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Abstract: We report the first observation of two-, three-, four-, five-, six-, and seven-atom
Dicke states in an atomic vapor using optical multi-quantum 2D coherent spectroscopy. This
has significant implications in the studies of many-body physics.
OCIS codes: 300.6210 Spectroscopy, atomic; 300.6530 Spectroscopy, ultrafast

Behaviors of many-body systems cannot be always understood by a simple extrapolation of the microscopic laws
of a single particle [1]. In 1954, Robert Dicke introduced a coherent collection states of atoms [2], which can provide
unique insights into properties of many-body systems. Experimentally, the ability to prepare cold ions, entangled
photons and superconducting qubits have advanced the study of Dicke states with a scalable and deterministic number
of particles. However, the studies on multi-atom Dicke states in neutral atoms/molecules have been limited to either two
particles [3, 4] or a large ensemble [5] so far. Therefore, it is essential to experimentally investigate how many multi-
atom Dicke states may exist and how the property scales with the number of atoms in the presence of thermal motion.
Here, we report the creation and detection of multi-atom Dicke states up to seven in an atomic vapor by using optical
multi-quantum two-dimensional coherent spectroscopy (2DCS). The measured 2D spectra exhibit the correlation of
multi-quantum coherence and emission signal, allowing unambiguous detection of selective Dicke states. Furthermore,
we found that the decoherence rate exhibits a linear dependence on the number of atoms.
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Fig. 1: (a) Energy levels of isolated atoms and multi-atom Dicke states. (b) Excitation pulse sequence of three-atom
Dicke states. (c) The double-sided Feynman diagram reveals the generation of three-quantum coherence ρge3 process.

For a two-level atom with a ground state |0⟩ and a singly excited state |1⟩, shown in Fig. 1(a), multiple atoms can
be correlated by laser field and form Dicke states in the Hilbert space. A multi-quantum coherence |ρgen⟩ between
the ground state |g⟩ and the multi-atom excited state |en⟩ is generated through a multi-photon process. Here, we
use three-quantum 2DCS as an example to describe this process. The time ordering of pulse is shown in Fig. 1(b).
Four copropagating pulses B, C, A∗, and D∗ which are phase-modulated by acousto-optic modulators (AOMs) at a
specific frequency ωi [6] are incident on the vapor. In the experiment, as shown the pathway in Fig. 1(c), pulse B
generates a single quantum coherence between g and e1; pulse C acts twice converting it to a three-quantum coherence
between g and e3, which evolves during T ; applying pulse A∗ twice subsequently converts it into a single-quantum
coherence between e3 and e2, which evolves during t; pulse D∗ is used to turn the coherence into a population e3
to radiate a fluorescence signal. Because of this particular time ordering, the signal is modulated at the frequency
ω3Q = ωB −ωD +2(ωC −ωA) and can be isolate and demodulate by lock-in detection using reference frequency ω3Q.
The experiment can be further extended to measure n-atom Dicke states by applying C and A∗ pulses (n− 1) times
each. For this case, n-quantum coherence ρgen is created and evolves in the time period T , and the single quantum
coherence evolves in t. The signal is then sorted out at the frequency ωnQ = ωB−ωD+(n−1)(ωC −ωA) and recorded
as a function of T and t. Fourier transforming the time-domain signal generates a 2D spectrum.
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Fig. 2: (a-f) The measured 2D spectra of two atoms, three atoms, four atoms, five atoms, six atoms, and seven atoms
Dicke states. (g) The extracted decoherence rate from n-atom Dicke states. For more details, see [7].

Typical multi-quantum 2D spectra are shown in Fig. 2(a)-2(f). The experiment was implemented on a potassium
(K) atomic vapor and the femtosecond laser wavelength is tuned to excite the D1 (389.29 THz) and D2 (391.02 THz)
transitions. Due to possible combinations of n atoms each being in either D1 or D2 states, the excited states of n-atom
have n+1 energies. For example, in the case of three K atoms, the triply excited states can be 3D1,2D1+D2,D1+2D2,
and 3D2. Therefore, there are six peaks with three-quantum frequencies that exactly match three-atom triply excited
states in the vertical direction of the measured three-quantum 2D spectrum. The peaks with a three-quantum frequency
of 3D1 or 3D2 are located on the diagonal line ωT = 3ωt with a single-quantum frequency of D1 or D2, respectively.
While the three-quantum frequency has mixed contributions from D1 and D2, the single-quantum frequency can be
both D1 and D2, resulting in four off-diagonal peaks. For more K atoms, the multi-quantum 2D spectra are shown in
Figs. 2(c)-2(f) for four, five, six and seven atoms Dicke states, respectively. Therefore, n-quantum 2D spectra provide
direct and unambiguous evidence of n-atom Dicke states.

Additionally, in order to get insights into how the property of multi-atom Dicke states scale with the number of
atoms, we further measured the decoherence dynamics of n-quantum coherence at different atom numbers. The deco-
herence rate are obtained though scanning T . As shown in Fig. 2(g), the extracted decoherence rate linearly increases
with the number of atoms, confirming the signature cooperative property of Dicke states.

In conclusion, we experimentally observed multi-atom Dicke states up to seven in a K atomic vapor by using
optical multi-quantum 2DCS. In each 2D spectrum, the spectral peaks match the corresponding multi-atom Dicke
excited states. The observation of n-atom Dicke states together with the technique of multi-quantum 2DCS, opens a
new avenue to study the fundamental many-body physics.
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