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Abstract We introduce Hermite-leapfrog methods for first order linear wave sys-
tems. The new Hermite-leapfrog methods pair leapfrog time-stepping with the Her-
mite methods of Goodrich and co-authors [7]. The new schemes stagger field vari-
ables in both time and space and are high-order accurate for equations with smooth
solutions and coefficients. We provide a detailed description of the method and
demonstrate that the method conserves variable quantities. Higher dimensional
versions of the method are constructed via tensor products. Numerical evidence
and rigorous analysis in one space dimension establish stability and high-order
convergence. Experiments demonstrating efficient implementations on a graphics
processing unit are also presented.

Keywords High order - Hermite - Leapfrog

1 Introduction

Simulations of wave propagation play a crucial role in science and engineering. In
applications to geophysics, they are the engine of many seismic imaging algorithms.
For electrical engineers, they can be a useful tool for the design of radars and
antennas. In these applications achieving high fidelity simulations is challenging
due to the inherent issues in modeling highly oscillatory waves and the associated
high computational cost of high-resolution simulations. Thus the ideal numerical

*Corresponding author: A. Vargas
Lawrence Livermore National Laboratory,
7000 East Ave, Livermore, CA 94550
E-mail: vargas45@llnl.gov

T. Hagstrom
Department of Mathematics, Southern Methodist University, Dallas, TX 75275

J. Chan
Department of Computational and Applied Mathematics, Rice University, 6100 Main Street,
Houston, TX 77005

T. Warburton
Department of Mathematics, Virginia Tech, Blacksburg, VA 24060



2 Arturo Vargas* et al.

method should be able to capture high-frequency waves and be suitable for parallel
computing.

The staggered finite-difference time-domain (FDTD) method has been widely
adopted as the method of choice for simulating electromagnetic and acoustic
wave propagation on structured grids [3,9]. In the context of electromagnetics
the method was first pioneered by K.S. Yee in [17]; while the discretization for
the acoustic wave equation was introduced by Virieux in [6] and Levander in [10].
The underlying idea of staggered FDTD methods is to stagger field variables both
in time and space and propagate the solution using leapfrog time-stepping [11].
This type of discretization is known to be efficient and easy to implement but
is typically only second order accurate and struggles to resolve highly-oscillatory
waves. Fourth order accurate variants of the method have been proposed in the
literature [16,18] but our work differs as we present methods of arbitrary order.

In contrast to FDTD methods where derivatives are approximated via dif-
ference formulas, the Hermite methods of Goodrich and co-authors [7] combine
Hermite-Birkhoff interpolation and a staggered (dual) grid to produce high-order
numerical methods for first order hyperbolic problems. The resulting “Hermite
methods” carry out a localized polynomial reconstruction within cells of a struc-
tured grid and propagate the solution completely independent of neighboring cells
via Hermite-Taylor time-stepping. The remarkable feature of Hermite methods is
that the CFL condition of the resulting scheme is independent of the approxi-
mation order [7]. A formal introduction to these methods may be found in [7,13,
15].

Though Hermite methods are relatively new, several variations have been pro-
posed to enhance their applicability and efficiency. To enable geometric flexibil-
ity, Hermite methods have been combined with discontinuous Galerkin methods
[5]. Adaptive variants of Hermite methods have been introduced by means of p-
adaptivity in [4], and preliminary work on h-adaptivity has been presented in [2].
Variations of the method which do not require a dual grid have been introduced
in [15], and a flux conservative Hermite method has been introduced in [8].

Inspired by the favorable features of Hermite methods, this work presents a
new variant which combines leapfrog time stepping and staggered solutions in
space and time. The resulting “Hermite-leapfrog” scheme may be viewed as a high
order variant of the Yee scheme for linear wave systems. We present this work as
complimentary to the recent work of Appelo and co-authors [1] in which a similar
time-stepping scheme was introduced for the second order acoustic wave equation.
In this work we focus on first order linear wave systems and note that an early
version appeared in the thesis of Vargas [13].

The remainder of this article proceeds as follows. We start with a detailed de-
scription in one space dimension. We then demonstrate that the method conserves
variable quantities, establishing stability, and prove general error estimates in one
space dimension. In addition we look at the dispersion relation, which provides
an explanation for aspects of the method’s accuracy observed in the numerical
experiments. Experimental convergence rates are reported for both constant and
spatially varying wave speed. In two dimensions we discuss incorporating zero
Dirichlet boundary conditions and demonstrate the method’s ability to resolve
highly oscillatory waves. Lastly, we demonstrate computational efficiency on a
graphics processing unit.
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2 Description of the method

To introduce the method, we consider the following one-dimensional linear wave
system

o _ Ov Ov_ Op (1)
ot~ “9x ot “ox
p(a,to) = f(z), v(z,to+ At/2) = g(x).

In this example, ¢ corresponds to the speed of the propagating wave. The degrees
of freedom of the Hermite-leapfrog method are the function value and first m
derivatives at the nodes of a structured grid. An m!" order scheme discretizes
the equations by staggering pressure and velocity approximations in both space
and time. The discretization of the pressure occurs on a primary grid {2 while the
discretization of the velocity term is maintained on a staggered dual grid £2. For
the purpose of introducing the method we assume that initial conditions are given
at grid-points staggered in both time and space. We define the primary grid as a
collection of K equidistant points

Q:{IL’] szzmln“‘]hw, ]:0,,K—1}7 (2)
analogously the dual grid, which holds velocity approximations, is defined as
~ i 1 .
‘Q:{mj+1/2:$min+(]+§) hey, 7=0,...,K—1}. (3)

Approximations of each variable are carried out through local Taylor series expan-
sions at each node z;. The expansion takes the form

(o) %y ) = 3 i (2 s (4)

1=0

where 1; corresponds to scaled approximations of the i*" derivative of the function
u(x) evaluated at ;.

o
TG dat
Next, we derive the time-stepping algorithm of the Hermite-leapfrog scheme

by considering the continuous infinite temporal series for the pressure variable at
t and t + At.

(zj), ©t=0,...m.

(At/2) & p(z,t + a4

P+ 40 = 30 T (%)
o (—A2) Ppla,t+ 5
Subtracting equations (5a) and (5b) yields
At)2)7 & p(x,t + 4)
pla,t+ At) —pla,t) = Y 2 ﬂ ) TR (6)

j=1,0dd
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where the limit of the sum is determined by the order of the method. Temporal
derivatives are then exchanged for spatial derivatives by means of the Cauchy-
Kowalevsky recurrence relation [7]; in the case of constant coefficients the recur-
rence relation simplifies to

d"p o"v

S :CTc’)x’"’ re{1,3,5,...}. (7)

yielding the time-stepping algorithm

°p(x,t + At) 8Sp(x t) P (cAt/Q Y It sy(x, t + At/2) 8
axs Z aijrs ( )
j=1,0dd
The discrete version at each node z; is then given by replacing the pressure and
velocity terms with the local Taylor series approximations

BT Oy 5 Ay P 9)
oz  Ox® P xits :

The superscript is used to denote time step, and the subscript denotes the node
around which the polynomial is expanded. Equality holds if M is assumed to be
infinite otherwise the order of the approximation depends on the number of terms
in the series.

Here we introduce the index s to correspond to the degree of freedom, s €
{0,...,m}, at each grid point. The key ingredient here is the approximation of
the spatial derivatives (the right hand side of equation (8)). The approximation
is carried out by means of Hermite-Birkhoff interpolation as done in the classic
Hermite method [7]. The interpolation procedure constructs a polynomial o; by
interpolating the function value and derivatives at R; = x;11/2 Lj = x;_1/2

Ly
0"

i
ort |,

i, L
:8'Uj

ozt

iy
0'7;

Jolt

2 ; -
ox?

L; R

J

ozt

. i=0,....2m+1.
R;

Thus, the resulting polynomial reproduces the function value and first m deriva-
tives at the left and right end points. Notably, the coefficients of the polynomial
are the approximation of the function value and first 2m + 1 derivatives at the
node z;. As demonstrated in [15] this results in the following system

or]v=[]. (10

where C¥, CT is defined as

L-z )\l e
Cll;: ( Jh .7) ﬂtl;]:o(s—t), SZl
O» S <l
. s—1 -1
p_ J(BEE) E 60, s>
Cis= T t=0
O» S <l
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A full description of the interpolation procedure can be found in [7,13,15]. The
coefficients of the polynomial are used to carry out the time stepping algorithm.
Figure 1 provides an illustration of the stencil associated with the scheme. Next,
we describe the stability and convergence properties of the method.

&  : Pressure Node & v

@  : Velocity Node

t
‘ . Interpolant _,‘4_ n+1/2
P & ®

& & &

N Xz X Niv12 Xy

Fig. 1: The first step of the Hermite-leapfrog method is the use of Hermite-Birkhoff
interpolation to approximate the function value and first 2m + 1 derivatives of the
velocity field at node x;. The solution of the pressure is then propagated via the
Hermite-leapfrog time-stepping algorithm (equation (8) ).

3 Stability and convergence

The essential properties of Hermite-Birkhoff interpolation used to establish stabil-
ity and to estimate the error are proven in detail in the original paper [7]. First and
foremost is the orthogonality lemma, which shows that the interpolation process
is contracting in a certain Sobolev seminorm. Precisely, let Z,, denote the Hermite
interpolation operator employing derivative data up to order m; here we will not
distinguish between interpolation on the two grids. We will also assume that all
functions are periodic and sufficiently smooth. In one space dimension we use the
Sobolev semi-inner-product

am-‘,—lf am-‘,—lg
(f,9)m+1 = JrmAL  gpmtl’

which we generalize in d dimensions to

+1)d +1)d
o= [ o O
ox . 9x Tt 9a 9

Then, as shown in [7], for any f and g we have

<Imf7g - Img>m+1 =0. (11)
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Denoting by | - |m+1 the seminorm induced by these semi-inner-products, we thus
have, by the Pythagorean Theorem

|f st = T flonss + 1F = I s (12)
The approximation properties of Hermite interpolants of smooth functions are
generally what one expects. Restricting to d = 1 and using || - || to denote the
L?-norm we have, for mesh and function-independent constants, C
2m—+2
2m—+2 8 .f
If = Zmfll < Ch ”W”’ (13)
am-‘,—l _ Im 62m+2

[UARSE S E Y P it ) (14

axm+l 6w2m+2

We will also use (see [7]):

m am+1 _ Im
17 = Zn sl < onmt STy (15)

3.1 Conservation

We now construct variables which are conserved during the solution process. We
begin by introducing the operators S+ defined via Fourier series

S/i\f _ e:tic(kf-{—‘.‘+k§)1/2At/2]5(k)7 (16)

where ¢ denotes the speed of wave propagation. Note that for d = 1 the branch
can be chosen so that these are simply shift operators

S+ f(x) = f(x £ cAt/2), d=1,

where c is the speed of wave propagation. By Parseval’s Theorem these operators
preserve all Sobolev seminorms and in addition satisfy

S§1S. =88, =1 (17)

Using them we can write down a two-level conservation condition which holds at
the continuous level.

3.1.1 One space dimension

For d = 1, note that (8) translated to Fourier variables leads to the exact solution
formula

ikcAt/2)7
pk,t + At) = p(k,t) +2 > %v(lﬂ t+ At/2)
j=1,0dd ’

Bk, 1) + (ei‘z’“m/2 - e_iCkAt/z) o(k,t + At)2),
which, along with the analogous formulas for the evolution of v implies

p(z,t + At) = p(x,t) + Syv(z, t + At/2) — S_v(x,t + At/2), (18)
v(z,t + At/2) = v(x,t — At/2) + Stp(x,t) — S—_p(z, ). (19)
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Define
Pi(z,t) = p(z,t) F Sxv(z, t — At/2), (20)
Vi(z,t+ At/2) = v(z, t + At/2) F S+p(z,t). (21)
Then, using (17) we can rewrite (18)-(19) as
Py(z,t + At) = FSVa(x,t + At/2), (22)
Vi(z,t 4+ At/2) = FS P+ (z,t), (23)
which yields the conservation conditions, valid for any Sobolev seminorm,
[P£ (-t + A)|| = [[Vx(-, t + At/2)]], (24)
[Ve( t+ At/2)|| = [|P£(, D). (25)

Now consider the approximate evolution. The essential point is that the Her-
mite data updated according to (8) is in fact the exact data for the update of
the global piecewise polynomial Hermite interpolant so long as the CFL condition
cAt/Ax < 1 is satisfied; this simply follows from domain-of-dependence consider-
ations. Therefore we can write the discrete evolution as

p"(z,t + At) = p"(z,t) + TS+ 0" (2, t + At/2)

~InS_v"(z,t + At/2), (26)
" (z,t + At)2) = 0" (2, t — At)2) + L, Sip" (2, 1)
~InS_p"(x,1), (27)

Defining PL, VI as in (20)-(21) with the discrete variables p™ and v" replacing
the continuous ones and using the fact that ph = mph, ot = mvh, we derive
evolution equations

Pl (z,t + At) = TS+ VL (x,t + At/2)

F(1 = L) SV (x, t + At/2), (28)
VI (z,t + At)2) = TLnS+PL (2, 1)
F(1 — Zm)S+ P2 (x, ). (29)

Now we get conservation conditions for the sums of the Sobolev seminorms of P}
and V' using the orthogonality lemma (12). Define

"o =[Pl P ] (30)
RMt + At)2) = ‘Vf(-,t+At/2)‘i+l + ‘V_h(~,t+At/2)‘fn+1‘ (31)
Then
Q" (t+ At) = ‘z S_VI( t+ At)2) ‘ ‘(1— )SLVE(, t+At/2)‘m+1
| TS VRt + A172) \ Lt a-Tas v ) };1
- ]s_vf(-,tJrAt/g)]anJr VRt ar2) |

m+1

= R"(t + At/2). (32)
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Similarly
Rt + At/2) = Q" (1), (33)

so we have for all n
Q" (nAt) = R"((n +1/2)At) = Q™(0). (34)
8.1.2 Extension to d space dimensions

In higher dimensions we consider the generalization of (1)

op

i cV-v (35)
ov
E - ch,

though other systems, such Maxwell’s equations, could be similarly treated. The
formulas analogous to (8) are now

p(x,t + At) = p(x,t) + 2 Z (CA;?P)jVj_lv-v(x,t—i—At/Q), (36)
j=1,0dd ’
v(x,t+ At/2) = v(x,t — At/2) + 2 Z (CA;#V]—AVZJ(X, t). (37)
j=1,0dd ’

In Fourier space, denote the normalized k-vector by

- k
k=—
k|’
noting that in the formulas below the undefined value at k = 0 plays no role.
However we will need to specify its value when defining the conserved quantities
and we do so by setting it to be some arbitrarily-chosen unit d-vector. We then
find

bk, t + At) = p(k, ) (38)
+ (eic<k§+---+k§>”2m/2 _ e—ic<k?+-~-+ki>1/2m/2) k-v(k,t + At/2),
(K, t + At/2) = V(k, t — At/2) (39)

b (DY _ et 2112 i ),

Defining G to be the operator given in Fourier space by multiplication by k and
by G* its adjoint, noting also that G*G = I we rewrite the continuous evolution
formulas. We also define

va=GG'V, Ve=V —vy

and note that
G'va=G"v, G've=0.
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Then we have

p(x,t+ At) = p(x,t) + S+ G va(x,t + At/2)

—S_G*va(x,t + At/2), (40)
va(x,t+ At/2) = va(x,t — At/2) + GS+p(x,1)
—QS_p(x7 t)7 (41)
ve(x,t+ At/2) = ve(x,t — At/2). (42)
Introducing
Py(x,t) = p(x,t) FS+G va(x,t — At/2), (43)
Vi(x,t+ At/2) = va(x,t) F GS+p(x,t), (44)
we find
Pi(x,t+ At) = FS:G Vi (x,t + At/2), (45)
Vai(x,t+ At/2) = FGS+ P+ (x,t). (46)

Using (42), (45)-(46) and the fact that
16"V = [[V]

the conservation of arbitrary Sobolev seminorms of v., P+, and Vi follows:

[PL(t+ At = [V (-t + At/2)]| (47)
V(- t+ At/2)|| = [P 1) (48)
[ve(-t + At/2)| = [lve(- t = At/2)]]. (49)

Similarly we can establish conservation conditions for the Hermite-leapfrog up-
dates. The main new issue which arises is the fact that the interpolation operators
do not commute with G. Defining

Vg = gg*vha VZ = Vh - V(}1L7
P =p" ¥8:G"vii, VL=viTGSep",
we derive the following update formulas
PL(x,t + At) = TZnS+G Vi (x,t + At/2) (50)

F(1 — Zm)S£G*VE(x, t + At/2),
VI (x, b+ At)2) + v (x,t + At)2) = FTn (QS;PE(X, £) —vi(x,t — At/2)) (51)

F(1—T) (gsip’;(x, £) — VP (x,t — At/2)) .
Define

Q"(t) = ‘Ph(- t)‘Q + ‘Ph(- t)‘Q + ‘vh(- t—At/2)‘2 (52)
IR P N e m-+1

2 2
Rt + At)2) = ‘Vi(~,t+At/2)‘ L ‘V'l(-,t+At/2)‘ .

(53)

2
+ ‘v?(~,t+At/2)‘ .
m—+1
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Then, since v? is orthogonal in the Sobolev semi-inner products to the range of G
we find as above

Q" (t+ At) = R"(t + At/2), (54)
R"(t+ At/2) = Q" (1), (55)

from which we finally conclude

Q"(nAt) = R"((n +1/2)At) = Q™(0). (56)

3.2 Convergence in one dimension

We now exploit the energy estimates along with the approximation properties of
Hermite interpolation (13)-(15) to establish convergence. We define the errors by

_ h _ h
ep=p—p, €Eb=V—0 .
They satisfy the evolution formula
ep(z,t + At) = ep(z,t) + ImStey(z,t + At/2) (57)
—ImS—ep(z,t+ At/2) + (1 — Im)p(z, t + At),
ev(z, t + At/2) = ey(x,t — At/2) + TnStep(a,t) (58)

—ZImS—ep(x,t) + (1 — Im)v(x, t + At/2).
Introducing the variables corresponding to the conserved quantities

Ep,i(x7t) = €p(CC7t) + S:tev(x7t - At/2)7 (59)
Eyt(z,t 4+ At/2) = ey(z,t + At/2) F Step(z,t), (60)
and following the previous calculations we derive
Ep+(z,t + At) = FLn St Ev 4+ (z,t + At/2)
F1 —Zn)S+Ey 5 (z,t + At/2)
+(1*Im)(p(1‘,t+ﬂt) 7p('1‘7t))7 (61)
Ey+(z,t + At/2) = FLnStEp +(2,1)
F(A = In)S+Ep 5 (,1)
+(1 = Zm)(w(z, t + At/2) — v(z,t — At/2)). (62)

Noting that for sufficiently smooth solutions
(1= To) (Bl + At) = pl, )], 40 = O (At W7,
|(o(x,t + AL/2) — v(@, t — At/2))],,,, = O (At : hm“) ,
and defining

5p(t) = |Ep,+('7t)|fn+1 + |E 77(.7t)|72n+1 ’
Eult + At)2) = |By s (-t + At/2)12, 1 + [Bo— (-t + At/2)12,, 1,
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we find, where here and in what follows C denotes a mesh-independent quantity
which will depend on the exact solution,

Ep(t+ At) < E,(t+ At/2) + CAL- K™\ /E,(t + At/2)
+C AR T2, (63)
Eu(t+ At/2) < Ey(t) + CAL- K™\ /E,(t) + CALR*™ T2, (64)

Defining .
€" = max (&, (jA), En((j — 1/2)At))
IsSn

we have by summing (63)-(64) over j

EM < E0 4 Ot , k™ TINV En 4 Ot At - B2TT2,

Assuming, as would be true for smooth initial data and initialization of the scheme
by Hermite interpolation
évO < Ch2m+2

we derive our first error estimate
EM < C(L+tn)h>m T2, (65)
Now return to (61)-(62), which we rewrite as
Ep.+(z,t + At) = FStEy + (z,t + At/2)
F(1—Zm) (S+ By, (z, t + At/2) — S Ey + (z,t + AL/2))
+(1 - m)(p(J?, t+ At) - p(xa t))a
Eot(o,t + At/2) = £S5 Byt (a,1)
F(1 = Im) (S+Ep,5(z,t) — S5 Ep +(z, 1))
+(1 = Znm)(v(z, t + At/2) — v(z,t — At/2)).
Computing the L? norms and using (15) along with (65) we deduce

|Ep,+ (-t + At)|| < [|EBo,+ (-, t+ At/2)|| + C(1 +t)h2m+2,
| Eox (ot + At/2)]| < |1 Epos(-,1)]| + C(1 + £)R2™T2,

Assuming sufficiently accurate initial data and in addition that for some n > 0,
At > nh we sum these inequalities and deduce our second error estimate:

1Ep,+ (-, nAt)|| < C1+t7)n* ™", (66)
IEv.£(, (n = 1/2)At)|| < C(1+ t7)h*" . (67)

Finally, we rewrite (59)-(60)
ep(z,t) = Ep + £ Steqy(z,t — At/2),
ev(z,t + At/2) = Ey 4 (z,t + At/2) + Step(z,t),
which yields after taking norms
len (O < llew (-t — At/2)]| + O (L + t)p*™
lew(,t + At/2) = [lep(, )] + C(1 + t3)R*™ 1.
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Summing this we get an estimate of the solution error:

lep(-nAY)|| < C(1 + £5)h%™, (68)
lew(-, (n = 1/2)At)|| < C(1 +t5)h*™. (69)

We note that in the numerical experiments we do not see the cubic growth in
t which appears in (68)-(69). There is a technical barrier to the extension of the
error analysis to higher spatial dimensions, namely that the seminorm used in the
stability analysis cannot control the full interpolation error due to the fact that
it is zero for functions of fewer than d variables. However we have not noticed
any degradation in convergence rates for our experiments with d = 2,3. What
the analysis misses is the fact that, for m even, we observe convergence at order
2m + 2 rather than 2m. In the next section we study the dispersion relation for
the method which suggests an explanation for this phenomenon.

3.3 Dispersion

As a complement to the stability and error analysis given above, we also consider
the dispersive properties of the method. Here we again assume spatial periodicity
and expand the discrete solution data in a Fourier series:

Py t) = 3 Pk, t)e™ s,
k
Vh(xj+1/2at) - Z‘:/(k’t)eikxﬁrl/z.
k

Here P" and V" denote the m + 1-vectors of approximate function and derivative

data at the nodes so that P and V are also m+ 1-vectors. Written in these variables
the evolution takes the form:

P(k,t+ At) = P(k,t) + D(k, AV (k, t + At/2), (70)

Vik,t + At)2) = V(k,t — At)2) + D(k, A)P(k, 1), (71)

where the existence of matrix D follows from the translation-invariance of the
method. Obviously the solutions can be expressed using the eigenvalues, x, and
eigenvectors, w of D which we will compare to the exact values,

ke = 2isin (ckAt/2), we = (1ik ... (ik)™/m)T.

To make this comparison at leading order we rescale the problem so that h =1
and At = X\ and make an expansion for k£ < 1. Using the accuracy properties of
the Hermite interpolation operators we have

Dibe = ketbe + O(K*™2). (72)
We thus deduce the perturbation equation
D — e) = (k — ke)e + k(0 — ) + O(K*™T3). (73)

To leading order we may replace D(k) by D(0), w.(k) by w.(0) = e1, and, since
ke(0) = 0, ignore k(i — w.). We then have two possibilities:
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i. 01is a simple eigenvalue of ﬁ(O), in which case there is a solution to (73) satisfying
K= ke = O(K*™ %), b — e = Ok ), (74)

ii. 0 is not a simple eigenvalue of D(0) in which case we do not expect (74) to
hold.

To apply this result we check for solutions for a second eigenvector corresponding
to the eigenvalue 0.

D(0)§ =0, (75)

or a generalized eigenvector

D(0)j = e1. (76)

Note that solutions of these equations correspond to the existence of a nonconstant
polynomial g(x) of degree 2m + 1 satisfying for j =0,...,m

djg djg _ djg djg _
T 1/2) = 5 (=1/2) = -5 (A/2) = -5 (=A/2) = 0,

or the above equations except
g(A/2) —g(=A/2) = 1.

Moreover, since a constant function solves the homogeneous equation, we can in
addition assume that ¢g(0) = 0. Expanding g

2m—+1

9=y gv’
=1

we see that they represent 2m-+2 linear equations with 2m+1 unknown coefficients.
Moreover, due to symmetry the equations involving even order derivatives only
involve the m + 1 coefficients of the odd powers of x while equations involving odd
order derivatives only involve the m coeflicients of even powers. The size of these
subsystems differs in the cases m = 2n and m = 2n + 1:

m = 2n: We have 2n + 2 equations for 2n + 1 coefficients of odd powers and 2n
equations for coefficients of even powers. As we have checked numerically, these
are only solvable by 0 when all equations are homogeneous. Thus 0 is a simple
eigenvalue and we have a solution which is accurate to order 2m + 2.

m = 2n + 1: We have 2n + 2 equations for 2n + 2 coefficients of odd powers and
2n + 2 homogeneous equations for 2n + 1 coefficients of even powers. Although
the latter equations are overdetermined, they are always solved by 0. Numer-
ically we have found that the equations for the coefficients of the odd powers
is invertible; thus there is no second eigenvalue solving (75) but there is a gen-
eralized eigenvector solving (76). Thus we do not in general expect a solution
which is accurate to order 2m + 2, but only 2m as proven above.
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4 Numerical experiments in one-dimension

To verify the observations in the previous section, we present numerical experi-
ments which assess the accuracy and performance of the Hermite-leapfrog method.
To complement the experiments, we present comparisons with the classic Hermite
method (Dual Hermite method as referred to in [15]). As a model equation we
chose the following wave system

o0 o ov__on
ot ~ ¢ @Wegy HE@ ) e =5,

p(z,to) = f(z), wv(x to+ At/2) = g(x),

with periodic boundary conditions. Here c(z) denotes the speed of the propagat-
ing wave and z(z,t) is introduced to enforce a desired solution. For simplicity, p
denotes a unit bulk modulus. Although we only consider a constant value for the
bulk modulus, this restriction isn’t necessary and the method could be applied to
the case in which it is spatially varying. The time step, At is chosen by introducing
a CFL constant Corr € (0,1), such that

(77)

At =2CcFrL h .
cmaz
Choosing Ccrr, closer to one denotes a larger time step while choosing Ccrr, closer
to zero corresponds to taking a smaller time-step. The variable h corresponds to
the length of the interpolation interval, and ¢yqz denotes the maximum speed of
the propagating wave.

4.1 Standing wave solution

As a first example we consider propagation of a standing wave with unit wave
speed. The analytic solution is chosen to be

p(x,t) = cos(2rt) sin(27x).

For these experiments the computational domain is defined to be the bi-unit inter-
val and the solution is propagated to a final time of T' = 4.13. Figure 2 reports the
accuracy in the L? norm while Table 1 reports the observed rates of convergence.
Numerically, we observe that even order Hermite-leapfrog schemes converge at
rates of O(h?™%?), as suggested by the analysis of the dispersion relation, while
variation is observed if the method is of odd order. Furthermore, it can be observed
that a Hermite-leapfrog scheme of even order provides a better approximation than
the Dual Hermite method.

Ceorpr =0.1 Ccrr =05 Ccrr =0.9
Order - m 0 1 2 3 0 1 2 3 0 1 2 3
Hermite-leapfrog | 1.90 | 1.96 | 597 | 5.65 | 1.94 | 1.91 | 598 | 7.09 | 2.01 | 2.02 | 6.00 | 5.87
Classic Hermite - 258 | 490 | 6.84 | 0.10 | 2.78 | 4.83 | 6.95 | 0.46 | 2.78 | 4.83 | 6.88

Table 1: Observed L? rates of convergence for the Hermite-leapfrog scheme and
classic Hermite methods of m'" order with varying CFL constants.
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Fig. 2: L? errors of an m order Hermite-leapfrog and Dual Hermite methods when
applied to the one-dimensional pressure-velocity system. The Hermite-leapfrog
scheme provides a better approximation to the classic Hermite method when m is
chosen to be even. For these experiments the CFL constant is set to CFL = 0.9
across all orders.

4.2 Spatially varying wave speed

As a second set of numerical experiments we consider a spatially varying wave
speed. To simplify establishing the Cauchy-Kowalesky recurrence relation we take
a pre-processing step and expand the coefficient at each grid point via a local
Taylor expansion

2m—+1

cz(aci) =1+sin(x;)/2 ~ Z Ci (xzxz) ,

1=0

where )
. h! d'c?(x)
S TR
For these experiments the domain is chosen to be [0, 27] and the solution is prop-
agated to a final time of T' = 3.2. The analytic solution is chosen to be

p(x,t) = sin(z — t). (78)

Figure 3 reports the observed accuracy in the L? norm while Table 2 reports
the observed rates of convergence. These numerical experiments suggest rates of
O(h*™*2) for even m and O(h*™) for odd m.
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4.2.1 Discontinuous coefficients

A key ingredient of the method is the Hermite interpolation step which acts as a
smoothing operator. In the presence of discontinuous coefficients the interpolation
step would reduce accuracy. A potential avenue for such problems could be to
consider a hybrid scheme in which another method is used in areas with discon-
tinuities. A hybrid Hermite discontinuous-Galerkin scheme has been presented in
the literature [5,15] and is something we would like to explore in future work.

m =0 m=1
100 = T T T T T T TTITH 10° T T T T T T T T T T
E B + Dual Hermite
[ i w=fif= Hermite-leapfrog
= —1 |
10 E El
E E 1 w07 )
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3 1072 E E
r & 1074 -
1073 ool vl ool vl
107 1072 107' 10° 107 1072 107' 10°
ha ha
m =2 m =3
T T T T T T T T T T T T T T T T T T T
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w=fif= Hermite-leapfrog
3
—
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_
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107 1072 107' 10° 107 1072 107' 10°
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Fig. 3: The L? errors of various m order Hermite-leapfrog and Dual Hermite meth-
ods when applied to the one-dimensional pressure-velocity system with spatially
varying wave speed. The Hermite-leapfrog scheme provides a better approxima-
tion than the Dual-Hermite method when m is chosen to be even. Here the CFL
constant is set to Copr = 0.9.

Corpr =0.1 Corr =05 Corr, =0.9
N 0 1 2 3 0 1 2 3 0 1 2 3
Hermite-leapfrog | 1.98 | 1.97 | 598 | 594 | 1.98 | 1.97 | 599 | 5.88 | 1.98 | 1.98 | 6.02 | 5.81
Dual-Hermite 0.18 | 2.97 | 499 | 6.84 | 0.70 | 2.99 | 5.01 | 7.01 | 0.88 | 2.99 | 5.00 | 6.99

Table 2: Observed L? rates of convergence for various m order Hermite-leapfrog
and Dual Hermite methods when applied to the pressure-velocity system with
smoothly varying coefficients. The numerical experiments are carried out for var-
ious C'F'L constants.
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4.3 A note on improving rates of convergence

The peculiar convergence behavior of the Hermite-leapfrog scheme has led us to
investigate if modifications can be made which may yield more consistent conver-
gence results. In particular we have found a modification to the method which
leads to consistent O(h®*™%?) convergence rates. The derivation of the modified
Hermite-leapfrog scheme originates from applying the scheme to the following ad-
vection equation,

Ut = Usg, (79)

and tracing out local truncation errors. The analog of subtracting equations (5a)
and (5b) for the advection equation yields a time-stepping scheme with local tem-
poral truncation errors

O u(z,t+At)  du(zt) | & dula,t+ At/2) 43
ox" T 9z + _ Z Cizr ozt +0O(At ),
i=147r,odd
(80)
O (z,t+ At)  0'u(,t) i d'u (z,t + At/2) 21
i T D D e

i=1+1,even

(81)

where it is important to observe that equation (80) is valid for even order deriva-
tives, 7 € {0,2,... }, and equation (81) is valid for odd order derivatives, | €
{1,3,... }. Here ¢; are the coefficients from the Taylor series expansion. Draw-
ing from the work of Appel6 and co-authors in [1], we construct a time-stepping
scheme by subtracting expansions (5a) and (5b) leading to

I"u (x,t + At) 0" u(z,t) i Ou(x,t + At/2) Imt2—r
ox" ox" + i:;_r ¢ ox* +O( )
(82)
lu (z,t + At) ol (x,t) ! Ou(z,t + At/2) 231
) — _ ) i et Sed i S A O At m ,
ox! Oox! + i:;_l ci-l ox! +O( )
(83)
where the indices remain to be r = 0,2,... and [ = 1,3,.... As before, equation

(82) is the local truncation error for even order derivatives, and (83) is the local
truncation for odd order derivatives.

Spatial errors may be quantified by noting that Hermite-Birkhoff reconstruc-
tion leads to truncation errors of the form

ou"(z,t)  0u(z,t)

oxm axr’ + O(h2m+2ir) r=0,2,4,... (84)
1 ~1
aua(fl’ B _ aua(;/ Dpom ey =135, (85)

Here it is important to note that subsequent derivatives are approximated with
the same order.
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By using the time-stepping scheme given by equation (80) for even order deriva-
tives and equation (83) for odd order derivatives we are choosing the best approxi-
mation within the framework. An immediate area of research would be to carry out
a full truncation analysis, and a similar eigenvalue analysis to confirm 2m + 2 con-
vergence rates. In the next section we present numerical evidence on stability and
provide numerical estimates convergence rates for the modified Hermite-leapfrog
method.

4.8.1 Modified Hermite-leapfrog: Advection Equation

To assess the accuracy and performance of the modified Hermite-leapfrog scheme,
numerical experiments are carried out using the one-dimensional advection equa-
tion. For these experiments the domain is chosen to be the bi-unit interval and
the analytic solution is chosen to be

u(z,t) = sin(3n(z —t)).

Figure 4 reports the observed accuracy for orders m = 1, 2,3 while Table 3 reports
the observed rates of convergence, notably we observe consistent O(h*™"?) rates
of convergence.

Corr =0.1 Ccocrrp =0.5
100 T ™ 100 T ™
o / /
o
=
[€a] 1077 — — 10*7 [ |
9
10-14 — ! TR ! ! =)
10~ 107t 1070% 10~ 107t 1070°
ha hy
Ccrr =0.9
0 — —
10 T T o= m =1
—f— m =2
—— m =3
1077 |- R
10— 14 | | |

10-15 10-! 10-0
ha

Fig. 4: The L? errors of various m order modified Hermite-leapfrog methods when
applied to the one-dimensional advection equation with unit wave speed. The CFL
constant is set to be Copr, = 0.9 across all orders.
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‘ Cepr =0.1 Ceorr = 0.5 Ceorr =0.9
Order - m [ 1 2 3 1 2 3 1 2 3
‘ 4.15 5.92 8.06 | 4.08 5.96 8.00 3.94 5.98 7.99

Modified Hermite-leapfrog

Table 3: Observed L? rates of convergence when using the modified Hermite-
leapfrog scheme to solve the advection equation with unit wave speed.

4.3.2 Modified Hermite-leapfrog: Pressure-Velocity Equations

We continue our numerical experiments by applying the modified Hermite-leapfrog
method to the pressure-velocity system. The drawback of this approach is that it
requires to discretize the pressure and velocity on both the primary and dual grid.
Approximations on both grids are necessary as the Cauchy-Kowalesky recurrence
relation exchanges even time derivatives of the pressure term for spatial derivatives
of the pressure term (odd time derivatives are exchanged for spatial derivatives of
the velocity term). For these numerical experiments the analytic solution for the
pressure term is chosen to be

p(x,t) = cos(3mt) sin(3wx).

The system is assumed to have unit wave speed and the solution is propagated to
a final time of T' = 4.13. Figure 5 reports the observed accuracy of the modified
Hermite-leapfrog scheme under the L2 norm. Table 4 reports the observed rates
of convergence. The rates of convergence remain consistent with results observed
with the advection equation, namely O(h?*™%?). Notably, the modified Hermite-
leapfrog scheme is the most accurate scheme.

[ Ccrr =0.1 Corr =0.5 Corr =0.9
Order - m ‘ 1 2 3 1 2 3 1 2 3
Modified Hermite-leapfrog || 4.03 | 6.07 | 7.99 | 3.98 | 598 | 8.04 | 3.93 | 593 | 7.97
Hermite-leapfrog 1.04 | 595 | 5.07 | 1.07 | 5.95 | 5.64 | 1.21 | 5.98 | 6.50
Dual-Hermite 1.89 | 495 | 7.08 | 2.56 | 499 | 6.93 | 2.87 | 4.94 | 6.96

Table 4: Comparison of the L? rates of convergence for the modified Hermite-
leapfrog, Hermite-leapfrog, and the Dual Hermite method when applied to the
one-dimensional pressure-velocity system for orders m = 1, 2, 3.

5 Extending the method to higher dimensions

The Hermite-leapfrog method is easily extended to higher dimensions by means
of a tensor product construction. For completeness we describe a two-dimensional
extension; a three dimensional version follows a similar construction. To aid in the
description of the method we consider the pressure-velocity wave system in two
dimensions

dp  Ov Ou
o~ oz oy (86)
ov  Jdp Ou dp

R e (87)
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Fig. 5: L? errors for the modified Hermite-leapfrog, Hermite-leapfrog, and Dual
Hermite scheme when applied to one-dimensional pressure velocity system.

For simplicity we assume the initial conditions are defined at a half-step apart
p(x,t) =0, w(x,At/2) = g(x), u(x, At/2) = h(x). (88)

As in the one-dimensional version, the discretization of the equations occurs over
two grids. The primary grid, (2, serves to hold approximations of the pressure
variable. The second dual grid 2 is introduced in order to store approximations of
the velocity fields. The construction of each grid is performed by taking the tensor
product of one-dimensional grids. Assuming a grid spacing of h; and hy in the x
and y directions respectively, the solution at each node (z;,y;) is represented by
the following tensor polynomial

m

wGd) g9 = 3 g (® ;f) (y,;y)

i=0 j=0

We emphasize that Hermite-leapfrog methods maintain approximations of the
pressure solely on the primary grid. Approximations of the velocity variables are
maintained on the dual grid; this is notably different than traditional staggered
time domain finite difference methods which discretize variables on different grids.
The time-stepping algorithm for the two-dimensional Hermite-leapfrog method
is derived in a similar manner as in the one-dimensional case. Here we consider
two-dimensional analogues of equations (5a) and (5b)
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*tp(z,y,t + At/2) 1 P 0" p(x,y,t)

2>y = z;; o A sy (89)
*Flp(z,y,t — At/2) 1 P 0TSl y, 1)

D70y = 2;; A2 = e (90)

As before the update for the pressure term is derived by subtracting equations
(89) and (90)

O tp(x,y,t + At/2) 9 Tp(w,y,t — At/2)

Oz 0yt Oxs 0yl n

1 c Oy (2, y,t

D=1 G2 %
T xS+ y

(91)

4541
r=1,odd

where the indices s, correspond to the order of spatial derivatives, i.e. s,l €
{0,...,m}, the formulas for the velocity fields are derived analogously. As in the
one-dimensional case; spatial derivatives are approximated by means of Hermite-
Birkhoff interpolation. Given the tensor structure of the polynomial, the inter-
polant enables a dimension by dimension reconstruction. Figure 7 illustrates the
staggering of the nodes as well as the reconstruction procedure; we refer the reader
to [13] for further details the higher dimensional reconstruction procedure.

@ PressueNode @& @ & — 1( — &

@ Velocity Node & ‘

‘ . Interpolant I
& ® Vi1 @& — x — @& YVi+1

Y-t Y X1 j

(a) (b)

Fig. 6: Figure (a) illustrates an aerial view of the Hermite-leapfrog discretization
for the pressure-velocity equations. We emphasize that the nodes are staggered
a half-step apart. Figure (b) illustrates a dimension by dimension reconstruction
of the velocity interpolant. The interpolants tensor product structure enables a
dimension by dimension reconstruction.

5.1 Numerical experiments in two dimensions

To demonstrate the method’s efficiency, we solve the acoustic wave equations with
unit wave speed on the bi-unit square, [—1,1] x [—1,1], with periodic boundary
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conditions. The pressure is chosen to have an analytic solution of
p(z,y,t) = sin(wz) sin(mwy) cos(vV2t).

Figure 7 reports observed accuracy in the L? norm for both the Hermite-leapfrog
and Dual Hermite method. Table 5 reports observed rates of convergence with
varying CFL constants, notably we observe similar convergence behavior as in the
one-dimensional case.
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Fig. 7: L? errors for the modified Hermite-leapfrog, Hermite-leapfrog, and Dual
Hermite scheme when applied to two-dimensional pressure velocity system.

Ccrr =0.1 Corr, =05 Ccrr =0.9
Order - m 0 1 2 3 0 1 2 3 0 1 2 3
Hermite-leapfrog | 1.74 | 1.76 | 5.68 | 6.84 | 1.75 | 1.76 | 5.71 | 7.45 | 1.86 | 1.88 | 6.01 | 6.74
Dual-Hermite - 2.37 | 4.76 | 6.83 | - 244 | 4.78 | 6.76 | - 2.67 | 4.80 | 6.77

Table 5: Comparison of L? rates of convergence for the m order Hermite-leapfrog,
and the Dual Hermite method when applied to the one-dimensional pressure-
velocity system.
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5.2 Imposing reflective boundary conditions

As a second example, we consider zero Dirichlet boundary conditions on the pres-
sure variable. The complete set of boundary conditions may be derived by insisting
the solution of the pressure term is zero at the boundary and differentiating in
time; yielding

p(THyat):O7 JI:—l,l, y=—1,1 (92)
u(w,y,t) :O7 uy(x,y,t):o, y:*Ll
’U($7y,t) = 07 Uz($7y7t) = 07 Tr = —1, 1.

The staggered discretization enables either the pressure or the velocity variables to
be on boundary. For this example, we choose to discretize pressure in the interior
of the domain and thus only the velocity is discretized on the boundary. The
boundary conditions are imposed prior to propagating the pressure solution by
filling in ghost point values of the velocity variables at the edge of the domain.
The ghost point values are chosen to mirror the polynomials such that they are
either odd around the boundary and thus agree with the homogeneous Dirichlet
boundary conditions or so that they are even and satisfy homogeneous Neumann
conditions. To illustrate reflecting boundaries we initialize the pressure variable
with the following Gaussian pulse

2 2
p(z,y,0) = exp ((“’ -03)"+(y—10.3) ) .

0.002

Figure 8 illustrates a reflection of the propagating wave on the South-East corner.

(a)

Fig. 8: Figure (a) and (b) illustrate a wave reflected on the South-East corner as
propagated by the Hermite-leapfrog scheme. Imposing reflective boundary condi-
tions is accomplished by adding ghost nodes on the dual grid. The ghost points
values are chosen to mirror the polynomials such that they are even or odd around
the boundary and thus agreeing with the boundary conditions specified by the
boundary conditions (equations (92)) .
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5.3 Numerical experiments with Maxwell’s equations

To illustrate our methods ability to resolve high frequency waves, we carry out
numerical experiments with Maxwell’s equation in the time domain. In particular
we consider the transverse magnetic form with unit material coefficients

OH”® OE~*
DHY  OE*
ot = Ox’

OB* OHY OH"
ot Oz Oy

Here (H*, HY) corresponds to the magnetic fields, and E~ is the electric field. We
take our domain of interest to be the bi-unit square, 2 = [—1,1] x [—1,1], and the
analytic solution to be

H(z,y,t) = Ly sin(wgx) cos(wyy) sin(wit), (94)

Wt

HY(z,y,t) = patd cos(wgx) sin(wyy) sin(wet),
Wt
E*(z,y,t) = sin(wgx) cos(wyy) sin(wt).

The parameters are chosen to be w, = 8m,wy = 8w, and w; = /w2 + wZ. The
boundary conditions are imposed by the mirroring technique discussed in 5.2. To
illustrate the resolving power of a high order numerical method, we choose the
polynomial degree of the Hermite-leapfrog method to be m = 3,4, 5, and 6. Figure
9 reports the error under the L2 norm. At high orders we observe slightly more
variation of rates of convergence and sensitivity to round-off, yet the method is still
numerically stable. At high orders it becomes difficult to accurately estimate rates
of convergence due to numerical round off and how fast the method converges. In
practice, the accuracy of the method will depend on the frequency of the solution
and the order of the method. As future work we are investigating techniques to
improve accuracy at high order.

6 Acceleration on graphics processing units

Lastly, we demonstrate that the Hermite-Leapfrog method is well-suited for the
graphics processing unit. In these numerical experiments we solve the three-dimensional
acoustic wave equations
o __ov_ou_ow 05)
ot or Oy 0z
ov  Op Ou _ Op Ow Op

ot ox ot oy ot 0z

on the unit cube, [—1,1] x [—1, 1] with periodic boundary conditions. This section
serves as an extension of the work carried out by Vargas et at. [14] wherein Hermite
methods were tailored to the graphics processing unit. More precisely we revisit
the two approaches outlined in [14]. The first is a split approach in two kernels are
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Fig. 9: L? errors for the Hermite-leapfrog method applied to Maxwell’s equation.

employed. The first kernel reconstructions approximations of high order deriva-
tives via Taylor series while the second kernel then applies leapfrog time-stepping
to propagate the solution. The second approach combines the interpolation and
evolution procedures into a monolithic kernel.

Our numerical experiments are carried out on a single node of the Southern
Methodist University cluster “ManeFrame II”. A single node consist of a NVIDIA
Tesla P100-PCIE-16GB graphics card. The hardware has a theoretical bandwidth
of 732 GB/s and potentially performs 4700 Gigaflops/sec in double precision. To
obtain estimates of kernel bandwidth and gflops we employ the NVIDIA pro-
filer which reports effective arithmetic bandwidth by flop_count_dp and memory
bandwidth as the sum of dram_read_throughput and dram_write_throughput. Here
bandwidth corresponds to the sum of bytes read and written to global memory
by a GPU kernel. Our CUDA kernels are generated by using the OCCA language
[12]. Lastly we compare time to solution with a dual socket Xeon CPU E5-2695
(2.10 GHz) as found on a Maneframe II node.

In studying GFLOP and effective bandwidth it is important to note that the
devices theoretical capabilities are typically difficult to achieve in practice. To
estimate a more “realistic” bandwidth we consider a simple vector copy wherein
the entries of vector x are copied onto vector y. For sufficiently large N a streaming
bandwidth of 534 GB/s was observed on the graphics card. Although this is not
indicative of the peak performance it does serve as a representative of achievable
peak performance numbers. Tables 10 and Tables 11 report the observed GFLOP
and bandwidth performance.

In our numerical experiments it is clear that the interpolation procedure dom-
inates the floating point operations. This is not too surprising as the operations
are carried out as a series of matrix-matrix multiplications (tensor contractions).
Similarly the kernel which evolves the velocity variables, V3, V,, V., has a high
number of floating point operations as it carried out the time-stepping for three
variables.

As OCCA enables code generation on various platforms we conclude our ac-
celerator studies by presenting Table 6 which compares time per iteration across
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Fig. 10: Here we report the Bandwidth and GFLOP of a two kernel approach as
outlined by Vargas and co-authors in [14].
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Fig. 11: Here we report the Bandwidth and GFLOP of using a monolithic kernel
approach as outline by Vargas and co-authors in [14].

a P100 and the dual 16-core Xeon CPUs. In these experiments an iteration refers
to propagating the pressure and velocity fields.

Order of the method - m m=1 m =2 m=3
OCCA::OpenMP 1.08 sec 1.30 sec | 1.74 sec
OCCA::CUDA - Single Kernel | 0.060 sec | 0.07 sec | 0.10 sec
OCCA::CUDA - Two Kernels 0.098 sec | 0.19 sec | 0.15 sec

Table 6: Comparison of time per iteration of Hermite kernels executed on the
GPU and CPU. For orders m = 1,2, 3 the number of grid points were chosen to
be 200, 130, 100 points per Cartesian direction. Noticeably a single GPU kernel
offers a better time to solution with advantage of relieving the need to store the
interpolate on account of less data movement. These results are consistent with
what has been observed in [14].
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7 Summary

We have presented a variation of the classic Hermite method which uses leapfrog
time-stepping to advance the solution for linear wave systems. The new Hermite-
leapfrog method is demonstrated to be numerically stable, high-order in both
time and space, and may time-step the solution independent of order. A detailed
description of the method is provided in one and two dimensions, as well as a
techniques for incorporating spatially varying coefficients and reflective boundary
conditions. Numerical experiments suggest that the rate of convergence is depen-
dent on whether the method is of odd or even order. To address the variation we
introduce a modification that achieves consistent O(h?™"?) rates of convergence.

Lastly, we accelerate the method using a graphics processing unit. We find
that a monolithic kernel is ideal as it eliminates the need to explicitly store the
interpolant and can provide a comparable time to solution to using two kernels
which achieve a higher bandwidth. As a future research direction we plan to provide
a theoretical justification for the exceptional convergence rates of the modified
Hermite-leapfrog method.
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