  the  same  application  together  on  the  flash 
to alleviate the read amplification problem (i.e., fragmenta- 
tion caused by deduplication) and exploits the spatial locality 
to improve the read performance. The extensive trace-driven 
experiments conducted on our lightweight prototype imple- 
mentation of APP-Dedupe show that APP-Dedupe reduces the 
GC overhead by an average of 41.5%, reduces the response 
times by up to 15.4% and reduces the amount of write data 
by an average of 45.2%. 

The main contributions of this paper are threefold. 
1) We design a low-overhead content-aware trace collection 

tool that captures the I/O requests in the storage stack 
in Android-based smartphones. 

2) We collect the traces with content features from 15 pop- 
ular applications and perform in-depth I/O analysis. We 
find that 20% to 40% of the I/O requests on the I/O crit- 
ical path of the storage stack are redundant and this data 
redundancy is minimally shared among different appli- 
cations. To the best of our knowledge, currently no such 
study exists for the Android-based smartphones. 

3) We propose APP-Dedupe to improve the storage effi- 
ciency of Android-based smartphones. The trace collec- 
tion tool, the 15 traces and the image of the prototype 
system are available for academic purposes. 

The rest of this paper is organized as follows. Section II 
presents the trace collection tool and workload characteristics 
in Android-based smartphones. The design and implementa- 
tion of APP-Dedupe is presented in Section III. Section IV 
describes the performance results through the extensive evalu- 
ations on the APP-Dedupe prototype. The conclusion is given 
in Section V. 

 
 

II. TRACE COLLECTION AND ANALYSIS 

In this section, we first present the design of a content-aware 
trace collection tool in Android-based smartphones. Then we 
analyze the workload characteristics of the traces collected by 
this tool to motivate our App-Dedupe study. 

A. Content-Aware Trace Collection 
While trace collections on enterprise storage systems have 

been well studied, there is limited effort on trace collection 
in mobile systems. In particular, currently only MOST [16] 
and BIOtracer [48] are designed for I/O trace collections in 
Android-based smartphones and they only capture the I/O 
requests behaviors (e.g., size, read/write patterns, etc.) with- 
out including any content values or features. Yet, it is the 
content features of the traces that enable one to analyze the 
data redundancy characteristics of I/O accesses in Android- 
based smartphones. For this reason, we design a content-aware 
trace collection tool, called MobileCT. MobileCT collects the 
traces that contain the basic I/O request information, the pro- 
cess names and the content features. First, it captures the basic 
information of an I/O request via the bio structure, includ- 
ing time, R/W, offset, and size, and copies the data of the 
request for the subsequent hash computing of the content. 
Second, it explores the Linux kernel tracepoint infrastructure 
to track requests in-flight through the block I/O stack, similar 
to the blktrace infrastructure which can capture the process 
ID (PID) and process name information [38]. Based on the 
process information, the specific application is recorded by 
MobileCT. Third, it splits the data into 4KB chunks and cal- 
culates the MD5 fingerprint for each chunk. Finally, the basic 
information and hash values of the I/O requests are recorded 
in the trace file and transferred to the user level. 

There are two major challenges facing content-aware trace 
collection in Android-based smartphones, namely, how to 
anonymize the contents to protect the privacy of the users [36] 
and how to minimize the interference between the trace cap- 
turing operations and the user I/O requests to reduce collection 
overhead [48]. For the first privacy challenge, similar to the 
FIU traces [22], we also use the MD5 fingerprints to repre- 
sent the content feature for the deduplication research without 
leakage of the location or personal information [46]. For the 
overhead challenge, since the processing resources in Android- 
based smartphones are limited and hash computing for chunk 
fingerprints can be resource demanding, the aforementioned 
interference, if not avoided or minimized, can adversely affect 
the application performance and/or the accuracy of the traces. 
To address this challenge, MobileCT uses a circular buffer to 
temporarily store the write data and delay the subsequent MD5 
computing of the data chunks to avoid the interference and 
contention on the CPU resources. Fig. 1 shows the trace collec- 
tion workflow in MobileCT. JProbe is a servlet for inspecting 
the bio→end_io() function and Netlink_sock is used for the 
data transfer between the user space and the kernel space. 

 

B. Workload Characteristics 
The traces presented in this paper are collected from 15 

applications on the Google Nexus 5 smartphone (running 
Android 5.0.1 with Linux Kernel 3.4). We compare the chunk 
fingerprints of the 15 data sets using the chunk-level dedupli- 
cation with 4 KB chunk size. The trace characteristics are 
summarized in Table I, which shows that the data  redun- 
dancy of the mobile applications is between 20% to 40%, with 
an average of 33.1%. Of particular interests are the findings 
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energy efficiency. On the other hand, the hash computing con- 
sumes extra processing power. As a result, another important 
objective of APP-Dedupe is to improve the energy efficiency, 
in addition to the performance improvement and capacity 
saving. As  a  direction of future  work,  we  will  investigate 
the power consumption issue associated with deduplication 
in smartphones. Second, from our experimental results, we 
observe that different applications have different data char- 
acteristics. Depending on such characteristics, deduplication 
may not always improve the performance. Thus, deduplication 
for the mobile applications should be dynamically enabled or 
disabled. We will investigate how to dynamically apply dedu- 
plication on the smartphone storage at runtime to improve the 
flexibility of APP-Dedupe. 
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