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One-sentence summary: To diagnose otitis media, the authors detect the presence of middle ear 

fluid using the built-in microphone and speaker of smartphones. 

 

Abstract: The presence of middle ear fluid is a key diagnostic marker for two of the most 

common pediatric ear diseases: acute otitis media and otitis media with effusion. We present an 

accessible solution that uses speakers and microphones within existing smartphones to detect 

middle ear fluid by assessing eardrum mobility. We conducted a clinical study on 98 patient ears 

at a pediatric surgical center. Using leave-one-out cross-validation to estimate performance on 

unseen data, we obtained an area under the curve (AUC) of 0.898 for the smartphone-based 

machine learning algorithm. In comparison, commercial acoustic reflectometry, which requires 

custom hardware, achieved an AUC of 0.776. Further, we achieved 85% sensitivity and 82% 

specificity, comparable to published performance measures for tympanometry and pneumatic 

otoscopy. Similar results were obtained when testing across multiple smartphone platforms. 

Parents of pediatric patients (n = 25 ears) demonstrated similar performance to trained clinicians 

when using the smartphone-based system. These results demonstrate the potential for a 

smartphone to be a low-barrier and effective screening tool for detecting the presence of middle 

ear fluid.  

 

Main text: 

Introduction  

The presence of middle ear fluid is the key diagnostic marker for the two most common pediatric 

ear diseases, acute otitis media and otitis media with effusion (1). Acute otitis media (AOM), 

known commonly as an ―ear infection,‖ is characterized by the presence of infected fluid in the 

middle ear and results in symptoms of fever and ear pain. It is a leading cause of pediatric 



healthcare visits and, although many cases can resolve without antibiotics, complications may 

include eardrum perforation, mastoiditis, facial nerve palsy, or meningitis (2–4). Otitis media 

with effusion (OME) is the presence of middle ear fluid without signs of an acute infection and 

affects up to 80% of children (5, 6). Although OME has few overt symptoms, making diagnosis 

more difficult, it is associated with speech delay, sleep disruption, poor school performance, 

balance issues, and a higher likelihood of developing AOM (5).  

 

Diagnosis of OME or AOM requires detecting middle ear fluid using either pneumatic otoscopy 

or tympanometry (1). Pneumatic otoscopy is used by only 7–33% of primary care providers and 

is not designed for home screening purposes (5). Tympanometry necessitates a referral to an 

audiologist and the use of expensive equipment (7,8). For these reasons, in 2016 the American 

Academy of Otolaryngology called for research into a brief, reliable, and objective method to 

detect middle ear fluid as well as new in-home strategies to help parents and caregivers monitor 

fluid after initial physician evaluation (5).  

 

Here, we describe a system that uses the microphone and speaker of existing smartphones to 

detect middle ear fluid by assessing eardrum mobility. The system sends a soft acoustic chirp 

into the ear canal using the smartphone speaker, detects reflected sound from the eardrum using 

the smartphone microphone, and uses  a logistic regression machine learning model to classify 

these reflections and predict middle ear fluid status. No additional attachments are required 

beyond a paper funnel, which acts as a speculum and can be constructed from printer paper, 

scissors, and tape. Real-time implementation and data processing are performed entirely on the 

smartphone, compatible with both iPhone and Android devices. The system demonstrated 

comparable performance across multiple smartphone platforms and when used by parents versus 

clinicians. Given the ubiquity of smartphones, this system may hold potential as a middle ear 

screening tool for parents as well as health care providers in resource-limited regions.  

 

Results  

Concept and prototype  

Our system uses the smartphone speaker to play audible, 150 ms frequency-modulated 

continuous wave (FMCW) chirps from 1.8 – 4.4 kHz into the patient‘s ear canal. The 

microphone remains active during the chirp, collecting both incident waves from the speaker and 

reflected waves from the eardrum. Sound reflected from the eardrum will destructively interfere 

with the incident chirp, causing a dip in sound pressure along a range of frequencies. A normal 

eardrum resonates well at multiple sound frequencies, creating a broad-spectrum, soft echo; as a 

result, the shape of the resulting acoustic dip is broad and shallow in the frequency domain. In 

contrast, a fluid or pus-filled middle ear, as found in OME and AOM, restricts the vibrational 

capacity of the eardrum; sound energy that would have vibrated the eardrum is instead reflected 

back along the ear canal, creating more destructive interference and resulting in a narrower and 

deeper acoustic dip. The acoustic dip occurs at the resonant frequency of the ear canal where the 



quarter-wavelength of the chirp is equal to the length of the canal (9). Thus, although individual 

differences in ear canal length affect the location of the dip along the frequency domain, the 

shape of the dip primarily depends on eardrum mobility.  

 

Our system builds upon existing acoustic reflectometry methods in three ways (10–14). First, it 

is a predominantly software-based solution that takes advantage of existing smartphone hardware 

rather than requiring a separate device. Current acoustic reflectometers require a microphone and 

speaker in close proximity to produce and measure sound waves along the ear canal. Many 

modern smartphones have a similar configuration, with a co-located speaker and microphone on 

their bottom edge for noise cancellation (Fig. 1A). This includes all versions of iPhone, Samsung 

Galaxy phones after the S5, and other Android phones, including the Google Pixel. Second, we 

use a paper funnel as a speculum to direct sound into the ear canal. The funnel (Fig. 1B) can be 

assembled using a printed paper template (fig. S1), scissors, and tape. Without this attachment, 

the resulting waveform can be highly variable because sound could reflect off of different 

structures of the pinnae. Third, the system uses a logistic regression machine learning model to 

classify the waveforms received by the microphone. To identify whether a patient has middle ear 

fluid, we first preprocessed the raw waveform to locate and isolate the acoustic dip (Fig. 1C, D) . 

We then used logistic regression to determine if the shape of the dip was more indicative of a 

normal or fluid-filled ear. A text-based message is presented to the user indicating a result: 

‗suggestive of middle ear fluid‘ or ‗middle ear fluid unlikely‘ (fig. S2). On an iPhone 5s and 

Galaxy S6, data processing and classification took 771.98 ms and 1.2 s, respectively.  

 

Clinical testing  

We tested system performance for detecting middle ear fluid in two separate cohorts. First, we 

conducted a clinical study on patients between 18 months and 17 years of age. We used this 

population to train the algorithm and obtain cross-validated performance measures. Second, we 

recruited a separate cohort of patients under 18 months of age and evaluated performance using 

the algorithm trained in the first clinical study.  

 

The first clinical study was conducted at Seattle Children‘s Hospital surgical centers using a 

cohort of 98 patient ears between 18 months and 17 years of age from two different subgroups: 

patients undergoing ear tube placement, a common surgery performed on patients with chronic 

OME or recurrent AOM (n = 48 ears); and patients undergoing a different surgery, such as a 

tonsillectomy, with no recent symptoms of AOM or OME and no signs of middle ear fluid by 

physical examination (n = 50 ears). The median age of recruited patients was 5.0 [interquartile 

range (IQR): 2.0] years, height was 113.2 (IQR: 19.0) cm, weight was 20.0 (IQR: 9.2) kg, and 

the female-to-male ratio was 0.6 (table S1).  

 

A trained clinician performed all patient testing in a private waiting room just prior to surgery 

and with the patient awake and held or sitting upright (Movie S1). Soft chirps were played into 



the ear canal using multiple smartphone models and a new paper funnel for each patient. All 

patients were also tested in parallel with commercial acoustic reflectometry hardware (7, 12, 15). 

After surgery, we prospectively assigned each ear its actual middle ear fluid status. A patient was 

considered positive for middle ear fluid if, during ear tube placement, an incision into the 

eardrum (myringotomy) yielded fluid (n = 24), or if the patient had a red, bulging eardrum 

consistent with AOM (n = 2). A patient was considered negative for middle ear fluid if, during 

ear tube placement, myringotomy yielded no fluid (n = 24), or if the patient did not receive ear 

tubes, did not have ear-related symptoms, and was negative for fluid on pneumatic otoscopy 

performed by the otolaryngologist (n = 48).  

 

For classification, we used a logistic regression algorithm on preprocessed microphone acoustic 

data. The sound intensity (in decibels) of each frequency along the acoustic dip was inputted as a 

separate feature. The algorithm was trained with iPhone 5s data collected from patients. Its 

classification accuracy was evaluated with leave-one-out cross validation (LOOCV), a rigorous 

method to validate machine learning models (16). During each iteration of LOOCV, 97 of 98 

patient ears are used to train a model which is then used to output a prediction for the remaining 

1 patient ear. This process is repeated for all 98 ears to estimate the accuracy of a model trained 

on all 98 ears when tested on unseen data. A receiver-operating characteristic (ROC) curve was 

generated from the cross-validation step with an area under the curve (AUC) of 0.898 (Fig. 2A). 

The operating point was chosen to have an overall sensitivity and specificity of 84.6% (95% CI: 

65.1 - 95.6%) and 81.9% (95% CI: 71.1- 90.0%), respectively. With k-fold (k = 10) cross-

validation (17), we obtained a comparable AUC of 0.906. To address potential bias from training 

on the same patient‘s opposite ear, we repeated LOOCV but during each iteration we also 

excluded the contralateral ear from the training set, achieving an AUC of 0.899. We also 

downsampled the frequency response curve to 100 samples and obtained a similar AUC of 

0.888. The fluid type was recorded as either being serous (n = 7), mucoid (n = 11), or purulent (n 

= 4) for 22 of the 36 ears that had middle ear fluid. The algorithm correctly classified 86% (6 of 

7) of ears that had serous fluid, 91% (10 of 11) of ears with mucoid fluid, and 100% (4 of 4) of 

ears with purulent fluid. These estimates predict the real-world clinical performance on unseen 

data of our final algorithm, which is trained on all 98 ears from the iPhone 5s dataset (Fig. 2B). 

Across male patients, for the iPhone 5s, 15 out of 17 positive ears and 31 out of 40 negative ears 

were classified correctly. Across female patients 7 out of 9 positive ears and 25 out of 30 

negative ears were classified correctly. For two ears, we did not record gender.  

 

Post hoc, we examined how the algorithm classified acoustic waveforms. Fig. 2C and 2D plot the 

mean sound intensities at each frequency for all ears classified by the model. The algorithm 

predicted that ears with narrower and deeper acoustic dips were more likely to have middle ear 

fluid. Similarly, on univariate analysis, sound intensities at the top and bottom of the waveform, 

which determine the depth of an acoustic dip, were given the most weight by the predictive 

model (Fig. 2E). This result indicates that the algorithm can independently identify an acoustic 



pattern for middle ear fluid that is consistent with the known acoustic response of the eardrum (7, 

12, 15).  

 

The smartphone-based system demonstrated improved clinical performance compared to 

acoustic reflectometry (18), which uses custom hardware to assess middle ear fluid status. Head-

to-head testing (Fig. 2B) across the 98 patient ears demonstrated an AUC of 0.898 for the 

smartphone-based approach compared to an AUC of 0.776 for commercial acoustic 

reflectometry (EarCheck Middle Ear Monitor, Innovia Medical). The smartphone algorithm‘s 

improved clinical performance may be the result of applying machine learning over the 

waveform rather than relying on the hand- selected features used by acoustic reflectometers (7). 

When classifying patient waveforms obtained from smartphones, we found that using only the 

spectral-angle, as described in prior literature (7), reduces the AUC to 0.687.  

 

We evaluated test-retest reliability in the pediatric patients enrolled in our clinical study. Each 

ear was tested twice per smartphone; between each attempt, the funnel was fully removed from 

the ear and reinserted. Of the 66 ears tested twice, 94% of the ears were classified the same 

between each attempt. When a discrepancy occurred, the algorithm used the positive result to 

minimize false negatives. Each testing attempt consisted of ten chirps and we tested the 

consistency across these chirps. In the clinical study, 93 of 98 ears showed no difference in 

classification among all ten chirps. When doing a majority vote across the first three chirps, 96 of 

98 ears showed no difference in classification compared to using a single chirp. Across all 98 

ears, there was no difference when considering the classification result to be the majority (more 

than five) of the ten chirps (table S2).  

 

Finally, using the algorithm trained in the first study, we evaluated the system‘s performance in a 

separate cohort of patients under 18 months of age to assess accuracy in a younger population. 

We again recruited surgical patients at Seattle Children‘s Hospital, using the same criteria 

described in the first study with the exception of age. This cohort included 15 patient ears and 

had a median age of 1.1 (IQR: 0.3) years, height of 76.0 (IQR: 7.8) cm, weight of 9.3 (IQR: 2.1) 

kg, and female-to-male ratio of 1.5 (Fig. 3A). The lowest age amongst this cohort was 9 months. 

All 5 ears that were positive for fluid and 9 of 10 ears that were negative for fluid were classified 

correctly (Fig. 3B). The shape of the acoustic dips paralleled those in the first clinical study: ears 

with fluid had a deeper and narrower acoustic dip compared to ears without fluid (Fig. 3C, D and 

fig. S3). This shows  that  an algorithm trained on patients over 18 months of age can properly 

classify patients under 18 months. We also trained and tested our algorithm‘s performance when 

using patients under 18 months as the training cohort. When running LOOCV across the 15 

patient ears that were under 18 months of age, 5 of 5 ears positive for fluid and 10 of 10 ears 

negative for fluid were correctly classified. This is similar to the performance of the algorithm 

that is trained on the 98 patient ears over 18 months of age.  

 



Performance across other mobile platforms  

All patients in the first cohort (n = 98 ears) were tested in parallel with both the iPhone 5s and 

the Samsung Galaxy S6. Using LOOCV, we estimated performance of the iPhone 5s-trained 

system on unseen Galaxy S6 data. Specifically, the entire iPhone 5s dataset was used for training 

except for one patient ear, which was ―held out‖ for testing. The trained algorithm was then 

tested on Galaxy S6 data from the held out ear. This was repeated for all patient ears in the 

cohort to generate an AUC of 0.851, as shown in Fig. 4A. In the same manner, we also tested a 

subset of this cohort using an iPhone 6s (n = 10 ears), Samsung Galaxy S7 (n = 12), and Google 

Pixel (n = 8). The algorithm correctly classified 80% (8 of 10) of iPhone 6s data, 91.7% (11 of 

12) of Galaxy S7 data, and 83.3% (7 of 8) of Pixel data (Fig. 4B). The low sample size in these 

subgroups precluded generation of meaningful AUC values. Processed waveforms for a given 

test ear across phone models is shown in fig. S4, waveforms for the remaining test ears are 

shown in fig. S5.  

 

Performance testing with non-clinicians  

In a clinical setting, we evaluated the system‘s performance when used by parents. Trained 

clinicians briefly demonstrated proper technique for testing, and the parent of a pediatric study 

participant subsequently performed unaided testing on their child. The parent‘s results were then 

compared to those of the trained clinician. This cohort included 25 patient ears and had a median 

age of 4.0 (IQR: 6.0) years, height of 105.0 (IQR: 38.1) cm, weight of 16.4 (IQR: 13.9) kg, and 

female-to-male ratio of 1.1 (Fig. 5A). All 6 ears positive for fluid were classified the same by 

clinicians and parents, and 18 of 19 ears negative for fluid were classified the same (Fig. 5B). 

Additionally, the mean acoustic dip was similar between clinicians (red) and parents (black) 

(Fig. 5C, D). Individual curves for each patient are shown in fig. S6.  

 

We tested the usability of funnel construction with a separate cohort of ten untrained adults. 

After playing a short instructional video (see Movie S2), we first measured the time it took 

participants to create and mount the funnel using a paper template, tape, and scissors. The 

average time was 2.8 (± 0.93) minutes. We then queried participants about the usability of the 

entire system; they gave an average usability rating of 8.9 (± 1.1) on a scale of 1 (unusable) to 10 

(extremely usable) (table S3).  

 

Effect of confounding ear pathologies  

In the above studies, we  exclude patients with ear pathologies that affect eardrum mobility. 

Next, we evaluated the algorithm‘s performance  in the  presence of ear pathologies such as  

cholesteatoma (n = 1), ossicular chain discontinuity (n = 1), acute eardrum inflammation (n = 1) 

and prior tympanoplasty surgery (n = 3) (fig. S7). The algorithm produced false positives for 

middle ear fluid in all these patients.   

 



Similarly, patients undergoing myringotomy but lacking middle ear fluid may have abnormal 

middle ear pressure which can affect eardrum mobility.  In our cohort, there were 7 patients 

reported by the surgeon as having acutely inflamed eardrums. Only 1 of these patients presented 

without fluid on myringotomy. This patient‘s ear was classified as positive by the algorithm (fig. 

S7). Thus, in the event that a patient presents with an inflamed eardrum but has not yet 

developed middle ear fluid, the algorithm would likely test positive and appropriately prompt 

further evaluation. The other acutely inflamed eardrums (n = 6 ears) had middle ear fluid and 

were appropriately classified as positive by the algorithm.  

 

Benchmark testing 

Fig. 6 demonstrates benchmark performance of our smartphone-based system across various 

design and environmental conditions. We identified design and environmental conditions that 

could impact system accuracy, including background noise, incident angle of the smartphone, 

alterations to the funnel, and changes in chirp volume. Testing was performed with a 2.5 cm 

closed-ended plastic tube used to calibrate existing acoustic reflectometers as a positive control 

(33). The hard-backed end of the tube reflects sound to produce a narrow and deep acoustic dip 

that mimics an ear with middle ear effusion.  

 

First, we used 4 different paper types of varying thickness and consistency to construct the 

funnel: filler paper, inkjet paper, laserjet paper, and cardstock. Changing paper type did not 

affect the classification accuracy (Fig. 6A). We also tested whether changes to tip opening 

diameter impacted accuracy. The funnel is designed to have a tip opening diameter of 7 mm to 

approximate the diameter of the ear canal (32). Variations in tip diameter from 5 mm to 10 mm 

did not affect performance. However, diameters of 1 mm and 3 mm produced false negatives 

(Fig. 6B). This suggests that a tip opening diameter between 5 and 10 mm is required.  

 

Second, we varied the incident angle of our smartphone with respect to the calibration tube to 

examine the system‘s performance with slight deviations from direct line of sight. The 

smartphone tolerated up to a 45° offset from line of sight (Fig. 6C). Offsets of 60° or 75° 

produced a less prominent dip and false negatives. This suggests that while a parallel orientation 

is ideal, the system has some tolerance for non-ideal positioning. To validate the benchmark 

testing, we evaluated the effect of angle of insertion in an upright patient (16 months of age) with 

middle ear fluid confirmed on myringotomy. To accurately assess angle of insertion, we used the 

built-in smartphone gyroscope to measure smartphone rotation. Initially, the smartphone was 

placed in line with the axis of the ear canal and began playing and recording chirps. Angular data 

was recorded for each chirp while the phone was rotated up (positive) and down (negative), up to 

30 degrees off axis. All chirps were correctly classified as positive within this range (fig. S8). 

Different insertion angles are also accounted for during clinical testing, where there was natural 

variance in measurement angle.  

 



Third, we examined whether changes in background sound affected device accuracy, particularly 

with a crying child. We used an external speaker to play an audio file of a baby crying, with an 

average volume from 80 – 110 dBA. We tested our system in the calibration tube when it was 

placed directly next to the speaker (within 2 cm). In a measurement attempt where five chirps 

were played, the majority of chirps were correctly classified across tested volume levels during 

three different measurement attempts (Fig. 6D). When the background volume was lower than 

80 dBA, all chirps were correctly classified. In the clinical study, there was no significant 

background noise. We report data on a two year old patient ear who was crying and had partial 

motion of the head. fig. S9 shows the mean and the standard deviation of the processed chirps 

used by our algorithm; this validates our benchmark testing on the effect of environmental noise. 

 

Fourth, we tested the effect of deforming the funnel on classification of waveforms when using 

the calibration tube as a positive control. No deformation and partial deformation (more severe 

than typical use), as demonstrated in fig. S10, were appropriately classified as positive. Full 

deformation resulted in a false negative. Our clinical study had variance in funnel deformation 

among different users and ears, and thus the clinical results account for slight variations during 

actual use.  We also tested the effect of different funnel instances on classification accuracy. Five 

different untrained users were instructed to construct a funnel and test it on the positive control. 

All acoustic curves were correctly classified as a positive ear (Fig. 6E). We also varied the sound 

intensity of chirps from 55 to 68 dBA. We found no difference in classification of the positive 

control (Fig. 6F).  

 

Finally we consider the presence of cerumen (ear wax) and its effects on system performance. 

Our patients had partial cerumen occlusion (range: 0% - 50%) as estimated by the surgeon; our 

data indicates that this did not impair the algorithm‘s performance. Since none of our patients 

had complete cerumen occlusion, we used a positive control calibration tube for further testing. 

As expected, playing chirps into the tube generated a deep and narrow acoustic dip. Using putty 

to mimic cerumen, we found that partially occluding wax (60–70%) had little effect on the shape 

or position of the dip, as shown in fig. S11A. This is consistent with previous observations that 

acoustic-based techniques are unaffected by less than 50% cerumen occlusion (35). In contrast, 

100% cerumen occlusion, also known as impaction, occurs in 10% of children (36) and causes 

significant waveform changes. As the site of impaction moves closer to the entrance of the ear 

canal, the acoustic dip appears shallower and occurs at a higher frequency due to an effectively 

shorter canal and corresponding quarter-wavelength, shown in fig. S11B. In these cases, chirps 

can reflect off cerumen, generating a false acoustic dip that does not reflect middle ear status. For 

example, at a depth of 1 cm, which is the deepest point cerumen would naturally accumulate 

(37), our tests produced a false acoustic dip located approximately 1 kHz higher compared to a 

normal dip from eardrum reflections. At shallower depths of impaction, the false dip was even 

more right-shifted. Impaction at the entrance produced a waveform similar to calibration chirps 

played into open air (fig. S11C). Given that the mean acoustic dip in our patients was located at 3 



kHz (range: 2.4 – 3.7 kHz), a cerumen detection system in future prototypes could include an 

error display if an acoustic dip is identified outside the normal range or if the waveform 

resembles an in-air calibration chirp. Such a system must acknowledge that cotton swab insertion 

or iatrogenic manipulation can result in cerumen impaction deeper than 1 cm. These findings 

suggest that partial occlusion does not affect results, and full occlusion can be readily identified.  

 

Discussion  

Proper diagnosis of AOM and OME requires an examination of middle ear fluid status (1, 5). 

Currently, most assessments of middle ear fluid are made either in primary care clinics, urgent 

care centers, or, in recent years, remotely using smartphone-attached otoscopes (19–22). These 

assessments can be costly and time-consuming. Further, they usually rely on visual information 

without an assessment of eardrum mobility, which can compromise accuracy because middle ear 

fluid often produces only subtle changes in the eardrum‘s appearance (23–25). Techniques that 

assess eardrum mobility, such as pneumatic otoscopy and tympanometry, have high sensitivity 

and specificity (90% and 80% for specialist-performed pneumatic otoscopy), but are infrequently 

performed outside of a specialist‘s office (26). Other methodologies—such as air-coupled 

ultrasound, short-wave infrared imaging, and optical coherence tomography—hold promise in 

terms of accuracy, but they require additional specialized and expensive hardware (27–29). Thus, 

there is a need for a middle ear fluid screening technique that does not use costly equipment or 

attachments, can evaluate eardrum mobility, and requires minimal expertise.  

 

The value of a low cost, smartphone-based screening tool lies in its accessibility and user 

familiarity. Ninety-six percent of all parents we queried regarding potential participation in the 

study consented, and many were interested in learning more about the technology. Although 

some children were apprehensive before the study, the phone‘s chirps (which sound like a small 

bird) had a calming effect, causing many children to respond with smiles or laughs.  

 

Our system has several limitations. As with many screening tools, interpretation of the results 

requires appropriate clinical context such as symptoms and time-course, and positive results 

should prompt further clinical evaluation for potential misclassifications. This system also does 

not distinguish between different types of middle ear fluid (purulent, serous, or mucoid). 

Knowing fluid type could potentially be useful for identifying AOM versus OME, though this 

distinction is also made based on clinical history and symptoms. Furthermore, as with most 

middle ear assessment techniques, the system requires that a child not be agitated and remain 

relatively still for the duration of testing: the algorithm needs a minimum of three chirps for 

reliable results, which takes 1.2 seconds; significant head movement during this duration can 

cause inter-chirp inconsistency.  

 

This smartphone-based screening tool relies on an evaluation of eardrum mobility to detect 

middle ear fluid. This is also true for tympanometry and pneumatic otoscopy, which are the 



screening techniques recommended by the American Academy of Pediatrics and American 

Academy of Otolaryngology for middle ear fluid detection. Ear pathologies that affect eardrum 

mobility – such as cholesteatoma , ossicular chain discontinuity , acute eardrum inflammation 

and prior tympanoplasty surgery – can produce false positives for middle ear fluid. Similarly, 

patients undergoing myringotomy but lacking middle ear fluid may have abnormal middle ear 

pressure which can affect eardrum mobility. Despite the potential for false positives, use of 

eardrum mobility to predict middle ear effusion is well established in both active clinical practice 

and in prior large scale pediatric studies (30). Further, in the context of screening, these false 

positives would appropriately prompt additional evaluation.  

 

In summary, we present a proof-of-concept screening tool that can be implemented on 

commodity smartphones to determine the presence of middle ear fluid. Given the ubiquity of 

smartphones, the system we describe may have clinically significant applications in developing 

countries and rural communities where smartphone availability is rapidly growing; in primary 

care settings as an adjunct to visual otoscopy; or for home-screening by parents as a platform to 

reduce health care costs. Further longitudinal clinical trials are required to determine the 

technology‘s impact in these and other potential scenarios.  

 

Materials and methods  

Study design 

Our study was approved by the University of Washington and the Seattle Children‘s Hospital 

Institutional Review Boards. For our first clinical study (n = 98 ears), we included 

otolaryngology patients undergoing surgery who were between the ages of 18 months and 17 

years. Our second clinical study (n = 15 ears) included otolaryngology surgical patients who 

were between 9 and 18 months of age. For both studies, we excluded patients with existing 

tympanostomy tubes, existing eardrum perforations, prior tympanoplasty, or known comorbid 

middle ear pathology, such as cholesteatoma or ossicular chain abnormalities. We stopped 

recruitment after a sufficient number of patient data was collected to demonstrate proof of 

concept. Randomization was not applicable. Surgeons were blinded to the results of preoperative 

smartphone testing.   

 

Smartphone application  

Two custom applications — for iPhone and Android smartphones — were developed to emit 

chirps with a frequency range of 1.8 kHz to 4.4 kHz, each for a duration of 150 ms. Each chirp 

was interspersed with 250 ms of silence. The smartphone simultaneously recorded audio from 

the microphone at a sampling rate of 48 kHz, the highest sampling rate possible on the 

smartphones tested.  

 

Data preprocessing  



Our processing pipeline was implemented on an iPhone 5s and a Samsung Galaxy S6. Each chirp 

had 7200 samples and was padded with trailing zeros so the total number of samples was 48,000. 

A 48,000 point Fast Fourier Transform (FFT) was then performed to capture the acoustic 

frequency response within a range of 0 – 24 kHz; we discarded frequencies outside the 1.8 – 4.4 

kHz range of the transmitted chirp. This frequency range was chosen based on prior literature in 

acoustic reflectometry (31). Except when evaluating re-test and interchirp reliability, waveforms 

that were two or more standard deviations from the mean of other recorded chirp waveforms 

within a given attempt were excluded from analysis. Of the remaining chirps, we selected the 

second chirp for further processing. To reduce the variability caused by different funnels as well 

as microphone and speaker differences across devices, a calibration chirp was performed away 

from the ear and normalized to a unit frequency response to produce a set of weights. These 

weights were then used to normalize chirps captured in a subject‘s ear canal.  

 

We then applied a moving average filter with a window size of 300 samples to smooth the 

waveform. Next, we used a peak-detection algorithm to identify the acoustic dip. Specifically, 

the algorithm identified the most prominent dip within a range of 2.3 – 3.8 kHz. Looking for dips 

within the full range of 1.8 – 4.4 kHz resulted in no change in AUC for the iPhone 5s. After the 

dip was identified, we selected frequencies within 500 Hz of the dip for further processing. This 

lets the machine learning algorithm focus only on portions of the acoustic response that are most 

predictive of middle ear effusion status. Selecting frequencies within 600 Hz, 700 Hz, 800 Hz, 

900 Hz and 1000 Hz of the dip caused small (< 0.02) AUC changes for the iPhone 5s.  

 

Machine learning classifier  

Our logistic regression classifier is computationally inexpensive and can run inferences on 

mobile devices. The frequency response for each ear was represented as an array of 1000 floating 

point values, where each element represents the amplitude for each of the 1000 selected 

frequencies around the acoustic dip. Each chirp was aggregated into a single matrix. Using a 

logistic regression machine learning model with an L2 penalty, we performed leave-one-out 

cross validation to validate the discriminative accuracy of the algorithm on our dataset of 98 ears 

collected with the iPhone 5s. We also performed k-fold (k = 10) cross validation.  

 

The classifier trained the model on the entire set of ears except for one. Testing was then 

performed on the omitted ear. This was repeated for all ears, and the overall accuracy was 

computed across all predictions. When computing predictions for the Samsung Galaxy S6 and 

other benchmark phones, we followed a similar LOOCV approach. We trained the algorithm on 

all ears from the iPhone 5s dataset except for one ear collected on the other device. The classifier 

then made a prediction on the omitted ear. This method evaluated whether the classifier can 

generalize to unseen ears on other devices.  

 



The feature analysis in Fig. 3E was generated in sklearn using the SelectPercentile method, 

which calculates the ANOVA F-value between each feature and the ground truth label. The 

spectral gradient angle of the acoustic dip in Fig. 3B were generated using reference points 200 

Hz around the dip. The angles were trained and validated using LOOCV using a logistic 

regression classifier to obtain an AUC. Briefly, spectral gradient angle is the measurement used 

by existing acoustic reflectometers to determine the presence of middle ear fluid. It is computed 

as the angle between the slopes of the acoustic dip.  

 

Funnel design 

The funnel was fabricated using printer paper and clear tape. A template for the funnel was 

designed using Adobe Photoshop and printed onto paper (fig. S1). The funnel was placed over a 

smartphone‘s speaker and microphone, and a small piece of tape attached it to the front and back. 

Each smartphone model required a customized funnel template optimized to envelope the 

speaker and microphone. The base of the funnel cone varied in size depending on the combined 

length and separation of the speaker and microphone. The funnel‘s base had a diameter of 45 

mm for the Samsung Galaxy S6 and S7, 52 mm for the iPhone 5s, and 57 mm for the iPhone 6s 

and Google Pixel. For each template, the funnel was designed with a 7 mm diameter opening, 

which approximates the size of the opening into the ear canal (32). Not every smartphone has 

ideal positioning of the microphone and speaker. To increase accessibility, we began prototyping 

a detection system using earbud headphones with a paper funnel (fig. S12). Further patient 

studies are needed to validate this approach.  

 

Clinical study design 

We tested each patient‘s ear using a smartphone fitted with a paper funnel. Each phone had an 

installed application that played 10 identical chirps and simultaneously recorded the reflected 

echoes. We standardized the volumes for each phone to an average of 65 dBA. After attaching 

the funnel to our testing device, we played calibration chirps into the air, away from the patient. 

When the patient arrived, they were positioned upright for testing, either being held on their 

parent‘s lap or sitting in a chair.  

 

The phone was placed near the child‘s ear, with the funnel positioned at the entrance to the ear 

canal. The ideal position for the funnel in most children was medial to the tragus, pointing 

medially and slightly anteriorly into the ear canal. In most cases, the canal was also straightened 

during testing by gently pulling the pinnae posteriorly. After playing the first set of chirps, the 

smartphone was withdrawn from the ear and repositioned in approximately the same location to 

produce a second set of chirps for reliability testing. This process was repeated for each phone 

and each ear. After device testing, we tested each ear with an FDA-approved acoustic 

reflectometry instrument (18, 33) and documented the ordinal output score on a scale from 1–5. 

We reclassified these outputs in accordance with prior studies (34): 1 and 2 results were 

classified as a normal ear, and 3–5 indicated an infected ear. Finally, a subset of patients, 



particularly those not undergoing tympanostomy tube placement, underwent otoscopy to provide 

additional evidence regarding middle ear fluid status.  

 

Performance testing with non-clinicians  

Our usability study (n = 25 ears) included both otolaryngology surgery and clinic patients 

between 9 months and 17 years of age. As with the other clinical studies, we excluded patients 

with existing tympanostomy tubes, existing eardrum perforations, prior tympanoplasty, or known 

comorbid middle ear pathology such as cholesteatoma or ossicular chain abnormalities.  

 

Clinicians demonstrated proper ergonomic positioning and placement of the smartphone system 

with respect to the ear canal. Proper device use included first pressing the record button, then 

directing the funnel tip medially and slightly anteriorly at the entrance to the ear canal, and 

finally pulling the pinnae posteriorly with the opposite hand. Patients were directed to wait until 

the chirps were finished playing before removing the device. After the clinician performed 

testing, parents were allowed to experiment with device placement for approximately 30 seconds 

to 1 minute. Following this period, parents performed actual unaided testing, which was 

recorded. We performed all usability testing on the Samsung Galaxy S6.  

 

For funnel construction testing, we made an instructional video. Subjects were instructed to 

watch the video and subsequently construct the funnel, unaided, using the provided paper 

template, scissors, and tape. After construction and smartphone mounting, subjects were asked to 

rate the overall usability.  

 

Run-time analysis  

Implementation on an iPhone was performed in Swift, and the Accelerate framework was used to 

perform FFTs. Android implementation was done in Java, and the JTransforms library was used 

to perform FFTs. On an iPhone 5s, data processing and classification took 771.98 ms, including 

2.71 ms for dip detection, 0.06 ms for logistic regression, and 767.24 ms for 10 FFTs. On a 

Galaxy S6, the total runtime was 1.2 s, including 4.96 ms for dip detection, 0.67 ms for logistic 

regression, and 1200 ms for 10 FFTs.  

 

Statistical analysis  

To obtain clinical performance metrics and perform cross-validation, the FFT, filtering and peak 

detection were performed in Matlab. NumPy and scikit-learn were used to perform logistic 

regression, ROC analysis, and the calculation of accuracy, sensitivity, specificity and 95% 

confidence interval values. Line charts were created using matplotlib and seaborn.  

 

Supplementary Materials  

Fig. S1. Funnel template for smartphone  

Fig. S2. Conceptual diagram of the smartphone based system  



Fig. S3. Processed waveforms of patients under 18 months of age  

Fig. S4. Processed waveforms obtained from different smartphones for a single ear 

Fig. S5. Individual patient waveforms obtained from different smartphones 

Fig. S6. Processed waveforms of testing by parents  

Fig. S7. Processed waveforms of confounding ear pathologies  

Fig. S8. Effect of angle of insertion on system performance in a patient with middle ear fluid  

Fig. S9. Processed waveforms for a crying two-year old patient with partial head movement 

Fig. S10. Effect of funnel deformation on system performance 

Fig. S11. Effect of cerumen on acoustic waveforms 

Fig. S12. Design for earbud headphones  

Table S1. Demographic summary for first clinical study  

Table S2. Interchirp reliability testing  

Table S3. Funnel construction times and usability ratings 

Movie S1. Video illustrating proper technique for testing  

Movie S2. Instructional video for funnel construction  
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Fig. 1. Using a smartphone to detect middle ear fluid. (A) Location of speaker and 

microphone on the bottom of an iPhone 5s, with and without paper funnel attached. (B) Process 

of assembling smartphone funnel. (C) Proper placement of smartphone and funnel at ear canal 

entrance. (D) Raw acoustic waveform obtained when chirps are played into an ear with middle 

ear fluid (red) and without fluid (blue). The standard deviation (gray) is computed across 10 

chirp instances on a patient‘s ear.  

 

Fig. 2. Classification of patient ears from clinical testing. (A) ROC curve for our middle ear 

fluid detection algorithm, cross-validated on data collected from patients using an iPhone 5s (n = 

98) with operating point denoted by the red circle. (B) Comparison of performance for 

smartphone-based detection, acoustic reflectometry, and spectral angle-only classification during 

parallel clinical testing (n = 98). (C, D) Mean acoustic dip classified by the algorithm as with 

middle ear fluid (red) and without middle ear fluid (blue). Shaded region represents one standard 

deviation from the mean. (E) Feature analysis indicating the weight that the classifier places on 

each frequency around the acoustic dip.  

 

Fig. 3. Classification of patient ears under 18 months. (A) Demographic table of patients 

under 18 months. (B) Confusion matrix of the algorithm‘s performance for patients under 18 

months. (C, D) Mean acoustic dip of ears of patients under 18 months (n = 15) classified by the 

algorithm as with middle ear fluid (red) and without fluid (blue). Shaded region represents one 

standard deviation from the mean.  

 

Fig. 4. Classification performance across other mobile platforms. (A) ROC curve for our 

middle ear fluid detection algorithm, cross-validated on data collected from patients using an 

Samsung Galaxy S6 (n = 98). (B) Confusion matrices comparing performance on three other 

smartphones.  

 

Fig. 5. Performance testing with trained clinicians versus untrained parents. (A) 

Demographic table of patients that were tested by parents. (B) Confusion matrix of the 

algorithm‘s performance for patients ears (n = 25) tested by parents. (C, D) Mean acoustic dip of 

ears tested by parents (black) and clinicians classified by the algorithm as with middle ear fluid 

(red) and without fluid (blue).  

 

Fig. 6. Benchmark testing across different scenarios. (A) Different paper types used to 

construct the funnel (B) Different tip diameters of the funnel (C) Different funnel placement 

angles (D) Different background noise (infant crying) intensities (E) Funnels created by different 

individuals (F) Different chirp volumes. Solid and dashed lines indicate conditions where the 

algorithm classifies the waveform correctly and incorrectly respectively. The figure shows the 

mean for each test and a standard deviation computed across 5 chirp instances.  


