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Abstract: Historically, high carbon steels have been used in mechanical applications because their high
surface hardness contributes to excellent wear performance. However, in aggressive environments,
current bearing steels exhibit insufficient corrosion resistance. Martensitic stainless steels are attractive
for bearing applications due to their high corrosion resistance and ability to be surface hardened via
carburizing heat treatments. Here three different carburizing heat treatments were applied to UNS
542670: a high-temperature temper (HTT), a low-temperature temper (LTT), and carbo-nitriding
(CN). Magnetic force microscopy showed differences in magnetic domains between the matrix
and carbides, while scanning Kelvin probe force microscopy (SKPFM) revealed a 90-200 mV Volta
potential difference between the two phases. Corrosion progression was monitored on the nanoscale
via SKPFM and in situ atomic force microscopy (AFM), revealing different corrosion modes among
heat treatments that predicted bulk corrosion behavior in electrochemical testing. HTT outperforms
LTT and CN in wear testing and thus is recommended for non-corrosive aerospace applications,
whereas CN is recommended for corrosion-prone applications as it exhibits exceptional corrosion
resistance. The results reported here support the use of scanning probe microscopy for predicting
bulk corrosion behavior by measuring nanoscale surface differences in properties between carbides
and the surrounding matrix.

Keywords: corrosion; bearing steels; martensitic stainless steel; aerospace; atomic force
microscopy (AFM); scanning Kelvin probe microscopy (SKPFM); nanoscale; electrochemistry; wear;
Pyrowear 675/ AMS 5930

1. Introduction

The performance of advanced gas turbine engines is currently limited by degradation of the
mechanical components, in particular, rolling bearing elements, such as the raceway [1]. This is
because aerospace engine bearings are subject to extreme operating conditions, including elevated
temperatures, high speeds, vibratory stresses, rolling contact fatigue, and complex lubricant and
environment interactions [2]. Accordingly, both high hardness and high toughness are critical
requirements for aerospace bearing materials, yet achieving both in a single material is challenging.
M50, a through-hardened carbon steel, was developed for aircraft engine bearing applications and has
become the standard bearing steel used in the United States due to its ability to perform well at high
temperatures while maintaining relatively high fracture toughness compared to earlier generation
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carbon steels, such as AISI 52100 (UNS G52986) [1,3,4]. In the case of sea-based or coastal aircraft
operations however, open turbine engine systems can limit the ability of ester-based lubricants to
provide wear and corrosion protection, as the surrounding environment introduces water and marine
aerosols into the engine during both storage and operation [5]. The presence of water in the lubricant
can then serve to initiate aqueous corrosion during engine cycling and downtime [5]. Consequently,
current aero-engine performance is limited by corrosion-enhanced wear of the metallic bearings and
drive components, which leads to increased maintenance and premature failure [1,6-8]. Thus, there
has been significant research effort to develop alternative bearing steels to M50 that exhibit enhanced
corrosion resistance to support increased engine performance [3,4,7-10].

Martensitic stainless steels (MSSs) were developed for use in applications where high wear
resistance and toughness is required whilst maintaining high corrosion resistance. These properties,
combined with their potential for high hardness upon heat treatment [1,11-15], have led to MSSs
being implemented in many demanding applications, including bearings, molds, nuclear reactors,
hydroelectric engines, and petrochemical steam and gas turbines and buckets [1,11-20]. To improve
surface wear resistance while maintaining the corrosion resistance of the core, MSSs can instead be
surface treated (carburized), with carbon incorporated into the sample surface at elevated temperatures
to form hard carbides with alloying elements such as chromium or vanadium [1,21-23].

Highly corrosion-resistant MSSs (e.g., Cronidur 30 or XD15NW) include additions of alloying
elements (and/or nitrogen) and can have poor adhesive and wear performance [24]. While not as
corrosion resistant, UNS 542670 or AMS 59030B (referred to herein as P675) are relatively cost-efficient
MSSs with high corrosion resistance (equivalent to 440C steel) and bulk fracture toughness (higher than
MB50) [25]. P675 was specifically engineered for aerospace bearing applications in advanced gas-turbine
engines, where conventional bearing steels (e.g., M50 and 440C) are adversely affected by corrosion
in aggressive environments and/or do not have sufficient high temperature wear performance [8].
Although P675 shows improvement in corrosion resistance relative to conventional bearing steels,
higher surface hardness would lead to a longer wear lifetime in-service. Accordingly, secondary surface
processing has been targeted as a way to increase the hardness and wear resistance of P675 [7,9,10,26].
Such surface treatments impart a graded microstructure that extends ~1000 pm below the metal
surface. Optimized wear properties are obtained by balancing the surface hardness and core ductility
of composite microstructures across the gradient region. However, the increased surface hardness
typically comes at the expense of corrosion resistance, as the formation of carbides on the surface
locally depletes corrosion-resistant elements (e.g., chromium, vanadium, molybdenum) from the
surrounding matrix [7,20,22,23,27,28].

The corrosion performance of various P675 surface treatments has been previously
assessed through accelerated DC and AC electrochemical testing in aqueous solutions [7,9,10].
These investigations provided a ranking of corrosion performance, showing that the final tempering
temperature and processing atmosphere had a considerable influence on both the overall corrosion
rate and damage morphology. Compared to M50, surface hardened P675 can be significantly more
corrosion-resistant, and higher processing temperatures typically increased susceptibility to general
corrosion damage, while lower temperatures exhibited more localized corrosion relative to untreated
P675 [7]. The influence of processing on P675 wear performance for the same steels in non-corrosive
wear testing has also been reported, where higher processing temperatures (HTT) yielded longer
bearing lifetimes compared to low-temperature temper (LTT) [29,30]. However, there remains a need
for research into the interdependency between simultaneously balancing corrosion resistance and
surface hardness for bearing applications, since wear resistance (i.e., bearing performance) in corrosive
environments is ultimately limited by corrosion [11].

Investigation of surface electronic properties can provide information to aid in the prediction of
corrosion initiation sites [31]. Recently, scanning Kelvin probe force microscopy (SKPFM) has been
used to investigate the role of nano- and micro-scale surface features on corrosion behavior [19,32-42].
Additionally, magnetic force microscopy (MFM) [43—45] has been used to similarly provide insight into
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the magnetic behavior of alloy surfaces. SKPFM permits measurement with nanoscale resolution of
Volta potential differences (VPDs), which are related to the electronic work function (EWF), while MFM
provides information regarding the magnitude and orientation of the magnetic moments of surface
domains. Likewise, in situ atomic force microscopy (AFM) has been used to monitor morphological
changes during corrosion in electrolyte solution and link them to the electrochemical behavior of the
material [19,46—49]. The current work presents the first application of such techniques to investigate
corrosion behavior of MSS P675 with various surface treatments. Since corrosion is the most common
precursor to wear damage during aero-engine operation [8], the time to onset and rate of corrosion
can directly control maintenance requirements and operational costs. Initiation and propagation are
critical considerations because they determine both wear behavior as well as the lifetime of the part
or engine [8,50,51]. The focus of this study is to understand the effects of heat treatment processing
parameters on corrosion evolution in P675 by utilizing a combination of scanning probe microscopy
(SPM) techniques and accelerated corrosion testing, thereby linking surface microstructural differences
(on the nanoscale) with observed macroscale surface corrosion behavior and wear performance.

2. Materials and Methods

2.1. Materials

The nominal bulk composition of P675 (UNS 542670, the MSS studied here) prior to heat treatment
is shown in Table 1 [29]. To increase surface hardness, P675 samples were carburized, followed by
quenching and tempering, to harden the outer layer or case. Samples were cylindrical (9.5 mm
diameter x 12 mm height) with post-treatment case depths of 750-1250 um radially inward [9].
Samples differed in the final tempering temperature and carburization atmosphere: high-temperature
tempering (HTT) at 496 °C, low-temperature tempering (LTT) at 315 °C, and carbo-nitrided (CN)
where the case was obtained through a carburizing cycle followed by nitriding cycle during heat
treating. Further details on the processing routes are discussed in previous works [9,10,29,30]. Prior to
SPM characterization, samples were mechanically ground with SiC paper (to 2000 grit) in deionized
(DI) water, followed by sequential polishing to 0.02 um with a colloidal silica aqueous slurry. After
polishing, samples were rinsed with ethanol and sonicated for 1 min in ethanol to remove any
polishing residue.

Table 1. Nominal composition (wt.%) of P675 alloy (remainder is Fe). Adapted from Trivedi, et al. [29].

Steel C Mn Cr Mo Si Ni S A% Co
P675 (AMS 5930B) 0.07 0.75 13 2 0.4 2.5 0.010 0.6 6.5

2.2. Electron Microscopy

A field emission scanning electron microscope (SEM, FEI Teneo, Hillsboro, USA) coupled to
an energy-dispersive X-ray spectrometer (EDS, 80 mm? Energy+, Oxford Instruments, Abingdon,
UK) was utilized to characterize the surface microstructure and corrosion morphology of all samples,
as well as construct elemental composition maps of the heat-treated surfaces. SEM analyses were
conducted in both secondary electron (SE) and backscattered electron (BSE) imaging modes using
10-20 keV accelerating voltages.

2.3. Scanning Probe Microscopy

2.3.1. Ex situ Scanning Probe Microscopy (SPM)

Ex situ AFM, MFM, and SKPFM were performed under an inert argon atmosphere containing
<0.1 ppm HyO and O, using a Bruker Dimension Icon AFM housed in an MBraun glovebox (MBraun,
Stratham, USA). Prior to imaging, previously polished and sonicated samples were cleaned with
HPLC/spectrophotometric grade ethanol (Sigma-Aldrich, 200 proof, St. Louis, USA) using lint-free
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wipes (Kimtech). Following ethanol cleaning, compressed ultra-high purity nitrogen gas (Norco UHP,
99.999%) was used to dry the surface of the steel and remove any remaining surface particulates before
introducing the samples into the glovebox antechamber.

Both MFM and SKPFM were performed using a dual-pass lift mode implementation in which
the first pass over each scan line acquires surface topography. Upon completing the first pass, the
probe then lifts off the surface to a user-defined height above the surface. This height (i.e., tip-sample
separation, 100 nm in this study) remains constant throughout the second pass as the electromagnetic
property of interest (i.e., Volta potential difference in the case of SKPFM or magnetic moment in the
case of MFM) is measured. Surface topography was mapped using either intermittent contact (tapping)
mode in the case of MFM imaging or PeakForce tapping mode (Bruker Nano, Santa Barbara, USA),
which employs rapid force curve acquisition with a user-defined force setpoint (typically 2 nN here), in
the case of AFM and SKPFM. In MFM, the magnetic force gradient between a magnetized Co-Cr coated
AFM probe (Bruker MESP, k = 2.8 N/m, fy = 75 kHz, =1 x 10~!3 EMU, where 1 EMU = 1 erg G~ ') and
the surface of the material was observed during the lift mode pass. For consistency, all MFM imaging
reported herein was performed with the same MESP probe, which was magnetized immediately prior
to imaging with its magnetic axis perpendicular to the sample surface. In SKPFM, the Volta potential
difference (VPD) between a conductive probe (Bruker PFQNE-AL, k = 0.8 N/m, fy = 300 kHz) and the
surface was quantified by application of a DC bias to null the tip-sample electric force gradient arising
from the difference in Volta potential between the probe and sample surface. VPD maps were acquired
utilizing frequency modulation SKPFM [31], as described in detail elsewhere [37,38]. These VPD maps
were used to predict the corrosion behavior of the samples by suggesting the cathodic and anodic sites
and the relative driving force for galvanic corrosion.

SKPFM was also used to observe corrosion initiation and propagation mechanisms by carrying
out intermittent imaging at well-defined intervals throughout the corrosion process. While all such
imaging was carried out within the controlled environment (<0.1 ppm HyO and O,) of the argon-filled
glovebox, corrosion was initiated and allowed to proceed outside the glovebox, where samples were
sequentially soaked for prescribed amounts of time in a 1 M NaCl solution prepared from reagent
grade NaCl (Sigma Aldrich, St. Louis, USA) and deionized (DI) water. After each time increment,
samples were rinsed with DI water to remove any adhered salt, dried with UHP nitrogen, and cleaned
with ultrapure ethanol using lint-free wipes. The samples were then reintroduced into the glovebox
and imaged via dual-pass SKPFM. Repeated nanoscale imaging at specific recurrent locations with
micron-scale positional accuracy was made possible by fiduciary marks created with a diamond tip
indenter. Testing and imaging were performed ~500 pm away from the fiduciary mark to ensure
results obtained were not influenced by the indent.

2.3.2. In Situ SPM

To capture images of corrosion initiation and propagation in real time, in situ PeakForce tapping
(topographical) AFM was also performed. In contrast to the ex situ (i.e., glovebox) SPM imaging,
samples for in situ AFM imaging were mounted in a fluid cell and immersed in a 0.1 M NaCl
solution under ambient atmosphere. The NaCl concentration was chosen such that it would initiate
corrosion on samples at an appropriate timescale to reveal changes in topography concurrent with
corrosion propagation and progression. Silicon nitride probes with a nominal tip radius of 20 nm
(Bruker ScanAsyst-Fluid, k = 0.7 N/m, fy = 150 kHz) were used for repetitive imaging (0.5 Hz scan
rate) of 10 x 10 um? areas at 512 x 512 pixel resolution, corresponding to a refresh rate of ~8.5 min to
capture each image. Due to differences in time between initial immersion of each sample and the initial
image capturing (driven by optimization of imaging parameters), the specific timing of subsequent
images is not exact between samples. The total amount of time each sample had been exposed to the
corrosive salt solution was documented at both the start and end of captured images.
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2.3.3. Image Processing

SPM image processing and quantitative analysis were conducted using NanoScope Analysis 1.90
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3.1. Surface Composition

3.1. Surface Composition
The carburizing and carbo-nitriding heat treatment processes performed on MSS P675 resulted
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approximately 10 nm to 2 pm in diameter (Figure 2a), surrounded by the martensitic matrix at the
sample surface. In addition to the surface, the carbides are present diminishingly, approximately 1000
um radially inward into each of the samples (data not shown). Sample surfaces were analyzed via
EDS (Figure 2b) to resolve carbide chemistry and determine alloying elements that segregated from
the matrix to form these carbides during heat treatment. Carbides resulting from all three surface
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sample surface. In addition to the surface, the carbides are present diminishingly, approximately
1000 um radially inward into each of the samples (data not shown). Sample surfaces were analyzed
via EDS (Figure 2b) to resolve carbide chemistry and determine alloying elements that segregated
from the matrix to form these carbides during heat treatment. Carbides resulting from all three
surface treatments were found to be predominantly carbon- and chromium-rich with lesser amounts

Y7310t TAOR PERIMANd / or manganese, while the surrounding matrix showed pritficily

1ron, cobalt, and nickel. In previous work done on P675, X ra diffraction (XRD ) and electron
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3.2. Scanning Probe Microscopy

3.2.1. Magnetic Force Microscopy (MFM)

MFM was utilized to map variations in the magnetic moment projections (surface normal
direction) on the surface of the steels (Figure 3). In Figure 3, purple regions are identified as carbides
since these coincide with regions that are raised in topography and visually similar to carbides seen
in SEM/EDS analysis (see Figure 2). Topographical relief of the carbides was expected due to
differential polishing rates during sample prep, resulting in the harder carbides slightly protruding
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3.2. Scanning Probe Microscopy

3.2.1. Magnetic Force Microscopy (MFM)

MFM was utilized to map variations in the magnetic moment projections (surface normal
direction) on the surface of the steels (Figure 3). In Figure 3, purple regions are identified as carbides
since these coincide with regions that are raised in topography and visually similar to carbides
seen in SEM/EDS analysis (see Figure 2). Topographical relief of the carbides was expected due to
differential polishing rates during sample prep, resulting in the harder carbides slightly protruding

?/Ez(t)e‘r]i%l ;c%:lguﬁrg%%%%%‘/MFM I'eSl.ﬂ-tS indicateq tha.t thelz carbides and the matrix both ex}g?%
out-of-plane magnetic domains (i.e., positive magnetic direction, non-parallel to surface), but with
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topography and morphology) and carbide-matrix VPD over time were observed for the steels. The
HTT sample showed the formation of particulates on the surface and degraded uniformly with time,
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Figure 7. SKPFM Volta potential maps ((a,b,c) 600 mV full scale, exposure time given below each
image) for each of the three heat-treated MSSs with time-dependent Volta potential profiles (al-c2)
across two representative carbides plotted as a function of duration of exposure to 1 M NaCl solution.
The location of the carbide represented by each profile is indicated by the corresponding dotted box in
the exemplary SKPFM maps at left.

3.2.4. In Situ Atomic Force Microscopy (AFM)

To observe the progression of corrosion in real time while samples were immersed in 0.1 M NaCl
solution, in situ AFM was employed to monitor topographical changes over time. Figure 8 shows the
results for the three heat-treated P675 steels with no applied bias voltage. (Variations in exposure time
across samples are due to differences in corrosion rate and the time necessary to implement optimized
imaging parameters.) For HTT, corrosion activity rapidly progressed and large surface deposits
(~1-2 um wide) appeared on the surface after ~107 min (Figure 8). EDS analysis indicated these large
features to be iron-rich corrosion products with NaCl (analysis not shown). Despite the deposited
particles, distinct localized corrosion was not seen on the HTT sample. As testing progressed, corrosion
reactions proceeded, depositing corrosion product particulates on the surface (see Figure 8-HTT 116 &
134 min). In comparison, highly localized corrosion was evident at the carbide-matrix interfaces in
both the CN and LTT samples. CN showed the greatest segregation of corrosion between matrix attack
and the unaffected carbides, as indicated by near complete but shallow etching attack along carbide
boundaries (Figure 8). LTT appeared to behave somewhere in the middle of these two extremes, with
particle build-up similar to HTT seen initially, but eventually, these particles cleared to reveal evidence
of localized corrosion propagation in the matrix adjacent to some of the carbides, similar to CN.
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Figure 9. Topography maps ((a,b,c), 160 nm full scale, exposure time indicated below corresponding
map) for each of the three heat-treated MSSs with height profiles across selected carbide-matrix
interfaces shown as a function of exposure time to 0.1M NaCl solution (al-c2). Location of each profile
is indicated by the corresponding box in the exemplary topography maps presented at left for each of
the three heat-treated steels.

Post-testing SEM imaging was conducted on the same sample surfaces (Figure 10) to record
surface morphological differences following the in situ AFM testing. HTT exhibited a distinctively
different surface morphology compared to LTT and CN, characterized by the presence of large, fluffy
appearing salt-laden corrosion deposits. Beneath these deposits and surrounding the carbides, the
entire matrix surface area was uniformly corroded with no indication of matrix passivity. In contrast,
both the LTT and CN carbide boundaries were attacked, with NaCl particles present along the grain
boundaries and carbide-matrix separation and subsequent grain separation (Figure 10). LTT showed
some attack along carbide boundaries as well as some generalized attack as indicated by roughening
of the entire surface due to corrosion product deposition. CN displayed much more localized attack at
the carbide boundaries than LTT (dotted oval in the right panel of Figure 10), and narrow “valleys”
on the order of ~0.5 pm wide were observed around the CN carbides, confirming observations in
Figure 8. Furthermore, unlike LTT or HTT, CN did not show evidence of adhered or deposited
corrosion products. Tracing the representative “line of attack” for the CN sample in Figure 10 reveals
a grain undergoing intergranular attack, indicative of microgalvanic corrosion between the noble
carbides and the active matrix.
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Figure 10. SE SEM images of the sample surfaces following in situ AFM testing. Red squares in the
images in the top panels indicate areas of magnified images below. Dotted red oval area in magnified
CN image indicates the “line of attack” (see discussion).
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4.2. Corrosion Propagation

SKPFM measures VPDs on the surface, which are influenced by the presence of oxide layers.
With MSSs, passivating chromium oxide layers are readily formed and act as a kinetic barrier to
corrosion, which complicates any correlation of thermodynamic propensity derived from SKPFM
measurements. However, for the steels considered herein, since the bulk composition is the same,
data obtained from SKPFM also provided information on the spatial variations in surface properties
that influence corrosion propagation. Intermittent SKPFM testing was conducted to monitor shifts in
microgalvanic couples” VPD over time due to corrosion activity. For HTT, the VPD between the carbides
and the matrix decreased with time (Figure 7). As a result, as the duration of corrosion propagation
increased, the VPD between carbides and the matrix approached 0 mV for HTT, resulting in a more
thermodynamically homogenous surface. In contrast, for LTT and CN, the initial VPD between the
carbides and matrix phase was smaller, but remained nearly constant throughout testing, with only
minor evidence of the corrosion activity apparent on the surface (Figures 6 and 7). This behavioral
difference can be attributed to differences in the passive oxide layer performance, and is also reflected
in the VPD measurements, which are highly influenced by the presence of surface oxides. Previous
work by Schmutz and Frankel showed similar behavior on aluminum alloys and indicates that the
shift in VPD observed on HTT following active corrosion was caused by oxide growth at cathodic sites
and the generation and deposition of corrosion products at active sites creating a more homogenous
surface [51]. For carburized MSSs, the magnitude of VPD surface variation measured by SKPFM
pre-corrosion provided an indication of the how the VPD evolved as a result of exposure to corrosion
conditions: smaller initial VPD between the carbides and matrix phase indicated more robust passivity
during corrosion, as seen in CN and LTT steels. For HIT, the higher initial VPD between the carbides
and matrix indicated a greater susceptibility to depassivation and more uniform corrosion activity
during propagation. These findings were validated with bulk electrochemical testing (Figure 11),
where CPP testing showed that LTT and CN had a more protective oxide layer as indicated by the
presence of a passive region in the CPP scan. Moreover, during intermittent SKPFM testing the VPD
on HTT evolved rapidly and HTT exhibited active corrosion behavior throughout CPP testing.

While the bulk amount of chromium present at the surface is the same for all steels considered,
the spatial distribution is different among the three surface treatments, leading to distinctly different
corrosion properties and behavior. Relative to LTT and CN, HTT tended to corrode more uniformly and
had a higher VPD between carbides and matrix. HTT was more prone to depassivation compared to
LIT despite both having identical bulk chemical composition and same carburization cycle (carburized
in single furnace load). The different carbide-matrix VPDs among the samples influences or indicates
how local solution chemistry likely evolves during active corrosion on MSSs. This suggests that for
HTT, as pitting progressed, the local solution chemistry, most likely due to higher sensitization during
tempering cycle, was sulfficiently aggressive to cause widespread depassivation. Conversely, with LTT
and CN samples, the VPD between carbides was smaller and pitting was unable to transition to more
widespread corrosion, suggesting local solution chemistry evolution did not support auto-catalytic
depassivation as corrosion propagated. Here the lower VPD observed for LTT and CN indicated
the matrix phases exhibited more robust passivity than the matrix of HTT. The in situ SKPFM VPD
measurements correlate with the observed corrosion morphology of the steels. That is, the measured
carbide-matrix VPD for each steel is inversely proportional to the extent of general (uniform) corrosion
resistance of the steel. The efforts in this paper show that SKPFM is able to effectively predict bulk
corrosion behavior of different surface treatments by observing and measuring nanoscale surface VPD
differences between carbides and the underlying matrix.

4.3. SPM Characterization and Implications on Wear

MEFM provides a method to characterize local variations in magnetic properties that contribute to
the bulk magnetic properties. For all steels studied, the carbides showed variable shades of purple/blue
in the MFM maps (~1-3° phase shift), indicating slightly different magnetic properties within the
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HTT is not recommended due to its overall low corrosion resistance [7] which would lead to
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resistance [7] which would lead to premature failure via degradation of the material. In this case, CN
is recommended for bearing use due to its high resistance to both corrosion onset and propagation [7].

5. Conclusions

P675 carburizable martensitic stainless steel (UNS S42670) samples were processed using
two different heat treatment methods (carburizing and carbo-nitriding (CN)) and two tempering
temperatures (HTT and LTT). Following, the research conducted in this paper highlights the viability
of SKPFM to effectively predict bulk corrosion behavior by measuring nanoscale surface differences in
VPDs between carbides and the surrounding matrix, thereby providing insight into bulk observations
by using information obtained at the nanoscale. More generally, SPM can be used to evaluate the
potential efficacy of different steels and/or surface treatments for use in corrosive environments.

e  MFM imaging distinguished local differences in magnetic properties where precipitated carbides
exhibited a larger magnetic moment than the matrix, likely due to the presence of chromium
relative to the chromium-depleted matrix.

e SKPFM VPD measurements in an inert environment showed HTT as the thermodynamically
most favorable to experience microgalvanic corrosion between the chromium-rich precipitated
carbides and the surrounding martensitic matrix, with a measured carbide-matrix VPD of 200 mV,
while LTT (150 mV) and CN (90 mV) were less.

e Intermittent SKPFM showed the HTT sample behaved differently during corrosion than the LTT
and CN samples; by the end of the testing period, there was minimal VPD between the HTT
carbides and the surrounding matrix, whereas the carbides present in the LTT and CN samples
retained their relative nobility throughout testing.

e Corrosion propagation was also monitored in real time via in situ AFM and revealed that HTT
underwent the most rapid spread of corrosion attack across the sample, while LTT and CN were
less affected and showed much more localized, intergranular attack and adjacent to carbides.

e  Bulk electrochemical testing results agreed with in situ AFM results, with LTT and CN showing
distinct passive regions as compared to HTT, confirming the nanoscale differences in corrosion
behavior observed between the steel heat treatments investigated.
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