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Abstract: Early detection and rapid intervention can prevent death from opioid overdose. At 

high doses, opioids (particularly fentanyl) can cause rapid cessation of breathing (apnea), 

hypoxemic/hypercarbic respiratory failure and death, the physiologic sequence by which people 

commonly succumb from unintentional opioid overdose. We present algorithms that run on 

smartphones and unobtrusively detect opioid overdose events and their precursors. Our proof-of- 

concept contactless system converts the phone into a short-range active sonar, using frequency 

shifts to identify respiratory depression, apnea and gross motor movements associated with acute 

opioid toxicity. We develop algorithms and perform testing in two environments: (1) an 

approved supervised injection facility (SIF), where people self-inject illicit opioids, and (2) the 

operating room (OR), where we simulate rapid, opioid-induced overdose events using routine 

induction of general anesthesia. In the SIF (n=209), our system had 96% sensitivity and 98% 

specificity for identifying post-injection, opioid-induced central apnea and 87% sensitivity and 

89% specificity for identifying respiratory depression, both key events commonly preceding fatal 

opioid overdose. In the OR, our algorithm identified 19 of 20 simulated overdose events. Given 

the reliable reversibility of acute opioid toxicity, smartphone-enabled overdose detection, 

capable of alerting naloxone-equipped friends and family or Emergency Medical Services 

(EMS), may hold potential as a low-barrier, harm reduction intervention.

 
Main Text:  
 

Introduction 

 

Fatal opioid overdose remains a public health epidemic in the United States (1–6). Each day, 115 

Americans die from opioid overdose and data from the Centers for Disease Control and 

Prevention (CDC) indicate the epidemic is worsening (7–9). Unlike many life-threatening 

medical emergencies, opioid toxicity is readily reversed with rapid identification and 

administration of the overdose antidote naloxone or supportive respiratory care (10–13). Thus, a 

fundamental challenge of fatal opioid overdose events is that victims die alone or among 

untrained or impaired bystanders, in each case with no or insufficiently timely diagnosis and 

treatment (14). To help connect potential overdose victims with widely available life-saving 

interventions, we developed algorithms for commodity smartphones that unobtrusively recognize 

opioid overdose by its physiologic precursors. Our software system, which runs as an application 

on smartphones, converts the phone into a short-range active sonar system, using frequency 

shifts to identify respiratory depression, apnea and gross motor movements associated with acute 

opioid toxicity. By creating overdose detection algorithms that can be deployed on devices most 
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high-risk individuals already own (15, 16),  we hope to provide  a harm reduction system that 

can automatically connect with naloxone-equipped friends and family or EMS to help prevent 

fatal overdose events (17, 18).  

 

A mobile system that can detect opioid overdose precursors and events in real-time does not 

currently exist due to both design and validation challenges. Existing, human-based approaches 

to overdose diagnosis rely on medical grade equipment or trained recognition of diagnostic signs 

of opioid toxicity (19–23). Achieving similar sensing capabilities on smartphones, without the 

need for medical grade equipment, is challenging since it requires tracking physiological 

parameters without being intrusive and violating privacy (24,25). In addition, validating the 

efficacy of any opioid toxicity system requires access to patients and data while high-risk opioid 

use occurs, which is difficult because this can represent a medically life-threatening situation. 

We overcome these challenges with an active sonar-based monitoring solution, leveraging access 

to two unique environments where people routinely experience overdose respiratory physiology 

without harm: (1) a legally sanctioned supervised injection facility (SIF), where people self- 

inject previously obtained illicit opioids under medical supervision and (2) the operating room 

(OR), during routine induction of general anesthesia.  

 

This report describes a contactless smartphone-based system that matches the performance of an 

invasive respiratory impedance monitor in identifying 3 critical overdose precursors: opioid-

induced respiratory depression, central apnea and simulated overdose events (19,26,27). The 

system works by placing the phone within 1 meter of the subject as it monitors them during the 

post-injection period, the highest risk time for a fatal overdose event and the period when a 

victim would most benefit from rapid identification and resuscitation.

Results 

Subhead 1 : Concept and Algorithms 

Our system uses frequency modulated continuous waveform (FMCW) and converts the 

smartphone’s native speaker and microphone into a short-range active sonar system (28–34) that 

allows for portable measurement of chest motion and respiration using inaudible acoustic 

signals. The phone continuously transmits a custom, inaudible, FMCW where the transmitted 

frequency increases linearly with time between 18 kHz and 22 kHz within a duration of 10 ms 

(Figure 1 A,B). These custom acoustic signals reflect off a surface (in this case, a moving chest 

during respiration) and the echo arrives back to the smartphone’s microphones after a time delay 

∆t corresponding to the distance of the reflector from the smartphone. The time delay ∆t is given 

by 
  

  

 
, where d is the distance of the human body from the smartphone and vs is the velocity of 

sound in air. When the subject’s chest moves due to breathing, the distance d to the smartphone 

and the corresponding time delay of its echo ∆t at the microphone changes. Because the 

frequency of the FMCW signals increases linearly over time, each of their time delays ∆t 

translates to a unique frequency shift ∆f in the reflected signals. Hence, we can measure the 

changing distances due to breathing motion by observing the frequency shift caused by the echo 

over time. The periodicity of the changes generates sinusoidal waves, the peaks of which 

correspond to a complete breathing cycle (Figure 1C). A peak detection algorithm then identifies 

the maximum amplitude of the wave, which enables determination of a subject’s respiratory rate 



 

and the presence of apnea.  

Our system builds on previous work using active sonar to detect sleep apnea (28), however the 

opioid use case differs from the sleep environment in several fundamental ways. First, breathing 

motion is diminished during opioid use, which can complicate respiratory peak detection, and 

subjects may use opioids multiple times over the course of a day and thus may have a diminished 

breathing signal at the initiation of their use event. Additionally, the sleep laboratory in prior 

work is a controlled environment with a lone subject who is primarily stationary. In contrast, 

subjects using opioids have increased motion that can affect the time delay of the echo, may 

engage in high-risk opioid use behaviors in the presence of others, and are generally in a much 

less controlled environment, which introduces other sources of potential interference (35, 36). 

Notably, the supervised injection facility where our experiments take place is a highly dynamic 

and stimulating environment (recording devices are prohibited within the SIF, but the 

environment can be observed in this public domain report (37)). For example, there are routinely 

several people around; there is talking amongst clients; staff and clients walk around; overhead 

music is playing and occasionally personal dogs are within the environment. In addition, there is 

climate control equipment, as well as a special indoor ventilation system (to remove the smoke 

from heroin preparation), all of which produce ambient noise. In short, there are several 

environmental elements in the high-risk opioid use domain that differ from the controlled setting 

of a sleep laboratory.  

We develop algorithms that address the above challenges specific to the high-risk opioid use 

domain (see Materials and Methods for detailed algorithmic and experimental description). At a 

high level, our algorithm uses FMCW to disambiguate the reflections at different distances from 

the smartphone, the resolution of which is approximately 0.7 cm with a typical microphone 

sampling rate of 48 kHz. Thus, the algorithm can separate the subject’s breathing signal from 

other movements in the environment that occur at a different distance (e.g., those of an opioid 

using companion). In addition, by tracking the distance corresponding to the subject’s breathing 

signal, the algorithm automatically re-calibrates when a posture change occurs or when the 

subject or phone changes position. Figure 2 demonstrates benchmark performance across phone 

models (Galaxy S4, S5, S6, iPhone 5S, Google Pixel and Nexus), phone orientations, subject 

distance and posture, and various environmental noise and motion conditions (see 

Supplementary Materials and Methods for detailed experimental descriptions).

Subhead 2 : Real-world Illicit Opioid Use, Supervised Injection Facility 

We first report data of our system deployment in Vancouver, British Columbia, within an 

approved supervised injection facility (see Figure 3). While our primary target is people who  use 

opioids when alone (the demographic at highest risk for fatal overdose), we choose the SIF 

environment because it facilitates safe, real-world testing and algorithm development based on 

actual opioid self-injection events. Acute, life-threatening overdose events requiring medical 

intervention still remain relatively uncommon in this environment, occurring in less than 1% of 

opioid use events (approximately 500 supervised injections occur per day in the facility) (38). 

Therefore our primary outcomes of interest were post-injection central apnea (cessation of 

breathing for 10 seconds or more) (27) and opioid-induced respiratory depression (respiratory 

rate ≤7 breath/minute) (39, 40), both of which are necessary precursors to lethal opioid 

intoxication events.  



 

We recruited participants over 209 self-injection instances (194 unique participants): 115 

injection events were used as a development set and 94 were used as an evaluation set to 

measure algorithm performance. Results from the evaluation set are presented here. The average 

age was 43 ± 11.0 years; the average height and weight were 178 ± 8.3 cm and 77 ± 12.4 kg, 

respectively. Sixty-four participants (68%) reported using heroin; 19% reported using fentanyl; 

13% reported using morphine or hydromorphone. Following injection, 47 participants (50%) 

experienced clinically important respiratory depression; 49 participants (52%) experienced at 

least one post-injection central apnea event; 8 participants (8.5%) had a manual intervention by 

clinical staff, of which 2 participants (2.3%) experienced an overdose event requiring clinical 

resuscitation (i.e., oxygen, bag-mask ventilation and/or naloxone therapy). Both overdosed 

participants were successfully resuscitated by the clinical staff without issue.  

The system had strong performance detecting post-injection central apnea events and respiratory 

depression, compared to the reference standard (Figure 4 C,D). It had 95.9% (95% CI, 86.0% - 

99.5%) sensitivity for identifying post-injection central apnea events (cessation of breathing for 

10 seconds or longer) and specificity of 97.7% (95% CI, 88.2% - 99.9%). The system had 87.2% 

(95% CI, 74.2% - 95.1%) sensitivity for identifying post-injection respiratory depression 

(respiratory rate ≤7 breaths/minute) and 89.3% (95% CI, 76.9% - 96.4%) specificity (see Figure 

4 A,B).  

Figure 5A shows the distribution of the number of central apnea events per participant, as 

identified by our system. Forty-eight percent of the participants had no central apnea events, all 

of whom required no intervention. Among those who experienced a post-injection central apnea 

event, 71% had 1–2 central apnea events during the 5 minute post-injection monitoring period. 

Figure 5B is a histogram of the durations of these central apnea events. The plot shows that 66% 

of central apnea events were ≤20 seconds in duration. We also note that both overdosed 

participants had a central apnea event of at least 30 seconds prior to clinical intervention.

 

Subhead 3 : Simulated Overdose Detection, Operating Room 

 

A key limitation of the SIF environment is the limited occurrences of overdose events requiring 

clinical resuscitation. To address this, we next report data of our system deployment in the 

operating room. We choose this environment because it is controlled and allows us to safely 

simulate the worst-case scenario of acute opioid toxicity: immediate loss of consciousness 

coupled with respiratory depression that would be fatal or critically morbid without intervention. 

Such conditions are safely reproduced during routine induction of general anesthesia (see Figure 

6) when patients receive fentanyl and other anesthetic drugs.  

 

We recruited for 35 instances of simulated overdose (34 unique participants): 15 patients were 

used as a development set to generate the algorithm, and 20 were used as an evaluation set to 

validate algorithm performance. Results from the evaluation cohort are presented here. The 

average participant age was 33 ± 10.8 years; the average weight was 75 ± 14.6 kg; 60% of 

participants were female. In the evaluation set, as expected all 20 patients experienced true 

overdose physiology, characterized by post-injection loss of consciousness and diminished or 

absent breathing. Our algorithm identified 19 of the 20 simulated overdoses as having disordered 

breathing. Of the 19 correctly identified patients, 18 patients experienced sustained apnea 

(terminated per protocol after 30 seconds); and 1 patient had severely diminished breathing that 



 

the algorithm identified as an overdose. The 1 patient who was incorrectly classified had a 

breathing signal just above the algorithm’s threshold. In each case where the algorithm correctly 

identified the overdose event, it detected the onset of respiratory failure similarly to the real-time 

reference standard (Figure 6B). We note that specificity is not meaningful in this environment 

because all participants experience the simulated overdose event (i.e., all patients undergoing 

induction of general anesthesia lose consciousness and experience depressed breathing) (41). 

Discussion 

 

This report focuses on using a commodity smartphone to identify opioid overdose precursors, 

which are crucial indicators given the readily reversible nature of overdose events with early 

detection. In the setting of real-world high-risk opioid use, our results highlight the need for a 

multi-tier interactive alarm system on the phone that escalates or deescalates based on user 

feedback. Put differently, we do not envision the system alerting a third party or disturbing the 

user based on an isolated central apnea or respiratory depression event; rather, an alert should be 

sent only after a subject is unable to respond to a stimulus from the phone following a sustained 

central apnea or respiratory depression event, representing a potentially life threatening 

overdose. Evaluating such a multi- tiered system would be the next step in enabling an end-to-

end overdose detection system using commodity smartphones. 

 

Our study has the following limitations. Healthy participants recruited for the operating room 

experiments are likely different than the eventual intended target population. We chose this 

population for reasons of safety and algorithm development for the worst case scenario of acute 

opioid overdose. External validity is addressed in the supervised injection facility with 

participants who are more likely to use the application as it is eventually intended. It was beyond 

the scope of this study to seek and recruit subjects who use high-risk opioids alone, or to conduct 

our study procedures in a participant’s personal environment outside of the InSite facility.  In 

addition, development of a harm-reduction intervention does not ensure adoption and use. In 

order for this harm reduction intervention to be efficacious, further studies with participant 

feedback and human factor testing is needed to ensure the system meets the needs, values and 

preferences of people who use opioids, in addition to establishing the system’s safety vis-a`-vis 

its potential to encourage moral hazard. Importantly, other harm reduction interventions such as 

take-home naloxone programs have been found not to increase risky behavior or lead to adverse 

health consequences (42–44). Further, prior data on harm reduction interventions show that 

people are willing to engage in behaviors to help keep themselves safe, e.g., by utilizing needle 

exchanges, take-home naloxone, face shields for mouth-to-mouth respiratory support and 

supervised injection facilities (45–47).  Another potential concern is whether the system could 

reliably alert pre-hospital EMS  providers in a time-frame that enables successful resuscitation 

with naloxone or supportive respiratory care. Based on historical data from Seattle, King County 

involving fatal overdose events and average EMS response times, we believe meaningful EMS 

integration is possible (for full discussion and analysis, see Supplementary Materials and Figure 

S1). Such a program would need to incorporate the detection algorithm’s performance 

characteristics to leverage the operations and resources of a given EMS system. Any integrated 

program must also acknowledge that even with rapid connection to EMS, victims still could 

experience morbidity and mortality following opioid overdose (48).  

 

In summary, we report development of a proof-of-concept system that can be implemented on 



 

commodity smartphones and can identify simulated and real-world opioid overdose events and 

their precursors. As a harm reduction intervention, such a system could connect people 

experiencing potentially fatal overdose events with known life-saving interventions (e.g., 

naloxone-equipped friends, family, shelter personnel, or EMS) in real time. As the number of 

deaths attributable to opioid overdose continues to rise, new strategies are needed to help 

mitigate the risk of death and disability from this public health epidemic. One key tool to reverse 

these events is naloxone, which is increasingly available to first responders (including police), to 

people through take-home naloxone programs, and is now endorsed by the US government (49). 

In addition to its use by EMS providers, the administration of naloxone by trained friends and 

family has been shown to be a safe and effective means of reversing overdose (13, 50). However, 

neither EMS, friends or family can intervene with naloxone or supportive respiratory care in an 

emergency if they are not immediately aware that an overdose is taking place. Non-invasive self-

monitoring via smartphone, as we have described, could address this critical shortcoming and 

may represent an easily accessible strategy to help keep people safe until they are able to access 

long-term treatment.

Materials and Methods 

Subhead 1 : Study design 
 

We investigated the accuracy of a smartphone-based software system for identifying opioid-

induced respiratory depression, central apnea and simulated overdose events. Participants served 

as their own controls, with ground truth measurements taken simultaneously by a respiratory 

impedance monitor. In both the supervised injection facility and the operating room, a 

development set was used to develop the algorithm and an evaluation set was used to 

prospectively evaluate algorithm performance. To demonstrate feasibility, we chose to stop 

recruitment after >200 instances of illicit opioid self-injection. These numbers were deemed 

clinically justified for proof-of-concept based on the confidence intervals of our primary 

outcomes. In the operating room, because the algorithm was highly sensitive in detecting 

sustained apnea following induction of general anesthesia, we did not pursue beyond 35 

participants. Randomization was not applicable and investigators were not blinded. All 

participants provided informed consent and the studies were approved by the University of 

Washington Institutional Review Board, the University of British Columbia Office of Research 

Ethics and the Vancouver Coastal Health (VCH) Ethics Services (VCH operates the supervised 

injection facility, InSite).

Subhead 2 : Active sonar detection of breathing signals 

 

Our system transmits frequency modulated continuous wave (FMCW) signals and analyses the 

frequency shifts resulting from human motion. The frequency shift, from which the respiratory 

rate is derived, was determined by performing a fast Fourier transform (FFT). We chose a 

FMCW chirp period of 10 ms, which gives a frequency resolution of 100 Hz. The unique 

challenge with opioids acting on the central nervous system is that breathing motion can be 

severely depressed. For our FMCW signal with a 4 kHz bandwidth this minute motion can 

translate to a frequency shift less than 8.33 Hz. To extract this, we perform an FFT over 15 

consecutive chirps which linearly increases the frequency resolution to 6.66 Hz and thus captures 

even severely depressed breathing motion, down to a chest movement of 0.7 cm. By taking an 



 

FFT over 15 chirps, any high frequency motion within this duration is averaged and hence lost. 

However, since the average breathing rate of human subjects is less than 20 breaths per minute, 

which is a relatively low frequency motion, no breathing motion is lost within the 150 ms FFT 

duration.  

 

To extract the breathing signal, the algorithm first estimates the distance of the person’s chest 

from the smartphone over time. As described previously, the breathing signal is present in a 

unique frequency bin corresponding to this distance. To identify this bin, we examine the FFT 

bins corresponding to the frequency of the custom acoustic chirp (i.e., 18-22 kHz). The algorithm 

starts by looking from the 18 kHz bin (corresponding to distance zero) and proceeds to 18.320 

kHz (corresponding to a distance of one meter). For each bin, it examines changes in the power 

value over a duration of 30 seconds by performing a second FFT over it. If a peak between 0.5 to 

0.7 Hz (the typical breathing frequency of a human) is observed, then that bin corresponds to the 

breathing signal. Therefore, the second FFT occurs until the bin that corresponds to the breathing 

signal is found. In the worst-case scenario, the system may iterate through 48 bins before 

isolating the breathing signal. Once found, the signal recurs within the same bin as long as the 

subject remains in place. However, when a subject moves, the bin corresponding to the distance 

has a motion signal instead of a breathing signal. In this scenario, the system re-initiates the 

search for the new bin containing the breathing signal. In particular, if the distance of the subject 

from the smartphone changes, we estimate the new distance by computing the bin corresponding 

to the breathing signal after the motion.

Subhead 3 : Detecting opioid-induced depressed breathing 

 

Breathing motion is diminished when people use opioids. To overcome this, we make two 

changes to the peak detection algorithm. First, to remove any small motion noise, we run the data 

through a bandpass decimating Cascaded Integrated Comb filter. The filter removes any motion 

noise higher than a frequency of 1 Hz and also decimates the signal by a factor of two. Second, 

we collect a baseline breathing signal for a duration of one minute prior to the self-injection 

event. From the baseline collection period, the algorithm calculates the subject’s average peak 

amplitude, peak prominence and average peak distance. These parameters are used to identify 

the peaks during post-injection monitoring. For the baseline signal, the algorithm leverages the 

periodicity of the breathing signal and the frequency limits of the breathing signal (less than 20 

breaths/min) to estimate breathing peak parameters. Specifically, only peaks that are separated 

by a minimum of 20 samples (corresponding to a maximum breathing rate of 20 breaths/minute) 

are considered. During post injection monitoring we combine this condition along with the 

average peak parameters that we estimated in the first step. Peaks separated by a minimum of 20 

samples that have an amplitude of at least 50% of the baseline and 30% of the peak prominence 

are classified as breathing peaks. If the number of peaks is less than or equal to 7, the epoch is 

marked as a respiratory depression event. If the distance between the peaks is greater than 10 

seconds, we mark a central apnea event. If the number of breaths in the epoch is at least greater 

than 3, we update peak amplitude, peak prominence and distance values with the combined 

average of new peak values. If a specific peak value is twice as great as the average peak values, 

the system does not use that peak value in average peak parameter computations.

Subhead 4 : Differentiating breathing from motion 

 



 

Subjects using opioids may move their heads or hands, which are motions that can affect the 

time delay of the echo. Since subjects’ faces and hands are closer to their chests and are 

approximately at the same distance from the smartphone, the change caused by these motions 

can be added to the breathing signal in its frequency bin during the primary algorithm’s FFT 

operation. Moreover, this motion has higher amplitude compared to the more subdued breathing 

motion and can overpower the breathing signal, making it difficult to extract the breathing 

motion. While normally such motion noise would be problematic, the presence of motion 

provides additional information about the subject. Specifically, sustained motion indicates that 

the subject is active and not overdosed. Similarly, motion that is followed by breathing indicates 

that the subject is active and thus not overdosed. On the other hand, motion within the 

operational range that is followed by an absence of breathing likely indicates an overdose 

scenario. Hence, we modify the algorithm to differentiate between a signal corresponding to 

periodic, low-frequency breathing motion and one that belongs to high frequency body motion, 

which is aperiodic and high amplitude. We identify this by looking at the peaks in the second 

FFT operation of the 30- second signal corresponding to each bin. If the peaks have higher 

frequencies and an amplitude at least twice that of the breathing frequency peaks, then the 

instance is classified as a motion epoch. If the motion is absent or present only for a few seconds, 

the algorithm considers it to be a breathing signal and processes it to identify the respiration rate.

Subhead 5 : Distance recalibration 

 

When we encounter a motion epoch, the distance of the subject with respect to the smartphone 

can change. Hence after every motion epoch we need to run the re-calibration step to detect the 

new frequency bin that corresponds to the new distance of the subject from the smartphone. 

When we encounter the first motion epoch, we set the motion bit to 1 and examine the next 

epochs. For subsequent epochs, we search all the nearby FFT bins until we detect the bin that has 

the breathing signal. We then use this new bin for the next set of epochs until we see the next 

motion epoch. For the first breathing epoch after the motion epoch, we update the peak 

parameter values to the average values of the new epoch corresponding to the new distance of 

the subject. 

 

To review, we first filter the recorded signal using a high pass filter to remove audible 

environmental noise. We then split the data into 30-second epochs and run the distance 

estimation step described above on the first epoch to identify the bin that contains the breathing 

signal. We estimate average breathing peak amplitude, peak distance and average peak 

prominence for this epoch. For subsequent epochs, we check the same frequency bin in the 

distance estimation algorithm. If it contains the breathing signal, we use the previously estimated 

amplitude and prominence values to determine the breathing peaks in this epoch and 

subsequently update them with the new peaks of the current epoch. This continues until the bin 

contains a motion signal instead of breathing signal. If the subsequent epoch does not contain the 

breathing signal and instead contains the motion signal (high amplitudes, more peaks), we mark 

it as a motion epoch and run the re-calibration step for the subsequent epochs until we find the 

new breathing signal.

Subhead 6 : Suppressing environmental motion 

 

High-risk opioid use is commonly done with others, which introduces another source of potential 



 

interference (35, 36). In this case, the interfering subject’s breathing or motion may change the 

received echoes at the smartphone. However, since the interfering subject(s) will mostly be 

located at different distances with respect to the smartphone, their breathing motions (as 

determined by the primary FFT operation) would occur at different frequency bins than that of 

the subject of interest. Assuming that the smartphone is closest to the intended subject, viz., 

within one meter, the first frequency bin containing the breathing signal likely corresponds to the 

breathing motion of the intended subject. The algorithm therefore filters out any breathing 

detected at farther distances.  

Subhead 7 : Computational complexity 

 

In the worst case, our algorithm performs 54 FFT computations per second and one linear peak 

estimation algorithm. Such operations can each be computed within a few milliseconds on an 

off-the-shelf smartphone (51, 52). This delay is within the expected human response time (for 

visual overdose identification) of a few seconds. Finally, based on the duration of high-risk 

opioid self-injection events, we expect the application to run typically for less than 45 minutes 

per day and not more than 15 minutes per event. The algorithm’s computations along with the 

sensor data collection consumes 6-18% of a phone’s battery power for this duration. In addition, 

most fatal overdose events occur within a private residence, hotel or motel (53), which should 

have an available power source.

Vancouver Supervised Injection Facility  

Participants 

 

All people who inject opioids and utilize the SIF, who were over 18 years old, and had capacity 

to provide informed consent (as determined by InSite staff), were eligible for study inclusion. 

People under age 18 and impaired individuals were not eligible (per SIF protocol, severely 

impaired individuals are assisted and unable to use the facility). Potential participants were 

identified at the time they checked into the SIF for the purposes of supervised opioid self-

injection, and approached by a research assistant for informed consent. Participants were 

approached consecutively following check-in into the facility. Participants were given a $5 

coffee card for participation.

Measures 

We compute the breathing rate in order to identify respiratory depression and central apnea 

occurrences, both of which can indicate or precede a fatal opioid overdose. We define a 

breathing rate of ≤ 7 breaths/min to be a respiratory depression event and the absence of 

breathing for 10 seconds or more to be an opioid-induced central apnea event. We chose a 

respiratory rate of ≤ 7 breaths per minute because the Agency for Healthcare Research and 

Quality (AHRQ) finds this respiratory rate sufficiently dangerous to recommend as a trigger for a 

hospital’s Rapid Response System (39, 40). The Food and Drug Administration (FDA) defines 

an apnea event as cessation of breathing for 10 seconds or more and requires FDA-approved 

apnea devices to detect this threshold (27). 

 
Protocol 



 

 

Clients who consented obtained sterile injecting equipment per routine and were assigned to  a 

monitored injection stall and were asked to prepare their drugs as they normally would. 

Monitored stalls were equipped with a dedicated off-the-shelf phone (Galaxy S4) with our pre-

installed app, which was placed on the tabletop (see Figure 3). All subjects, regardless of 

participation, received standard clinical monitoring by the SIF clinical staff according to 

institutional protocols. Post-injection overdose detection by staff was defined by standard 

institutional triggers listed in Supplementary Table S1. Of note, routine staff monitoring relies on 

visual monitoring for acute clinical distress and does not involve active respiratory monitoring 

equipment.  

 

Once participants had prepared their equipment and drugs, the participant was fitted with a 

respiratory impedance monitor for reference standard monitoring (see Figure 3B). Then the 

participants were asked to remain seated and breathe normally for one minute to establish a 

baseline respiratory rate. The smartphone, placed within one meter of the participant on the 

injection stall table, began respiratory monitoring at the initiation of the one minute baseline 

measurement (see Figure 3C). Participants then self-injected opioids and monitoring continued 

for five minutes. We chose five minutes because this represents the critical period when an acute 

overdose would occur; from a pharmacology perspective, fentanyl reaches a peak plasma 

concentration within 3-5 minutes and more than 80% of the injected dose leaves the plasma by 

five minutes (54). If an overdose event occurred, or a participant was in a clinical state 

sufficiently concerning that a trained medical staff member walked over to check on a patient, it 

was recorded by the research assistant and counted as an intervention event.  

 

As we note in the main text, there were eight instances where a staff member went over to a 

participant post-injection out of concern for their clinical state. In the six instances (including the 

2 reversed overdoses) where the respiratory impedance monitor identified disordered breathing, 

the algorithm identified respiratory depression or central apnea in all six. In the 2 other instances, 

the subjects had fallen asleep and slouched in their chairs following injection, however both had 

respiratory patterns that did not meet the respiratory depression or central apnea thresholds (i.e., 

the smartphone and respiratory impedance monitor correctly identified normal breathing while 

the staff misdiagnosed potential clinical distress). 

Operating Room 

 

To optimize surgical conditions, patients are routinely given fentanyl and other potent drugs 

immediately prior to surgery to purposefully induce apnea. In other words, the physiologic 

equivalent of drug overdose occurs each time a patient undergoes general anesthesia. However, 

patients are unharmed by this induced ―overdose‖ because of their supra-physiologic oxygen 

stores and the timely ventilatory support the anesthesiologist provides. Therefore, anesthetizing a 

patient in the OR offers a unique way to safely simulate an otherwise lethal overdose event 

(characterized by unconsciousness and diminished or absent breathing) induced by fentanyl and 

other opioids. 

 

Healthy patients free of cardiopulmonary disease, aged 18-55 and scheduled for elective surgery, 

were eligible for the operating room study and were approached on the day of surgery. 

Participants were given a $50 Amazon gift card for participation.  Once inside the operating 



 

room, patients were fitted with standard anesthesiology cardiopulmonary monitors: pulse 

oximeter, blood pressure cuff, 5-lead EKG. In addition to the standard anesthesiology monitors, 

participants were fitted with a Vernier respiratory belt to provide reference standard respiratory 

monitoring.  The smartphone (Galaxy S4) was placed on a surgical stand ≤1 meter  away at 

approximately chest level (see Figure 6A). Next, the clinical team conducted their standard 

operating room pre-induction safety procedures (i.e., safety surgical and pre-anesthesia 

checklists). The ventilation mask was affixed to the patient with a strap. Operating room 

personnel were asked to stand away from the patient; the attending anesthesiologist was beside 

the patient and immediately available. Next, per standard anesthetic procedure, the participant 

breathed 100% oxygen for 3-5 minutes until their expired oxygen levels were greater than 85%–

a level deemed safe to administer induction doses of anesthetic agents to induce apnea (55). This 

standard pre-oxygenation procedure allows the body to be safely apneic without having oxygen 

saturation levels fall to unsafe levels during apnea periods that may persist for as long as 7 

minutes under normal conditions (56). The attending anesthesiologist then administered 

induction doses of fentanyl and propofol in doses at his/her discretion for standard induction of 

general anesthesia (the average fentanyl dose was 1.4 mcg/kg; the average propofol dose was 2.9 

mg/kg). The attending anesthesiologist announced the moment when the patient had become 

apneic, at which time a timer was started. The timekeeper announced the elapsing time in 10 

second intervals until 30 seconds was reached (we chose 30 seconds of apnea as a suitably safe 

period for a pre-oxygenated individual to be completely apneic before intervention (56) and 

termination of the protocol). At 30 seconds, the protocol was officially over, at which point the 

anesthesiology team assumed control of the airway (administered a neuromuscular blocking 

agent, if indicated) and provided manual ventilation and inserted an endotracheal tube or 

laryngeal mask airway. No neuromuscular blocking agents were administered during the 

protocol. Once the participant’s airway was secured and it was deemed safe by the clinical team, 

the study team removed the research equipment and exited the operating room. Per the IRB 

protocol, the attending anesthesiologist could intervene at any moment and for any reason during 

the protocol should the patient require intervention. Breaking protocol was in no cases required 

during the study as all patients safely tolerated the procedure.

Statistical Analysis 

 

We used standard analyses to assess the respiration rate measurements of the smartphone-based 

device against the reference measurements from the impedance monitor. In particular, we 

assessed the accuracy using scatter plots and bubble plots equipped with trend lines. To 

determine the accuracy of the opioid overdose precursor detection,  we used standard techniques 

to calculate sensitivity (true positive rate) and specificity (true negative rate) and we report 

Clopper-Pearson confidence intervals around these estimates. For all the benchmark 

experiments, we compute the bias error (μ, mean of the errors), and precision error (σ, SD of the 

errors) to compare the respiration rate measurements of our system against the standard 

impedance monitor.  

 

Supplementary materials 

 

Materials and Methods 

Fig. S1. Connecting overdose victims with EMS. 



 

Fig. S2. Post-injection respiratory rate decrement. 

Table S1. InSite institutional overdose indicators.  
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Figures: 

 

Fig. 1. Converting a smartphone into an active sonar monitoring system. (A) The 

smartphone’s speaker transmits an inaudible, custom frequency modulated continuous wave- 

form (FMCW) signal, which is reflected by the subject and recorded using the smartphone’s 

microphone. (B) The reflections arrive at time delays ∆ti and ∆te during inhalation and 

exhalation; the changes translate to unique frequency shifts ∆fi and ∆fe. (C) The frequency shifts 

can be estimated by taking a fast Fourier transform (FFT) over 15 chirps; the breathing signal is 

found in a frequency bin corresponding to the subject’s distance from the smartphone. Motion in 

http://qgis.osgeo.org/


 

the environment from a different distance would appear at a different frequency bin and hence 

can be separated. 

 

Fig.  2.  Breathing rate accuracy across different scenarios.  The system is evaluated across 

(A) different smartphone models, (B) orientations of the smartphone,  (C) various positions  of 

the smartphone w.r.t the subject, (D) in the presence of interference from another nearby moving 

subject, (E) with environmental noise from devices placed 75 cm from the subject, (F) as a 

function of distance from the smartphone and (G) re-calibration accuracy after the subject 

changes the orientation of the phone as well as slouches. In addition, (H) shows the fraction of 

time the subject’s respiration and other motion was captured by the algorithm in the SIF 

deployment. W.r.t = with respect to. 

 

Fig. 3. Experimental setup and sequence, supervised injection facility. (A) Supervised 

injection facility: Insite. Since 2003, more than 3.6 million drug use events have occurred under 

supervision at this facility; there have been over 6,500 overdose interventions without any 

deaths. There are multiple people in the environment; there is movement in the environment, 

talking and overhead music; there is a special ventilation system above each stall which clears 

smoke created from drug preparation. (B) Participants sit in the injection stall with experimental 

equipment on the tabletop. A respiratory impedance monitor is connected to the chest. (C) 

Experimental sequence. 

 

Fig. 4. Measurement of real-world, high-risk opioid use events. (A-B) Sensitivity and 

specificity for respiratory depression (RD) and central apnea events (CAE). (C) Post-injection 

respiratory rate on a smartphone vs. reference standard. (D) Post-injection central apnea event 

detection on a smartphone vs. reference standard. (E-H) Smartphone breathing signals of 4 

subjects whom InSite staff physically checked on post-injection. (E) OVERDOSE - subject 

exhibits multiple central apnea periods followed by deep breath. (F) OVERDOSE - subject 

exhibits respiratory depression with an average respiratory rate of 4 breaths/minute. (G) 

INTERVENTION - subject exhibits central apnea, is aroused by staff, becomes agitated. (H) 

INTERVENTION - subject slouches post-injection, staff physically check on patient, whose 

breathing does not meet respiratory depression or central apnea thresholds. 

 

Fig. 5. Distribution of observed central apnea events in the supervised injection facility. (A) 

Histogram of central apnea events per participant. (B) Histogram of the duration of the central 

apnea events identified by our system. 

 

Fig. 6. Measurement of simulated overdose events in the operating room. (A) The phone is 

placed within 1 meter of the patient on a surgical (Mayo) stand. A respiratory impedance monitor 

is fit around the patient’s chest to measure the true respiratory rate and apnea status. Healthy 

patients wearing all standard operating room monitors have general anesthesia induced. (B) 

Comparison of time to detection of simulated overdose, based on algorithm-identified respiratory 

failure onset, smartphone vs. real-time detection by the reference standard. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Demographic summary of participants in algorithm evaluation, supervised 

injection facility and operating room. 

 

 

Safe Injection Facility  

(n=94) 

Age (yrs) 43±11 

Height (cm) 178±8.3 

Weight (kg) 7±12.4 

  

Sex  

Male, n (%) 80 (85) 

Female, n (%) 14 (15) 

  

Race  

Caucasian, n (%) 62 (66) 

Black, n (%) 2 (2) 

First Nations, n (%) 30 (32) 

  

Drug injected  

Fentanyl, n (%) 17 (18) 

Heroin, n (%) 64 (68) 

Morphine, n (%) 12 (13) 

Hydromorphone, n (%) 1 (1) 

Operating Room 

(n=20) 

  

Age (yrs) 33±10.8 

Height (cm) 174±9 

Weight (kg) 75±14.6 

  

Sex  

Male, n (%) 8 (40) 

Female, n (%) 12 (60) 

  

Race  



 

Caucasian, n (%) 16 (80) 

African American, n (%) 2 (10) 

Asian, n (%) 1 (5) 

Pacific Islander, n (%) 1 (5) 

 

 


