Auxetic regions in large deformations of periodic
frameworks

Ciprian S. Borcea and Ileana Streinu

Abstract In materials science, auxetic behavior refers to lateral widening upon
stretching. We investigate the problem of finding domains of auxeticity in global
deformation spaces of periodic frameworks. Case studies include planar periodic
mechanisms constructed from quadrilaterals with diagonals as periods and other
frameworks with two vertex orbits. We relate several geometric and kinematic de-
scriptions.

1 Introduction

Periodic frameworks are mathematical abstractions which model atom-and-bond
structures in crystalline materials or man-made trusses and repetitive articulated
systems [2, 22]. Recent advances in additive manufacturing have brought about new
possibilities for producing complex structures at microscales, giving new impetus to
rational design of metamaterials, particularly those based on a periodic organization
[1,13,19].

Auxetic behavior is a rather counter-intuitive mechanical response of certain ma-
terials and structures which involves lateral widening under stretching and, in re-
verse, lateral shrinking under compression. This type of response is desirable for
various applications, ranging from medical implements to shock-absorbing cur-
tains and has been investigated with increased interest over the last three decades
[14, 15, 16, 20]. Even so, most studies have addressed only small deformations of a
confined repertory of structural designs and the problem of large deformations has
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been barely considered [24]. Auxetic growth implies, in particular, volume increase
[8] and is therefore limited by certain structural bounds. Thus, for large deforma-
tions, auxetic behavior can be expected only over restricted regions. The main pur-
pose of the present contribution is to offer an introduction to this type of kinematic
inquiry, based on our geometric theory of auxetic deformations and recent funda-
mental results on the structure and design of auxetic periodic frameworks [8, 11, 12].

We review in section 2 some key notions on periodic frameworks and auxetics.
We proceed in section 3 with a fairly intuitive scenario in dimension two, by asso-
ciating a periodic framework to a given quadrilateral, which is repeatedly translated
by its diagonal vectors, as shown below in Figure 1. As a planar linkage, a quadri-
lateral is a four-bar mechanism and our opening discussion is just an interpretation
of the classical kinematics of this mechanism in the periodic setting. Yet, even this
elementary situation proves the value of a strictly geometric approach to auxetics
and suggests useful algebraic parametrizations based on spectrahedra. This point of
view is pursued in subsequent sections and leads to a unified perspective for identi-
fying auxetic regions in global deformations of periodic frameworks with two vertex
orbits.

2 Prerequisites

We begin with a concise review of notions which are necessary for a mathematical
formulation of our problem.

Periodic frameworks and deformation spaces. The principal reference is [2].

Definition 1. A d-periodic graph is a pair (G,I"), where G = (V,E) is a simple
infinite graph with vertices V, edges E and finite degree at every vertex, and I" C
Aut(G) is a free Abelian group of automorphisms which has rank d, acts without
fixed points and has a finite number of vertex (and hence, also edge) orbits.

We assume G to be connected. The group I is isomorphic to Z¢ and is called the
periodicity group of the periodic graph G. Vertices which are equivalent under I
form a vertex orbit and similarly for edges.

Definition 2. A (periodic) placement of a d-periodic graph (G,T") in R? is defined
by two functions: p: V — R? and  : I" — .7 (R?), where p assigns points in R?
to the vertices V of G and 7 is a faithful representation of the periodicity group I,
that is, an injective homomorphism of I" into the group .7 (R?) of translations in
the Euclidean space R?, with 7(I") being a lattice of rank d. These two functions
must satisfy the natural compatibility condition p(yv) = 7(y)(p(v)). The translation
group 7 (RY) can be identified with the additive group of vectors in R¥.

In a framework, edges are seen as segments between the corresponding vertices.
Mechanical interpretations consider edges as rigid bars and vertices as (spherical)
joints, hence the name bar-and-joint framework.
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Definition 3. Given a d-periodic framework % = (G, I, p, ), the collection of all
periodic placements of (G,I") in R? which maintain the lengths of all edges is called
the realization space of the framework. After factoring out equivalence under Eu-
clidean isometries, we obtain the configuration space of the framework (with the
quotient topology). The deformation space is the connected component of the con-
figuration space which contains the initial framework.

It is important to notice that the representation of the periodicity group I by a lattice
of translations may well vary when the framework deforms.

Auxetic deformations. The motivations for the following definition of auxetic
paths are detailed in [8]. Let (G,I", pr,z), T € (—€,€) be a one-parameter defor-
mation of the periodic framework (G,I", p, ), where p = pp and 7 = 7. Suppose
we have chosen an independent set of generators ¥, i = 1,...,d for the periodicity
group I'. Then, we have at every moment 7 a lattice basis 7;(¥), which we write
as a d X d matrix (with column vectors) A;. The Gram matrix of the lattice basis is
therefore w; = ALA;.

Definition 4. A one-parameter deformation (G,I", p¢,7t;), T € (—¢,€) is called an
auxetic path, or simply auxetic, when the curve of Gram matrices ®; has all its
velocity vectors in the cone of positive semidefinite symmetric d x d matrices. When
all velocity vectors are in the positive definite cone, the deformation is called strictly
auxetic.

In short, for periodic frameworks, auxetic behavior is expressed through the evolu-
tion of the Gram matrix of periodicity generators. A number of recent results de-
rived from this geometric approach to auxetics can be found in [11, 12]. The present
inquiry will be oriented towards questions involving large deformations, that go be-
yond a small neighborhood of a given initial configuration.

3 Four-bar mechanisms and associated periodic frameworks

We open our investigation with a simple type of planar periodic framework which
offers an intuitive setting for the abstract concepts reviewed above. We start with
a quadrilateral ABCD and construct an associated periodic framework by adopting
the two diagonal vectors AC and BD as periodicity generators. Repeated translations
of the quadrilateral by these vectors will articulate into a periodic framework when
shared vertices are identified as single joints. The process is illustrated in Fig. 1,
where the two diagonal vectors are shown as red arrows. The formal construction
is described in a more general setting in [11]. When the quadrilateral is imagined
as a four-bar mechanism (and as long as the two diagonal vectors remain indepen-
dent), this association converts a one-degree-of-freedom linkage into a one-degree-
of-freedom periodic framework.
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Fig. 1 (Left) A periodic framework can be associated to a quadrilateral by adopting the two di-
agonals as generators of the periodicity lattice. A four bar mechanism is converted into a planar
periodic framework with one degree of freedom. When the quadrilateral is in a pseudotriangle con-
figuration, the result is a periodic pseudotriangulation. The local deformation is expansive, hence
auxetic, and this property is confirmed by the ellipse running through a vertex and the endpoints of
the four bars emanating from it. (Right) Auxetic behavior ends when the generating quadrilateral
becomes convex or self-intersecting. This is reflected in the fact that the conic through a vertex and
the endpoints of the four bars emanating from it becomes a hyperbola.

The deformation space of a four-bar mechanism is well studied in classical kine-
matics and our task in the periodic setting is reduced to recognizing which intervals
correspond to auxetic (or reversed-auxetic) behavior.

We assume a generic quadrilateral. By Grashof’s rule, the oriented configuration
space is topologically either (i) a single loop, if the longest edge plus the shortest
edge are more than the other two edges together, or (ii) two loops, if the longest
edge plus the shortest edge are less than the rest. Parallel diagonals occur only in
the former case. Equivalence under reflections identifies the two loops in one case
and gives an involution without fixed points of the single loop in the other case
(with matching of the two configurations with parallel diagonals). Thus, in both
cases, the deformation space of the linkage (considered up to planar isometries) is
topologically a single loop (i.e. a circle). For the deformation space of the associated
periodic framework, case (i) requires the exclusion of one point for the case when
the diagonals become parallel.

For brevity, we expand here on case (ii), which is illustrated in Fig. 1. As men-
tioned in the introduction, an auxetic deformation will increase the area of a unit cell
(fundamental domain under periodicity) and auxetic intervals in our deformation
loop cannot contain relative minima or maxima of the area function. A precise de-
termination of these intervals can be obtained by direct computation, but we present
a more advanced point of view, based on pseudotriangulations [6, 7, 21].

A pseudotriangle is a simple planar polygon with exactly three interior angles
less than 7. In a quadrilateral linkage, the lengths of the two diagonals vary in the
same way (i.e. both increase or both decrease) if and only if the quadrilateral is in a
pseudotriangle configuration [21]. Periodic pseudotriangulations are introduced and
treated at large in [7] and their role in understanding expansive planar periodic de-
formations is described in [6]. Expansive deformations require all distances between
pairs of vertices to increase or stay the same. Periodic pseudotriangulations deform
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expansively and expansive implies auxetic [7, 8]. Assembling these facts, we obtain
the following geometric characterization.

Theorem 1. The periodic framework associated to a quadrilateral has a local aux-
etic deformation if and only if the quadrilateral is in a pseudotriangle configuration.

If we use a general structural result established in [12], we can state an equivalent
characterization.

Theorem 2. The periodic framework associated to a quadrilateral has a local aux-
etic deformation if and only if the conic passing through a chosen vertex and the
endpoints of the four bars emanating from it is an ellipse.

The two theorems are illustrated in Fig. 1. The four transition configurations (from
auxetic to non-auxetic behavior) of the quadrilateral are shown in Fig. 2.

USSP =

Fig. 2 Auxetic-to-non-auxetic transition configurations: as the second edge rotates clockwise
around the fixed first edge, there is an auxetic interval between the two configurations on the left
and another one (in reverse) between the two configurations on the right.

4 The elliptope and other spectrahedra

When aiming at more general results, an immediate problem is that of an adequate
description of the configuration space of a given periodic framework. For a couple
of instances where global configuration spaces have been determined, we refer to
[2, 3, 10]. In the present context, as we focus on periodic frameworks with two
vertex orbits, we rely on a procedure initiated in [10].

In arbitrary dimension d, a connected periodic framework with two vertex orbits
and all edges with endpoints in different orbits is completely determined by a vertex
and the edge vectors emanating from it. The endings of these vectors are all in
the opposite orbit and the periodicity lattice is generated by vectors between pairs
of such endings. We fix the first vertex at the origin and denote the edge vectors
emanating from it by v;, i =0, 1,...,m — 1. In dimension d, connectedness requires
m > d+ 1. We may and shall assume that the labeling is such that the period vectors
W; =v;—vo form a basis of R¢ for j=1,...,d. Then, period vectors i = Vir1 — Vi,
k > d have unique expressions with rational coefficients ay;:
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d
=Y ali, k>d (H
i=1

These relations must be preserved in any periodic deformation of the framework
and together with the first d + 1 vectors v; will determine the framework.

Up to isometry, the configuration of vectors v; € R?, i =0, 1,...,d is determined by
their Gram matrix G = V'V, where V is the d x (d + 1) matrix with column vectors
vi. This (d + 1) x (d + 1) symmetric matrix is positive semidefinite of rank d. If we
take into account the prescribed squared lengths of the edges, say:

<Vi, V,’> =5>0 ()

we see that, as the framework deforms, the corresponding matrix G = (g; j) be-
longs to the affine section of the positive semidefinite cone defined by g;; = si,
i=0,1,....,d. This is a spectrahedron linearly equivalent whith the spectrahedron
of correlation matrices, also known as the elliptope, which corresponds to all diag-
onal entries equal to one [17, 23]. More precisely, G belongs to the boundary of this
spectrahedron, which is part of the algebraic hypersurface of degree d 4 1 given by
the vanishing of the determinant. Now, we use the fact that relations (1) and (2) for
k > d amount to affine sections of the spectrahedron and obtain:

Theorem 3. The configuration space of a connected periodic framework in R¢ with
two vertex orbits has a natural compactification as the boundary of a spectrahe-
dron, which is itself linearly equivalent with an affine section of an elliptope. Topo-
logically, this compactification is a sphere.

This generalizes the result in section 3, where the configuration space was a circle
or a circle without a point.

5 Equations in lattice coordinates

Lattice coordinates are linear coordinates relative to a basis made of independent
generators for the periodicity lattice [5, 12]. In crystallography they are called frac-
tional coordinates. Suppose, as in Definition 4, that the chosen periodicity genera-
tors form the d x d matrix A, with associated Gram matrix ® = A’A. Metric rela-
tions in lattice coordinates are expressed via . For periodic frameworks with two
vertex orbits, one orbit will be represented in lattice coordinates by the integer lattice
74 and the other one by g+ Z¢, for some g € R?. We have (¢, ®) € R? x R*+1/2,

Relating to notations used in the previous sections, the period vectors u; become
vectors n; € Z¢ and the vertex used there as origin has now lattice coordinates g.
Thus, the edge vectors emanating from this vertex are n; —¢q, i =0,1,...,m — 1. The
system of equations expressing the constancy of the squared length of the edges
becomes:
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(o(ni—q),ni—q) =si 3)
This gives:

<wni7ni> —2<wQ7nz>+<wq7Q> =S (4)
and leads to the equivalent system:

(0q,9) =50
2{wq,n;) =so—si+{On;,n;), i=1,...d (5)

2(wq,nj) =so—s;+{(Onj,n;), j>d.

Expressing n;j, j > d, as linear combinations (with rational coefficients) of n;,i =
1,...,d via (1), equations (5) can be used to eliminate wg from the subsequent equa-
tions which become linear constraints just for @.

Moreover, the system (5) can be used to write all coordinates of wg as degree one
expressions in the coordinates of @. Substituting in the first equation and rewriting
(5) as:

2<q,wl’li>:S0—Si+<wni,n[>, l:157d (6)

we obtain a system of d + | equations in (g, ®), where o is already restricted to the
affine subspace described above. The equations have degree one in g as well as in
.

If we return to the case d = 2, m = 4 of section 3, we have a curve defined by three
equations in (g, ®) € R? x R?. Projection on g € R? gives a planar cubic curve and
allows a graphical recognition of the auxetic intervals based on Theorem 2.

6 Conclusion

In this paper we studied the problem of finding auxetic regions in the global defor-
mation space of a periodic framework. Points in such regions allow local auxetic
one-parameter deformations. We focused on periodic frameworks with two vertex
orbits in arbitrary dimension d, for which the case of planar frameworks associ-
ated to four-bar mechanisms served as an intuitive example. We described algebraic
techniques and geometric perspectives for addressing the problem.
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