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Abstract— Objective: Analysis of functional magnetic resonance
imaging (fMRI) data from multiple subjects is at the heart
of many medical imaging studies, and approaches based on
dictionary learning (DL) are recently noted as promising solutions
to the problem. However, the DL-based methods for fMRI
analysis proposed to date do not naturally extend to multi-
subject analysis. In this paper, we propose a dictionary learning
algorithm for multi-subject fMRI data analysis. Methods: The
proposed algorithm (named ShSSDL) is derived based on a
temporal concatenation, which is particularly attractive for the
analysis of multi-subject task-related fMRI data sets. It differs
from existing dictionary learning algorithms in both its sparse
coding and dictionary update stages and has the advantage
of learning a dictionary shared by all subjects as well as
a set of subject-specific dictionaries. Results: Performance of
the proposed dictionary learning algorithm is illustrated using
simulated and real fMRI datasets. The results show that it
can successfully extract shared as well as subject-specific latent
components. Conclusion: In addition to offering a new dictionary
learning approach, when applied on multi-subject fMRI data
analysis, the proposed algorithm generates a group level as well as
a set of subject-specific spatial maps. Significance: The proposed
algorithm has the advantage of learning simultaneously multiple
dictionaries providing us with a shared as well discriminative
source of information about the analyzed fMRI data sets.

Index Terms—Dictionary learning, functional magnetic reso-
nance imaging (fMRI), multi-subject analysis, sparse decompo-
sition, temporal concatenation.

I. INTRODUCTION

Blood-oxygen-level dependent (BOLD) based functional
magnetic resonance imaging (fMRI) has been very useful for
the identification of functional networks related to a particular
task [1], [2] leading to better understanding of the functional
localizations within the brain. For task-related data, the general
linear model (GLM) has been extensively used, see e.g. [3]-
[5], however a key drawback of this approach is that it assumes
that the canonical hemodynamic response function (HRF) [6]
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is known, and is same across different functional networks,
which are both limiting assumptions. In addition, it can
only extract information (spatial maps) related to task-related
activity and ignores the intrinsic brain function, which might
not be directly linked to the external stimuli [7]. Hence, data-
driven methods such as principal component analysis (PCA)
[8], independent component analysis (ICA) [9], [10], canonical
correlation analysis (CCA) [11], and multiset CCA [12] have
been increasingly used for fMRI analysis. In particular ICA
has been widely used in the analysis of both task-related and
resting state fMRI datasets [13]. More recently sparse nature
of spatial networks has been noted, and a healthy debate has
started over the role of different starting points for the analysis
of fMRI data, independence vs sparsity [14], [15]. In [15], it is
noted that interpretations should be made carefully regarding
the role of independence vs sparsity for the final decompo-
sition clarifying issues in [14], but it is also emphasized that
sparsity is a useful starting point in fMRI analysis, which has
been also noted in [16], the pioneering work that started the
activity in data-driven fMRI analysis. These have been among
the driving forces for the increasing interest in solutions to
fMRI analysis that are based on dictionary learning (DL).
There has been growing interest in the sparse representation
of signals [17] and they have been successfully applied to
a number of problems including signal representation [18],
[19], image denoising [20], and recognition [21], [22] leading
to very desirable performance. In these applications, the idea
is to represent the given signal as a linear combination of a
few columns (atoms) taken from an overcomplete basis set,
called a dictionary. A key motivating result is that sparse
linear codes for natural images (over the dictionary) develop
similar receptive fields to the simple cells in the primary
visual cortex [23]. Hence, various dictionary learning and
sparse representation methods [24] have been proposed for
the analysis of fMRI data. In [25], the authors formulate
a sparse general linear model framework, in [26], DL and
CCA are used to extract meaningful temporal dynamics from
the fMRI data which are then used to generate activation
maps using regression analysis. [27] provides a fast incoherent
K singular value decomposition (K-SVD) method tuned for
fMRI data analysis. Authors in [28] include the correlation
structure and in [29], the temporal smoothness prior in the
DL formulation. In [30]-[32], based on assumption that the
underlying dynamics of each voxels’ fMRI time courses are
sparse with linear neural integration, authors use DL methods
to identify functional brain networks. All these algorithms fac-



torize the whole-brain fMRI dataset into fypically an overcom-
plete basis dictionary and the corresponding coefficient matrix
via dictionary learning method [19]. In these formulations,
atoms of the dictionary correspond to time courses (TCs) and
the corresponding coefficient vector (row of the coefficient
matrix) represents the spatial activity map corresponding to
the TC. Furthermore, in [33], authors analyze resting state
fMRI (rsfMRI) datasets by decomposing subject datasets into
sub-specific TCs and spatial maps (SMs) while modeling the
sub-specific SMs as noisy versions of shared population-level
brain maps. In [34], authors combine DL and multi-set CCA
to extract population-level activation maps. Finally, authors in
[35] learn a dictionary from temporally concatenated multi-
subject rsfMRI datasets reduced in the time dimension, leading
to reduction in computational load without loosing much
reliability in terms of activation maps recovery.

Though the methods that promote sparsity have been shown
to successfully estimate functional networks, a major lim-
itation in their formulation is that, for each single subject
dataset, the network components (atoms) are learned in an
unsupervised way, making brain activity analysis across mul-
tiple subjects difficult. In [25], [30], [31], such comparisons
are performed by sorting and visually checking individual
activation patterns (which is time consuming) and then averag-
ing their results. Such an approach becomes computationally
prohibitive as the number of datasets and the size of dictionary
increases, but more importantly, it fails to take advantage of
the additional shared information across the multiple datasets
while performing the analysis.

In this paper, our main focus is on task-fMRI (tfMRI)
datasets where all subjects perform an exact similar task
(study specific). We propose a joint learning framework to
decompose the multi-subject tfMRI datasets into a shared
dictionary/sparse code pair as well as sub-specific ones. We
named this framework as Shared and Subject-Specific Dic-
tionary Learning (ShSSDL). Our aim is to represent each
voxels’ TC from every subject dataset by a linear combination
of a few atoms from a shared dictionary and a few atoms
from a sub-specific one. By using a formulation based on
temporal concatenation of the fMRI datasets, we separate the
shared dictionary (containing similar neural dynamics) and
their corresponding shared sparse coefficient matrix (spatial
maps (SMs)) from their sub-specific counterparts. As a result,
by locating a neural dynamic of interest from the shared
dictionary, we can directly analyze the associated population-
level spatial map corresponding to the entire multi-subject
tfMRI dataset.

Rest of the paper is organized as follows. In Section II, we
review briefly the dictionary learning and sparse coding prob-
lems. The proposed dictionary learning algorithm is described
in Section III with the proposed solution derived in Section I'V.
The experimental validation is presented in Section V followed
by the concluding remarks in Section VI.

II. BACKGROUND

Denote an fMRI dataset Y = [y;,¥s,...,¥y], containing
N variables (brain voxels) with n observations (time points),
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where y, € R™ contains the observations for i*" variable.

According to the sparse representation theory, all variables in
Y can be compactly represented by a dictionary as:

{D.X} = argmin | Y - DX ||},

where D € R™ X is the dictionary and X € REXN s the
coefficients matrix, that makes the total representation error
as small as possible. This optimization problem is ill-posed
unless extra constraints are imposed on the dictionary D and
the sparse codes X. The common constraint on X, is that
each column of X is sparse hence the name sparse codes and
columns of D (atoms) are constrained to have unit 5 norm.
Let the sparse coefficient vectors x;, ¢ = 1,..., N constitute
the columns of the matrix X, with these constraints, the
above objective function can be re-stated as the minimization
problem

wmin | Y=DX 3 st o5 difa=1 (1)
where dy, is the k" column of D, || . || is the Frobenius
norm, || . ||p is the £y quasi-norm, which counts the number
of nonzero coefficients, || . ||2 is the ¢ norm, and a constant
s < K. The constraint on D keeps the atoms from getting
arbitrarily large leading to small values of x; [18]. The
generally used optimization strategy, not necessarily leading to
a global minimum consists in splitting the problem into two
stages which are alternately solved within an iterative loop.
These two stages are, first, the sparse coding stage, where D
is fixed and the sparse coefficient vectors are found by solving

%; = argmin ||y, — Dx; ||3;
* 2)
subject to || x; |lo < s,Vi=1,...,N.

In practice, the sparse coding stage is often approximately
solved by using either a greedy pursuit or convex relaxation
approaches [36]. Second, the dictionary update stage where X
is fixed and D is derived by solving

ﬁ:arglrll)in [Y-DX|% st [ dg|o=1 3)

This is where most of the DL algorithms differ. One approach
is to update all atoms of the dictionary at the same time (in
parallel) using least squares [37], [38] or maximum likelihood
[39], [40], whereas, the other approach is to update the
dictionary atom by atom by breaking the global minimization
(3) into K sequential minimization problems [18], [41].

III. SHARED AND SUBJECT-SPECIFIC DICTIONARY
LEARNING (SHSSDL)

Direct application of the dictionary learning algorithm de-
scribed above on each fMRI dataset separately, as done in [25],
[30], [31], generates multiple dictionaries and avoids taking
into consideration the shared information across the multiple
datasets while performing the analysis. For development of
the proposed dictionary learning algorithm to simultaneously
analyze fMRI datasets from a group of p subjects, we could
consider the spatial concatenation of the fMRI datasets Y =
[Y1,Y2,...,Y,] of size n x pN as in [42] where n is the
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number of time points for each subject, N the number of
voxels per subject and p the number of subjects with the model

[Y1,Ys,...Y,] =D X =Dy X1, Xo, ..., X,] “)

where the dictionary Dy is a matrix of size n x K that contains
the corresponding set of shared TCs across all the subjects and
the sparse codes X is a matrix of size Ky x p/N that contains
spatial activation maps of the p subjects associated to each of
the TCs. In rest of the paper, all dictionaries are constrained
to have atoms with unit ¢ norm.

The model considered in (4) accounts only for the shared in-
formation and ignores the sub-specific information. In contrast,
we propose to learn not only a dictionary that is common for
all subjects but also p sub-specific ones as well. Our proposed
algorithm aims to decompose each subject tfMRI dataset in a
structured way, i.e., instead of just learning a dictionary that
is shared by all subjects, we propose to learn a structured
dictionary D; = [Dg,D;] of size n x (K, + K;) where Dq
and D; are the shared and sub-specific dictionaries associated
with subject ¢ respectively. Therefore, we not only require D
to have the capability of characterizing the shared information
across the multiple subjects fMRI datasets, but also require
D; to contain the sub-specific information as well. Thus, each
subject dataset Y; can be decomposed as

Y; ~D; X; = [Dy, D] {XU

Xi] =DoXp + D;X; (5

where the shared information dictionary Dy and sub-specific
dictionary D; are matrices of sizes n x Ky and n x K;
respectively, Xg is a matrix of size Ky x N representing
the sparse codes of Y; over Dy and X; is a matrix of size
K; x N representing the sparse coding of Y; over D;. As
a consequence of such formulation, besides having a shared
dictionary Dy, X (the sparse codes of Y;, i+ = 1,...,p over
Dy) should be the same for all p subjects as well. This implies
that the common characteristics underlying all p fMRI datasets
Y;, are shared between p subjects via the shared information
dictionary Dy. In contrast, the unique sparse code matrix
X, expresses unique characteristics associated with the fMRI
datasets Y;, i = 1,...,p.

Based on the data model (5), the problem of dictio-
nary learning for temporally concatenated multi-subject fMRI
datasets can be cast as

Y ® X
N — <~
Y, Do D, 0 0 - 07Xl
Y2 DO 0 DQ 0 0 Xl
min -
0.X
Y,] Do 0 0 - 0 D] [X]],
st Ix] o< si, %) o< s0, [ldplla=1
vV i=1,2,...,pand j=1,2,..., N
(6)

where Y = [Y{,YQT, e ,YﬂT is the full dataset matrix,
Y, are the individual fMRI datasets, x] is the jth column

of X;, s;,s0 are the signal sparsity parameters, and p is

the number of subjects selected for analysis. Similarly, X =
X¢,X7,X7, - ,XZ]T contains the corresponding sparse
codes for each dataset. Our aim here is to represent each signal
from the dataset Y; as a linear combination of a few atoms
from Dy (shared dictionary) and D; (sub-specific dictionary).
To achieve this goal, we propose the following Shared and
Subject-Specific Dictionary Learning (ShSSDL) model:

p
: 1 2 T 2
e {3 IV~ DuXo - DX [+ | DTA [

(7)
subject to || x] [o< si, [| X4 (o< so0; || d [l2=1

The minimization of the first term of (7) is equivalent to maxi-
mizing the representation power of Dy and D; for each dataset.
However, just minimizing the first term of (7) is not sufficient
in separating the shared and sub-specific temporal dynamics
into separate dictionaries, i.e., the shared patterns may appear
in different sub-specific dictionaries as well and vice versa.
To alleviate this problem we included an incoherence penalty
term | D!A; || into the objective function (7), where
A; =[Dg,Dy,...,D;_1,D;41,...,D,] is the concatenation of
all except the currently updating dictionary. The incoherence
of the dictionaries is controlled by a positive parameter 7. The
authors in [43] have demonstrated that incoherent dictionaries
improve the effectiveness of sparse representation. A similar
penalty term has been used in [27] to force the learned
dictionary atoms to be incoherent among themselves and in
[44] to transfer common features from sub-specific dictionaries
to the shared dictionary.

Due to the structure and constraints of the minimization
problem of (7), the objective is non-convex and solving it in
its current form is difficult. In the next section we propose an
alternating optimization procedure named ShSSDL algorithm
to solve the problem in (7) block by block.

IV. OBJECTIVE OPTIMIZATION

As in the case of most dictionary learning algorithms, we
follow an alternating optimization procedure to optimize (7)
one block at a time, which is outlined below:

e Fix Dg,D; and find their sparse coefficient matrices
XOaXi
o Fix Xy, X; and optimize for Dy, D;

The details of these minimizations are given in their respective
sections.

A. Sparse coding stage

By fixing Dy, D;, the minimization objective (7) reduces to

P
£ 1
Xo,X; = mi E — | Y; = DXy — DiX; |2
05 )1(?1)22212H 0A0 % ®)

st || X lo<si, || %) o< 50,V =1,2,...,N

To solve this problem, we proceed with a block by block
update strategy, i.e. fixing X;, we try to find Xy by minimizing

A 1 :
Xo = min 5 | E—DoXo |75 st | x) lo<so  (9)
0



Algorithm 1: Sparse Coding Solution to (8)
Input: Complete dataset Y, Dgy, D;, Xo, X;, p
Parameters: s,, s;, ¢

1 forv=1:(do

2 Finding Xg:
3 Compute E =1/p>"_ {Y; - D;X;}
4 Use OMP to solve:

~ 1 ;
Xy = min — H E — DyXj ||%:7 S.t. || X% ||0§ S0
Xo 2

5 Finding X;:
6 fori=1:pdo
7 Compute G; =Y; — DX
8 Use OMP to solve:
A 1 ;
Xi =min 5 || G; - DiX; 135 st || x] [[o< s
9 end
10 end

Output: X, X;

where E = 1/p>°"_ {Y; — D;X;} and x} is the jth column
of Xo. Here we opt to include a scaling factor 1/p to keep the
X, matrix entries from getting very high. After learning X,
we fix it and find update for X; by minimizing

X; = Ir}l{in% | G = DX, ||%; st || x] [jo< s (10)
where G; = Y;—DyX for all p subject datasets. The problems
(9) and (10) can be solved by the greedy pursuit algorithm
Orthogonal Matching Pursuit (OMP) [45]. The sparse coding
stage is then obtained by iterating (9) and (10) until conver-
gence or by applying only a few iterations of these equations.
Based on our experience, iterating them more than twice does
not lead to significant improvement, thus in our experiments,
we iterate these equations only twice. Details of the sparse
coding stage are summarized in Algorithm 1.

B. Dictionary update stage

After optimizing for X and X;, the shared and sub-specific
dictionaries are found by minimizing (7) with fixing Xg, X;,
the resulting objective function becomes

P
A A . 1 9
Dy, D; = 621}[1)11 Z {2 |'Y; —DoXo — D:X; ||
i=1
) (11)
+nY DI A |3
i=0
Similar to the sparse coding stage, we divide the above
problem into two separate problems and try to minimize them
alternatively, i.e., we fix all D; to minimize for Dy and vice
versa.
1) Solving for Dy: Fixing D; in (11), the minimization of
(11) is equivalent to minimization of

A o1
Dy = min 5 || E—=DoXo [[7 +7 [ Do Ao 7 (12)
0
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where E = 1/pY"" {Y, — D;X;} is the error matrix and
Ag = [Dy,...,D,]. To solve this, we start by introducing a
relaxation variable Z, such that (12) is rewritten as

R 1
Dy =min= || E=DXp ||% +n || ZTAq |2
0 by 2 H 00 ||F n || 0 ||F (13)

st. [ Do —Z||%=0

The above problem can then be solved by using the alternat-
ing directions method of multipliers (ADMM) [46] method.
Choosing the ADMM method to solve this problem was par-
ticularly due to its usefulness when the optimization variables
(D and Z) admit closed form solutions. On the other hand,
ADMM has only a single tuning parameter p and with a
few mild conditions, it can be shown that the algorithm does
converge for all parameter values; see [47] and references
therein. The augmented Lagrangian function of (13) is

1
L,(Dy,Z,W) = 3 | E—DoXo |7 +n |l Z"Ao |7 14
+5 Do —~Z 7+ [W (D~ 2)]

where W is the Lagrange multiplier matrix and p is a positive
number. Starting with Z = W = 0, the solution to (14)
minimization is found by alternatively solving each of the
following subproblems until convergence:

Do = (EX] + puZ — W) (XoXE + 1) (15)
r —1

7= (2nA0AO + ,uI) (W + uDy) (16)

W=W+u(Dy—Z) (17

where I is the identity matrix whose dimensions should be
taken from the context.

2) Solving for sub-specific D;s: After finding the shared
dictionary Dy, we find the individual sub-specific dictionaries
by minimizing the following function for each subject dataset
D = min o | G~ DX, [} +n || DIA [} ¥i=1,2....p

" (18)
where G; = Y; — DgX( for all p subject datasets. The
minimization of (18) is similar to (12) and can be obtained
by solving the following subproblems till convergence for all
the subject datasets:

D; = (GX! + 4z - W) (XX + 1) (19)
-1

Z = (20AAT +ul) (W + D) (20)

W=W+uD,—2) @1

The step by step review of the dictionary update stage is
summarized in Algorithm 2. Once the dictionaries have been
initialized, we repeat steps outlined in Algorithm 1 and 2
multiple times or until a stopping criteria is reached. The
summary of ShSSDL framework is shown in Fig. 1.
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Algorithm 2: ADMM algorithm for (11)

Input: Complete dataset Y, Dy, D;, X, X;, p and 7
Initialize :Z =0, W=0, u=10"%, max,, =
1019, p =25 e=10"*

1 Solving for Dy:

2 Formulate Ay = [Dq,Dy,...,D,]

3 Compute E=1/p> "  {Y; —D;X;}

4 while | Dy —Z ||p> ¢ do

5 Fix other variables and update D, by:

-1
Dy = (EX{ + puZ — W) (XoX{ + )
Normalize the columns of Dy to have /5-norm = 1
7 Fix other variables and update Z by:
-1
7- (QnAOAgF + uI) (W + uDy)
Normalize the columns of Z to have ¢5-norm = 1
Update the Lagrange multiplier W by:
W=W-+ M (Do — Z)

10 Update p as: g = min(pp, max,,)

11 end

12 Solving for D;:

13 fori=1:pdo

14 Initialize Z=W =0, and p = 10~*

15 Formulate A; = [DQ,Dl,...7D7;_1,Di+17...,Dp]
16 Compute G; =Y; — DpXp

17 while | D; — Z ||p> € do

18 Fix other variables and update D; by:

D, = (GX! + pZ — W) (X,XF +pul)
19 Normalize columns of D; to have #-norm = 1

20 Fix other variables and update Z by:

-1
Z = (20AAT + 1) (W + D)

21 Normalize columns of Z to have /5-norm = 1
22 Update the Lagrange multiplier W by:

W:W'F,LL(DZ'—Z)

23 Update p as: ¢ = min(pp, max,,)
24 end
25 end

Output: DQ, DL

V. EXPERIMENTAL EVALUATION

In this section, we present a performance comparison be-
tween the proposed ShSSDL algorithm and CODL [35] using
simulated and real experimental multi-subject fMRI datasets.
In simulation study the goal is to analyze ShSSDLs’ ability
in decomposing the datasets into group-level (shared) TC/SM
pairs and the sub-specific TC/SM pairs. After establishing
performance of the algorithm, we analyze QI release of the
publicly available Human Connectome Project (HCP) motor
task fMRI datasets [48] to validate our proposed algorithm.

/ Initialize Do and D; /

Y

> Keeping D¢ and D; constant,
use Algo 1 to update X and X;

J

Y

Keeping X and Xj constant, )
use Algo 2 to update
Do and Di

.:;.

Yes

| END |

Fig. 1. Flowchart summarizing ShSSDL Algorithm.

The performance comparison with CODL for both experi-
ments is also provided. The details of these experiments are
given below.

A. Simulation Study
We tested the algorithms in two different scenarios:

1) A basic multi-subject fMRI dataset: The subject brain
scans are all perfectly aligned and have the same HRFs,
thus the shared TCs/SMs are exactly the same across all
subjects.

2) A more realistic multi-subject fMRI dataset: The subject
brain scans have spatial variability and have differ-
ent HRFs, generating small differences in the shared
TCs/SMs across all subjects.

1) Scenario 1: To generate basic fMRI datasets for p = 6
subjects, we used the publicly available SimTB toolbox [49]
to generate 9 source images of size (100 x 100) voxels and
their corresponding TCs with 150 time points. Repetition
time (TR) was set to 2 sec/sample. The required p datasets
Y, € RI0X10° yere then generated by a linear mixture
model and were corrupted with additive white Gaussian noise
(AWGN) with g = 0 and o = 0.2. Every subject dataset
contained 4 TC/SM pairs in total, out of which 3 pairs were
shared (attributed to 3 tasks) and 1 unique pair which was
different for each subject. The simulated sources and their
TCs (ground truth) are shown in Supplemental Fig. 1 a). Here
sources/TCs (1,2, 3) are shared across all subjects, whereas,
sources/TCs (4,5,...,9) are unique and are only present in
subjects (1,2,...,6) respectively.

2) Scenario 2: In this scenario, we again used SimTB
toolbox [49] to generate p = 6 fMRI datasets. Similar to
the previous scenario, all subjects contained 3 shared TC/SM
pairs and a unique one. To simulate inter-subject variability,
we added spatial variability in shared SMs across all subjects
by introducing random translations (u = 0,0 = 2 voxels)
in x and y directions, rotations (¢ = 0,0 = 2.5 degrees), and
spreads (1 = 1,0 = 0.03), where i and o represent mean and



Fig. 2. The shared spatial maps showing the spatial variability of sources
across subjects. Each color represents the source contours for a different
subject.

Sub 1

Sub 2

Sub 3

50 100 150 50 100 150 50 100 150

Fig. 3. The shared TCs for first 3 subjects simulated using different parameters
for the canonical HRFs.

standard deviation respectively. The resulting SMs are shown
in Fig. 2. Similarly, we introduced temporal variability in the
simulated shared TCs as well that can be seen in Fig. 3 and
the datasets were generated via the linear mixture model. For
comparisons, the ground truth (GT) for shared SMs/TCs were
generated by taking the mean of each SM/TC shared pair for
all subjects. The resulting simulated sources and their TCs
(GT) for all subjects are shown in Supplemental Fig. 2 a).
3) Dictionary Learning: For both simulation scenarios, the
datasets were decomposed in a similar way. Starting with
random initial dictionaries, the signal matrices Y;s’ were
decomposed by our algorithm into a shared dictionary Dy
and 6 sub-specific dictionaries D;s along with their shared
and sub-specific activation patterns in Xy and X; respectively.
In case of real fMRI datasets, we do not know the exact
number of components present in the dataset [50]. Hence,
rather than assuming same number of components as present in
the generated datasets, we allow both shared and sub-specific
dictionaries to learn more components from the datasets by
setting the dictionary sizes as (Dg, D;) € R*%*10 (20 compo-
nents per subject). These dictionaries were learned using signal

Mean SM correlations Mean TC correlations

TC.
R T

T .
. T

T X
- TC

T .
. T .

T .

X1 X2 X3 X‘ XE XG X0 D‘ D2 D3 D4 D5 DG DO

Fig. 4. The mean Ground Truth (GT) SM and TC correlation coefficients
for scenario 1 over 100 trials with respect to all estimated sparse code and
dictionary matrices, X;s and D;s.
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Fig. 5. The mean Ground Truth (GT) SM and TC correlation coefficients for
scenario 2 over 100 trials (regenerating datasets for each trial) with respect
to all estimated sparse code and dictionary matrices, X;s and D;s.
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sparsity so = 2, s; = 3, and the algorithm was iterated 20
times. The incoherence penalty parameter 1 and convergence
parameter ¢ were set to 2.5 and 10~ respectively, while other
parameters were kept the same as outlined in Algorithm 2.

To compare CODL and ShSSDL on the common grounds,
we opted not to reduce the temporal dimension of the
simulated fMRI datasets. As a result, the CODL algorithm
essentially reduces to ODL (online dictionary learning) algo-
rithm [19]. Thus, by temporally concatenating the full subject
datasets, we used ODL to learn a dictionary of size 900 x 20
with A = 0.15, batchsize of 200, and 100 iterations. Keeping
the dictionary size constant, we experimented with different
combinations of parameter values for (sg,s;,n7 and \) and
selected those with best performance in terms of correlation of
extracted SMs/TCs with respect to the GT for both algorithms
to allow for a fair comparison.

TABLE I
MEAN, MEDIAN AND STANDARD DEVIATION OF MOST CORRELATED TCS
AND SMS W.R.T. GROUND TRUTH AS RECOVERED BY THE SHSSDL AND
CODL OVER 100 TRIALS

TCs SMs
Mean  Median STD Mean  Median STD
Scenario | SHSSDL 0976 0987 0021 0917 0936  0.045
CODL 0973 0977 0024 0919 0940 0.075
Scenario 2 ShSSDL 0.951 0952 0.014 0962 0969 0018
cenaro CODL 0948 0979 0080 0.894 0875  0.104

4) Results: To demonstrate the average performance, we
repeated the simulations 100 times with

o different noise (o = 0.2) realizations under scenario 1,
o different datasets (using SimTB) under scenario 2.

To analyze the recovered dictionaries/sparse code pairs,
we correlated the GT sources/TCs with all the sparse
codes/dictionary atoms as recovered by CODL and ShSSDL
algorithm. For the case of CODL, we extracted the sub-specific
TCs corresponding to the shared SMs from the recovered
dictionary, and used the mean TCs for comparison. For visual
comparison, the most correlated sparse code/atom pairs as
recovered by both algorithms over a single trial are shown in
Supplemental Figs. 1 and 2 for scenarios 1 and 2 respectively.
To demonstrate the effectiveness of ShSSDL algorithm in sep-
arating the shared info from the sub-specific info, we illustrate
the mean ground truth (GT) SM/TC correlation coefficients for
scenario 1 and 2 over 100 trials with respect to all recovered
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sparse code/dictionary matrices X; and D; in Fig. 4 and Fig.
5 respectively. Here, each row represents the mean correla-
tion coefficients of a particular GT SM and TC with every
X; and D; matrix. It is clear from Fig. 4 and 5 that, for both
scenarios, the shared sources (51, Sz, S3) and their respective
TCs (T'Cy,TCs,TC5) have been identified and localized into
the shared sparse code and dictionary matrices respectively.
However, for scenario 1, the shared SM and TC pairs have
been completely removed from the sub-specific ones, whereas,
for scenario 2 (real case), the sub-specific pairs were able
to capture the subject variability as well. This, however, did
not affect the overall performance of the algorithm as shared
SMs and TC pairs (X;,D;) were still highly correlated with
the GT. For completeness, the mean, median and standard
deviation of the SM and TC - GT correlation coefficients
recovered by both algorithms over 100 trials are presented
in table 1. Here it can be seen that, for scenario 1, the overall
recovery results of both algorithms are very similar. However,
for scenario 2, the ShSSDL’s recovery results surpass that of
CODL. Another key takeaway from the table is stability of the
ShSSDL algorithms’ results, i.e. for every case, variance of
the achieved results is small when compared to CODLs’. For
reproducibility, we have made our simulation code available
at https://github.com/Asiflgbal8739/ShSSDL_2017.

In this section, we have shown that our proposed algo-
rithm was successful in localizing the shared TCs/SMs and
sub-specific pairs into their corresponding dictionary/sparse
code matrices. After establishing its effectiveness, in the
next section, we further validate our method on multi-subject
experimental task fMRI datasets.

B. Multi-subject task fMRI Analysis

In this section, we apply ShSSDL to fifteen (p = 15)
motor task fMRI datasets acquired from the HCP Q1 release
[48] to separate the shared temporal hemodynamics and the
corresponding activation patterns into a shared dictionary
matrix and its sparse code matrix. The acquisition parameters
for all datasets were: 90 x 104 matrix, 220mm FOV, 72 slices,
TR = 0.72s, TE = 33.1ms, flip angle = 52°, BW = 2290
Hz/Px, in-plane FOV = 208 x 180 mm with 2.0 mm isotropic
voxels. The obtained data was already preprocessed with
the preprocessing pipeline consisting of motion correction,
temporal pre-whitening, slice time correction, global drift
removal, and the scans were spatially normalized to a standard
MNI152 template and resampled to 2x2x2 mm? voxels. The
reader is referred to [51] and [48] for more details regarding
data acquisition and preprocessing.

This task is based on the development in [52] in which
participants were presented with a visual cue, asking them to
tap their left or right fingers, squeeze their left or right toes,
or move their tongue to map the motor areas of the brain.
Subjects were presented with a 3 sec visual cue followed by
the cue for a specific task, with movement block length of
12 sec (10 movements). A total of 13 blocks with 4 foot
movements (2 for each foot), 4 hand movements (2 for each
hand), 2 tongue movements, and 3 15-second fixation blocks
were carried out by each subject. We generated the paradigm

time courses (PTCs) for six task stimuli corresponding to the
movements of Left Toe (LT), Right Toe (RT), Left Finger
(LF), Right Finger (RF), Tongue, and the visual cue (VC) by
convolving the canonical hemodynamic response function [6]
with the block task regressors. These PTCs are shown in Fig.
6 a).

1) fMRI Data Preprocessing: The tfMRI run duration was
3:34 (min:sec) with a total of n = 284 scans. The scans
were spatially smoothed using a Gaussian kernel with 6x6x6
mm? FWHM. Low frequency drifts were removed by using
a Discrete Cosine Transform (DCT) basis set with a cutt off
frequency of 1/150 Hz, whereas, the high frequency temporal
fluctuations were removed by smoothing each voxel TC using
a 2.0 sec FWHM Gaussian kernel. Brain volumes from each
subject were masked to remove the non-brain voxels resulting
in N = 283494 voxels for each subject which were then
vectorized and placed as rows of Y;(i = 1,...,p) yielding
a data matrix with size n X N for each subject. Each column
of the matrix Y; was then normalized to have zero mean and
unit variance as well.

2) Dictionary Learning: The shared dictionary Dy €
R"™*40 was initialized with data from subject 1 and sub-
dictionaries D; € R"*?0 were initialized from the corre-
sponding subject datasets. The data matrices Y;s were then
decomposed using ShSSDL Algorithm into Dy /Xq and D;X;
pairs with signal sparsity so = 1, s; = 2, and dictionary inco-
herence controlling parameter 1 = 500. The algorithm 1 and
2 were iterated 15 times to optimize the objective (7). Similar
to the simulation section, using temporally concatenated full
datasets, we used ODL to learn a dictionary Dpop; € R™ x70
with A = 6 [35], batch size of 2000, and 100 iterations.

3) Results: Once the learning process of the proposed
ShSSDL model (7) is complete, based on our model, the
shared information should have been recovered in the Dy /X
pair and the sub-specific information should be present in
D;/X;. Thus, according to the (5) model, we expect those
activation maps which have very similar temporal dynamics
across all analyzed subjects to be localized in the Dy/Xq
pair. As we have used motor experimental task dataset with
same six PTCs across all subjects, we expect to find atoms
most correlated to them in Dy with their respective activation
patterns in Xy. To confirm this, we correlated all six PTCs
with atoms from Dy as well as sub-specific D;s and the highest
atom-PTC correlation results are shown in Fig. 7. From the
figure it is evident that the highest correlated atoms are indeed
from the shared dictionary Dg. For visualization, these most
correlated atoms (from Dg) w.r.t. the six PTCs as recovered
by both algorithms are shown in Fig. 6 a) (ShSSDL) and
b) (CODL). Due to the unavailability of the ground truth,
we compared both algorithms in terms of their correlations
w.r.t. the six PTCs. Fig. 6 a) shows that the extracted TCs
by ShSSDL have high correlations as compared to the TCs
recovered by CODL Fig. 6 b). In Fig. 6 ¢) (ShSSDL) and d)
(CODL), we have used the corresponding (z-scored) sparse
code rows to show the most informative population level
activation maps. From the figure it can be seen that both
algorithms were able to localize the activity in the motor-
cortex region of the brain. Moreover, these results are also
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Fig. 6. Most correlated Do atoms (red) with their respective PTCs (blue) recovered by a) ShSSDL, b) CODL. The corresponding correlation coefficients
are also given inside parenthesis above each TC plot. Most informative population level z-scored (p < 0.001) activation maps for Left Toe, Right Toe, Left
Finger, Right Finger, Tongue, and Visual Cue regressors recovered by ¢) ShSSDL and d) by CODL.

‘Atom‘-PTC porre[ation matrix
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Fig. 7. Correlation matrix of the highest correlated dictionary atoms with
six PTCs labeled as Left Toe (LT), Right Toe (RT), Left Finger (LF), Right
Finger (RF), Tongue (T), and Visual Cue (VC).

consistent with the results presented in [32] for the same
datasets.

To analyze the sub-specific dictionaries, we take a slightly
different approach. In [32], the authors have highlighted the
existence of ten well-established resting state networks (RSNs)
[50] in the experimental task datasets as well. Although these
resting state networks could be present in all subject datasets,
their respective temporal dynamics need not be similar. Based
on this info, we expect to find these RSNs in the sub-specific
sparse code matrices X;. Using the RSN templates from
[50], we correlated them with every X; and stored the most
correlated ones for each subject. Using the most correlated
RSNs from each subject, we then generated 10 average RSN
maps. For comparison, the correlation of these averaged RSN
maps and those recovered by CODL w.r.t. the RSN templates

are given in table II. Here it can be seen that the RSN
maps recovered by ShSSDL show better correlation with the
RSN templates as compared to CODL. To visualize, the most
correlated activation maps corresponding to RSNs [1,4, 9, 10]
are shown in Fig. 8. Here the top row contains the template
RSNs, middle row contains the maps recovered by ShSSDL,
and the bottom row shows the maps recovered by CODL.
Except RSN 1, all other maps extracted by ShSSDL show
much better resemblance to the templates especially RSN 4
(Default Mode Network) where the activations in frontal lobe
are prominent as well.

4) Parameters for Dictionary Learning: The most impor-
tant parameters in our proposed method (and in any dictionary
learning algorithm in general) are the dictionary sizes Ky, K;
signal sparsity levels sg, s;, and the incoherence penalty
parameter 7. Similar to most existing dictionary learning
algorithms [25], [31], [32], there is no predefined way to
find/calculate these parameters beforehand. In our experi-
ments, we tried different combinations for these parameters
and used the ones which gave us best overall results in
terms of sum of the 6 atom-PTC correlation coefficients (as
seen in Fig. 6 (a)). For the selection of dictionary size and
sparsity levels, our aim was to learn most important temporal
dynamics from the data instead of getting a small overall
representation error. So, instead of learning big overcomplete
dictionaries, we tested with dictionary size combinations of
K, € [40,50,60,70] and K; € [15,20,25,30] with signal
sparsity parameters of so € {1,2} and s, € {1,2,3,4}. We
also experimented with different values for the incoherence
penalty parameter n € {0.5, 1, 5, 20, 100, 200, 500, 1500}. The
Parameter values for (Ko, K;, so, si, and, 1) leading to the
best results were found to be (40,20, 1,2,500) respectively.
Furthermore, to investigate the effect of n on atom-PTC
correlations (keeping other parameters constant), we correlated
Dy with all D;s for different values of 7, summed up their
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TABLE 11
CORRELATION COEFFICIENTS OF MOST CORRELATED SPATIAL MAPS W.R.T. THE RSN TEMPLATES AS RECOVERED BY SHSSDL AND CODL
\ RSN \ 1 2 3 4 5 6 7 8 9 10 \ Mean \
ShSSDL | 0.56 045 051 068 041 057 054 051 059 0.58 0.54
CODL 058 047 041 072 028 032 038 029 042 045 0.43
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Fig. 9. Effects of different 77 on (a) the overall normalized sum of Do atom
correlations with D;s, (b) sum of Dg atom-PTC correlation coefficients.

100200 500 1500

coefficients and have shown the normalized results in Fig. 9 a).
We also summed up the Dy atom-PTC correlation coefficients
for each n and have shown the results in Fig. 9 b). Fig.
9 a) shows that for smaller values of 7, sub-specific D;s
and Dy contain highly correlated atoms, i.e. all dictionaries
try to explain same information from the data. Whereas our
aim is to separate shared from sub-specific information. For
higher values of 7, the incoherence starts to increase while
the atom-PTC correlation results show very slight variation.
However, too much regularization (n = 1500) leads to too
much bias, thus we chose to use n = 500 to achieve a
balance between incoherence and correlation results. Another
interesting observation was that for small values of 7, we
needed to learn dictionaries with much larger sizes to achieve
good results. The reason could be that when we have smaller
dictionaries with highly correlated atoms, most of the atoms
try to explain the same information and ignore the remaining
info. The naive solution to this problem will be to learn big
dictionaries with more atoms to explain more trends present in
the data. This problem, however, can be overcome by forcing
the dictionaries to be incoherent. Thus, in our experiments,
choosing larger values of 7, the dictionary sizes had very small
effect on the atom-PTC correlation results.

RSN 9
Fig. 8. Most informative population level z-scored (p < 0.001) activation maps. Top row: RSN Templates, Mid row: ShSSDL, Bottom row: CODL

VI. CONCLUSION

Dictionary learning algorithms have proven to be a suc-
cessful alternative to conventional data driven methods such
as ICA for fMRI data analysis. In this paper, we introduce a
new dictionary learning algorithm named ShSSDL for multi-
subject tfMRI data analysis. This model offers the advantage
of accounting for both the shared as well as the distinct
information among the group of subjects. Similar to existing
algorithms, it is a two stages procedure with a sparse coding
stage where both the shared and sub-specific sparse codes
are estimated and a dictionary update stage where both the
shared and the set of sub-specific dictionaries are updated. To
illustrate its effectiveness, the proposed algorithm was tested
on both simulated and real tfMRI datasets from Q1 release
of the publicly available HCP motor task fMRI datasets [48].
Our experimental results demonstrate the proposed algorithms’
proficiency in separating the shared TC/SM pairs and subject-
specific ones into separate dictionary/sparse code pairs, thus
providing an efficient way to analyze the shared and subject-
specific TC/SMs for multi-subject tfMRI datasets.
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