

Experimental observation of multi-atom Dicke states in an atomic vapor using optical 2D coherent spectroscopy

Shaogang Yu^{1,2,3}, Michael Titze¹, Yifu Zhu¹, Xiaojun Liu² and Hebin Li^{1*}

¹Department of Physics, Florida International University, Miami, Florida 33199, USA

²State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China

³University of Chinese Academy of Sciences, Beijing 100049, China

*email:hebin.li@fiu.edu

Abstract: We report the first observation of two-, three-, four-, five-, six-, and seven-atom Dicke states in an atomic vapor using optical multi-quantum 2D coherent spectroscopy. This has significant implications in the studies of many-body physics.

OCIS codes: 300.6210 Spectroscopy, atomic; 300.6530 Spectroscopy, ultrafast

Behaviors of many-body systems cannot be always understood by a simple extrapolation of the microscopic laws of a single particle [1]. In 1954, Robert Dicke introduced a coherent collection states of atoms [2], which can provide unique insights into properties of many-body systems. Experimentally, the ability to prepare cold ions, entangled photons and superconducting qubits have advanced the study of Dicke states with a scalable and deterministic number of particles. However, the studies on multi-atom Dicke states in neutral atoms/molecules have been limited to either two particles [3, 4] or a large ensemble [5] so far. Therefore, it is essential to experimentally investigate how many multi-atom Dicke states may exist and how the property scales with the number of atoms in the presence of thermal motion. Here, we report the creation and detection of multi-atom Dicke states up to seven in an atomic vapor by using optical multi-quantum two-dimensional coherent spectroscopy (2DCS). The measured 2D spectra exhibit the correlation of multi-quantum coherence and emission signal, allowing unambiguous detection of selective Dicke states. Furthermore, we found that the decoherence rate exhibits a linear dependence on the number of atoms.

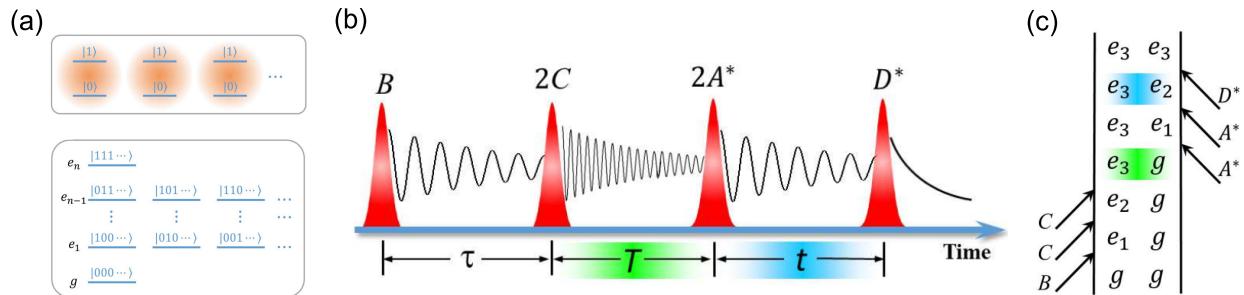


Fig. 1: (a) Energy levels of isolated atoms and multi-atom Dicke states. (b) Excitation pulse sequence of three-atom Dicke states. (c) The double-sided Feynman diagram reveals the generation of three-quantum coherence ρ_{ge_3} process.

For a two-level atom with a ground state $|0\rangle$ and a singly excited state $|1\rangle$, shown in Fig. 1(a), multiple atoms can be correlated by laser field and form Dicke states in the Hilbert space. A multi-quantum coherence $|\rho_{ge_n}\rangle$ between the ground state $|g\rangle$ and the multi-atom excited state $|e_n\rangle$ is generated through a multi-photon process. Here, we use three-quantum 2DCS as an example to describe this process. The time ordering of pulse is shown in Fig. 1(b). Four copropagating pulses B, C, A*, and D* which are phase-modulated by acousto-optic modulators (AOMs) at a specific frequency ω_i [6] are incident on the vapor. In the experiment, as shown the pathway in Fig. 1(c), pulse B generates a single quantum coherence between g and e_1 ; pulse C acts twice converting it to a three-quantum coherence between g and e_3 , which evolves during T ; applying pulse A* twice subsequently converts it into a single-quantum coherence between e_3 and e_2 , which evolves during t ; pulse D* is used to turn the coherence into a population e_3 to radiate a fluorescence signal. Because of this particular time ordering, the signal is modulated at the frequency $\omega_{3Q} = \omega_B - \omega_D + 2(\omega_C - \omega_A)$ and can be isolate and demodulate by lock-in detection using reference frequency ω_{3Q} . The experiment can be further extended to measure n -atom Dicke states by applying C and A* pulses ($n-1$) times each. For this case, n -quantum coherence ρ_{ge_n} is created and evolves in the time period T , and the single quantum coherence evolves in t . The signal is then sorted out at the frequency $\omega_{nQ} = \omega_B - \omega_D + (n-1)(\omega_C - \omega_A)$ and recorded as a function of T and t . Fourier transforming the time-domain signal generates a 2D spectrum.

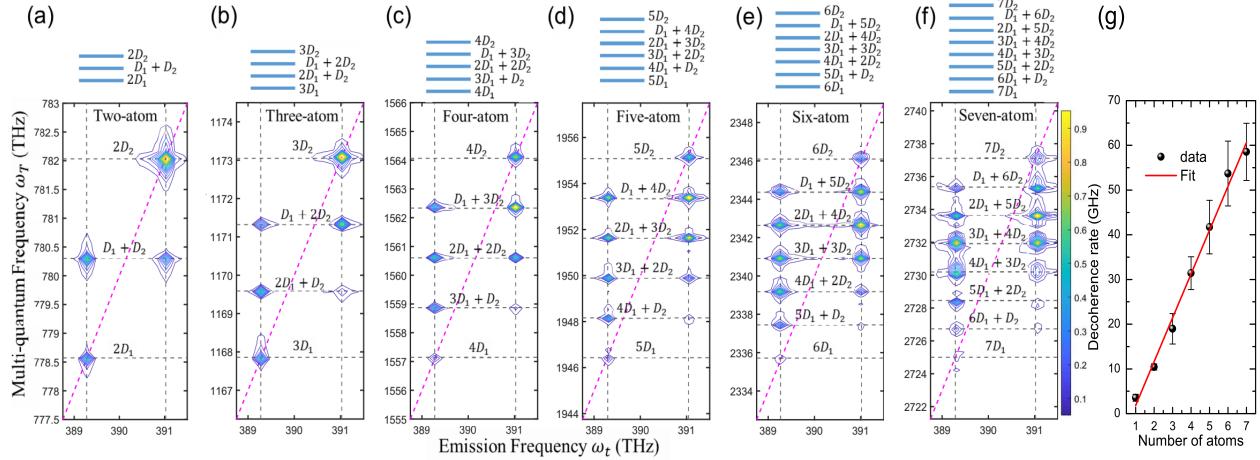


Fig. 2: (a-f) The measured 2D spectra of two atoms, three atoms, four atoms, five atoms, six atoms, and seven atoms Dicke states. (g) The extracted decoherence rate from n -atom Dicke states. For more details, see [7].

Typical multi-quantum 2D spectra are shown in Fig. 2(a)-2(f). The experiment was implemented on a potassium (K) atomic vapor and the femtosecond laser wavelength is tuned to excite the D_1 (389.29 THz) and D_2 (391.02 THz) transitions. Due to possible combinations of n atoms each being in either D_1 or D_2 states, the excited states of n -atom have $n+1$ energies. For example, in the case of three K atoms, the triply excited states can be $3D_1$, $2D_1 + D_2$, $D_1 + 2D_2$, and $3D_2$. Therefore, there are six peaks with three-quantum frequencies that exactly match three-atom triply excited states in the vertical direction of the measured three-quantum 2D spectrum. The peaks with a three-quantum frequency of $3D_1$ or $3D_2$ are located on the diagonal line $\omega_T = 3\omega_t$ with a single-quantum frequency of D_1 or D_2 , respectively. While the three-quantum frequency has mixed contributions from D_1 and D_2 , the single-quantum frequency can be both D_1 and D_2 , resulting in four off-diagonal peaks. For more K atoms, the multi-quantum 2D spectra are shown in Figs. 2(c)-2(f) for four, five, six and seven atoms Dicke states, respectively. Therefore, n -quantum 2D spectra provide direct and unambiguous evidence of n -atom Dicke states.

Additionally, in order to get insights into how the property of multi-atom Dicke states scale with the number of atoms, we further measured the decoherence dynamics of n -quantum coherence at different atom numbers. The decoherence rate are obtained though scanning T . As shown in Fig. 2(g), the extracted decoherence rate linearly increases with the number of atoms, confirming the signature cooperative property of Dicke states.

In conclusion, we experimentally observed multi-atom Dicke states up to seven in a K atomic vapor by using optical multi-quantum 2DCS. In each 2D spectrum, the spectral peaks match the corresponding multi-atom Dicke excited states. The observation of n -atom Dicke states together with the technique of multi-quantum 2DCS, opens a new avenue to study the fundamental many-body physics.

References

1. P. W. Anderson, "More is different," *Science* **177**, 393 (1972).
2. R. H. Dicke, "Coherence in spontaneous radiation processes," *Phys. Rev.* **93**, 99 (1954).
3. C. Hettich, C. Schmitt, J. Zitzmann, S. Kühn, I. Gerhardt, and V. Sandoghdar, "Nanometer resolution and coherent optical dipole coupling of two individual molecules," *Science* **298**, 385 (2002).
4. X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, "Two-Dimensional double-quantum spectra reveal collective resonances in an atomic vapor," *Phys. Rev. Lett.* **108**, 193201 (2012).
5. N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, "Observation of Dicke superradiance in optically pumped HF Gas," *Phys. Rev. Lett.* **30**, 309 (1973).
6. G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, "Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure," *Opt. Express* **21**, 28617 (2013).
7. S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, "Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor," arXiv preprint arXiv:1807.09300 (2018).