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Abstract

We discuss the relationship between the problem of protein tertiary structure prediction from the amino acid sequence and the
uncertainty analysis. The algorithm presented in this paper belongs to the category of decoy-based modeling, where different
known protein models are used to establish a low dimensional space via principal component analysis. The low dimensional
space is utilized to perform an energy optimization via a family of very explorative particle swarm optimizers to find the global
minimum. The aim of this procedure is to get a representative sample of the nonlinear equivalent region, that is, protein models
that have their energy lower than a certain energy bound. The posterior analysis of this family provides very valuable information
about the backbone structure of the native conformation and its possible alternate states. This methodology has the advantage of
being simple and fast and can help refine the tertiary protein structure. We comprehensively illustrate the performance of our
algorithm on one protein from the CASP-9 protein structure prediction experiment. We also provide a theoretical analysis of the
energy landscape found in the tertiary structure protein inverse problem, explaining why model reduction techniques (principal
component analysis in this case) serve to alleviate the ill-posed character of this high dimensional optimization problem. In
addition, we expand the computational benchmark with a summary of other CASP-9 proteins in the Appendix.

Keywords Proteins - Tertiary structure prediction - PSO - Uncertainty analysis

Introduction

Tertiary protein structure prediction is computational elucida-
tion of the three-dimensional structure of a protein for which
an experimentally determined structure is unavailable from its
amino acid sequence. Protein structure prediction is highly
important in drug design, and in biotechnology, in the design
ofnovel enzymes. The importance of this field is shown by the
fact that every two years the performance of current methods
is assessed in the CASP experiment (Critical Assessment of
Techniques for Protein Structure Prediction) and a worldwide
community of researchers participate in this challenge.

The research has been focused mainly in two areas:
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The first one focuses on understanding the mechanisms
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involved in protein structure and folding in order to find
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the correct energy function or model to be optimized [1].
Obviously all the energy functions are mathematical
models that try to mimic the reality. This first part con-
cerns what we call the forward problem: to compute the
landscape of protein free energy. Obviously, the energy

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00894-019-3956-0&domain=pdf
http://orcid.org/0000-0002-4758-2832
mailto:jlfm@uniovi.es

79  Page 2 of 26

J Mol Model (2019) 25:79

function choice will influence the result obtained in the
optimization, since energy is the criterion that is used to
classify the different templates that are obtained.
Chemists, molecular biologists, and molecular physicists
are usually involved in this research.

2. The second area concerns the energy optimization itself.
Computer scientists, applied mathematicians, and physi-
cists are mainly involved in this research that is not very
different from classical and global optimization ap-
proaches, machine learning, and sampling (uncertainty
analysis). Typically, the different optimization methods
try to find the global minimum of the energy in a high
dimensional space. Owing to the curse of dimensionality,
the prediction methods are usually unable to explore the
space of possible protein structures. These problems can
be partially overcome by using some simplifications, as-
suming that the protein adopts a structure that is close to
the experimentally determined structure of another ho-
mologous protein. The progress and challenges in protein
structure prediction have been reviewed by Zhang et al.

2].

In spite of enormous efforts carried out by researchers and a
growing number of protein structures experimentally solved
and deposited in the Protein Data Bank (PDB), there is a huge
constantly increasing gap between the number of protein se-
quences obtained from mass-scale genome sequencing and
the number of PDB structures. Currently, after redundancy
reduction, only around 1% of protein sequences have their
native structures in the PDB database [3, 4]. Additionally,
experimental solving of protein structures is costly, and time
consuming — the main problem is obtaining the high quality
crystals necessary for high resolution X-ray crystallography.
Because of this, computational methods that lead to high ac-
curacy predictions of protein structure from sequence become
extremely important. Protein structure prediction methods can
be divided into two categories: template-based and template-
free modeling. Template-based modeling permits constructing
amodel of the target protein based on a template structure of a
homolog, that is, a protein with known structure and high
sequence identity. This is carried out by simulating the process
of evolution; by introducing substitution of amino-acids while
maintaining the same protein fold [5]. On the other hand,
template-free modeling predicts protein structures from phys-
ics first principles by global minimization of the free energy of
a protein [2, 3].

Regardless of the methodology utilized, protein tertiary
structure represents a very high dimensional optimization
problem, whose dimensionality coincides with the total num-
ber of atom coordinates of a protein. Thus, the problem is
affected by the curse of dimensionality, as these prediction
methods are unable to sample the entire conformational space.
The curse of dimensionality describes how the ratio of the
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volume of the hyper-sphere enclosed by the unit hypercube
becomes irrelevant for higher dimensions (more than 10).
Therefore, there is a need to simplify the problem by using
proper model reduction techniques that alleviate the ill-posed
character as concluded in our earlier work, where we deter-
mined the reduced dimension range using principal compo-
nent analysis [6].

Refinement methods are another alternative that offer a
great opportunity to approximate the native structure of a giv-
en protein by using template-based models. Some of these
methodologies utilize protein dynamics, coarse-graining, and
spectral decomposition. In our previous research, we applied
elastic network models to protein structure prediction. This
model provided a reliable representation of the fluctuation in
protein dynamics and explained several protein conformation-
al changes [7, 8].

This paper is organized as follows: first the tertiary predic-
tion problem is explained; second the energy function land-
scape of the tertiary protein prediction problem and the exis-
tence of equivalent protein configurations are analyzed theo-
retically; third, the parameter reduction using the principal
component analysis (PCA) of different protein decoys is ex-
plained; fourth the particle swarm optimizers used in this pa-
per are presented; fifth the numerical results for the MvR76
protein (CASP9 code T0545) are presented; and finally the
conclusions are outlined. In addition, we expand the compu-
tational benchmark by the algorithm performance in other
CASP-9 proteins randomly selected.

The tertiary structure prediction problem

Proteins are linear chains of amino acids linked by peptide
bonds. Many conformations of the chain are possible owing
to the rotation of the chain around each C,, atom. These con-
formational changes are responsible for differences in the
three dimensional structure of proteins. The knowledge of
protein tertiary structure is useful for determining protein-
protein interactions, protein function and evolution, and drug
design [3].

The importance of tertiary protein structure prediction is
due to the massive amounts of protein sequence data that are
produced by modern large-scale DNA sequencing efforts such
as the Human Genome Project. X-ray crystallography and
nuclear magnetic resonance (NMR) spectroscopy are the
two most commonly used experimental methods employed
to determine protein structure [9]. However, both methods
are far too expensive and time consuming to be used to pro-
cess thousands of genes encoding proteins produced by high-
throughput genome sequencing. Computational methods are
very interesting because they are fast and cheaply applied for
protein structure prediction; nevertheless, the challenges re-
side in computing high resolution models of the tertiary
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structure and reliable assessment of the structure prediction
uncertainty [9, 10].

In this paper to perform the forward energy calculations we
used the BioShell platform [11-14].

The following packages embedded in the BioShell plat-
form were used in this research project:

* Jbcl.data.dict-dictionaries: this module holds various
constants, variables common in protein files such as van
der Waals forces, bonding energy, angular length and stiff-
ness, etc.

+ jbcl.data.formats: it enables us to handle the most popu-
lar formats, such as PDB, FASTA, DSSP, etc.

+ jbcl.data.types: it classifies information typical in bioin-
formatics: proteins, residues, sequence profiles, etc.

* jbcl.cale.structural: this module calculates different pro-
tein structural properties, such as protein similarity, planar
angles, bonding distances, etc.

In this sense, BioShell combined with the methodology
presented in this paper, is crucial in order to predict protein
structures while avoiding structural clashes. [13].

More specifically, since the protein energy landscape is
very dependent on the forcefield utilized, we selected an all-
atom distance dependent, pairwise energy function based on a
distance-scaled, finite-ideal gas reference energy function
(DFIRE), particularly a dipolar DFIRE, known as dDFIRE,
because it accurately represents, over a wide range of proteins,
the energy of the native structure and with high resolution
hydrogen bonding, hydrophobic interactions, and structural
properties [15].

Another important factor is the solvation model utilized, in
this case, we used an implicit solvation model of water,
embebbed in BioShell library, developed by Still and co-
workers [16] known as generalized Born/surface area free-
energy (GB/SA).

The energy function landscape in tertiary structure
prediction

Let us refer to the model parameters by m = (my, m,... , m,)
M c R” to the coordinates of a protein formed by 72,4, With
n=3n,ms- Here M is the set of admissible protein models
formulated in terms of biological consistency. Later in this
paper we will discuss how to characterize this set [17, 18].
The tertiary structure protein problem consists in knowing
the free-energy function, (m) : R” — R, finding the model m,,

= mil\r/} E(m) that provides the global optimum of the energy
me

function. This is a challenging optimization problem because
of'the high dimension of the model space (thousands of atoms)
and also because of the energy function landscape [17].

Let us suppose that m,, is the global optimum of the energy
function, thus, VE(m,) = 0. Considering a Taylor expansion of
the energy function £ around the model m,, we have:

E(m) = E(mp) + VE (mp)- (m*mp)

(m-m,)" HE (m, ) (m-m,)

| =

+

+o([[m-m, 3) M

where HE(m,,) stands for the Hessian of the energy function E

(or curvature matrix) calculated in model m,, and o

(Hm—m,,”i) is a scalar function that vanishes faster than

the squared distance between models m and m,,. Neglecting
2 . . .

the o(”m—m,,H 2) term, that is, approachingE(m) by its sec-

ond order Taylor expansion:

E(m)=Es(m) = E(m,) + VE(m,)-(m-m,)

1 T
) (m-m,)" HE(m,) (m-m, ), (2)
and taking the facts that VE(m,) =0 and HE(m,) has to be a
positive definitive matrix if m,, is the global optimum, we
have:

1
Eg’[(m) SEw= 2 (mfmp) THE(mp) (mfmﬁ) SEw/*E(mp) (3)

that is, the proteins configurations with free energy less than
E,» belong locally to a hyper-quadric centered in m,, that have
the Hessian, HE(m,,), as matrix. Eg‘” (m) in Eq. (3) stands for
the second order term of the energy landscape.

Because the Hessian is a symmetric matrix, then follows
orthogonal decomposition, HE(m,,) = VDV’, where V is an
orthogonal matrix whose columns form an orthogonal base
of'the protein space, and the eigenvalues of D are positive real
numbers (due to the definite positive character of HE(m,,)).
Now calling Am =m —m,, the hyper-quadric that approxi-
mates locally the nonlinear equivalent region of value £,
can be written as follows:

Am”HE (m,) Am<2 (E,,~E(m,)), (4)
that is,
AmIDAmy <2(E,oE(m,)), (5)

when the model increments are referred to the V base, that is,
Amy=V'Am. In the case where HE(m,) is full rank, the
bounding hyper-quadric in [5] can be written:

n

kgl Nedmiy, = (Eo—E(my)), (6)
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which is an ellipsoid centered in m,, whose principal direc-
tions coincide with the eigenvectors v, (columns of V), and
the length axes are 1/1/Ax, A, being the eigenvalues of D. In
the case where HE(m,) is semi-definite positive, that is,
HE(m,) has a nontrivial null space associated with the null
eigenvalues, the hyper-quadric [6] becomes an elliptical cyl-
inder. As explained above, the bounding hyper-quadric [6]
only locally delimitates — in the neighborhood of m,, — the
nonlinear equivalent region, that is, the protein models fulfill-
ing the energy condition £/(m) < E,,,.

Now, considering the same type of analysis in a model m,,
is located in the neighborhood of m,, and belonging to the
nonlinear stability region, we have:

VE(m,)-(m-m,)

+ = (m-m,)" HE(m,)(m—m, ) <tol-E(m,). (7)

N —

Several remarks are important now:

1. The center of the new hyper-quadric does not coincide
with the model m,, but with the Gauss-Newton solution
of'the nonlinear optimization problem solved in m,,. Local
optimization methods wander around different models of
the nonlinear equivalent region searching for the global
optimum. Unfortunately, these methods might not con-
verge, and they do not keep track of the good protein
models that have been visited during the optimization
process.

2. The matrix HE(m,,) might lose its semi-definite positive
character and the hyper-quadric becomes a hyperboloid.
In this case the function landscape shows sill points that
indicate the presence of different basins of equivalent pro-
tein models.

3. The main orientations of the local hyper-quadric change
with the model that is considered, since HE(m,,) coincides
with the hyper-quadric matrix. Thus, the nonlinear region
of equivalent protein models has to exhibit a croissant or
banana-shaped structure. As explained above, the energy
function landscape could be multimodal depending on the
energy function that is adopted. Also, these basins are
elongated with almost null gradients. Further details can
be found in Fernandez Martinez et al. [19-22] for the case
of linear and nonlinear inverse problems.

In tertiary protein prediction, the native structure is expect-
ed to correspond to the global optimum of the energy function.
Nevertheless, this does not have to be the compulsory case
since the perfect energy function is unknown and it is only a
model of reality. Tyka et al. [1] studied the alternate states of
several protein families via a detailed analysis of their energy
landscape. They have shown that most of the energy land-
scapes have steep funnels down to low-energy minima close
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to the experimentally determined structure, but in some cases
the lowest-energy structures had significant local deviations
from the experimental structure. They conclude that the struc-
ture prediction accuracy is limited mainly by the ability to
sample close to the native structure. As we will show, this
could be alleviated by the use of model reduction techniques,
since all these models should share similar patterns. Further
work was carried out by Sander and Schneider [4]. They de-
veloped a database that increases the number of known pro-
tein structures. The outcomes are of significant relevance in
evaluating the structural significance of variation in protein
structures, in elucidating patterns for structure prediction,
and, additionally, in modeling three-dimensional detail by
homology.

Also, the use of model reduction techniques implies that we
are not looking for the real native structure but for a good
approximation to it. Thus, the hypothesis used in this paper
is that the native structure will be located in the nonlinear
equivalent region M,,;= {m: E(m) <FE,,;}, for a given energy
value, E,,;, close to the global optimum of the energy function,
and the energy landscape will be much simpler since we are
looking for the solutions in a suitable linear variety of the
protein model space. In that way, several disconnected basins
of solutions might be connected in the reduced space. Details
about how to establish this energy cut-off value and how to
perform the sampling on the reduced base are explained in the
following sections.

Gniewek et al. studied the problem of the effect of noise in
protein force fields on protein structure. [12]. Also Fernandez-
Martinez et al. [23, 24] have studied the effect of noise and
that of the regularization in linear and nonlinear problems
proving that noise perturbs the location of the global optimum
that is found and the regularization techniques do not impede
the existence of other equivalent models. In the case of the
tertiary protein prediction problem there is no observed data,
but the modeling errors induced by the energy model could be
interpreted as noise in data and the effect would be similar,
that is, the optimization will provide only an approximation to
the native structure of the protein.

The method that is discussed in this paper corresponds to
the category of decoys-based optimization (and refinement)
and includes the following steps:

1. Finding and selecting known decoys from existing protein
databases that are all possible solutions of the target struc-
ture. During this stage some protein decoys might be
discarded on the basis of similarity and energy
considerations.

2. Once the decoys have been selected, they are
superimposed onto their centroid, which is calculated uti-
lizing the SPICKER method developed by Zhang and
Skolnick [25] to account for rotation and translation of
the protein set before PCA calculation. Translation and
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rotation removal is important to correctly compute the
PCA base, and this is carried out by Bioshell’s internal
functions. Generally speaking, that transforms the system
from global to local coordinates.

A local coordinate system is based on three points in 3D
space and is defined as follows:
V3V V3 + W

V, = vV, = Vv, =
* ‘V3—VZ| Y |V3 + V2| N |V3 X V2|

vy X Vp

where |v| denotes the length of a vector v. Practically, Y axis
lies on the bisector of an angle defined by vy, v, and v3, which
are the coordinates of the first, second, and third atom, respec-
tively. Obviously, Y lies in the plane defined by vy, v,, and vs.
Axis X is perpendicular to Y and also lies in the plane defined
by vy, v, and v;. Axis Z is a vector product of X and Y. The
rotation center is placed at v,, considered also to be the trans-
lation vector [13, 14, 26].

Dimensionality reduction using the spatial principal com-
ponent base is computed in the set of selected protein tem-
plates. This parameter reduction enables us to perform sam-
pling on the reduced model space using particle swarm opti-
mization (PSO) in this case.

3. Sampling while optimizing using the RR-PSO algorithm.
[20]. Their convergence property is related to the first and
second order stability of the particle trajectories. In this
paper we use a cloud version where the RR-PSO param-
eters are automatically tuned. Also, non-elitism and the
discretization time step are important features to increase
exploration and perform a good approximate sampling of
the energy function landscape in the areas of interest (low
energies).

4. Posterior analysis to estimate the posterior distribution of
the protein model parameters from the samples gathered
on the nonlinear equivalent region.

This methodology has been successfully applied in high
dimensional and very challenging oil reservoir optimization
problems and combined with extreme learning machines for
proteins secondary structure prediction ( [7, 12, 27]). Here we
demonstrate its application to the tertiary structure prediction
problem.

Parameter reduction using the PCA protein base

Principal component analysis is a well-known mathematical
procedure that transforms a number of correlated variables
into a smaller number of uncorrelated variables called princi-
pal components [28]. The resulting transformation is such that
the first principal component accounts for as much of the

variability and each succeeding component accounts for as
much of the remaining variability as possible [29].

This procedure has been applied in several fields and it is
known under different terminologies, such as Karhunen-
Loeve expansion, proper orthogonal decomposition or empir-
ical orthogonal bases. In the case of the tertiary protein pre-
diction a preliminary application has been done by Qian et al.
[29]. The sampling strategy only used the three largest PCs,
using simplex, Powell method, and exhaustive grid sampling.
The PCs were established through the backbone structures
within a homologous family to define a small number of pref-
erable sampling directions that helped to refine the proteins
model quality. In this paper we perform stochastic sampling in
higher dimensions using regressive-regressive particle swarm
optimization (RR-PSO). The number of PCA terms is auto-
matically determined using covariance matrix energy consid-
erations. Additionally, we show how to automatically deter-
mine the search space in which the sampling/optimization
procedure will take place. The principal components that are
selected are those that expand most prior model variability that
is expected in the homologous family.

Model reduction is needed in high dimensional problems
due to the following reasons:

1. The model parameters (protein coordinates in this case)
should not be sampled independently, since model corre-
lations exist and are introduced by the energy function to
achieve low energy scores. The model reduction that is
used in this paper is based on analyzing these correlations
for a set of decoys that are used to predict the native
structure.

2. Owing to the curse of dimensionality, that is, the probability
of sampling in the interior of an n-sphere that is inscribed in
an n-dimensional hyper prism approaches zero for n> 10
[30, 31]. This result also would suggest that the correct re-
duced basis should not have more than ten principal modes.

3. Because model reduction alleviates the ill-posed character
of the tertiary structure optimization problem, since the
solutions are found in a much lower dimensional space:
finding

ayeR":E () =E(pu+V gar) <Ey (8)

where u, V,; are provided by the model reduction technique
that is used.
The PCA dimensionality reduction works as follows:

a) First, an ensemble of / plausible decoys m; R" are selected
and arranged column wise into the decoys experimental
matrix: X = (my, my,..., my) belongs to M(n, /). The prob-
lem consists of finding a set of protein patterns
V= (V1 V2,..., Vg) that provide an accurate low dimen-
sional representation of the original set with d<</.

@ Springer
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Fig. 3 Protein T0545. Step 1: Energy analysis of the decoys to produce
the PCA basis and determination of the number of PCA basis terms based
on energy considerations. a) Energy cdf of the 185 decoys downloaded
from the CASP9 website. To generate the PCA reduced basis we
considered 56 and 111 decoys with energy less than —280 and —300
that correspond to the 60th and 30th percetiles of the energy cdf
distribution. b) Frobenius energy of the PCA decomposition. With the
first PCA term we recover 86% of the cumulated energy from the decoys
database. To perform the optimization we considered seven PCA terms
and the high frequency term

PCA performs this task by diagonalizing the prior exper-
imental centered covariance matrix:

Cprior = (X—)(X—p) M (n, ), (9)

where p is either the experimental mean of the decoys, the
medoid, or any other decoy around which we desire to per-
form the search of a backbone structure.

b) Matrix C,,;,, has a maximum rank of / — 1, that is, at most
[—1 eigenvectors of C,,,,, are needed to expand the
whole prior variability. Therefore, it is easier to diagonal-

ize C Ifm,eM (1,1) and to obtain the / — 1 first eigenvectors

of Cpyi0r as follows:

X—u=VvXul,

T —yxyTuTsB=vY = (X-u)U.

Cprwr U. U'= ( H)U (10)
B(:, k)

Vi=—t k=1,.., -1
IBC.4)ll

The centered character of the experimental covariance
Cprior 18 crucial to maintaining consistency with the centroid
model p.

c) Ranking the eigenvalues of C;”.m in decreasing order en-
ables us to select a certain number of PCA terms (d <</
— 1 << n) to match most of the variability in the model
ensemble. The automatic procedure is as follows: 1. call-
ing A\ (k=1,..., [—1) the non-null eigenvalues of C,,,.q,,

we define the cumulative energy of matrix Cp,,;o, 88 Ecumu

[ J -1
() =1/ X M/ X A, the number of PCA terms, d, is
=1 k=l

the minimum number of eigenvalues that we have to con-
sider to fulfill the condition E,,,,,,(d) > E,,,,, where E,,. is
the percentage of the prior energy in the decoys that we
want to keep during the search. Typically, we use E,,,, =

99.5% to conserve most of the high frequency content of
the decoys in the reconstructed protein structures. The
number of PCA terms depends on the prior decoys that
are used, and on the experimental mean p that is adopted.
Finally, a high frequency term is added to the basis set
considering the model with the lowest energy, and
projecting it into the PCA basis as follows:

d

Vi+1 = Mpps7— + 21 a;vj. (11)

Including the high frequency term is crucial for a successful
protein model reconstruction in Cartesian coordinates after the
PCA sampling. The combination of this high frequency term
and the BioShell package forward calculations, included in the
structural library (jbcl.calc.structural), makes the algorithm
capable of reconstructing the protein without structural
clashes. Otherwise, if this term is excluded, the algorithm
yields to unrealistic and incomplete backbone structures [6].
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Fig. 4 Protein T0545. Step 2:

PCA basis set construction. Unit
basis vectors of the low
dimensional subspace (dimension
8) of the original backbone
structure where the PSO
optimization takes place. The last
term of the basis set gathers all the
high frequency details needed to
perform the tertiary structure
protein refinement

Atoms [x(2);y(1);z()]
S
8

ProteinT0545-PCA basis
0.1

10.05

d) Then, any protein model in the reduced base is represent-
ed as a unique linear combination of the eigenmodes:

R d+1
m, = u+ > av; = u+ Vag. (12)
=1
The projection of any decoy my is very fast, since matrix V
is orthogonal:

a = V' () (13)

The model reduction allows global optimization methods
to perform an efficient sampling in the reduced model protein
space since the model parameters are not searched individual-
ly. The use of model reduction techniques serves to alleviate
the ill-posed character of any highly underdetermined optimi-
zation problem and allows the optimization problem to be cast
as a sampling problem.

The particle swarm optimizers

Particle swarm optimization is a stochastic evolutionary com-
putation technique used in optimization, which is inspired in
social behavior of individuals (called particles) in nature, such
as bird flocking and fish schooling [32].

The sampling problem consists in finding enough rep-
resentative samples of the model proteins m; = pu + V-ay,
such as E(my)<E,,. Although the search is performed in
the reduced PCA space, the sampled proteins have to be
reconstructed in the original atom space to perform its fit-
ness (energy) evaluation.

@ Springer

PCA index

The algorithm consists of the following:

1) A prismatic space of admissible protein models M, is
defined

Ii<a;<u;, 1<j<n, 1<i<ngg,

where /;, u; are the lower and upper limits for the jth coordi-
nate for each geophysical model. In PSO terminology, each
new plausible protein model will be called a particle, which is
represented by a vector whose length is the number of PCA
terms that are adopted. Each particle has its own position in
the search space. The particle velocity represents the parame-
ter perturbations in the PCA space needed for these particles to
move around in the search space and explore solutions of the
inverse problem. In our case, the search space is designed by
projecting back all the decoys to the reduced PCA space and
finding the lower and upper limits that expand the variability
in each PCA coordinate.

2) In each of the iterations the algorithm updates the posi-
tions, a,(k), and velocities, v,(k), of each particle in the
swarm. The velocity of each particle, 7, at each iteration,
k, is a function of three major components:

a The inertia term, which consists of the old velocity of the

particle, vi(k), weighted by a real constant, w, called inertia.

b The social term, which is the difference between the global

best position found thus far in the entire swarm (called
g(k)) and the particle’s current position (a,(k)).
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¢ The cognitive term, which is the difference between the
particle’s best position found so far (called L(k), the local
best) and the particle’s current position (a;(k)).

The PSO algorithm is as follows:

vilk + 1) = wvi(k) + &, (g(k)~a;(k)) + ¢, (I -2, (k))
a,-(k + 1) = a,-(k) —+ Vl'(k —+ 1)7
O =riag, Oy =ra;, ri,1neU(0,1), w,aq,a€R.

(14)

71, 1, are vectors of random numbers uniformly distributed in
(0,1), to weight the global and local acceleration constants, a,,

a. ¢ =" is the total mean acceleration and plays an

4 5 6 7 8
PCA index

important role on determining the algorithm’s stability and
convergence [33, 34].

The PSO algorithm can be physically interpreted as a par-
ticular discretization of a stochastic damped mass-spring sys-
tem [19]. On the basis of this stochastic differential model,
Fernandez-Martinez and Garcia-Gonzalo proposed a family
of PSO members whose first and second order stability re-
gions were analyzed [19, 20]. The stability regions of these
algorithms can be defined in the space of w—a, although the
second order stability regions (controlling the exploration)
also depend on the ratio of the local and global accelerations.
This makes PSO a very singular algorithm with respect to
other global optimization methods that are purely heuristic.
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Fig. 6 T0545 protein. Step 4: a Protein T0545 - Convergence Curve

PSO sampling. a) Convergence , . .

curve. b) Median dispersion curve ’ |
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Good PSO parameter sets are usually located in high explor-
ative areas. In this paper we use the RR-PSO version due to its
optimum balance between explorations. Also the good RR-
PSO parameter sets can be analytically tuned.

Figure 1 shows, for the RR-PSO, the median misfit for
different benchmark functions in 30 dimensions having flat
valleys and/or multimodality. These graphics serve to under-
stand where the performing RR-PSO parameters should be
selected with respect to its respective first and second order
stability regions. The good (w,a) parameters sets for RR-
PSO that provide the lowest misfits are concentrated around
the line of equation ¢ = 3(w—3) mainly for inertia values
greater than 2. This line is the same for different flat valleys
and multimodal functions and is invariant when the number of
parameters increases. Therefore, this algorithm is very easy to
implement.

Figure 2 shows a flowchart of the algortithm used to obtain
numerical results presented in the next section.

Numerical results (CASP9 code T0545- MvR76 protein)

In this section we show the application of the PSO algorithm
to the protein uracil DNA glycosylase from Methanosarcina
acetivorans (CASP9 code T0545) whose native structure is
known and reported by Aramini et al. at the Northeast
Structural Genomics Consortium Target [35]. This native
structure has been obtained through nuclear magnetic reso-
nance spectroscopy (NMR) of proteins, which allows
obtaining detailed information about the protein’s structure,
dynamics, and binding to DNA nucleotides.

Figure 3a shows the energy values of the 185 decoys that
have been predicted by different teams. All the decoys have
1271 atoms corresponding to 185 residues. The lowest energy

@ Springer

Iterations

found was —342.15 and the highest —95.93. To generate the
PCA reduced basis we considered two different cases. The
purpose of this is to demonstrate the algorithm performance
when low quality proteins are considered, and, furthermore,
how the algorithm works with proteins with large differences
in energy topographies. For case 1, we selected 111 decoys
with an energy lower than —280 that corresponds to the 60th
percentile of energy cumulative distribution function (cdf)
values. For case 2, we utilized 56 decoys with an energy less
than —300 that correspond to the 30th percetile of the energy
cdf distribution. The selection of the decoys is important to
drive the PSO search with the correct back-bone structure.
Figure 3b shows the cumulative energy of the PCA decompo-
sition. It is possible to observe that with the first PCA term we
expand 86% of the energy of the decoys database (56 best
decoys), and with seven terms we achieve 99.5% of the total
energy. Therefore, to perform the optimization we considered
seven PCA terms and the last high frequency term which is
very important to ensure the good reconstruction of the protein
in cartesian coordinates after the optimization. Otherwise, we
would miss important details in the search space that would
lead to structural clashes during the protein reconstruction.

Figure 4a and b show the unit basis vectors of the low
dimensional subspace (dimension 8) of the original backbone
structure where the PSO optimization takes place for both
cases. The last term of the basis set gathers all the high fre-
quency details needed to perform the tertiary structure protein
refinement.

Figure 5 shows the search space used to perform the PSO
search. The search space was determined projecting the 56
selected decoys into the PCA basis set and finding the mini-
mum and maximum coordinates. The width of the first PCA
coordinate interval is observed to be larger, and this interval
narrows with the PCA index.
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Fig. 7 Protein T054. Step 5: a
Posterior analysis. RMSD 15
improvement for a) case 1 and b)
case 2. The improvement of
RMSD is measured by computing
the difference between the RMSD
the of starting models and the
RMSD of the refined model, so
that positive values indicate an
improvement of backbone
conformations
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To perform the PSO sampling we adopted a swarm composed
of 40 particles and 100 iterations. We used the RR-PSO family
member, whose exploration capabilities of the algorithm were
monitored in order to assure a good exploration of the PCA
search space. For that purpose, we defined for any iteration the
median distance between all the particles of the swarm and the
center of gravity. This distance was then normalized by the dis-
persion in the first iteration (random sampling), that is considered
to be 100%. When the median dispersion is lower than 3% the
swarm has collapsed toward the global best, and either we can
stop the sampling, or we can increase the exploration using time
steps much greater than 1. When the collapse happens, all the
particles of the same iteration will be considered as a unique
particle in the posterior sampling.

PRI BETRRT R 1 " PR BETRRR——— |
100 120 140 160 180
Decoys

40 60 80

Figure 6 shows, for protein T0545, the convergence
rate and the dispersion for the cases studied. In case 1,
the algorithm starts with an initial energy around 85 and,
after 30 iterations, it reaches a plateau around —16. The
minimum energy achived was —16.9, which is 91.5%
higher than the best protein model found in the CASP9
experiment. In case 2, the algorithm begins with an ener-
gy of =9 and in iteration 12 reaches the region of energy
lower than —300 where the decoys where selected. The
minimum energy reached was —344.6, which is 0.7% low-
er than the energy of the best protein model in the CASP9
experiment. From iteration 27 till the end, RR-PSO sam-
ples the nonlinear equivalence region (Fig. 5A). The dis-
persion remains greater than 5% till iteration 53, and only
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Fig. 8 T0545 protein. Step 5: Posterior analysis. a) Energy plot with
respect to the root mean squared deviation (RMSD) for the sampled
decoys with energy lower than —100 in case 1 and —300 in case 2. The

in nine iterations (55, 63, 78, 81, 82, 83, 84, 89, 93) is
smaller than 3%.

The refinement in the backbone structure achieved via RR-
PSO is shown in Fig. 7. We show the improvement of the root
mean squared distance (RMSD) as the RMSD of the starting
models minus the RMSD of the refined model. In this sense,
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minimum region is achieved for distances between 1.1 and 1.32. ¢)

Energy zoom in the region of minimum misfit. The optimum is marked
with an asterisk

positive values would indicate an improvement in the back-
bone structure.

Figure 7a shows the RMSD improvement for case 1, where
decoys with higher energies and different topologies have
been included. In this sense, the algorithm is not capable of
improving the prediction for the majority of the decoys
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C T0545-Energy Topography zoom

PCA 2

PCA1
Fig. 8 (continued)

Fig.9 T0545 protein stucture. Step 5: Posterior analysis. (left top) T0545 reported by Aramini et al. at the Northeast Structural Genomics
global optimal structure obtained via particle swarm optimization. (left Consortium Target. (right) Superimposed structure of predicted over the
bottom) T0545 protein native structure obtained through NMR and native structure
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Fig. 10 T0545 protein stucture. Step 5: Posterior analysis. Uncertainty
analysis in the region of energy lower than —300. a) Median protein of the
decoys sampled in the region of energy lower than —330. b) Median

analyzed. On the other hand, Fig. 7b shows the refinement
achieved when a more strict selection is carried out (case 2).
In this case, how the RR-PSO is capable of further improving
the structures is observed. However, if high performance com-
putational facilities are utilized, the algorithm may be capable
of refining all the structures in both cases, that is, utilizing
higher swarms and carrying out more iterations.

In order to give further nuance about the algorithm
explorative character, we present, in Fig. 8, the protein
conformational space sampling for the best case (case
2). Figure 8a shows the root mean squared distance be-
tween the models that have been sampled in the region of
energy lower than —300. The minimum is achieved for an
RMS distance with respect to the centroid of the prior
decoys of 1.24 distance units. An almost symmetrical be-
havior with respect to this point between 0.9 and 1.4 can
be observed. A high number of decoys have been sampled
in the M,,, energy region of E,,;= — 335 with RMSDs
between 1.1 and 1.3. This is an illustration of the complex
landscape of the energy function. To further clarify this
fact, Fig. 8b shows the interporlated energy function in
the 2D-PCA space. We also show the equivalent regions
for E,,; = =330 (green isoline) and E,,; = —340 (magenta
isoline) showing a complex topography with isolated ba-
sins for E,,; = —330. We also show a zoom of the topog-
raphy landscape in the neighborhood of the minimum that
have been found (Fig. 8c). It can be observed the complex
topography of the cost function.
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protein plus the interquartile range of the coordinates of these decoys.
¢) Median protein minus the interquartile range of the coordinates of these
decoys

Finally we show the best configuration (lower energy) that
has been obtained by RR-PSO (Fig. 9b) compared to the pro-
tein native structure obtained through NMR (Fig. 9a).

Figure 10 shows the results of the posterior analysis in the
region of energy lower than —300. Figure 10a shows the me-
dian coordinates of the sampled protein decoys that fulfill this
energy condition. In this case we show the protein as a matrix
with rows x, y, and z and the columns are the number of the
atoms of the protein. This graphic allows better visualization
of the protein coordinates uncertainty. Figure 10b and ¢ show
the interquartile range (IQR) of the coordinates of these
models and the IQR vs median ratio. The biggest variations
in the coordinates (Fig. 10b and c) occur in the right border
and in the middle of the protein. The maximum IQR/median
ratio is 0.14%, that is, the distance between all the equivalent
configurations is not very big. This is a confirmation of the ill-
conditioned character of the tertiary structure prediction opti-
mization problem.

We performed computations for nine additional proteins
from CASP9 experiments. Detailed results are shown in
Appendix A.

Table 1 presents the summary of computations carried
out for ten different proteins detailing the energy of the
best model in the CASP9 experiment and the energy
achieved with PSO. Following this table, we present com-
puted convergence curves, protein structures, and the cor-
responding uncertainties, as they are the key parameters to
understand the protein backbone structure and the
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Table 1  Details of the computational experiments performed with the
methodology presented in this paper, via principal component analysis
and particle swarm optimization, with the corresponding p value

information to test the statistically significance between the energy
obtained by PSO and initial energy

Protein CASP9 Number of Number of Percentile of Number of Swarm Energy of Energy obtained p- value
code residues PCA terms decoys iterations size best decoy through PSO

T0545 166 9 20 100 40 —342.1 —344.6 2.84107%
T0551 82 9 10 100 70 -161.9 -162.3 1.44 107
T0555 155 9 5 100 80 -369.9 3714 8.80 107
T0557 153 9 5 100 80 —273.7 -277.2 6.03 107
T0561 170 9 10 100 60 —448.6 —450.3 1.87107!
T0580 108 9 10 100 60 —253.6 —249.5 6.50 107
T0635 191 9 5 100 70 —464.4 —465.5 128 107!
T0637 240 9 10 100 70 —369.2 -372.0 9.48 107
T0639 128 9 7 100 70 —343.6 —343.7 102107
T0643 82 9 7 100 70 —209.4 -210.0 3.98 107

alternative states. We also report the p value infomation to
analyze the statistically significance (Wilcoxon signed
rank test) between the energy obtained by PSO and the
initial energy of the optimization procedure. Table 2 shows
RMSDs and TM-scores of predicted structures.

Conclusions

In this paper, an algorithm that corresponds to the category of
decoys-based modeling is presented. The algoritm successful-
ly establishes a low dimensional space based on a priori ener-
gy considerations in order to apply an energy optimization
procedure throughout a family of particle swarm optimizers.
This optimizer is capable of modeling the protein sequence
and sample the decoys of the predictions used to find a global
optimum that satisfies the energy target.

Table 2 RMSDs and TM-scores of predicted structures via principal
component analysis and particle swarm optimization

Protein CASP9 code Number of residues RMSD TM-
score
T0545 166 1.923 0.7597
T0551 82 4256 0.4485
T0555 155 8.566 0.2665
T0557 153 1.596 0.7624
T0561 170 5.899 0.5500
T0580 108 1.303 0.7851
T0635 191 6.388 0.5234
T0637 240 4.966 0.4550
T0639 128 8.967 0.2135
T0643 82 3.728 0.6892

The nonlinear equivalence region corresponding to pro-
teins that have energy lower than a certain energy bound
was also sampled. This equivalence region was used to under-
stand the backbone structure of the native structure and the
alternative states of the protein according to the protein pre-
dictions obtained from the CASP9 experiment. Using this
method concludes its key advantages of fastness and explor-
ative character that greatly aid the refinement of the tertiary
protein structure. Finally, this paper explains how the model
reduction technique serves to alleviate the ill-posed character
of this high-dimensional optimization problem.
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Appendix. Supporting Information

In this section, we aim to expand the paper benchmark by
presenting results for an additional set of nine proteins from
CASP9. We tested our methodology in order to prove its suit-
ability for protein refinement purposes.

T0551 - X-ray crystal structure of protein SP_0782
(7-79) from Streptococcus pneumoniae. Northeast
Structural Genomics Consortium Target SpR104

We present the numerical results of the application of
PSO in order to obtain the tertiary structure of protein
SP 0782 (7-79) from Streptococcus pneumoniae., whose
native structure has been obtained through X-ray by
Kuzin et al. [36].
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Protein T0551-PSO convergence
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Fig. 11 TO0551 protein. a) Convergence curve. b) Median dispersion curve (%)
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Fig. 12 T0551 posterior sampling in the region of energy lower than — interquartile range of the coordinates of these decoys. ¢) Median protein
200. a) Median protein of the decoys sampled in the region of energy minus the interquartile range of the coordinates of these decoys

corresponding to the 10th percentile. b) Median protein plus the
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ProteinT0555-PS0O convergence
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Fig. 13 TO0555 protein. a) Convergence curve. b) Median dispersion curve (%)

Owing to the complexities experienced in performing  composed of 70 particles was applied. Additionally, the
the optimization of the TO551 structure, a swarm  tenth percentile of the best templates was chosen. By
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Fig. 14 TO0555 posterior sampling in the region of energy lower than — interquartile range of the coordinates of these decoys. ¢) Median protein

200. a) Median protein of the decoys sampled in the region of energy minus the interquartile range of the coordinates of these decoys
corresponding to the 5th percentile. b) Median protein plus the
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ProteinT0557-PS0O convergence
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Fig. 15 TO0557 protein. a) Convergence curve. b) Median dispersion curve (%)

taking into account these considerations, we ensure a  carrying out a wide sampling over a Search Space con-
good convergence and protein refinement, while also structed with good a priori models.
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Fig. 16 T0557 posterior sampling in the region of energy lower than — interquartile range of the coordinates of these decoys. ¢) Median protein
150. a) Median protein of the decoys sampled in the region of energy minus the interquartile range of the coordinates of these decoys
corresponding to the 5th percentile. b) Median protein plus the
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Fig. 17 TO0561 protein. a) Convergence curve. b) Median dispersion curve (%)

As observed in Fig. 11, the energy converges in the first 20  of the models fluctuate around this energy, we obtain a protein
iterations and achieves energy of —162.3. Because the majority ~ with a low uncertainty as shown in Fig. 12.

Fig. 18 T0561 posterior sampling in the region of energy lower than 0. a)
Median protein of the decoys sampled in the region of energy
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interquartile range of the coordinates of these decoys. ¢) Median protein
minus the interquartile range of the coordinates of these decoys

corresponding to the 10th percentile. b) Median protein plus the
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Protein TO580-PSO convergence
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Fig. 19 TO0580 protein. a) Convergence curve. b) Median dispersion curve (%)
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Fig. 20 T0580 posterior sampling in the region of energy lower than 0. a) interquartile range of the coordinates of these decoys. ¢) Median protein
Median protein of the decoys sampled in the region of energy minus the interquartile range of the coordinates of these decoys
corresponding to the 10th percentile. b) Median protein plus the
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ProteinT0635-PSO convergence
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Fig. 21 T0635 protein. a) Convergence curve. b) Median dispersion curve (%)
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Fig. 22 TO0635 posterior sampling in the region of energy lower than 0. a) Median protein of the decoys sampled. b) Median protein plus the interquartile
range of the coordinates of these decoys. ¢) Median protein minus the interquartile range of the coordinates of these decoys
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Fig. 23 T0637 protein. a) Convergence curve. b) Median dispersion curve (%)
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Fig. 24 T0637 posterior sampling in the region of energy lower than 0. a) Median protein of the decoys sampled. b) Median protein plus the interquartile
range of the coordinates of these decoys. ¢) Median protein minus the interquartile range of the coordinates of these decoys
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Protein TO639-PSO convergence
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Fig. 25 T0639 protein. a) Convergence curve. b) Median dispersion curve (%)

T0555 — PBS linker polypeptide domain
of phycobilisome linker protein

We present the numerical results of the application of PSO in
order to obtain the tertiary structure of the PBS linker polypeptide
domain of phycobilisome linker protein, whose native structure
has been obtained through RMN by Ramelot et al. [37].

Owing to the complexities experienced in performing the
optimization of the TO555 structure, a swarm composed of 80
particles was applied. Additionally, the fifth percentile of the
best templates was chosen. By taking into account these con-
siderations, we ensure a good convergence and protein refine-
ment, while also carrying out a wide sampling over a search
space constructed with good a priori models.

As observed in Fig. 13, the energy converges fast in the
first 5 iterations and achieves energy of —371.4. Because the
majority of the models fluctuate around this energy, we obtain
a protein with a low uncertainty as shown in Fig. 14.

T0557 - N-terminal domain of putative
ATP-dependent DNA helicase RecG-related protein
from Nitrosomonas europaea

CASP9 T0557 protein performance under the algorithm pre-
sented in this paper is shown graphically in Figs. 15 and 16.
The native structure of this protein has been obtained via
NMR by Eletsky et al. [38] at the Northeast Structural
Genomics Consortium.

We require the utilization of a swarm composed of 80
particles for protein T0555. Additionally, the fifth per-
centile of the best templates was chosen in order to
ensure a good convergence and a good protein
refinement.

T0561 — The structural basis for recognition of J-base
containing DNA by a novel DNA-binding domain
in JBP1

We performed PSO methodology to CASP9 protein T0561,
whose native structure has been obtained through X-ray dif-
fraction by Heidebrecht et al. [39]. To accomplish a proper
convergence, we utilized a swarm size composed of 60 parti-
cles and the tenth percentile of the best protein decoys (Figs.
17 and 18).

T0580 - The lactose-specific IIB component domain
structure of the phosphoenolpyruvate:carbohydrate
phosphotransferase system (PTS) from Streptococcus
pneumoniae

CASP9 protein T0O580 obtained by Cuff, M.E. [40]
through X-Ray Diffraction has been optimized by PSO.
In this sense a swarm size of 60 particles and the tenth
percentile of the best decoys have been selected (Figs. 19
and 20).
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Fig. 26 T0639 posterior sampling in the region of energy lower than —300. a) Median protein of the decoys sampled. b) Median protein plus the
interquartile range of the coordinates of these decoys. ¢) Median protein minus the interquartile range of the coordinates of these decoys

T0635 - The putative HAD superfamily (subfamily I
A) hydrolase from Legionella pneumophila

We present the numerical results of the application of PSO in
order to obtain the tertiary structure of the purative HAD su-
perfamily (subfamily III A) hydrolase from Legionella
pneumophila, whose native structure has been obtained
through X-ray diffraction by Ramagopal et al. [41].

Since this protein has a very difficult topology to perform the
algorithm, a swarm composed of 70 particles was applied.
Additionally, the fifth percentile of the best templates was cho-
sen. By taking into account these considerations, we ensure a
good convergence and a good protein refinement by carrying
out a wide sampling and good a priori models, as performed
for previous proteins.

As observed in Fig. 21, the energy converges fast in the first
five iterations and achieves an energy of —465.5. Because the
majority of the models fluctuate around this energy, we obtain a
protein with a low uncertainty as shown in Fig. 22, where only a
small variation is observed in the extremes of the protein, while
negligible variations are observed in the central atoms.

T0637 - Crystal structure of the hypothetical protein
PA0856 from Pseudomonas aeruginosa.

Additionally, PSO capabilities have been tested for a hypo-
thetical protein listed in the CASP9 experiment. It has been

@ Springer

reported by Oke et al. [42] in the Scottish Structural
Proteomics Facility. The PSO was performed utilizing a
swarm of 70 particles and the tenth percentile of the best
protein decoys submitted at the experiment. In this sense, the
energy obtained was —372.0 with a very low variability within
the models. Consequently, the uncertainty of the protein is low
and only minor variations are observed in the extremes, the
most sensitive part (Figs. 23 and 24).

T0639 - Crystal structure of functionally unknown
protein from Neisseria meningitidis MC58.

Protein T0639 from the CASP9 experiment, a protein from
Neisseria meningitidis MC58, whose native structure was obtain-
ed by Zhang. et al. [43] from the Midwest Center for Structural
Genomics via X-ray diffraction. Similar to the case of T0637,
this protein rapidly achieves its minimum at —342.7. The RMSD
improvement confirms that the protein is successfully refined
through PCA and RR-PSO optimization (Figs. 25 and 26).

T0643 - Crystal structure of the N-terminal domain
of DNA-binding protein SATB1 from Homo sapiens.

Protein T0643 was also considered, which corresponds
to the N-terminal domain of DNA-binding protein
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SATBI1, whose native structure was obtained through X-

ray diffraction by Forouhar et al. [44]. The algorithm  pling in the region below —200. The
performance is presented in Figs. 27 and 28. region below —200 quantifies the stru
Figure 27 shows how PSO was capable of optimizing  as shown in Fig. 28.
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