
A Method to Compare the Discriminatory Power of

Data-driven Methods: Application to ICA and IVA

Yuri Levin-Schwartz1, Vince D. Calhoun2,3, and Tülay Adalı1
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Abstract

Functional magnetic resonance imaging (fMRI) facilitates the study
of neural function and how it is disrupted by psychiatric disorders,
such as schizophrenia. Since relatively little is known about the form
of neural activation a priori, it is important to minimize the assump-
tions placed on the data. This notion has motivated the development
of many data-driven, factorization-based methods for the analysis of
fMRI data, such as independent component analysis (ICA) and its
multiset extension, independent vector analysis (IVA). The increas-
ing number of these methods motivates their comparison. However,
such an investigation is difficult to perform on real fMRI data, since
the ground truth is unknown and comparing factors across different
techniques is both tedious and imprecise. For this reason, different
methods are usually compared using synthetic data, which is gener-
ally quite different in nature from real fMRI data. In this paper, we
present a novel method, global difference maps (GDMs), to compare
the results of different fMRI analysis techniques on real fMRI data,
quantify their relative performances, and highlight the differences be-
tween the decompositions visually. We apply this method to fMRI
data from 109 patients with schizophrenia and 138 healthy controls
during the performance of three tasks. Through this application of
GDMs, we find that IVA can determine regions that are more discrim-
inatory between patients and controls than ICA, though IVA is less
effective at emphasizing regions found in only a subset of the tasks.
These results demonstrate that GDMs are an effective way to compare
the performances of different factorization-based methods as well as
regression-based analyses.

1



1 Introduction

Due to its high spatial resolution and non-invasive nature, functional mag-
netic resonance imaging (fMRI) data has become one of the most popular
means of understanding normal neural function as well as how it is dis-
rupted by disorders, such as schizophrenia (Logothetis, 2008). The data pro-
cessing strategies for fMRI data can be roughly grouped into two schemes:
hypothesis-driven and data-driven (X. Zhao et al., 2004). Hypothesis-driven
methods exploit actual or supposed a priori knowledge about brain activity
and, generally, study neurological relationships across a few regions or with
respect to specific stimuli. Data-driven methods, on the other hand, offer a
less targeted and more holistic approach, often by decomposing the observed
data into a set of factors. Such techniques include: principal component
analysis (PCA) (Thirion & Faugeras, 2003; Zhong et al., 2009), independent
component analysis (ICA) (Mckeown et al., 1998; Calhoun, Adalı, Pearlson,
& Pekar, 2001; Stone, Porrill, Porter, & Wilkinson, 2002; Wang, 2011; Adalı,
Levin-Schwartz, & Calhoun, 2015), dictionary learning/sparse coding (DL)
(Abraham, Dohmatob, Thirion, Samaras, & Varoquaux, 2013; Abolghasemi,
Ferdowsi, & Sanei, 2015; S. Zhao et al., 2015), non-negative matrix factoriza-
tion (NMF) (Lohmann, Volz, & Ullsperger, 2007; Ferdowsi, Abolghasemi,
& Sanei, 2010), tensor-based methods (Davidson, Gilpin, Carmichael, &
Walker, 2013; Kuang et al., 2013), and independent vector analysis (IVA)
(J.-H. Lee, Lee, Jolesz, & Yoo, 2008). The performance of each of these
factor models depends on the validity of their modeling assumptions for the
dataset being analyzed and, thus, motivates a comparison of different factor
models on the same dataset. However, it is difficult to compare the perfor-
mance of different factor models on real data, since the ground truth is not
known and each method typically produces multiple factors.

In order to avoid this issue, many papers that compare different factor-
ization techniques focus on their performance on simulated data, see e.g.,
(X. Zhao et al., 2004; Degras & Lindquist, 2014; Kuang et al., 2015; Eng-
berg, Andersen, Mørup, & Madsen, 2016). However, these artificial datasets
are usually simple when compared with real fMRI data (Welvaert & Rosseel,
2014; Eklund & Nichols, 2017). When comparing the performance of dif-
ferent factor methods on real fMRI data, most papers align factors from
different methods and then rely on a visual comparison, see e.g., (Sui, Adalı,
Pearlson, Clark, & Calhoun, 2009; Erhardt et al., 2011; K. Lee, Tak, & Ye,
2011; Moeller, LeVan, & Gotman, 2011; Schöpf, Windischberger, Kasess,
Lanzenberger, & Moser, 2010). However, aligning even a subset of the total
number of factors from multiple techniques can be time consuming, due to
the potentially large number of factors from each method. Additionally,
each method exploits different properties of the signal (Lahat, Adalı, & Jut-
ten, 2015) and such comparisons are inherently subjective, since they rely
on visual interpretation. Another metric for the comparison of different fac-
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torization methods is reproducibility or generalizability, i.e., their ability to
produce similar factors across different subjects and sessions (Strother et al.,
2002; Afshin-Pour, Hossein-Zadeh, Strother, & Soltanian-Zadeh, 2012; Ras-
mussen, Abrahamsen, Madsen, & Hansen, 2012; Roels, Bossier, Loeys, &
Moerkerke, 2015). However, focusing solely on reproducibility ignores how
informative the extracted factors are for a given task. In the case where mul-
tiple groups, such as those affected by a psychiatric disease and those who
are healthy are analyzed, the ability of a factor to differentiate between the
groups can be used to determine the performance of different factorization
methods, see e.g., (Sui et al., 2010; Ramezani, Marble, Trang, Johnsrude,
& Abolmaesumi, 2015; Levin-Schwartz, Calhoun, & Adalı, 2017). The use
of this criterion as a measure of performance is well motivated and exploits
the knowledge that there should be some brain-related differences between
the groups. However, the technique does not solve the fundamental problem
of alignment, since often there are multiple discriminatory factors for each
method.

In this paper, we present a novel model comparison technique, global
difference maps (GDMs), and demonstrate how they can be used to visually
highlight the differences between factorization methods and quantify the
discriminative or relational power of a dataset within a decomposition. We
apply this technique to highlight the differences between individual analyses,
using ICA, and a joint analysis, using IVA, of three fMRI tasks: an audi-
tory oddball (AOD) task, a Sternberg item recognition paradigm (SIRP)
task, and a sensorimotor (SM) task. Through this application, we show
how GDMs can be an effective way to compare the performances of dif-
ferent factorization-based methods. Results show that IVA can determine
regions that are more discriminatory between patients and controls than
ICA, however, this improvement in discriminatory power comes at the cost
of not emphasizing some of the regions found using ICA in a subset of the
tasks.

2 Materials and Methods

2.1 Feature Extraction

Since the timing of the stimuli in each task is different, it is difficult to jointly
analyze multi-task fMRI data. Rather, for each subject, a simple linear
regression is run on the data from each voxel using the statistical parametric
mapping toolbox (SPM) (SPM5, 2011), where the regressors are created by
convolving the hemodynamic response function (HRF) in SPM with the
desired predictors for each task. The resulting regression coefficient maps
are used as features for each subject and task. This reduction, using a lower-
dimensional though still multivariate representation of the data, facilitates
exploration of the associations across the features from multiple tasks, see
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e.g., (Calhoun et al., 2006; Ramezani et al., 2014), as well as enabling the
identification of intrinsic functional networks (Calhoun & Allen, 2013).

2.2 FMRI Tasks and Features

The datasets used in this study are from the Mind Research Network Clinical
Imaging Consortium Collection (Gollub et al., 2013) (publicly available at
http://coins.mrn.org). These datasets were obtained from 247 subjects, 109
patients with schizophrenia and 138 healthy controls. Next, we introduce
the tasks as well as the associated multivariate features analyzed in this
study.

2.2.1 Auditory Oddball Task

This auditory task required the subjects to listen to three different types
of auditory stimuli in a pseudo-random order: standard (1 kHz tones oc-
curring with a probability of 0.82), novel (complex sounds occurring with a
probability of 0.09), and target (1.2 kHz tones occurring with a probability
of 0.09, to which a right thumb button press was required) (Kiehl & Liddle,
2001; Gollub et al., 2013). Each run of the task consisted of 90 stimuli,
each with a 200 ms duration and a randomly changing interstimulus inter-
val of between 550 and 2,050 ms. The order of novel and target stimuli was
changed between runs, thus ensuring that the responses were not dependent
on the stimulus order (Gollub et al., 2013). For this task, the regressor was
created by modeling both the target and standard stimuli as delta functions
and convolving this sequence of delta functions with the default SPM HRF
in addition to their temporal derivatives (Michael et al., 2009). Subject av-
eraged contrast images between the target versus the standard tones were
used as the feature for this task.

2.2.2 Sternberg Item Recognition Paradigm Task

This visual task required the subjects to remember a set of 1, 3, or 5 ran-
domly chosen numbers between 0 and 9. The task paradigm consisted of: a
1.5 second learn condition, a blank screen for 0.5 seconds, a 6 second encode
condition, where the whole sequence of digits was presented together, and
a 38 second probe condition, where the subject was shown a sequence of
integers and had to indicate, with a right thumb button press, whether or
not it was a member of the memorized set (Gollub et al., 2013). Each probe
digit was presented for up to 1.1 seconds in a pseudo-random fashion within
a 2.7 second interval (Gollub et al., 2013). A total of 84 probes, consisting
of 42 targets and 42 foils was obtained per scan and the prompt-encode-
probe conditions were run twice for each set size in a pseudo-random order
(Gollub et al., 2013). For this task, the regressor was created by convolv-
ing the probe response for the three digit set with the default SPM HRF
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(Michael et al., 2009). This was done for both runs of the probe response
and then the average map was computed and used as the feature for this
task.

2.2.3 Sensory Motor Task

This auditory task required the subjects to listen to a sequence of auditory
stimuli that consisted of 16 different tones each lasting 200 ms and ranging
in frequency from 236 Hz to 1,318 Hz with a 500 ms inter-stimulus interval
(Gollub et al., 2013). The first tone presented was at the lowest pitch and
each subsequent tone was higher in pitch than the previous one until the
highest tone was reached, then the order of the tones was reversed (Gollub
et al., 2013). Each tonal change required a right thumb button press. A
run consisted of 15 increase-and-decrease blocks, alternated with 15 fixation
blocks, with each block lasting 16 seconds in duration (Gollub et al., 2013).
For this task, the regressor was created by convolving the entire increase-
and-decrease block with the default SPM HRF (Michael et al., 2009). This
was done for both runs for each subject and then the average map was used
as the feature for this task.

2.3 ICA

For an fMRI feature dataset from M subjects, X ∈ RM×V , where the mth
row of X is formed by flattening the feature of V voxels from the mth
subject, the noiseless ICA model can be written as

X = AS, (1)

where the C spatially independent latent sources or neural activation pat-
terns, S ∈ RC×V , are linearly mixed by the mixing matrix, A ∈ RM×C .
Given this model, ICA seeks to determine a demixing matrix, W, such that
the estimated components, the rows of Ŝ = WX, are as independent as pos-
sible. Since we seek to maximize independence between the estimated com-
ponents, ŝ1, ..., ŝC , estimation of the demixing matrix can be accomplished
through the minimization of the mutual information among the components,
written as

IICA(W) =
C∑
i=1

H (ŝi)− log |det(W)| −H(X), (2)

where H(·) is the entropy. Note that, since the data from each subject
within a task has been reduced to a feature, the columns of the estimated
mixing matrix, Â, provide the weight of each component across the sub-
jects. This means that the ith column of the estimated mixing matrix, âi,
represents the relative weights of the ith source estimate, ŝi. Therefore, to
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look for components that have different expressions—on average—between
patients and controls a two-sample t-test can be performed on columns of Â,
where one group is represented by the values corresponding to the patients
with schizophrenia and the other by the values corresponding to the healthy
controls (Calhoun & Adalı, 2009). When a component has weights that are
statistically significantly different between the patients and the controls, the
component can be seen as describing the functional differences between pa-
tients and controls, and is referred to as a possible biomarker of disease. The
t-statistics derived from these tests can serve as the basis for the construction
of the GDMs discussed further in Section 2.5.

Since fMRI data is of high dimensionality and quite noisy, i.e., is in a
space consisting of signal as well as noise, dimension-reduction using PCA is
a crucial preprocessing step in order to avoid over-fitting in subsequent anal-
yses. Determining the appropriate order—the size of the signal subspace—
for this PCA step using real fMRI data is an active area of research, see e.g,
(Cordes & Nandy, 2006; Y.-O. Li, Adalı, & Calhoun, 2007; Xie, Cao, Weng,
& Jin, 2009; Chen et al., 2010; Yourganov et al., 2011; Hui et al., 2013). De-
spite its fairly extensive study, the majority of order estimation techniques
are appropriate for single subject or single task analyses, which limits their
applicability to the joint analysis of multiple tasks, multiset fusion. The
reason for this is that these techniques ignore the complementary informa-
tion between the datasets, which is the main motivation for performing a
joint analysis on such data. In this work, we use the order estimated by a
modification of the procedure in (Levin-Schwartz, Song, Schreier, Calhoun,
& Adalı, 2016). The reason for this is because, to the best of our knowl-
edge, it is the only method that has shown desirable performance for the
task of order estimation in both the sample-poor and sample-rich regimes
inherent to the fusion of medical imaging data. The technique, named PCA
and canonical correlation analysis (PCA-CCA), estimates the size of the
signal subspace shared by two datasets, i.e., the common order, through a
sequence of binary hypothesis tests. The process begins by assuming that
the common order is 0 and that the null hypothesis is that the current com-
mon order is appropriate. If the null hypothesis is rejected, the common
order is increased by 1 and the test is repeated, until the null hypothesis
cannot be rejected or the common dimension is equal to half the number of
subjects, M/2. In this application, we estimate the order for each pairwise
combination of tasks and then select the highest estimated order to enable
the retention of the most complementary information across the datasets.

We should note that although there are many ICA algorithms, in this
work, we used the ICA by entropy bound minimization (EBM) algorithm,
due to the fact that it has shown superior performance in both simulated and
real neurological data when compared with the popular Infomax algorithm
(Bell & Sejnowski, 1995), see e.g., (X.-L. Li & Adalı, 2010; Adalı, Anderson,
& Fu, 2014; Adalı et al., 2015). This improved performance derives from
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the fact EBM does not assume a fixed form for the distribution of the latent
sources and instead attempts to upper bound their entropy through the use
of measuring functions (X.-L. Li & Adalı, 2010). The use of these measuring
functions enables the description of a wide variety of distributions, including
those that are: unimodal, bimodal, symmetric, and skewed (X.-L. Li &
Adalı, 2010), thus, generally, improving the estimation of all sources within
the mixture.

2.4 IVA

FMRI data from subjects performing multiple tasks has been increasingly
gathered during the same study, since each task is expected to provide re-
lated information regarding neural function and how it is impacted by neu-
rological diseases, such as schizophrenia, see e.g., (Calhoun et al., 2006;
Fitzgerald et al., 2008; Michael et al., 2009; Mijovic et al., 2012; Ramezani
et al., 2015). In order to address this scenario, we extend the model in (1)
to K datasets, or tasks, as

X[k] = A[k]S[k], 1 ≤ k ≤ K. (3)

Due to the scaling and permutation ambiguities inherent to ICA, running
a separate ICA individually for each task and aligning the results is both
impractical and suboptimal, since it would ignore the complementary in-
formation that each task provides (Lahat et al., 2015). This motivates the
performance of a joint analysis, such as using IVA, a recent multiset exten-
sion of ICA, which exploits similarities across datasets to achieve a successful
decomposition (J.-H. Lee et al., 2008).

The mutual information cost function for IVA can be written as,

IIVA(W[k]) =

C∑
c=1

H
(
Ŝc

)
−

K∑
k=1

log
∣∣∣det

(
W[k]

)∣∣∣− K∑
k=1

H(X[k]), (4)

where Ŝc =
[
ŝ
[1]
c , ..., ŝ

[K]
c

]T
∈ RK×V is the cth source component matrix

(SCM), formed by concatenating the cth estimated component from each
of the datasets. Note that the difference between (2) and (4) is that we
are now minimizing the mutual information between SCMs and not compo-
nents. This cost function reduces to the sum of separate ICAs performed
on each dataset individually if the sources in each of the datasets are mu-
tually independent of each other (Adalı et al., 2014). In this work, IVA via
a multivariate Gaussian and Laplacian algorithm (Ma, Calhoun, Phlypo, &
Adalı, 2014) is used, since it has proven to be an effective IVA algorithm for
analysis of fMRI data, see e.g., (Ma et al., 2014; Gopal et al., 2016).
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2.5 GDMs

Before describing how we construct GDMs, we should note that, since an
important focus of this study is differentiating patients with schizophrenia
from healthy controls, we focus on how GDMs can highlight the brain regions
that differentiate between two groups. However, as we describe at the end of
this section, GDMs can also be constructed such that they reflect the regions
that are correlated with certain behavioral variables of interest, highlighting
associations between psychological tests and neural function.

Due to the scaling ambiguity of ICA, prior to the construction of GDMs,
Z-scores are independently computed from the individual biomarkers using
the mean and standard deviation computed using all voxels. Let N be subset
of the C components estimated using separate ICAs or IVA for each dataset
with weights that are statistically significantly different, at p < 0.05, between

patients and controls. Denoting these components as ŝ
[k]
n , 1 ≤ n ≤ N , we

construct the GDM for that method and dataset, ŝ
[k]
GDM, as follows

ŝ
[k]
GDM =

N∑
n=1

tn∑N
m=1 tm

ŝ[k]n , 1 ≤ k ≤ K, (5)

where tn is the t-statistic, calculated as described in Section 2.3, for the nth
component that is positive or made to be positive by multiplying the corre-
sponding subject covariation and component by −1. Note that due to the
sign ambiguity associated with ICA and IVA, multiplying both the compo-
nent as well as the subject covariation by −1 will produce the same solution
(Hyvärinen, Karhunen, & Oja, 2001). The physical interpretation of such
a transformation is that, for example, rather than having patients have in-
creased activation in a certain region over controls, controls have increased
deactivation over patients. The GDM can be seen as a summary map that
describes only the regions that activate/deactivate significantly differently
between patients and controls for a given decomposition and dataset within
that decomposition. Each biomarker is scaled by the value of its corre-
sponding t-statistic, so has more weight if the component is better able to
differentiate between patients and controls. Note that though we describe
the construction of GDMs for factors extracted using ICA and IVA, they
could also be constructed using the results of any factor analysis, such as
PCA, NMF, or DL. Additionally, though beyond the scope of this work,
GDMs can also be defined based upon regression models, which are useful
when there are less clearly defined groups. Though we should note that
using general linear models where the regressor is the disease state of the
subjects are, generally, less robust than factor models in this case (Calhoun,
Adalı, Stevens, Kiehl, & Pekar, 2005).

We can quantify the discriminative power of a GDM, and thus, indirectly,
the whole decomposition, by generating component weights in a nearly iden-
tical manner to the GDM spatial maps and performing a two-sample t-test
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on the resulting weights. The corresponding component weights for the
GDM are given by

â
[k]
GDM =

N∑
n=1

tn∑N
m=1 tm

â[k]n , 1 ≤ k ≤ K, (6)

where â
[k]
n is the subject covariation, obtained using ICA or IVA, corre-

sponding to ŝ
[k]
n and, just as for ŝ

[k]
n , is multiplied by −1 if the sign of tn

is negative. This construction is expected to result in component loadings

that show greater discriminatory power than the original â
[k]
n , since â

[k]
GDM

is constructed from only those component loadings that are statistically sig-

nificant. Additionally, the â
[k]
n can be modeled as unit step functions with

weights corresponding to their disease status and corrupted with Gaussian
noise, where higher values of tn imply lower variances for the noise. There-

fore, the summation of multiple â
[k]
n , weighted as in (6), will tend to result

in a lower value for the variance of the noise and, therefore, a more discrim-
inative subject covariation. Additionally, note that the t-tests performed
on the columns of the mixing matrices may be seen as a feature extraction
step, thus corrections for multiple comparisons should only account for the
number of GDMs calculated.

A fundamental goal of neuroimaging studies is to understand the under-
lying neural basis for psychological measurements (Shen et al., 2014; Wan
et al., 2014; Meng et al., 2017). GDMs lend themselves to this goal in a
straightforward manner and through their application can facilitate the dis-
covery of which neuroimaging datasets most effectively explain the results
of psychometric tests. This extension can be done by using the t-statistics
derived from the correlations of the subject weights with the behavioral vari-
ables of interest, rather than those derived using the two-sample t-test. This
means that the functional form of (5) and (6) would not change, instead tn

would be defined based on the sample correlation and â
[k]
n would be selected

based on the significance of their correlation to the test score of interest.
In this study, the behavioral variables were derived from the measurement
and treatment research to improve cognition in schizophrenia (MATRICS)
consensus cognitive battery (MCCB), which is widely recognized as a valu-
able tool that provides a comprehensive evaluation of cognitive function of
schizophrenia within clinical trials (Nuechterlein et al., 2008; August, Ki-
wanuka, McMahon, & Gold, 2012; Sui et al., 2015).

3 Results and Discussion

3.1 Detection of Group-level Differences

In order to investigate the ability of a GDM to summarize the discriminatory
power of a decomposition, we estimate 25 components, corresponding to
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Figure 1: Comparison of the t-statistics from the GDMs compared with the t-statistics
of the original biomarkers found using (a) separate ICAs and (b) IVA for each task. The
t-statistics of the GMDs are shown in red, while the original biomarkers are shown in blue.

the maximum order that we find by applying PCA-CCA to the pairwise
combinations of the three tasks. We display the t-statistics of the subject
weights that were found to be statistically significant for each dataset and
the corresponding GDMs for the separate ICAs and IVA in Figure 1.

From Figure 1, we see that the t-statistics from the GDMs are an upper-
bound for the t-statistics from their constituent biomarkers. This seems to
imply that the t-statistics from the GDMs may summarize the discriminative
power of a decomposition of a given dataset and can therefore be used to
compare the performance of different analysis techniques on the same data.
We also note from Figure 1(a) that the AOD and SM datasets seem to
provide more discriminatory information than the SIRP dataset, since the
significance of the t-statistic the GDM from the SIRP dataset is much lower
than those of the AOD and SM datasets. In Figure 1(b), we see that when
the datasets are combined in a joint analysis using IVA, the significance of
the SIRP dataset increases, while the significance levels of the AOD and SM
datasets decrease. This seems to indicate that through a joint analysis of the
multi-task data, datasets that are not as discriminative by themselves, like
the SIRP, can be made more discriminative if exploiting related information
across different tasks. However, we do note a drop in significance for the
two datasets that are more significant individually, namely the AOD and
the SM.

We next investigate whether the trends that we note using the t-statistics
of the GDMs are accurate and that no spurious relations are introduced.
This is done by comparing the p-value corresponding to the t-statistic from
the GDM with the p-value obtained using Hotelling’s T 2-test (Hotelling,
1947). Hotelling’s T 2-test, the multivariate counterpart to the two-sample t-
test assess the validity of the hypothesis that a two multivariate distributions
have the same mean vectors against the alternative hypothesis that they do
not. For this application, we evaluate whether the vector containing the
subject loadings of all of the biomarkers from the controls is different from
the vector containing the corresponding subject loadings from the patients.
The results of this comparison are shown in Table 1.
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AOD (ICA) AOD (IVA) SIRP (ICA) SIRP (IVA) SM (ICA) SM (IVA)

GDM 1.65× 10−13 3.74× 10−12 4.54× 10−7 4.20× 10−8 7.52× 10−16 4.53× 10−9

T 2-test 8.19× 10−10 2.48× 10−9 3.95× 10−5 3.06× 10−6 1.15× 10−14 1.00× 10−6

Table 1: Significance in terms of p-values for each combination of dataset and analysis
method measured using a 2-sample t-test run on the subject loadings of the GDM as well
as Hotelling’s T 2-test. Note that the trends of the significance of each combination of
dataset and analysis method is consistent across the two tests.

Figure 2: GDMs generated from the (a) AOD, (b) SIRP, and (c) SM tasks. For each
plot, only those voxels that had an absolute Z-score above 1.96 are displayed. The red
shows regions that are common to both the GDM extracted from the IVA results as well
as the GDM extracted from the separate ICAs. The cyan shows the regions that are in
the GDM extracted from IVA results but not in the GDM extracted from the separate
ICAs. The yellow shows the regions that are in the GDM extracted from separate ICAs
but not in the GDM extracted from the IVA results.

Based on the results shown in Table 1, we can see that the relative
significance for the t-statistics of the GDMs and the Hotelling’s T 2-test is
the same. This seems to imply that the GDMs are effectively summarizing
the discriminative power of a dataset within a decomposition and not in-
troducing any artificial relations. The reason for this is due to the fact the
Hotelling’s T 2-test is the classical measure of the total difference between the
subject covariations associated with the patients and those associated with
the controls. However, it is important to note that the advantage of sum-
marizing the discriminatory power through the use of GDMs rather than
through the use of Hotelling’s T 2-test is that the GDMs, i.e., the spatial
maps, themselves can be related. This enables the identification of regions
that differentiate patients and controls in different decompositions and a
comparison of these regions. In order to explore the differences between
individual ICAs and IVA in terms of the regions that are found to differ-
entiate between patients and controls, we compare the GDMs derived from
each of the methods for each of the three tasks after thresholding the maps
at |Z| > 1.96. Using such a technique, we can visualize how much joint
discriminative information each region possesses across tasks. We display
the results in Figure 2.

Figure 2 indicates that the discriminatory regions found using IVA but
not when using separate ICAs—shown in cyan—correspond, mainly, to the
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Figure 3: GDMs generated from (a) indivudal ICAs and (b) IVA. For each plot, only
those voxels that have an absolute Z-score above 1.96 are displayed. The red shows regions
that are common to all three tasks, the number of these voxels is 252 for separate ICAs
and 286 for IVA. The cyan shows the regions that two of the three tasks, the number of
these voxels is 1,420 for separate ICAs and 2,123 for IVA. The yellow shows the regions
that are only activated in one of the three tasks, the number of these voxels is 9,469 for
separate ICAs and 8,376 for IVA.

sensorimotor region of the brain. Such a result seems reasonable, since this
region is expected to be consistently activated across the three tasks and
have been shown to differentiate patients with schizophrenia from healthy
controls in these tasks, see e.g., (Liu et al., 2009; Sui et al., 2010; Deserno,
Sterzer, Wüstenberg, Heinz, & Schlagenhauf, 2012). We also see regions,
such as some of the auditory activation in the AOD and SM datasets as well
as the visual activation in the SIRP, which are found using separate ICAs,
but not when performing a joint analysis using IVA—shown in yellow. This
highlights the ability of a joint analysis using IVA to emphasize similarities
across datasets and also highlights the need to compare the results of a joint
analysis to those of single dataset analyses, since some of the regions asso-
ciated with a subset of the tasks may not be as strongly emphasized using
IVA (Svensén, Kruggel, & Benali, 2002). Additionally, we can investigate
the extent to which IVA emphasizes similar regions across all tasks when
compared with individual ICAs by looking at the regions in the GDMs that
are found to activate at |Z| > 1.96 for all tasks. Such an analysis is im-
portant, since a fundamental reason for analyzing multi-task fMRI data is
to determine the common information provided by the tasks, which may be
useful for identifying dysfunctional regions associated with brain disorders
(Plis et al., 2014). The results of this comparison are presented in Figure 3.

From Figure 3, we can see that the number of voxels that are common to
two or more tasks is higher when analyzing the data using IVA than when
separate ICAs are performed on each of the datasets. Such a result seems
reasonable, since IVA is able to exploit the joint information across tasks,
whereas individual ICAs cannot. This again highlights the improved power
of IVA over separate ICAs when there are similarities across datasets.
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AOD (ICA) AOD (IVA) SIRP (ICA) SIRP (IVA) SM (ICA) SM (IVA)

t-statistic 7.81 7.31 5.18 5.66 8.64 6.08

Speed of Processing 4.25× 10−7 2.50× 10−5 5.91× 10−3 7.86× 10−6 1.02× 10−5 9.14× 10−4

Verbal Learning 1.06× 10−6 6.45× 10−6 2.63× 10−4 3.03× 10−6 4.70× 10−9 1.73× 10−7

Verbal Working Memory 7.04× 10−4 1.23× 10−3 3.03× 10−3 1.95× 10−5 1.40× 10−4 5.19× 10−4

Nonverbal Working Memory 5.54× 10−6 7.56× 10−5 3.58× 10−3 7.99× 10−5 6.73× 10−8 7.10× 10−5

Table 2: Estimated t-statistics derived from the subject loadings of the GDMs as well
as significance of the correlation between the subject loadings for the GDMs and MCCB
scores. No correction for multiple comparisons was performed, however we highlight the
entries that are not significant after a Bonferroni correction—p > 2.02 × 10−3 for a p-
value of 0.05—in red. Note that the only significance values that do not survive the
Bonferroni correction, and the lowest t-statistic value, are those corresponding to the ICA
decomposition of the SIRP dataset.

3.2 Association with Psychological Measures

In order to investigate the ability of a GDM to summarize the association of
components within a decomposition with a behavioral variable of interest,
we display the t-statistics corresponding to the Pearson correlation between
the subject weights and MCCB scores for the GDMs as well as its constituent
components and display the results in Figure 4.

From Figure 4, we see that, just as they may be seen to summarize the
discriminatory power of a decomposition, GDMs can be used to summa-
rize the associative power between components within a decomposition and
behavioral variables of interest. Using this fact, we explore the use GDMs
to assess the value of performing a joint analysis on multi-task fMRI using
IVA rather than performing individual analyses using ICA. We present these
results in Table 2.

From Table 2, we see that the GDM found using ICA on the SIRP
dataset does not correlate significantly, after a Bonferroni correction, with
the majority of behavioral scores. This means that the results of a unimodal
factorization of this dataset cannot be strongly associated with the measured
clinical outcomes. However, the GDM created from the IVA decomposition
of that dataset does correlate significantly, even after a conservative correc-
tion for multiple comparisons. This trend is similar to the one observed in
Figure 1, i.e., that the factors extracted from datasets, which may not, in-
herently, be strongly associated with behavioral variables of interest, using
a joint analysis can have a much stronger association with the behavioral
variables. However, this may come at the cost of reducing the associative
power of datasets that are strongly associated with that variable by them-
selves, in this case the AOD and SIRP datasets. This motivates estimating
the amount of joint information that exists between fMRI tasks prior to
performing an analysis, see e.g., (Löfstedt & Trygg, 2011; Alter, Brown, &
Botstein, 2003; van Deun, Smilde, Thorrez, Kiers, & van Mechelen, 2013;
Levin-Schwartz et al., 2016), as well as comparing the results of a joint
analysis with those from individual analyses (Svensén et al., 2002). It is
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Figure 4: Comparison of the t-statistics derived from the correlation between the subject
weights and MCCB scores from the GDMs compared with those from the original com-
ponents. The t-statistics of the GMDs are shown in red, while the original components
are shown in blue. (a) and (b) show this relationship for the speed of processing score for
ICA and IVA, respectively. (c) and (d) show this relationship for the verbal learning score
for ICA and IVA, respectively. (e) and (f) show this relationship for the verbal working
memory score for ICA and IVA, respectively. (g) and (h) show this relationship for the
nonverbal working memory score for ICA and IVA, respectively.
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important to note that since a subset of the possible contrasts that could
be derived from each task were used in this work, the present study should
be seen as an initial example to demonstrate the power of GDMs to re-
late different factorization methods on real fMRI data rather than a general
statement about the tasks themselves.

4 Conclusions

The increasing use of fMRI data to study neural function and its disrup-
tion due to psychiatric conditions, such as schizophrenia, has lead to the
rise of a wide variety of methods to analyze such data. This leads to the
issue of how to objectively compare the performance of different methods,
without the need for a tedious factor alignment step. In this paper, we
have presented a novel technique, GDMs, to relate the results of different
fMRI analysis methods based upon either their ability to detect differences
between patients and controls or to correlate behavioral variables as well
as to highlight which regions differ between the methods. We applied this
technique to the decompositions of fMRI data from three tasks derived us-
ing individual analyses using ICA as well as a joint analysis using IVA. Our
results show that GDMs are an effective technique to compare the results
of different factorization methods on real fMRI data. Additionally, through
our comparison of the results using individual ICAs and IVA, we find that
a joint analysis using IVA is able to determine regions that are more similar
across tasks and can be more discriminative between patients and controls
than those found using individual analyses using ICA. It is important to note
that though we construct GDMs based upon highlighting group differences
and associations with behavioral variables, GDMs could also be constructed
from the output of a regression analysis, which can account for the effects of
confounding variables and be used when there are less clearly defined groups.
We should also note that though developed in the context of comparing dif-
ferent decompositions of multi-task fMRI data, GDMs can be applied to
data from different neuroimaging modalities, such as electroencephalogram
or diffusion tensor imaging, or even in the context of multimodal fusion.
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