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ABSTRACT. Let X denote a hyperbolic curve over Q and let p denote
a prime of good reduction. The third author’s approach to integral
points, introduced in [Kim2] and [Kim3|, endows X (Z,) with a nested
sequence of subsets X (Zp). which contain X(Z). These sets have been
computed in a range of special cases [Kim4, BKK, DCW2, DCW3];
there is good reason to believe them to be practically computable in
general. In 2012, the third author announced the conjecture that for n
sufficiently large, X (Z) = X (Zp)». This conjecture may be seen as a sort
of compromise between the abelian confines of the BSD conjecture and
the profinite world of the Grothendieck section conjecture. After stating
the conjecture and explaining its relationship to these other conjectures,
we explore a range of special cases in which the new conjecture can be
verified.
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1. INTRODUCTION

1.1. When E/Q is an elliptic curve, the conjecture of Birch and Swinnerton-
Dyer predicted the following phenomenon:

L(E,1) £ 0= |E(Q)| < .

This is now a theorem, strikingly realized by the process of annihilating
the Mordell-Weil group with the L-value in question [Kol, Kat|. When we
move to the realm of hyperbolic curves, that is, curves with non-abelian
geometric fundamental groups, we have suggested elsewhere an extension
of this connection between Diophantine finiteness and non-vanishing of L-
values [CK, Kim5|, even though it has thus far proved difficult to formulate
it in precise terms.

1.2. The goal of this paper is to extend a different part of the constellation of
conjectures surrounding BSD, namely, the finiteness of the Tate-Shafarevich
group [IIg. To explain this, we begin by turning our attention to a different
conjecture, namely Grothendieck’s section conjecture. Let X be a compact
hyperbolic curve over Q, let X denote the base change of X to an algebraic
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closure of Q with Galois group G, and let b be a Q-valued point of X. Then
according to the conjecture, the map

x = (11" (X;0,2)]
that associates to a rational point x the 7'('? (X, b)-torsor of paths from b to
x defines a bijection
X(Q) ~ HY(G,7$"(X,b)).
Returning to the special case of an elliptic curve E, our point of departure

is the apparent similarity between this bijection and a certain isomorphism
implied by the conjectured finiteness of Il1g, namely

(*) E(Q) ®z Qp ~ Hy(G, Hi(E,Qp)).
Here, the subscript ‘Z’ refers to the cohomology classes for the group G that
are crystalline at p, and zero at all v # p.

1.3. For the conjecture being presented here, we let X — SpecZ be a regular
minimal Z-model of a hyperbolic curve (see 2.1 for a precise definition); its
generic fiber X = & need not be proper. We let b be an integral base point
(possibly tangential), and assume p is a prime of good reduction for X’ and b.
Between the profinite fundamental group of the section conjecture, and the
first étale homology of segment 1.1, equation (*), lies the unipotent p-adic
étale fundamental group U of Xg at b. We let U, denote its nt® quotient
along the descending central series. Let Gig denote the total Galois group of
Q and let G, denote the total Galois group of Q,. Following [Kim2, Kim3],
we consider the subspace

H}‘(Gilh UTL) - Hl(Gpv Un)

consisting of G-equivariant U,-torsors which are crystalline. We also con-
sider a certain subspace

Sel™(X) ¢ HY(Gg,U,),

the Selmer scheme of X; roughly speaking, it parametrizes those torsors
which are crystalline at p and in the image of X (Z,) (we say locally geometric)
for v # p. For each n these fit into a commuting square like so,

X(2) — X(Zyp)

)
Sel"(X) oo H(Gy,Uy)
and we define
X (Zy)n = j, " (locy(Sel™(X))).
These form a nested sequence of subsets like so.
X(Zy) D X(Zp)1 D X(Zp)2 D - D X(Z).

The conjecture, which was first proposed by M.K. in his lectures at the
LLH.E.S. in February of 2012, is as follows.
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Conjecture (3.1 below). Equality X(Z,),, = X(Z) is obtained for large n.

1.4. We also suggest a variant of the Selmer scheme Sel¢(X) of X, suited
to computing the Z[S~!]-valued points of X for S a finite set of primes, by
dropping the local geometricity condition over S. This gives rise to a square

X(Z[S7]) —— X(Z,)

1)

Selg(X) WH}(Gann),

and to an associated sequence of subsets
X(Zp) D X(Zp)s1 D X(Zp)s2 D -+ D X(Z),
for which equality X(Z,)s., = X(Z[S™!]) may hold for large n.

1.5. These constructions are based on the third author’s approach to inte-
gral points, introduced in [Kim2] and [Kim3]. The relationship to the section
conjecture has been explored before. For instance in [Kim6]|, the third au-
thor shows that if X (Zy),, # X(Z,) for some n, then the section conjecture
would in principle allow one to obtain a computable bound on the height
of rational points. Our present conjecture, however, is quite different in fla-
vor from the section conjecture and its direct consequences. It shares more
with the conjectures of Tate—Shafarevich and Birch—Swinnerton-Dyer, both
in terms of concreteness and in terms of computability. Indeed, like the BSD
conjecture, the present conjecture can actually be tested numerically.

1.6. Our principal goal below is to do just that. Work completed elsewhere
allows us to verify our conjecture in a range of cases. New in this article is
the case of a punctured elliptic curve of rank zero: we are able to compute
the sets X'(Z,)2, and subsequently to verify the conjecture for many such
curves. This computation is based on a study of the unipotent Kummer map

jo : X(F,) = HY(G,,Us)

for a punctured elliptic curve X over a local field F, of residue characteristic
v # p. Our main theorem (4.1.6) says that the p-adic height function can
be retrieved from this map. This is of interest in its own right, and is
suggestive of the possibility of obtaining functions on the local points from
higher quotients of the unipotent fundamental group which might play a role
similar to the role played by heights here. This point of view is implicit in
the third author’s work on nonabelian reciprocity laws [Kim1| and in ongoing
joint work between him and Jonathan Pridham.
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1.7. As explained in [Kim2, Kim3|, the key to computing the map j, is its
equivalence with a certain p-adic analog

o X(Z,) — UPE/FO

of the higher Albanese map of Richard Hain [Hai| through a lifting of the
Bloch-Kato exponential to the unipotent level obtained via the unipotent
p-adic Hodge theory of Martin Olsson [Ols|. The p-adic unipotent Albanese
map « is given in coordinates by certain p-adic iterated integrals (known
also as Coleman functions), and there are fairly well-established methods for
producing explicit formulas for the resulting iterated integrals on the one
hand, and for computing p-adic approximations of their values on the other.
For instance, the case of the thrice punctured line was treated by Furusho
[Furl, Fur2| and by Besser—de Jeu [BdJ]. The problem of explicit determi-
nation of the unipotent Albanese map for punctured elliptic curves in depth
two is treated by Kim [Kim4| and Balakrishnan-Kedlaya-Kim [BKK]|. The
problem of computing Coleman functions on hyperelliptic curves is treated
by Balakrishnan—-Bradshaw—Kedlaya [BBK] and by Balakrishnan [Bal2].

1.8. We turn to the map
locy, : Sel™(X) — H}(Gp, Uy).

This is actually an algebraic map of finite-type affine Q,-schemes; its target
is in fact isomorphic to affine space. Let L£(n) denote the ideal defining
its scheme-theoretic image. As explained in [Kim3|, as soon as £(n) # 0,
X(Zp)n becomes finite. Moreover, several well known motivic conjectures
(Fontaine-Mazur-Jannsen, Bloch-Kato) imply that for n large,

JpL(n+1) 2 j,L(n),
and, in fact, the larger ideal contains elements that are algebraically inde-
pendent of the elements in j*£(n).} So a point in the common zero set for

all n should be there for a good reason; our conjecture expresses the belief
that such a point must belong to X(Z).

1.9. The study of the ideals £(n) relates not only the the plausibility of our
conjecture, but also to its usefulness. Explicit computation of these ideals
has been achieved in a range of special cases. An approach to the case of
the thrice punctured line using the methods of mixed Tate motives is cur-
rently under development in a sequence of articles by Dan-Cohen and Wewers
[DCW2, DCW3, DC|. The case of punctured elliptic curves in depth two was
treated by Kim [Kim4| and Balakrishnan-Kedlaya—Kim [BKK]. The case of
punctured hyperelliptic curves of genus equal to the Mordell-Weil rank of
their Jacobian is treated in Balakrishnan—Besser—Miiller [BBM]. The case
of punctured elliptic curves of rank zero is treated in section 5 below. We

1Technically speaking, the pullback j; appearing here may be thought of as a pullback
of locally analytic functions on associated p-adic analytic spaces.
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believe strongly in the feasibility of computing the ideals £(n) and subse-
quently the loci X(Z,),, (as well as their S-integral variants) in a range of
cases far beyond those mentioned above and detailed below. Such compu-
tations will provide powerful tools for bounding the number of (S-)integral
points. If the conjecture holds, then bounds obtained in this way can be
made sharp.

1.10. We begin in section 2 by giving a careful construction of Sel” (X’). Our
construction, which is a bit more elaborate than indicated above, relies on
the work done in [Kim3| to endow Sel™(X) with the structure of an affine,
finite-type Qp-scheme for which the map loc, is algebraic. In section 3, after
restating the conjecture, we discuss again in more detail its relationship to
the finiteness of III and to the section conjecture, as well as the computability
of the local Kummer map j, via the p-adic unipotent Albanese map.

1.11. The remainder of the article is devoted to discussing several special
cases in which we are able to compute the loci X(Z), s and so to obtain
numerical evidence for the conjecture. Section 4 is devoted to proving a
preliminary theorem to be used in our study of punctured elliptic curves of
rank zero in section 5 below.

Fix a prime p # 2. Let F), be a finite unramified extension of Q; for [ # p
and let F, be an elliptic curve over F,. We let G, denote the total Galois
group of F,. We fix a certain tangent vector b at O which serves as base
point for the level 2 quotient of the p-adic étale unipotent fundamental group
Us of X = E'\ {O}. Let

logx : G2 — Qp
denote the p-adic logarithm of the cyclotomic character. Let j, denote the
local unipotent Kummer map
X(F,) = HYG,,Uy).
As we explain in segment 4.1.4, the map

HY(G,, Qy(1)) — HY(G,,Us)

induced by the inclusion Q,(1) C Uy is bijective. This allows us to regard j,
as a map to H'(Gy, Qp(1)). Using the cup product

Hl(Gv’Qp) X Hl(Gv’Qp(l)) - Hz(Gv’Qp(l))

and the Hasse invariant

H*(Gy,Qp(1)) = Q,
we define

byt X(Fy) = Qp

by

op(a) =log x U jy(a).
We define a p-adic local Néron function to be a function

X(Fy) — Qp
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which satisfies axioms analogous to those which define the real Néron func-
tion (see segment 4.1.6 below). Our main goal in section 4 is Theorem 4.1.6:

Theorem. The function ¢, is a p-adic local Néron function.
Consider Weierstrass coordinates x,y in which X is given by
y2 +a1xy + azy = 3+ a2x2 + aqx + ag.

Among the three axioms which define a Néron function, verification of the
formula

v (2a) = 4gy(a) —log|(2y + a1z + a3)(a)ly
is hardest. This is accomplished via an elaborate computation which takes
place on the profinite level and which culminates in the theorem of segment

4.3.7.

1.12. Let X = £\ O, where £ is the regular minimal model of an elliptic
curve with semi-stable reduction everywhere, let a be the global 1-form given
by

dx

o=
2y+ a1z +as
in Weierstrass coordinates, and let 8 be the meromorphic form

B = za.

Let b be the integral tangent vector at O dual to a(O). Let S denote the
set of primes of bad reduction for £ and for each [ € S, let N; = ord;(Ag¢),
where Ag is the minimal discriminant. Define a set

Wi = {(n(N; —n)/2N;)logl | 0 < n < N},
and for each w = (w;)jes € W :=[[;cg Wi, define

lwl = wr.

S
Our main result in section 5 is as follows.

Theorem. Suppose £ has rank zero and that IIg[p>] < oo, and let p be
an odd prime of good reduction. With assumptions as above

X(Zp)2 = U \Il(w)7

weW
where
U(w) = {z € X(Zp) | log(z) =0, Dy(2) = [|w]|}.
Here,
log(z) = /b !
and

Dy(z) = /bz ap,

are Coleman (iterated) integral functions on X' (Q,).
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1.13. Let us sketch the proof of theorem 1.12. It follows from theorem 5.2
of Silverman [Sill| that the local height at primes v # p takes values in the
finite set W,; by theorem 4.1.6, this applies to the image of X(Z,) under

X(Z,) —» HY(G,,Qy(1) 25 Q,
where ¢, now denotes the map
c—logyUc.
As we explain in segment 5.3, the map loc, at level 2 factors as
Sel*(X) — H}(Gp’Qp(l)) - H}(Gp’ Us);

it is here that we use the assumption about the rank. Drawing on global
reciprocity, we find that the image of Sel?(X) in H}(Gp, Qp(1)) is given by

{n| ¢p(n) = |lw| for some w € W}.

As we explain in remark 5.6, this hints at the possibility of a certain non-
abelian reciprocity law, an idea carried further by the third author in [Kim1].
This also translates into a proof of the theorem, through the unipotent Bloch-
Kato exponential.

Armed with theorem 1.12 we are able to verify conjecture 3.1 for the
prime p = 5 for 256 semi-stable elliptic curves of rank zero from Cremona’s
table. We also extend our discussion of punctured elliptic curves with a brief
treatment of the rank-one case.

1.14. In section 6 we consider the thrice punctured line over Z. Of course,
in this case the set of Z-points is empty, so the conjecture holds at level n
when X(Z,),, = 0. Our results may be summarized as follows.

Proposition. Let X = P!\ {0,1,00}. Then

X(Zp)l =¢
if p=2 mod 3. If p=1 mod 3, then
X(Zp)2 =¢

if the value of the p-adic dilogarithm Lis(z) at a sixth root of 1 is non-zero.
We also report on computations showing that indeed Liz((g) # 0 in the range
3<p<10°.

1.15. In section 7 we discuss curves of genus > 2. We consider as an example
the Fermat curve X; given by

xl+yl =2

We find that if the Tate-Shafarevich group of the Jacobian fulfills its con-
jectured finiteness, if [ = 5 or 7, and if p Z 1 mod [, then conjecture 3.1
holds at level 1. We also show how, starting with a punctured elliptic curve
which fulfills conjecture 3.1 at level 2 we can construct a curve of higher
genus which fulfills the conjecture at level 2 as well.
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1.16. Finally, in section 8 we turn to the S-integral variant of our conjecture
mentioned above. We apply this to the thrice punctured line, concluding that
here the conjecture holds for S = {2} and p = 3,5,6 in depth 2.

Acknowledgements. M.K. is grateful to John Coates, Henri Darmon, Kazuya
Kato, Florian Pop, and Andrew Wiles for a continuous stream of discussions
on the topic of this paper. He is also grateful to Shinichi Mochizuki whose
question prompted a precise formulation of the conjecture, and to Yuichiro
Hoshi for a kind and detailed reply to a question about a pro-p analogue.
We would like to thank the referee for many helpful comments.

2. SELMER SCHEMES WITH STRINGENT LOCAL CONDITIONS

2.1. We let X — SpecZ denote a reqular minimal Z-model of a hyperbolic
curve over Q. By this we mean one of the following.

~ X = P'\ D where D is a reduced horizontal divisor with at least
three C-points. In this case we let X’ = P!

— The regular minimal model of a compact smooth curve of genus > 2.
We let X' = X.

— The complement of a non-empty reduced horizontal divisor D inside
a regular minimal model X’ of a compact smooth curve of genus > 1.

We fix a “base-point” b of X'. In all three cases b may be a Z-valued point.
In the first and third cases, suppose that D C Y with J € X’ open and
Y — SpecZ smooth, so that in particular, Q}’(’/Speczh) is invertible. Then
we allow b to be an “integral tangent vector”, by which we mean a nowhere
vanishing section of the tangent sheaf

1v
TX’/SpeCZ’D = QX’/SpocZ’D
to X’ along D.

2.2. Let p denote an odd prime of good reduction. We then have the unipo-
tent p-adic étale fundamental group U of Xy at b constructed by Deligne
[Del]. We denote its descending central series by U = U > U2 5 ---, and
the associated quotients by U,, = U/U"*!. We also have, for every x € X (Z),
the path torsor P(z), and corresponding quotients P,(x). We let T' denote
a finite set of primes which contains all primes of bad reduction for X’ and
for D, plus the auxiliary prime p. Let Qp denote the extension of Q which
is maximal for the property of being unramified outside of T, and let G
denote the Galois group of Q7 over Q. Then as explained in §2 of Selmer
varieties [Kim3|, U, possesses a Gr-action, and P,(z) bears the structure
of a Gr-equivariant U,-torsor, with G acting as usual on the left, but U,
acting on the right.
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2.3. For each prime v, we fix an embedding Q7 C Q, in the algebraic closure
of Q,. This gives us for every v a map

GU—>GT

from the total Galois group of Q, (which, for v ¢ T, factors through Z) This
also gives us an isomorphism of U, with the unipotent fundamental group of
Xg,, which we continue to denote by the same symbol. For y € X(Z,), we
have the local path torsor P,(y), a Gy-equivariant Up,-torsor. For y € X(Z,),
the associated torsor P, (y) is moreover crystalline in the sense of §2 of Selmer
varieties; as explained there, this follows from Olsson |Ols|.

2.4. For each prime v there is an affine, finite type Q,-scheme HYG,,Up,)
parametrizing G,-equivariant Uy-torsors. For v = p there’s a closed sub-
scheme

H}(Gilh UTL) - Hl(Gpv Un)
which parametrizes those torsors which are crystalline. There is also the
global H'(G,U,), an affine finite type Qp-scheme parametrizing Gr-equivariant
U,-torsors, and for each v, a map of Q,-schemes

loc, : HY(Gp,U,) — HY (G, Uy)

in terms of which we define H}(GT, Up) to be the preimage locgl(H}) of

H}(Gp, Up) under loc,. These fit into commuting squares like 50.2

X(2) ——— X(Zy)

| |-

H}-(GT, Un) W Hl(Gv, Un)

The vertical map j is called the global unipotent Kummer map, and its local
counterpart j, is called the local unipotent Kummer map. As above, we
refer the reader to §2 of Selmer varieties |[Kim3| for the details of these
constructions.

2.5. Proposition. Let v be a prime # p. Then the subset Im j, of the
rational points of H'(G,,U,) is finite.

Proof. See Kim-Tamagawa [KT]. O

2.6. Remark. For v ¢ T a prime of good reduction, we have Im j, = 0; see
the proof of Corollary 0.3 in §2 of loc. cit.

2Technically speaking, while the map loc, appearing in the diagram is a morphism of
Qp-schemes, the vertical maps j, j, are just maps of sets into the sets of Q,-points of the
varieties below.
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2.7. Definitions. We define the Selmer scheme of X to be the (infinite)
intersection
Sel™ (X ﬂ loc, Im Jv)
vFEp
with scheme structure defined by the sum of the corresponding ideals. We
also refer to H}(Gp, U, ) as the local Selmer scheme of X near p. Asn varies,
these form two towers:

locy,

Sel*(X) —= H}(Gp, Us)

Sel () —L HY(G,, U)
compatible with the maps loc, as well as j and j,. Thus, if we set
X (Zp)y = j, ' (locy(Sel*(X))
we obtain a non-increasing sequence of refinements
X(Zp) D> X(Zp)1 D X(Zp)2 > -+ D X(Z)

of the set of Z,-points, containing the set of global points. We say that p-adic
points which are contained in X(Zy),, are cohomologically global of level n,
or weakly global of level n.

2.8. Our first task is to remove the apparent dependence on T

Lemma. Let I" and U be topological groups with I' acting continuously on
U. Let N C T be a closed normal subgroup. Then there is an exact sequence
of pointed sets

1— HY(T/N, UMY & HYT,U) & HY(N,U).
Proof. Recall that continous cohomology is defined ([Kim2]|, section 1) as
H'(T,U) =U\Z'(I,U),
where Z1(I",U) consists of the continuous maps ¢ : I' — U such that

c(g192) = c(g1)g1¢(92),
while (uc)(g) = uc(g)g(u=?) for u € U and ¢ € ZY(T, U).
It is clear that roi sends everything to the base-point. Assume r(c) = 0 for
a continuous cocycle ¢ : I' — U. So thereis au € U such that ¢(n) = un(u™!)
for all n € N. Define
b(g) = u"'e(9)g(w),
a cocycle in the same U-orbit as c¢. Then

b(n) = ute(n)n(u) = v tun(u™Hn(u) = e
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for all n € N. Thus,

b(gn) = b(g)gb(n) = b(g)g(e) = b(g)
for all g € I" and n € N. Since this also implies b(ng) = b(gg 'ng) = b(g),
we get
nb(g) = b(n)nb(g) = b(ng) = b(g)
for all g € I' and n € N. That is, b factors to a cocycle
b:T/N = UV,
which is continuous since I'/N has the quotient topology. O

Proposition. If 7" and T are two finite sets of primes that contain all primes
of bad reduction and p, the natural restriction maps

H{(Gr,Up) <= H(Grur, Uy) < Hj(Grr,Uy)
induce isomorphisms of Selmer schemes.

Proof. We need only consider an enlargement of T to 7" D T. We work with
points with values in an arbitrary Q,-algebra, which we will omit from the
notation. We will provisionally put the sets of primes into the notation, as
in Sel’7(X). Clearly Sel7(X) — Sel}, (X). Recall that T' contains already all
primes of bad reduction and p. In particular, the action of G, for every prime
v € T"\ T on U, is unramified. Thus, the image of X(Z,) in H'(G,,U,)
is trivial (§2.5). That is, when v € 7"\ T, for a cohomology class in ¢ €
H'(Gr/,U,), the condition of locally belonging to the image of j, is actually
the same as triviality at v. Thus, ¢ goes to zero under any of the restriction
maps

HY (G, Uy) — HY(1,,U,).
Since the I, act trivially on U, this implies that ¢ goes to zero under the
restriction map

HYG7,U,) — HY(N,U,),
where N C G+ is the subgroup generated by I, for v € T"\T. According to
lemma 2.8, it follows that ¢ comes from H'(Gr,U,). By the commutativity
of the triangle

HY(Gr,Uy,) HY Gy, Uy)

k‘%

HY(G,,Uy)
the local conditions remain the same for both spaces, and hence,
Sel1(X) ~ Sel (X). O

Corollary. The subset X(Z,), C X(Z,) is independent of the choice of the
set of primes T
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2.9. Now we consider the possibility of a change of base-point from b to c.
For this discussion, we will write U(b) and U(c) for the prounipotent p-adic
étale fundamental groups with base-points at b and ¢ respectively. Denote
by P(b,z) the torsor of prounipotent p-adic étale paths from b to = (P(z)
above). Now, given any torsor W for U(b), we get the torsor

We:=W xyw) P(b,c) = [W x P(b,c)]/U(b).

Here the action of u € U(b) takes (w,y) € W x P(b,¢) to (wu,u~'y). This
construction defines a map from the groupoid of U (b) torsors to the groupoid
of U(c)-torsors.
Lemma. If b and ¢ are both integral, then

W — Wwe

maps unramified torsors at v ¢ T to unramified torsors, and crystalline
torsors at p to crystalline torsors.

Proof. The condition of being unramified at v is given by triviality under
the restriction map
HY(G,,U) = HY(I,,U),
while the crystalline condition is given by triviality under the map
HY(Gy,U) = H(Gy, U(Ber).
But since P(b,c) is itself unramified at v ¢ T and crystalline at p, both
conditions are preserved by the functor. U

That is, we are assured of an isomorphism
()¢ Hy(Gr,U(b)) = H{(Gr,U(c)).
Meanwhile, since
(P(b,x))" = P(c, @),
torsors of paths are preserved under the functor. So we conclude

Proposition. The functor W +— W€ induces isomorphisms of local and
global Selmer schemes commuting with the corresponding localization maps
loc, and Kummer maps j and j,.

Corollary. The subset X(Z,), C X(Zp) is independent of the choice of
base-point b.

3. THE CONJECTURE AND ITS CONTEXT

3.1. We preserve the situation and notation of §1. In particular, X denotes
a minimal Z-model of a hyperbolic curve over Q as in Segment 2.1. In his
lectures at the IHES in February of 2012, M.K. proposed the following.

Conjecture. Equality X'(Z,),, = X(Z) is obtained for large n.
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3.2. Remark. Although we would expect a suitable generalization of our
conjecture to hold over general number fields, the exact statement is not
entirely clear, and we do not go into this issue in this paper. See Dan-Cohen
[DC] for the case of the thrice punctured line.

3.3. Recall that j, j, denote the global and local Kummer maps, respectively
(2.4). Alongside conjecture 3.1, we consider the following statements.

(SGK) Surjectivity of the global Kummer map. The global Kummer map j
defines a surjection

X(2) - {P € Sel™(X) | locy(P) € Imj, }

onto the set of torsors which are geometric everywhere locally, for
large n.

(ILK) Injectivity of the local Kummer map. Suppose x € X(Z) and y €
X(Zyp). If j,(x) = jp(y) for all n then x = y.

Trivially, we have the implications

SGK + ILK = Conjecture 3.1 = ILK.

3.4. Relationship to Tate—Shafarevich and Section Conjectures.
We now discuss the relationship between 3.3(SGK), finiteness of Sha, and the
Grothendieck section conjecture. Let X be a proper hyperbolic curve over Q,
let b € X(Q), fix an algebraic closure Q of Q, and let Gq denote the Galois
group of Q/Q. For each z € X(Q) we let P(z) denote the 7{"(Xg, b)-torsor
associated to x. Recall that the Grothendieck section conjecture states that

J:x— Px)
defines a bijection )
X(Q) = H' (G, 71" (Xg,b))-
The surjectivity of j bears an obvious relationship to statement 3.3(SGK).
When we replace ﬂ?t(XQ, b) by its prounipotent completion U, the cohomol-
ogy set becomes a positive dimensional variety, so surjectivity ceases to be
plausible; 7 may nevertheless surject onto those cohomology classes which
are everywhere locally geometric. This is motivated in part by the case of

elliptic curves and the conjectured finiteness of III, through the following
basic proposition.

3.4.1. Let FE be an elliptic curve over Q. As above, we fix a decomposition
group G, C G at every prime v, giving rise to a localization map

loc, : H* (GQ,Hft(EQ,Qp)) — ! (GvaH‘lét(EQva)) .
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Let j, j?” denote the global and local Q,-linearized Kummer maps, as in
the following square.

EQ)/p ®z, Qp ————— E(Qu)/p ®z, Qp
j‘@”l lj?”
H'(Go, Hi(Eg, Qp)) —— H' (G, Hi(Eg, Q)
Here the subscript /p denotes p-adic completion.

Proposition. Suppose the p-part of III(E) is finite. Then the global (abelian)
Qp-linearized Kummer map j@ defines a bijection

E(Q)®z,Qp,={P ¢ H! (GQ,Hlét(E@,Qp)) | loc, (P) € Imjgp for all primes v}

between the vector space of linear combinations of rational points and the
classical p-adic Selmer group.

Proof. The finiteness of the p-part of III implies that the product of the
localization maps induces an injection

(*) lim H'(Gg, B)[p"] ® Qp < [ [ lim H'(Go, E)[p"] © Q.
Recall that there’s a Galois-equivariant isomorphism
@, @ lim Bp")(Q) = H{'(Fg, Qy).

We consider the inverse system of short exact sequences

n

0 E[p"] ELX5E 0
0 —— E[p"t E E 0.
pn+1

Taking Q-valued points followed by invariants by Gq, we obtain an inverse
system of short exact sequences

0—— E(Q)/p" —— H'(Go, Ep"|(Q)) —— H'(Gg, EQ)[p"] ——0
0 —— B(Q)/p"* —— H'(Go, E[p"*'](Q)) — H'(Go, E@) [p"*'] — 0.

Taking inverse limits and tensoring with Q,, we obtain the top row in the
following diagram:

0— E(Q),, © Qy s H (Go, H'(Eg, Qy)) — lim H (Gg, BQ) [p"] © Q) — 0

l l |

0— E(Qu)/p ® Q> H' (Go,, Hi*(Eg,, Qp)) — lm H' (Gg,, E(Q,)) [p"] ® @y — 0;
o
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repeating the procedure with Q, in place of Q gives us the rest of the
diagram. Varying the place v and using the injectivity (*), we obtain an
exact sequence like so

: H'(Gg,, H{'(E5,Q
0= B(Q)y ©Qp > H' (Go. HY' (g, Qp)) = || EE?@ T >p))
v v//p D

By the Mordell-Weil theorem, we have
E(Q)/ ®Qp = E(Q) ® Qp,

so the proposition follows. O
Corollary. We have E(Q) ® Q, = Sel'(E). In particular, our Sel'(E) is
equal to the classical p-adic Selmer group.
Proof. For v # p, the geometricity condition

loc, (P) € Im j,
is actually equivalent to the (a priori weaker) condition

loc,(P) € Im jy™*
since

E(Qv)/p ® Qp - O

On the other hand at v = p the condition loc,(P) € Im j,” is equivalent to
loc, (P) being crystalline according to Example 3.11 of Bloch-Kato [BK]. O

4. THE UNIPOTENT ALBANESE MAP AND LOCAL HEIGHT ON ELLIPTIC
CURVES

4.1. Setup and statement.

4.1.1. As explained in the introduction, our goal here is to investigate a
relation between local heights and Albanese maps, with a view towards ap-
plying it to the computation of some simple Selmer schemes. The relation
over a finite extension of @, was noticed earlier following the paper [BKK] by
its authors and Amnon Besser [BB|. The main purpose here will be to work
out a precise relation over Q; for [ # p, when the curve has bad reduction.

4.1.2. Fix an odd prime p, let F, be an unramified finite extension of Q
for I # p, and let (E,, O) be an elliptic curve over F, written in Weierstrass
minimal form

2073 + a1 2021 Zo + a3 Z3 Zy = Z3 + a9 Zo 73 + anZ3 7y + as Z3.
Let X = E, \ {O} with equation
y2 +a1xy + azy = 3+ a2x2 + aqx + ag.

We let b be the tangent vector to E at O dual to the invariant differential
form
dx/(2y + a1z + as),
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which we will use as the main base-point for fundamental groups. Let z =
(—x/y), which is a b-compatible uniformizing element at O in that (d/dz)|o =
b. (We refer to Silverman [Sil3|, chapter 4, for this and other assertions about
the coordinates on the Weierstrass minimal model.)

4.1.3. Let log denote the p-adic logarithm normalized so that log(p) = 0.
The p-adic logarithm

logx : G2 — Qp
of the p-adic cyclotomic character may be regarded as an element of H!(G,, Q,).
Recall that the cup product defines a Q,-valued pairing

H' (G, Qp) x H' (G, Qp(1)) = HX(G0, Qp(1)) = @y
Let rec denote the reciprocity map of abelian class field theory
Fy— G
and recall that [ denotes the residue characteristic of F;,. Then for a € F;

we have the formula

log x U k(a) = log(x(recy(a))) = log ) — log |al,.

4.1.4. Proposition. We have
H°(G,,Uh) = HY(G,,Uy) = H*(G,, Up) = 0.

Proof. We start with HY: by the weight-monodromy theorem, proved for
abelian varieties by Grothendieck in [SGA, Exposé IX], the inertia fixed part
of E[p"] has Frobeinus weight —2, so in particular has no Frobenius-fixed
part, whence the vanishing. The vanishing of H? then follows by local Tate
duality [NSW], since V,(E,) is self-dual. Since the v-adic absolute value of
p™is 1, it follows from [NSW, Theorem 7.3.1] that the Euler characteristic is
zero; combined with the vanishing of H? and H?, this implies the vanishing
of H. O

4.1.5. Recall that the G,-equivariant extension
1-0Q,(1) »Us—U; —1
gives rise to an exact sequence of pointed sets
H(Uy) — HY(Qp(1)) = HY(Us) — HY(Uh).

The vanishing of the extreme terms implies that « is bijective, so that we
can choose a cocycle representing j,(z) which takes values in Qp(1). Thus,
we get a function
Oyt X(Fy) = Qp
via the formula
du(a) =log x U jy(a).
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4.1.6. We define a p-adic local Néron function to be a function
A Ey(Fy) — Qp
which satisfies the following properties with respect to the coordinates z, y.

(i) A is continuous on E,(F,) \ {O} and bounded on the complement of
any v-adic neighborhood of O.
(ii) The limit
1
lim (A(a) — 3 log |z(a)ly)

a—0
exists.

(iii) For all a € E,(F,) with [2]a # 0,
A([2]a) = 4A(a) —log [(2y + a1z + az)(a)lo-

Theorem. The function ¢, is a p-adic local Néron function.

The proof of theorem 4.1.6 appears in segment 4.4 below.
4.2. Construction of 7y -tower.
4.2.1. We write here ) for
nP)(X,0)/[x?) (X, b), 77 (X, ), n®) (X, b)]],

the quotient of the pro-p fundamental group of X = X ® F,, by the third level
of its lower central series. We will need to consider different base-points w
below, in which case we denote the group by 7y (w). Similarly, the pushout
to m (w) of the homotopy class of maps from w to y will be denoted by
(W, y):
77[2} (w7 y) = ng) (X7 w, y) Xﬂgp) (X’w) 77[2} (w)
Note that when b is replaced by Ab for A € F,, then the compatible uni-
formizer is changed to z/A.
We note that m fits into an exact sequence

0= Z—=myg—T,E—0

where

Z ~ Zyp(1)
is generated by [e, f] for any lift {e, f} of a basis for T,E. As in Lemma
1.1 of [Kim4], this exact sequence has a Galois-equivariant splitting which
extends also to a splitting of the sequence

1= Q1) = Uy = V,E—0.
Thus, as in [Kim4, p. 730], we will write a cocycle
C: GU — U2

as
€ = C20y,
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where ¢y takes values in Q,(1), ¢; is a cocycle with values in V,E, and
dcg = —(1/2)cy Ucy.

We wish to compute the group 7y using theta groups. The result is stated
in proposition 4.2.10 below.

4.2.2. Let Dy := [p"]*[O], the sum of all points of E,[p"]. We write ~ for
linear equivalence of divisors. We claim that

D() ~ p2n [O]
To see this we base change to an algebraically closed field, write

p2n_1

Dy = Z [25],

j=0
and remember the isomorphism of group schemes
E, = Pic’ E,
z = [2] = [0],

from which

Do = p*"10] = ( X[27]) —#*"[0)
= > (]~ 0)
~ X 5] -0

Let H,, := O(p"[0]). Then we have
' = O(p" (p"[0)) ) = O(p™"[0]) = O(Dy),
via an isomorphism well-defined up to a constant.

4.2.3. In general, an isomorphism
O(A) ~ O(B)

must be defined by a rational function f such that (f) = B — A, which takes
a section s € O(A) and multiplies it by f. We will denote this isomorphism

also by f:

o) L o).

When a tangential base-point w at O has been chosen we normalize all

such isomorphisms as follows. Choose a local coordinate t at O so that
(d/dt)|o = w. Then we normalize f so that

ool £(0) = 1.



A NON-ABELIAN CONJECTURE 19

When this normalization has been fixed, we will refer to the function or the
isomorphism as based at w. This way, when

and .
O(4) ~ 0(C),
are all based at w, then we can be sure that h = ¢f. We will be able to

deduce the commutativity of various diagrams using this fact. The based
function giving the isomorphism

HP" ~ O(Dy)
given a base-point w will be denoted by f,,. More generally, given any
function g such that

(9)=A-B
we will write g,, for the constant multiple of ¢ that is based at the tangent
vector w.

4.2.4. For our choice of tangent vector b, an elementary computation shows
that the function y is based, that is, y ~ z3. In the case of the function
fv € Q[z,y], clearly, there is a constant multiple f% € Z[z,y] with the
property that (f%)s = (p*® — 1)[O] on the Weierstrass minimal model.
But then, since (2) = (—z/y) = [O] + D on the minimal model with D
disjoint from [O], we see by comparing divisors that 21 f%is a unit A in
a neighborhood of the section O. Thus, its value on O is a unit v € O;,.

Hence we see that ,
n_1

fo=utf2 =y the? ,
with the second equality holding in a neighborhood of O. In particular, the
formal power series expansion of f3 in the parameter z has coefficients in O,.

4.2.5. Define the subscheme
X! CH,
as the inverse image of the section 1 € I'(O(Dy)) under the map

1, L ~ 0(Dy),

where the second isomorphism is given by the function f,/,». Standard
Kummer theory implies that

X! — E,
is a finite p,n cover (totally) ramified only over Dy. In particular,
X, = E, X5 B,

is a finite cover.
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4.2.6. Since the cover X/ is constructed locally as (QE[(fb/pn)l/pn] and

(up%fb/pn) =u-+ CQ’LL2 + 63u3 + -
formally with respect to the uniformizer u = p™z, we see that the tangent
vector b/p™ = (d/du)|o lifts to a tangent vector b’ to X/, at the unique point
above O. That is, r, : X,, — X is equipped with an Fj-rational lift of
the tangential base-point b. Therefore, there is a G,-equivariant surjective
homomorphism
2] — (Xn)b

that sends the identity to the base-point lift &’. Here the subscript (-), refers
to the tangential fiber functor of Deligne [Del, §15]. We will use theta groups
to show that this map induces a bijection

7'('[2] i) lgl(Xn)b
4.2.7. For each x € E,, we let 7, : E, — FE, be the translation operator

Tz(y) = y + x. Recall from section 23 of Mumford [Mum| that the theta

group
G(Hn)

associated to H, is the group scheme over F, whose R-points, for R an
F,-algebra, are commuting squares

g
Hn r —= HuRr

L,

EU,R T—;> EU,R

for x € E,(R). Since z is determined by g, we denote such a square simply
by g. If x € E,(R) then the ideal defining the associated closed subscheme
of E, g is locally principal; we denote the associated Cartier divisor by [x].
In this notation, we have

T Hn = O(p"[2])

isomorphic to O(p"[O]) if and only if z € E,[p"|(R). The theta group
therefore fits into a short exact sequence

0= G — G(Hn) 2 E,p"] — 0.

Moreover, after forgetting the group structures, the projection p admits a
section (see segment 4.3.1 below).
We will also consider a point g € G(H,,) as an isomorphism

g: Hn l) T;(g)Hn,
in which case composition in G(H,,) is given by the formula

(%) g-h="1(9) oh.
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4.2.8. Taking tensor powers defines a map of exact sequences (solid arrow
diagram below)

0——G,, — Q(?—Lﬁn) — E,[p?"] —— 0

o

0 Gm G(Hy) T>Ev[p"] — 0.

We now construct a diagonal homomorphism 5, as shown, which will make
the triangle to its upper right commute. Given x € E,[p"]| we let ¢, denote
the canonical isomorphism

~

O(D()) — T;O(D())

(which is not necessarily compatible with the base point). We note that

(*) Yo = Idp(py);
and that if y € E,[p"] is a second point, then the square
7y ()
(44) O(Dy) —2s 720 (Dg) 25 7522 0(Dy)
ww+y

T;ck+y0(D0)
commutes. We define 8 by
Blz) =T1,fotpz0 f_l'
Properties 4.2.7(*), 4.2.8(*), and 4.2.8(**) combine to show that ( is a ho-
momorphism:
BO) = foldof™' =1d,
and
Bx)-By) =y(rsfowof ) oryfoy,of!
=Topyfomy(Wu)oryf o fotyof!
= Toyyl 0Ty (u) 0 hy 0 f7
= ;—i—yf o wm—l—y © f_l
=Bz +y).
4.2.9. We define .
G, = [(-)7"] " (1m).
This subgroup of the theta group fits into an exact sequence
(%) 0= ppn — G B Eyp"] — 0.

As is customary when doing Galois-theoretic computations, we will often

identify G,, with G, (F,).
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Lemma. The finite étale covering

nt Xy — X
is Galois with Galois group G,.
Proof. We claim that the square

G(HE)

|
®p
G(Hn) Ey[p"]
U /
Gn
commutes. This is an elementary computation which we carry out anyway.

We put ourselves in the general setting of a diagram

G—LsH

IR

G/—>H’

in which the outer square and the upper right triangle commute, and u is
injective as shown. If g € t~1(Im ) then there’s a ¢’ € G’ such that

t(g) = B (9")-
We then have
up'g' = pBp'g’ = ptg = up'y,

from which
r'd =r'y,
so that
t(g) = Bp'g’ = Bp'y,
as hoped.

It follows that the diagram

Hy —— HP"

(VR

gn —_— E’U [pn]

commutes, in the sense that the map of G-sets is linear over the map of
groups.
Denote by Y,, the image of E, \ E,[p"] under the section 1 viewed as a
map of schemes
E, — O(Do)
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Since the action of E,[p"] on O(Dy) given by the liftings 1, maps a function
h (viewed as a section) to h o 75, Y, is stable under the action of E,[p"] via
5. Hence, G, acts on X,,.
Further,
Ho — HE 2 O(Dy)
is a pyn-torsor away from the zero section, where this uP" is exactly the
subgroup of G, mapping to 1 under the map (-)®P". Therefore, X, is a
ppn-torsor over Y, and
Xn/ Hpn = Yn'
However, Y,, is isomorphic to E, \ E,[p"] equivariantly with respect to the
action of F,[p"]. So
Xn/Gn & Yo /Ey[p"] = E,\ O = X,

which completes the proof of the lemma. O

4.2.10. If we denote by )%[2} — X the quotient of the universal covering
space of X corresponding to T[], there is a surjective homomorphism

(*) Aut (Xp/X) = G,
simply because G, is a central extension of E,[p"]. The significance of the
theta-group for us is that the commutator map
[ 1 Gn X Gy = ppn
factors to the Weil pairing
()t Bu[p"] X Ey[p"] — ppr,
so is in particular surjective (this is a well known fact, explained for in-

stance in [MvdGE, Chapter XI, Proposition 11.20]). Hence, we also have a
surjection

[Aut (Xp/X), Aut (X[ /X)] = pipn.

Proposition. The surjections 4.2.10(*) induce an isomorphism of profinite
groups
Aut X[2 /X L gn,

and hence, a bijection of profinite sets

72} ~ Bm (X )p.
Proof. Tt suffices to show injectivity. So let g € Aut ()? 2/ X) be non-trivial.
If g has non-trivial image in Aut ()?[2} /X)) ~ T,E, then clearly there is a
map
Aut (Xg/X) = Gn

which does not send it to zero. So assume

g € [Aut (X /X), Aut (X5/X)].
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But then, since

[Aut (X(g)/X), Aut (Xg/X)] = Z,(1)
as a topological group, the family of surjections

[Aut (X[ /X), Aut (Xg/X)] = pn

must be separating.
For the statement about 7y, recall that the formula

V= o)
for I € mp and ¢ € Aut ():( 2/ X) defines an anti-isomorphism from g to
Aut (X[Q]/X) O

4.3. Interaction of local Kummer map with multiplication by 2.
Our goal here is to derive an explicit formula for the change in j,(x) when
we multiply « by 2. The result is stated in corollary 4.3.8.

4.3.1. We can construct a canonical section of the surjection p (4.2.9(x)) as
follows. Notice that the automorphism

-1:E,~E,
lifts to an automorphism
(1] : Hp = Hy,
that sends a section ¢(y) to ¢(—y). This induces an involution

that sends g to [—1] o g o [—1].
Lemma. If R is an F,-algebra, then any R-valued point of E,[p"] has an
R-valued half.
Proof. We recall the proof of this well-known fact. There’s a short exact
sequence of finite étale group schemes
0— E,[2] — [2] 1E,[p"] = E,[p"] — 0,

hence an exact sequence of étale cohomologies

2] ELfp"](R) = Eu[p"](R) % H'(Spec R, E,[2)).
The boundary map 4 is a map from a Z/p"-module to a Z/2-module, hence,

under our assumption that p is odd, necessarily zero. O

Given any element x € E,[p"] and a lift g € G,, of —x/2, the element
2 =i(g)g™
is independent of the lift g, and can be characterized as the unique element of
Gn lying over 7, that is anti-symmetric with respect to 4, in that i(g) = (g)~'.
Thus, we can write an element g € G, uniquely in the form

g = 92491
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where g; is the unique lift of p(g) satisfying i(¢1) = g7 ! Sometimes we
abuse notation and write g; both for this lift and for p(g).

4.3.2. Recall that the nonabelian cohomology set H'(G,,, T[)) can be con-
structed as a set of equivalence classes of continuous cocycles G, — mg);
it also parametrizes the set of isomorphism classes of Gy -equivariant my-

torsors. Given a point = € X (F,) we write j(x) for the associated class

j(z) = [rf?

If ¢® is an associated cocycle, then composing with the anti-homomorphism

(XQ b, x) Xﬂp)(xb) 7T[2]] € Hl(GvaT"[ﬂ)-

2] = Gn,
we obtain an anti-cocycle
Gy = Gn.
which we continue to denote by ¢*. Explicitly, ¢* is constructed as follows.
We choose a point y € X (F,) such that p"y = z, and a point z € X, (F,)
lying above y. Then for v € G, ¢*() € G, is determined by the formula
Y(z) = ¢ (7)(2).

We remark that the anti-cocycle condition is given by
¢’ (m12) = (e’ (12))e” (1)

Using the section of p constructed in segment 4.3.1, we can canonically de-
compose ¢’ as

T

c® =c5cf
with ¢ taking values in p, and ¢ the anti-symmetric element lifting p(c”).

4.3.3. We now fix several isomorphisms of line bundles relating to multipli-
cation by 2 and by p™. There are isomorphisms

21(0([0])) = O([O] + [21] + [w2] + [x3]) ~ O(4]0]);
the first isomorphism is canonical, since
2(0) = [O] + [21] + [w2] + [23]

while for the second isomorphism we may take the one induced by the func-
tion
2y + a1x + as
hy = SR —
That is, this function has divisor 3[O] — ([x1] + [z2] + [z3]) and is compatible
with the tangent vector b.
There is an isomorphism

21" (Hn) = 27O (p"[0]) ~ O(@"([O] + [21] + [22] + [x3]))
~ O(4p"[0]),

with the first two isomorphisms being canonical while the third we take to

be given by
(hb/p” )p
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There is an isomorphism
2]"O(Dyg) =~ O(Do + Dy + D3 + D3) ~ O(4Dy)

with the last isomorphism being induced by the function hy o [p™].
Finally, an isomorphism

O(4p"[0])"" =~ O(4Dy)
is induced by fgl/pn. Given z € E, \ E,[2], choose y such that p"y = x.
Taking fibers above the points y and 2y, we obtain a commutative diagram

O gpr Jopn
(Hn)y ——————— (Ha)y = O(4Do)y
n _.2n
=] h;/l;)n = hb/z;n | (hyop™)~ 1!

([2]"O(Do))y

%4
1%
1%

n

) " fab)pn
(%n)2y L) (Hn)p 2

2y o O(DO)Qy

where the lower vertical arrows are all natural base-change maps. The maps
induced by functions have all been based so as to make all diagrams commu-
tative. The maps are also clearly compatible with the action of the Galois
group G.
4.3.4. We consider now the relation between the action of ¢ € G, and the
composition of the leftmost vertical isomorphisms in the diagram, which we
will denote by

B(y) : (/Hn); =~ (Hn)2y-
In the following, we will give the argument pointwise over F, even though
the underlying discussion is about the corresponding scheme isomorphism

B: (M) ~ [2*(Hy).

Lemma. There is a commutative diagram

, 9 4
(H")y o~ (H")p(g)(y)
EJB ®) %lB (p(9))(v)

29
(Hn)2y —— (Mn) @2p())20)

where we denote by 2¢g; the anti-symmetric lift of the element 2p(g).
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Proof. We consider the isomorphism

B(p(9)() 0 9" o B(y) ™"+ (Mn)2y = (Hn)(2p(9))(20)
lifting the action of 2p(g). We need only check that

i(B(p(g)(y)) 0 g7 o B(y)™") = B(—y) o [(g1)®"] ' B(—p(g)(y)) "

For this, we embed the previous diagram into the bigger diagram

4 [—1] 4 g1 4 (—1] 4
(H")—y o~ (H")y o~ (H")p(g)(y) ~ (H")—p(g)(y)
%JB(—Z/) %lB(y) lB(p( )(®)) %lB(—p(g)(y))

[—1] 2 (—1]
(Hn)-2y == (H2)2y —= (M) pioni2) —= (Hn)—2p(e))(20)-

The two squares on the left and right are clearly commutative. But
[ o B(p(9)(y)) © g7 o B(y) ™" o [-1]
B(~ ()y)) [~1ogit o[- 1o B(- y)~!

(
B(—p(9)()(91 )®4B( y) !
B(—p(9)w)(gP) ' B(—y)~"

at every y as desired. O

4.3.5. Choose y as above so that p"y = x and let v € X, lie above y. Then
for v € G,, we have

V() = " (v)v = (V)T (Vv € (Hn) p(er(1))y-
Hence,
V(W) = (1) = (5 (1) (ef (1)) **.
(Recall from segment 4.2.8 that tensor powers restrict to ordinary powers in
ppn.) Hence,

Y(B(y)(v®*) = B(y(y))((v0)**) = B(y(y)) (5 (1)) *(cf (v)v)®*)
which by Lemma 4.3.4
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4.3.6. We use the diagram of segment 4.3.3 to find that the map
HQy — O(Do)gy
sends B(y)(v®*) to

(he(" )" (Lo(e)) 2y) = (h(2)) ™ (1o(py)) (29)-
Therefore, an element in the inverse image (X, )2, of (1o(p,))(2y) is

(hy(2))P" B(y)(v®?).
Therefore, if we let k(-),» denote the mod p™ abelian Kummer map
Fr — H'Y(Gy, Z/p"(1))
given in terms of the choice of a (p™)th root by

on

k() = 152
then the Galois action on this element is given by the cocycle

k(ho () (c5)* (2¢7).
This must be the same as the action via ¢**, by the compatibility of the
big diagram with the action of G,,. As we take the limit over n, we get the
equality

P = k(hy(2))(c5)" (2¢7)

at the level of p-adic cocycles.

4.3.7. One last modification is that this calculation has produced the class
[m2)(2b, 22)] € H' (G, T2 (2D)),

which we need to shift back to H'(Gy, ) to get the class 7(2x). For
this, we need to compose with the class of 71[2](b, 2b). We claim that this
72)(b)-torsor corresponds to the cohomology class k(2), where k denotes the
profinite abelian Kummer map

Er — HY(G,,Z,(1)).
To see this, let

ToX :==TokE, \ {0}
denote the punctured tangent space at the origin. There’s an F,-rational
isomorphism of vector groups

A' 5 THE,
sending 1 — b, hence an isomorphism of schemes
Gm = ToX

which sends 1 to b and 2 to 2b. The theory of tangential fiber functors gives
rise to an associated morphism of fundamental groupoids. In particular,
there’s a map

Zp(1) = 7P (G, 1) = 7P (X, b) — 7y (),
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and the induced map

HY (G, Zy(1)) = H' (G, 7z (b))

sends the torsor 7T§p ) (1,2) to g (b, 2b). A straightforward calculation, carried
out in §14 of Deligne [Del|, shows that the former is represented by the
Kummer cocycle k(2) as claimed.

Therefore,
Theorem. Let x € X(F),), let ¢* be an associated anticocycle
Gy — lim Gy,
as in segment 4.3.2, let
' =cycf

denote the decomposition of ¢* with ¢§ taking values in Z,(1) and ¢} anti-
symmetric (same segment), let hj, denote the meromorphic function

. 2y+ a1z +as

B 2

of segment 4.3.3, and let k£ denote the Kummer map. Then
k(2hy())(c5)" (2¢))

is an anti-cocycle associated to the point 2.

hy

4.3.8. We can now push out through the homomorphism 79 — Us.
Corollary. Let

Jo : Xo(Fy) = HY (G, Us)
be the unipotent Albanese map of level 2 at v. If j,(z) = [c5c]], then

Jo(22) = k(2hy(2))(c5)* (2¢7).
4.4. Proof of theorem 4.1.6.

4.4.1. Lemma. Suppose a € X(F,) reduces to O mod m, = (m,) (the
maximal ideal of Op,). Then there exists an @’ € E,(F,) such that
a=p'd.

Proof. Let D(O) denote the residue disk of O inside E,(F,). Referring to
Silverman [Sil3], Proposition 2.2 of Chapter VII, combined with Example
3.1.3 and Proposition 3.2 of Chapter IV, together provide a bijection

D(0) = my,
plus a decreasing filtration of D(O) by subgroups D?(O) compatible with
the filtration on m, by powers, such that for each ¢, the induced map
() DY(0)/D™H(0) = mi, fmit

is an isomorphism of groups. Moreover, D(O) is separated and complete
with respect to the filtration by the subgroups D*(O).
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Since F,, contains Qy, [ # p, the group m, is p-divisible. We may use the
group isomorphisms (*) to construct a Cauchy sequence {a;} in D(O) with
p"a; = a mod D*(O). Its limit o’ is a p"th root of a as hoped. O

4.4.2. Lemma. Suppose a € X (F,) reduces to O mod m, = (m,). Then
the anti-cocycle

Gy — Gu(Fy)
associated to a takes values in p,n.
Proof. According to lemma 4.4.1, a possesses an F-rational p"™th root
ad €Y, =FE\E}p".
Let a” be an F,-point of X,, lying above a’. For v € G,, the element
g:=c"(7) € Gu(Fo)
was defined in segment 4.3.2 by
o(a") =7 (a").

Recall from segment 4.2.9 that we have a commutative diagram like so:

X, —— Y,

v 0

0 Lpn y Gn —2— E,[p"] —— 0.

Since v acts trivially on a/, we have
s(a") = s(ga”),
and because of the commutativity of the diagram, the latter equals
p(g)(s(a”)).

Since the action of E[p"] on Y, is free, it follows that p(g) = 0, hence that

4.4.3. Near O, in the coordinate z, we have
fo=2TP" 4 2P g(z)
with g(z) € O,[[z]]. Also,
2(a’) = (1/p")2(a) + 2(a)*h(2(a)),
for a power series h € O,[[z]]. Therefore,
Fogpr = (") 7P 4 (0"2) 7 g1 (p"2)
with g;(t) € O,[[t]] and
Tojpr (@) = 2(@)' 77" + 2(a)* 7 H (2(a),
where H(t) € O,[[t]]. Hence,
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for a unit u =1 mod m, and (since ¢* takes values in p,», and since
E()pr : HY(G) — H' (ppn)
is a homomorphism to a Z/p"-module)
¢ = k(fospn (a'))pn = k(2(a))pn.

Taking the limit over n, we see that in H'(G,,Z,(1)), the class j,(a) is
identified with the Kummer class of z(a). Hence, for a reducing to O mod
m,, we have

$u(a) = log x(recy(2(a))) = log(1"*()) = ~log |2(a)|, = (1/2)log |a(a)].
By this formula, the function ¢, is bounded on the complement
DO)\U

of any open set U containing O inside the residue disk about O. On the
other hand, by Kim-Tamagawa [KT, Corollary 0.2],

(bv(Ev \ D(O)) = ¢U(X(O’U))

is finite. Thus, ¢, is bounded on the complement in E, of any v-adic neigh-
borhood of O.

4.4.4. Finally, by corollary 4.3.8, we have
Pv(2a) = (log x) U ju(2a)
= (log x) U k(2hy(a))(c3)"
= (log x) U k(2hs(a)) 4 4(log x) U ¢5
= 4¢y(a) — log |2hy(a)]
= 4¢y(a) — log |(2y + a1z + az)(a)y.
This completes the proof of theorem 4.1.6.

4.5. The range of a p-adic local Néron function.

4.5.1. We temporarily relax our assumption that F,, is unramified over Qy,
and let e denote the ramification degree. We normalize our absolute value
| -|o by |I| = 17!, When taking p-adic logarithms of absolute values, we may
artificially define

log(1"/¢) = " log L.
e
We also write v = —log| - | (a valuation with values in the totally ordered
subgroup Z% of Qp), and we write
e
ord = —w.

log
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Proposition. Suppose the function
At Ey(Fy) \ {0} = Qp

is a p-adic local Néron function in the sense of segment 4.1.6.
(a) If a € E,(F,) reduces to a nonsingular point, then

Aa) = max{0, —%v(m(a))}.

(b) Assume E, has multiplicative reduction and suppose a € E,(F,) re-
duces to a singular point. Let N = ord A(E,). Let E,o(F,) denote the
group of points reducing to nonsingular points. We choose representatives
{0,...,N — 1} for Z/N. Then there is a unique isomorphism

(%) n: Ey(F,)/Eyo(Fy) =Z/N
such that
(%) Aa) = ”(“)UZVA; D) 1o Al

4.5.2. For the proof of proposition 4.5.1 we follow the treatment in chapter
VI of Silverman [Sil2]. In order to accord with the normalization used there,
we set

1
[ i
N =X+ 12?}(A).
Then X satisfies (i), (ii), and
(iii)’ For all a € E,(F,) with [2]a # 0,

Y ([2]a) = 4N (a) + o((2y + mz + a3)(@) — To(8).

The proof of Theorem 4.1 of loc. cit. applies with the real logarithm replaced
by the p-adic logarithm to show that

N(a) = %max{v(a:(a)_l),O} + %’U(A),

which establishes (a). Our proof of (b) is similar; we nevertheless take the
time to fill in some details in segments 4.5.3-4.5.4 below.

4.5.3. The proof of Theorem 1.1 of loc. cit. applies with the real logarithm
replaced by the p-adic logarithm to show that properties (i)—(iii)’ uniquely
determine \. Let L, be a finite extension of F, of ramification degree e’
over F),, suppose (b) has been established over L,, and let X" be a function

Ey(Fy) \ {0} = Qp
which satisfies properties (i)—(iii)’. Then the formulas given in parts (a) and
(b) give us a function

AL+ Eo(Lo) \ {O} = @



A NON-ABELIAN CONJECTURE 33

which, by uniqueness, extends \'. Our preferred generator ag of E,(Ly)/Ey o(Ly)
gives us a preferred generator ¢’ag of E,(F,)/Eyo(F,). We have

N:NL/el

and for a € E,(F,) we set

n(a) =nr(a)/e.

Then

nr(NL —nr) n(N —n)
— = Y og|AL| = ——L1og|A
oN? og |ALl SN2 og|A|

which establishes 4.5.1(xx) over F,. The uniqueness of 4.5.1(x) follows as
in Lemma 5.1 of Silverman [Sill]. So after possibly replacing F,, by a finite
extension, we may assume F, has split multiplicative reduction.

4.5.4. It follows that E, is isomorphic to a Tate curve E, for some q € F;
with |¢| < 1 and v(A) = v(q). Let ¢ denote the induced map

U Fy — Ey(Fy).
By Chapter V §4 of Silverman [Sil2],

Y Fy/q" = Ey(Fy)
restricts to N
O: i> EO,v(Fv)’
So the isomorphism
Ev(Fv)/EO(Fv) = Z/N
is realized as

F: ord
— Z/N.
q*0; /

Thus, if
a = (u)
with 0 < v(u) < v(gq), we have

n(N —n) 1 (v(w)?
So 4.5.1(x%) is equivalent to

Vo) = 382 (4 ) vla)

where Bo(T) = T? — T + 1/6. We then set

N6(w) = 38 (2 u(g) + o(0(u)

(1—q¢™u)(1 —¢™u™")
(1 —qm)? ’

where




34 BALAKRISHNAN, DAN-COHEN, KIM, AND WEWERS

and check that X' satisfies (1)—(iii)’. The proof of Chapter VI, Theorem 4.2
of Silverman [Sil2| applies with the real logarithm replaced by the p-adic
logarithm throughout.

This completes the proof of proposition 4.5.1.

4.6. Corollary. Suppose F, is unramified over Q; and suppose FE, has
semistable reduction. Let N, = v(A(E,)). Then the possible values for
¢, on X (O,) are

—(n(Ny, —n)/2N,)logl; 0<n<N,.
Proof. By proposition 4.5.1, this follows from theorem 4.1.6. O

5. PUNCTURED ELLIPTIC CURVES OF LOW RANK

5.1. We put ourselves in the situation and the notation (£, X, «, 3, b, S,
Ny, Wy, ...) of segment 1.12 with p an odd prime of good reduction, and
T = S U{p}, and with the goal of proving the theorem stated there, we
begin by computing the image of

loc, : Sel*(X) — H}(Gp, Us).
We have the exact sequence
0—=Qp(l) = Uy —= V,(E) =0,

where V,(E) = T,(F) ® Q, is the Q,-Tate module of E = £ @ Q. We recall
that
H*(Gr,Vy(E)) = H(Gp, Vy(E)) = 0,

so we have inclusions like so.
HY(Gr, Qp(1)) —— H'(Gp,Qp(1))
[4
HY(Gp,Uy) ——— HY(G), Us)

It is straightforward to check that in this context, maps of Galois modules
send crystalline classes to crystalline classes, so these inclusions induce in-
clusions like so.

H}(GT7QP(1)) E— H}(Gme(l))
Oy

H}(GT, Ug) E—— H}(Gp, Ug)
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5.2. Lemma. If we assume, as in theorem 1.12, that £(Z) has rank zero®

and that II1p[p™] < oo, then Sel(X) is contained in the image of 6.

Proof. Tt is a general fact (which is straightforward to check) that the map
HYG7,Upy1) — HY (Gr,Up)
restricts to a map of Selmer schemes. On the other hand, we have an inclu-
sion Sel! (X)  Sel'(£), and
Sel'(£) =£(Q)®Q, =0
by corollary 3.4.1, so
Sell(x) = 0.
Hence each P € Sel?(X) is 6(Q) for some Q € H'(G7,Q,(1)). To see that
Q is crystalline at p, we recall that

H%(Gp, Vo(E) ® Br) =0,
which implies that the map #p in the following diagram
HY(Gr,Qp(1)) —— H'(Gp, Qp(1)) —— H' (G, Bur(1))
0 05
HY(Gr,Uy) —— HY(Gp,Us) —— HY(Gp,Us @ Be;)
is injective as shown, so that 6(Q) crystalline implies @ crystalline. O

This allows us to regard Sel?(X) as a subset of H}(GT,Qp(l)), and to
compute its image in H}(Gp, Qp(1)).

5.3. Recall (for instance from segment 6.2 of [DCW2]) that H}(GT,@p(l))
can be realized as the subspace of Q* ®z Q, spanned by elements that are
units outside S. Since Z* ® Q, = 0, we have

H}(GTyQp(l)) = [ZS]* Xz Qp (_>Hf pa@p @Hl va@p )
veS
We define the function

¢o : H' (Gy, Qp(1)) = Qp
by
c—logxUc
(including v = p). We put these together to define
¢ : Hi(Gp, Qp(1)) & @ H' Gy, Qu(1)) = Q,

veS

3To avoid misunderstanding, we remind the reader that £ refers to the compact curve,
so that £(Z) = E(Q), where E is the generic fiber of £. That is, what we write as £(Z) is
what is usually called the rational points of E, while our X (Z) is sometimes confusingly
referred to as the integral points of F.
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by
gb((cv)UET) = Z ¢v(cv)'

5.4. Lemma. For elements c € H}(GT,Qp(l)), we have
¢((10CU c)veT) =0.
Proof. We have
¢((locy ¢)per) = Z log x Uloc,(c)

veT

= Z loc, (log x U ¢)

veT
= Z loc, (log x U ¢)
all places v

since the contributions away from 7T vanish.

By global class field theory (see, for instance, Tate [Tat, Theorem B, §11]),

the composite

H*(Gp,Gm) — P H*(Go,Gr) — Q/Z

is equal to zero. By Hilbert’s theorem 90, the cohomologies with fin-
coefficients inject into the cohomologies with G,,-coefficients. Taking inverse

limits and tensoring with @Q,,, we find that the composite
H?(Gr, Qp(1D) = D H? (G0, Qp(1)) = Qy

is equal to zero, which completes the proof of the lemma.

5.5. For [ # p, we saw in corollary 4.6 that on j;X'(Z;) the function ¢, takes

the values
—(n(N; —n)/2N;) logl,
where N; = ord; Ag. As in the introduction, we define

V[/l::{n(]\z[li]\;mlogl‘Ogn<Nl}

W .= HWl,
les
and for w = (w;) € W, we set

Jwl[ == w.

les

and
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According to lemma 5.4, if ¢ € Sel2( ), we have

¢p(locy(c) Z¢v (locy(c)) = ||Jw|

veS
for some vector w € W.

Proposition. With assumptions as above we have
loc,(HA(U2)) = | {n € H{(Gp, UNU?) | ép(n) = |lw]}-
weW

Proof. The inclusion C has already been shown. To see that these equations
define exactly the image, note that the local reciprocity law

log x U k(a) = log x(recy(a))

for a € Q) shows that we get an isomorphism

(*) (logx) U (-) : H}(Gyp, Qp(1))® D H' (G, (1))

vES

~ H*( Gp, Qp(1) @@H2 Gy, Qp(1))

veS
~DQ,
veT

Indeed, for v # p, HY(G,, Qp(1)) is one dimensional and generated by the
class of k(v). We see this by the exact sequence

0—-2Zy,—-Q,—-Z—0

and the fact that the kernel has to map to zero under the Kummer map
(since v # p). So it suffices to show that

log(x(rec(v)))
is non-zero in Q,. But
x(rec(v)) = x(Fry)
is just v € Zy, an element of infinite order. So its log is non-zero.

Forv=p H ( 1, Qp(1)) is two-dimensional. But we’ve already discussed
the fact that H} #(Gp,Qp(1)) is one-dimensional, generated by the Kummer
image of the units in Zy. Thus, it suffices to show that x(rec(Zy)) is of infinite
order. But in fact, x(rec(-)) just induces an isomorphism Z} ~ Aut (Zy(1))
by the definition of the reciprocity map in local class field theory ([Ser, p.
146]).

%ile isomorphism (*) will take the (injective) image of H}(GT,@p(l)) to
the (injective) image of H2(Gr,Q,(1)), which is exactly equal to the kernel
of the sum map

D = Q,.

veT
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Since
dim Hp(Gr,Qp(1)) = dim[(Zs)* ® Q] = |T] — 1,
we see thereby that (log x) U (-) takes H}(GT, Qp(1)) also isomorphically to
the kernel of the sum map. On the other hand, we have seen that
log xU : P jo(X(Z,)) =~ P W, < P Q.
veS veS veES
Therefore, the subspace

Hy(G,U2) € HF(Gr,Qp(1)),
which is defined as the inverse image of @, g ju (X (Zp)), is exactly defined
by
Uin e BGr. @) | 3 dnllocy(n) = ]}

Hence, the p-component of elements of H%(G, Us), that is, its image under
loc,, is exactly defined by the equations in the statement of the proposition.

O

5.6. Remark. According to proposition 5.4, the equality
X(Z) = X(Zyp)2

may be viewed as an exactness statement for the sequence

15 X(2) - [[ ¥(Z) 2 Q,,
veT
in a manner reminiscent of class field theory. Since the map h, is quadratic,
exactness here should be understood in the sense of pointed sets. Of course,
this cannot hold literally, since we could take the image of an integral point
in [[,er X (Z,) and move it inside its residue disk just at one v # p without
changing the height. The formula

X(Z) = U,V (w) C X(Zyp),

‘the projection to the p-component’, is one recasting of this exactness that
absorbs the ambiguity.

5.7. We can now prove theorem 1.12. We follow the notation of [Kim4],
section 3 and let
Exp : LYE/FO ~ H}(Gp, Us)
denote the non-abelian Bloch-Kato exponential map from the Lie algebra of
the de Rham fundamental group. Recall that LPT may be realized as the
quotient of the tensor algebra T"HPT(Xgy,) modulo the (n + 1) power of
the augmentation ideal. We denote by A, B the elements of Lg) R associated
to the basis of HP®(Xg,) dual to {a, 8}. According to lemma 3.2 of [Kim4],
LPE/FO has basis
{A, A% AB,BA}.
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According to the proof of corollary 0.2" of [BKK], the map
Jp + X(Zp) — H}”(Gpv Ur)

is given by .
o) = To8(2) Bxp() = ([ o) Bxp(a),
while
Jp + X (Zp) — H}”(Gpv Usz)
is given by
Jp(2) = (log(z) Exp(A), Dy (2) Exp([4, B])),
where

Dsy(2) = /b af.
By Proposition 3.3 of [Kim4]|, we have

¢p(Exp([4, B]) = L.
Therefore,
bp(ip(2)) = D2(2).
From this, we see that
X(Zp) = E(Zp)(tor) \ O.
For small primes p, it will happen frequently that
X(Z) = X(Zp)1,
since global torsion on &£ will often be equal to the local torsion for p small.
But of course, this fails for large p, and one must look at level 2, which then
imposes on X(Zy)2 the pair of conditions
log(2) =0, Da(2) = |lw]|
for some w, as in the statement of the theorem.

5.8. So far, we have tested conjecture 3.1 using the prime p = 5 for 256
semi-stable elliptic curves of rank zero from Cremona’s table, and found

X(Z) = X(Zyp)2

for each of them. To give a rough sense of the data computed using the
methods of [Bal2|, the details of which can be found on [Ball], we present
here a small table illustrating some of the large ||w||-values that come up as
we go through the list.
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Cremona | number of Cremona | number of
label ||w||-values label ||w||-values
1122m1 128 3094d1 72
1122m2 384 348601 72
1122m4 84 377411 120
1254a2 140 4026¢g1 90
1302d1 72 4134b1 90
1302d2 96 4182h1 300
1426b4 64 4182h2 64
1506a2 112 4218b1 96
1806h1 120 4278j1 90
2397b1 72 42782 100
2418b2 64 4434c1 210
2442h1 78 4514d1 64
2442h2 84 4602b1 64
2478c2 68 4658d2 66
2706d2 120 4774el 224
2967cl 72 4774e2 192
2982j1 160 4774e3 264
2982j2 140 4774e4 308
3054b1 108 4862d1 216

Hence, for example, for the curve 1122m2,
y? + zy = 23 — 41608z — 90515392

there are 384 of the W(w)’s that potentially make up X' (Zy)2. Of these, all
but 4 end up being empty, while the points in those ¥(w) consist exactly of
the integral points

(752, —17800), (752, 17048), (2864, —154024), (2864, 151160).
5.9. Another kind of test is to fix a few curves and let p grow. For example,
for the curve (‘378b3’)
y? +xy = 2® — 2% — 1062z 4+ 13590,
we found that
X(ZP)2 = X(Z) = {(197 _9)7 (197 _10)}
for 5 < p < 97. As one might expect, as p gets large, X'(Zy,); becomes
significantly larger than X' (Z). For p = 97, we have
| X (Zg7)1| = 89.
However, imposing the additional constraint exactly cuts out the integral
points for each p.
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5.10. Is it conceivable that
X(L)tor =V € X(Zp)
w

even when & has higher rank? There are rather obvious relations with the
conjecture on non-degeneracy of the p-adic height [MST], which we hope to
investigate in a later work. At the moment, we have a small bit of evidence,
having tested the equality numerically for 10 curves of rank one, 2 curves of
rank two, and one curve of rank three. Some of the cases are quite dramatic,
such as Cremona label ‘82110bt2’, which has rank one. In this case, there are
2700 different ||w||-values to consider, each contributing some ¥(w). How-
ever, the only non-empty ones are those that contain the 14 integral torsion
points [Ball].

5.11. We close this section with a brief mention of the framework for conjec-
ture 3.1 when &£(Z) has rank one, leaving a systematic treatment to a later
paper. As above, £ denotes the regular minimal model of an elliptic curve
over Q. Assume that there is a point y € X(Z) of infinite order. In the case
where the Tamagawa number of £ is 1, we saw in [Kim4, BKK] that
loc, : Hy(Up) = Hy(Gp, Up) = A

is computed to be

Al — A%

t e (t,ct?),
where

¢ = Da(y)/log*(y).
So the image is defined by zo — cx% = 0. Meanwhile,
X(Zy) — H}(Gm Us)
is
2 (log(2), Da(2)).
Thus,
X (Zp)2
is the zero set of
Dy(2) — clog?(z).

It is sometimes convenient to write this defining equation as

Ds(2)

log®(z)
In the earlier paper [BKK], we checked in a number of cases that the integral
points do indeed fall into the zero set. However, it turns out that

X(2) © X(Zp)2




42 BALAKRISHNAN, DAN-COHEN, KIM, AND WEWERS

in the majority of cases, underscoring the importance of going up another
level. (In fact, a superficial guess based on the rank zero case would indicate
that if the localization

becomes injective at level n, then the conjecture might hold at level n + 2.)

5.12. When we assume that £ is semistable but with arbitrary Tamagawa
numbers as above, the precise form of the equation becomes a bit delicate,
and we will leave a systematic treatment to a later paper. However, if we
define in this case

h(y)

(log(y))?’

where h is the p-adic height [MST] (except that our convention for the height
function multiplies theirs by p) and y is a point of infinite order, then we
can prove the following:

Proposition.
C
x(z)c |J{ze @) | Dalz) + g(log(fﬁ))2 — c(log(2))* = [Jwl[},
weW
where
o— a? + das B Eqo(E, a)
12 12

is the special value of the p-adic modular form E, associated to the pair
(E, ).

The equations on the right hand side should in fact define X'(Z;)2, but we
will not check this at the moment.

Proof. Let hp(z) := hp(z — O,z — O) denote the local height at p of z. We
first show that

C
hy(z) = Dalz) + 5 (10g(2))’.
To do this, we use an interpretation of the local height at p in terms of Cole-
man integrals as in Theorem 4.1 of [BB|. Note the following normalization:
our global height (and local heights) are precisely half those in [BB].

In terms of our normalization of local heights, Theorem 4.1 of [BB| gives
that

hp(z—O,z—O):—/ am,
b

with [n] U [a] = 1. Note that 1, which is found in the course of proving
Corollary 4.2 of [BB], is given by
—n =10 + COZ,
where ng = 5 and
a? + das Ex (B, 0)

C=—"7 12
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is the special value of the p-adic modular form Es associated to the pair
(E, ). Then substituting appropriately, we have

%@Z—A:m

z z
:/ano+C/ oo
b b

= Do(2) + 5 (log(2))”

Thus we have that

() = Daz) + 5 log(2))”

Finally, since

we have
c(log(2))? = h(z)

C
:Dﬂ@+§ﬂ%@»?+§y%@—o¢—ox
v#p
and noting that the possible values of —h,(z — O,z — O) on integral points
z are precisely given by ¢,, we conclude that

2(Z) ¢ | (= € X(2,) | Do(2) + 5 l08(2))? — ellog(2))” = Ilul]}
weWw

6. THE THRICE PUNCTURED LINE

6.1. Let X = P\ {0,1,00} and take b to be the standard tangential base-

point (ﬁ based at 0 € P!. For the basic facts here, we refer to [Kim2]. We
have

Ur = Qp(1) x Qp(1)
and
U?/U° = Qp(2),
so there is an exact sequence
0—Qp(2) = Uz — Qp(1) x Qy(1) — 0.

The diagram
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0
0
The map j, takes the form

z — (log(2),log(1 — 2)),
(see, for instance, Proposition 7.3 of Dan-Cohen—Wewers [DCW?2|) so that
X (Zp)1 is the common zero set of log(z) and log(1l — z). Since z and 1 — 2
must both be roots of unity, the only common zero possible is z = (g for a

primitive sixth root of unity. If p =3 or p =2 mod 3, then (s ¢ Q,, so that
X(Zp)1 = ¢. That is,

thus becomes
— X(Zy)

loc
— P 5 A2,

Proposition. Conjecture 3.1 is true for n = 1 when X = P!\ {0,1, 00} and
p=3orp=2 mod 3.

6.2. When p=1 mod 3
X(Z) = ¢ S {Gs, G} = X(Zp)
and we must go to a higher level. We have

Hi(Gp, Uy) = A®

and
gp X(Zp) — A3
is given by
Jp(z) = (log(2),log(1 — 2), — Lia(z)),
where

Lia(e) = 30 5 = [ e/ 1)

is the p-adic dilogarithm (loc. cit.). Meanwhile, we still have
Sel'(x) =0,
since H'(G7,Qp(2)) = 0 by Soulé’s vanishing theorem [Sou|. Therefore,
X(Zp)2 ={z | log(z) =0,log(1 — z) = 0, Liz(z) = 0},
and the question of whether X (Z) = X(Z,)2 reduces to checking if Lis((e)
can be zero. Note that ([Col|, Prop. 6.4)
Lia(Gs) + Lia(Gs 1) = —log*(¢e)/2 = 0,

so that we need only discuss non-vanishing at one of the sixth roots. This
question was raised by Coleman in [Col|, page 207, remark 3.
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6.3. We have checked numerically thus far that

Lia(Cs) # 0

for p in the range 3 < p < 10°. This may be carried out as follows. We define

power series g, € Q[[v]] recursively by
(v—1P
—yp—1—-—-— 7
gO(U) v P — (U — 1);0
and for n > 1,

ghi1(v) = v g (V) (1 +v 40+ )

Then ) .
. D
LZ?(C) - 2 192(1 — C)

for any (p—1)*! root of unity ¢. Indeed, this is a special case of Propositions
4.2 and 4.3 of [BdJ|. Hence, since 1/(1 — (s) = (g, it suffices to check that
92(C6) # 0. In fact, (for p as above) g2((g) is nonzero modulo p. Moreover,
go reduces modulo p to a polynomial of degree p — 2 which is determined by
the reductions modulo p of the same equations as above. So the verification
may be performed rapidly with any computational software. We used Sage
[DCW1].

6.4. However, this may fall short of providing definitive evidence that

Lia(¢e) # 0

for all primes congruent to 1 mod 3: if for each p, the value of g2((s) modulo p
were merely random, the probability of g2((g) being nonzero for p in our range
would be about 0.413. On the other hand, the probability that g((s) = 0 for
some p =1 mod 3 would be 1. The point is that the product

I a-1vp

p=1 mod 3

tends to zero, representing the probability that g2((s) does not vanish mod p
for all p=1 mod 3 (assuming these values are random, independently and
evenly distributed variables).

Suppose we want to falsify the randomness hypothesis. To do this, we
could show that g2({s) doesn’t vanish for all p < N for some large value
of N. Unfortunately, the convergence of the product is extremely slow: for
N =100, 000 it is just 0.413, which does not give convincing evidence. This
computation took several hours. Doing the computation up to p < 10® would
take several days, and the probability would be 0.3775, which is not so much
better.



46 BALAKRISHNAN, DAN-COHEN, KIM, AND WEWERS

7. REMARKS ON CURVES OF HIGHER GENUS

7.1. Let X — SpecZ be the regular minimal model of a proper smooth
curve of genus > 2 (case 2 of the trichotomy of segment 2.1). We fix a base
point b € X(Z). Then the associated map

Jp + X(Zp) — H}”(Gpv Uh)

can be identified with the map
X(Zp) € X (Qp) = Jx(Qp) = TeJx,
where Jx is the Jacobian of X and T,.Jx is its tangent space at the origin
[BK].
7.2. If we assume that II1;, [p>] < oo, then it follows that
Ix(Z) ® Q, = Sel' (X).

Indeed, the corollary of segment 3.4.1 applies equally to the abelian variety

Jx:
Jx(Z) ® Q, = Sel'(Jx).

Since the map Uy (X) — U;i(Jx) is an isomorphism, we have a natural in-
clusion

Sel*(X) C Sel(Jx).
Conversely, if
P e Sel*(Jy)

is an arbitrary Selmer class for the Jacobian, then
loc, P=0 for all v # p
whence
P € Sel' (X).
7.3. If we assume moreover Jx(Z) has rank zero, then it follows from seg-
ment 7.2 that Sel'(X') = 0. So by segment 7.1 we have
X (Zp)y = X(Zp) N Tx (Zp)(tor).

7.4. We apply this to the Fermat curve
X 2! + yl =7

for prime | > 5. It is a theorem of Coleman, Tamagawa, and Tzermias [CTT,
Theorem 2| that
Xi(Zp) N Ix, (Zp)(tor)

must satisfy xyz = 0. Therefore, if (; ¢ Q,, then
Xi(Z) = Xi(Zp) OV JIx, (Zp)(tor).
(Using also the theorem of Wiles.) Meanwhile, we have
rank Jx,(Z) =0
for I = 5,7 [Fad|. So by segment 7.3, we have



A NON-ABELIAN CONJECTURE 47

Proposition. With notation as above, assume
111, [p*) < oc.

If A} is the minimal regular model of X;, we have
X(Z) = X(Zp)

for { = 5,7 and p # 1 mod [. That is, conjecture 3.1 is true at level 1 for
these [ and p.

7.5. It should be interesting to investigate conjecture 3.1 in relation to the
many known results about torsion packets on curves, for example, for Fermat
curves or modular curves [BR]. It seems reasonable to suspect that there
should be more instances where X' (Z) = X(Zp)1 even when the Jacobian
has positive rank. Another way to say this is that the classical method
of Chabauty is usually applied with one choice of a differential form. The
question here raised by conjecture 3.1 is how often the common zero set of
all available abelian integrals will give us exactly X (Z).

7.6. In fact, it is relatively easy to produce example of affine curves of higher
genus and good reduction primes p for which the conjecture holds. We
illustrate this by way of an example. Consider the elliptic curve E with
affine model
y? = 23 — 891x + 4374.
It turns out that
EQ)~7Z/4
and that the two points P and @ of order four are (—9,+108). Thus, by
making the substitution x 4+ 9 = dt?, we get a cover
f: X —E\{O}
ramified exactly over P and (). This affine hyperelliptic curve has equation
y? = 328 — 27d%x* — 648dx? + 11664.

For any p of good reduction and d such that d is not a square in Q,, the
point of order two (27,0) will not lift to X'(Z,). On the other hand, we have
the commutative diagrams

X(Z) ——— X(Zy)

|

[E\O)(Z) — €\ O1(Zy)

~
1%

X(Zp) —— H}(Gp’ T (X, b))

| |

[E\O)(Zp) — H}(Gyp,my " (E\ O, 1))
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and
Hy (G, 7" (X, b)) ———— H(Gp, 7" (X, b))

l |

HY(G, 72 (B 0,5)) — HN(G, 7 (E\ O,)).
These imply that
X(Zy)2 C FHEN O(Zy)2-
Hence, for such d and p, it is easy to deduce that whenever
[E\ON(Z) = [€\ Ol(Zp)2,

we also get

for free.
We can check this, for example, for d = 2 and all 3 < p < 53 such that
p=3 mod8and p=95 mod 8.

8. REMARKS ON S-INTEGRAL POINTS

8.1. Let X — SpecZ denote a regular Z-model of a hyperbolic curve over
Q, and let b denote a base point as in segment 2.1. As above we denote by
U,, the level-n quotient of the unipotent p-adic étale fundamental group of
Xp at b. We also use the same notation for the fundamental group of Xg,-
Let S denote a finite set of primes of Z, p a prime of good reduction not in
S, and let T be a finite set of primes containing S and p, as well as all primes
of bad reduction. We define the S-integral Selmer scheme of X in level n by

Selg(X) = () loc, ' [Im(j,)] € H{(Gr,Up).
v#p,UES
This gives rise to a filtration
X (Zy)sn = jp  (locy(Hz, 5(Un)))
on X(Zy), which one might conjecture to converge to X (Zg).

8.2. As an (admittedly small) step in this direction, we consider the case
X =P'\ {0,1,00} and S = {2}. Then the diagram

X(Z[1)2]) ——— X(Zyp)

| |+

Sel§(X) —— H}(Gyp, Us)

locy,
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becomes

{2,1/2, -1}—— X(Z,)

| s

A2 ; A3

locy,

where [DCW2]

locy(z,y) = ((log 2), (log 2)y, (1/2)(log” 2)zy).
Recall that
Jp(2) = (log(z),log(1 — 2), —Liz(2)),
so that X(Zp)2 is the zero set of
2Lis(z) + log(z) log(1 — 2).

The fact that {2, —1,1/2} is in the zero set, which we deduce here from the
commutativity of the localization diagram for Selmer schemes, was noticed
earlier by Coleman to be a consequence of standard dilogarithm identities

([Col], remark on page 198). We have checked numerically that this is exactly
the zero set for p = 3,5,7, so that

X(Z[1)2]) = X(Zp)12y 2

in that case. The equality starts failing for larger p. Coleman already noted
this failure for p = 11, since %\/5, for example, is in the zero set. This fact,
as well as the considerations of the previous sections, indicate the importance

of investigating systematically weakly global points of higher level.
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