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Abstract This paper presents an image morphing algorithm for quantitative evalua-
tion methodology of terahertz (THz) images of excised breast cancer tumors. Most
current studies on the assessment of THz imaging rely on qualitative evaluation, and
there is no established benchmark or procedure to quantify the THz imaging perfor-
mance. The proposed morphing algorithm provides a tool to quantitatively align the
THz image with the histopathology image. Freshly excised xenograft murine breast
cancer tumors are imaged using the pulsed THz imaging and spectroscopy system in
the reflection mode. Upon fixing the tumor tissue in formalin and embedding in paraf-
fin, an FFPE tissue block is produced. A thin slice of the block is prepared for the
pathology image while another THz reflection image is produced directly from the
block. We developed an algorithm of mesh morphing using homography mapping of
the histopathology image to adjust the alignment, shape, and resolution to match the
external contour of the tissue in the THz image. Unlike conventional image morph-
ing algorithms that rely on internal features of the source and target images, only the
external contour of the tissue is used to avoid bias. Unsupervised Bayesian learning
algorithm is applied to THz images to classify the tissue regions of cancer, fat, and
muscles present in xenograft breast tumors. The results demonstrate that the proposed
mesh morphing algorithm can provide more effective and accurate evaluation of THz
imaging compared with existing algorithms. The results also showed that while THz
images of FFPE tissue are highly in agreement with pathology images, challenges
remain in assessing THz imaging of fresh tissue.
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1 Introduction

Breast cancer remains the most commonly diagnosed type of cancer among women
in the United States [1]. When detected early, it is possible to perform a lumpectomy
surgery, where a lump of tissue containing the tumor is excised, with minimum re-
moval of normal breast tissue as possible. On the other hand, when the cancer is not
detected early, a mastectomy surgery, where the whole breast is removed, becomes
necessary. During the lumpectomy operation, it is important to accurately detect the
margins of the excised tumor to include adequate amount of healthy tissue. Accurate
assessment of the tumor margins saves the patient from having a second surgery to
remove the remaining of cancerous cells, which unfortunately happens in almost 20%
- 40% of the cases [2]. In recent years, THz imaging has shown a strong potential in
differentiating between cancerous and noncancerous breast tissue [3—8], and hence
represents a potential candidate technique for tumor margin assessment in the future.

The majority of published work on THz imaging utilized qualitative or manual
quantitative methods to validate the images with histopathology (the golden standard
technique). Generally speaking, there is a lack of established benchmark or procedure
to automatically quantify the performance of THz imaging. While the validation of
the actual composition of a tumor can be accurately identified through the high power
histopathology analysis, they were qualitatively seen in THz images, in particular
in FFPE tissue samples [5-8]. In these works, the THz and pathology images were
manually aligned and rescaled for visual evaluation. In [5] and [8], the evaluation
was performed as a visual comparison between the THz and pathology images or
by superimposing contours of the well analyzed pathology regions on the THz im-
ages. Similarly, in [9], certain regions within the pathology image were magnified to
validate the imaging of heterogeneous regions with THz.

On the other hand, in [3,4, 10], the THz images were quantitatively evaluated us-
ing different types of tools. For example, in [3], the imaging results were evaluated by
computing the Spearman rank correlation coefficient between the number of cancer
pixels on the delineated THz and pathology images. The THz and pathology images
were manually aligned using inked margins and photographs as references. In [10],
the quantitative evaluation was performed by manually selecting corresponding sec-
tions on both THz and pathology images. The sections were then compared to cal-
culate the receiver operating characteristic (ROC) curve. The ROC curves were also
generated in [4] by performing a pixel-by-pixel comparison between the THz image
and a histology map, which was manually created by overlapping of the pathology
results on the THz image with software assistance. All the above quantitative meth-
ods required manual generation or adjustment of the pathology image, which are time
consuming and prone to human errors and bias.

The current work aims to develop an unbiased evaluation of THz images to auto-
matically assess the THz and pathology images by using image morphing technique.
Our first morphing algorithm was based on shape interpolation and has been utilized
to classify the tissue regions in freshly excised xenograft murine tumors as reported
in [11]. The algorithm in that paper made a direct pixel-by-pixel comparison between
the THz and pathology images where the pathology image was stretched or shrunk
either horizontally, vertically, or in some cases in both directions to match the con-
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tour of the THz image. The interpolation-based morphing has led to good results in
majority of cases, but showed some misalignments in some cases [11]. The objective
of the current paper is to improve the quantitative evaluation of the THz imaging by
using a mesh morphing algorithm based on homography mapping [12]. The mesh
morphing algorithm can capture and correct the complex deformation introduced in
the histopathology process of the FPFE tissue blocks, such that the pathology image
can be accurately and automatically morphed into the same shape and resolution of
its THz image counterpart.

Unlike most existing image morphing algorithms that rely on the internal fea-
tures (such as eyes, nose, mouth, etc.) of both the source and target images [13, 14],
the proposed mesh morphing algorithm only uses information on the external con-
tour of the THz and pathology images. Avoiding internal features, such as boundary
between cancer and fat, in the morphing process can avoid human bias. The proposed
algorithm is developed by using Delaunay triangulation to create triangle meshes on
the two images [13, 15], and homography mapping is then employed to match each
triangle on the source image to its counterpart on the target image [16]. The algorithm
can adjust the alignment, shape, and resolution of the pathology image to match the
external contour of the tissue in the THz image. To the authors’ best knowledge,
these techniques have not been previously used for this application. The mesh mor-
phing algorithm enables an automated pixel-by-pixel comparison between THz and
pathology images. Following the morphing procedure, the morphed images are used
to evaluate the unsupervised Bayesian learning algorithm for THz imaging classifica-
tion [11,17,18]. The Experimental Results Section will demonstrate that the proposed
mesh morphing algorithm can provide more effective and accurate evaluation of THz
imaging compared with the interpolation-based morphing.

This paper is organized as follows. Section 2 introduces the pulsed THz imaging
and spectroscopy system used to image the excised tumor tissue samples. The prob-
lem is formulated in Section 3. Section 4 describes the mesh morphing algorithm that
corrects the shape shift and the resolution mismatch between the pathology and THz
images. Experiment results are given in Section 5, and Section 6 concludes the paper.

2 Pulsed THz Imaging and Spectroscopy System

The THz system is a TPS Spectra 3000 (TeraView, Ltd.) pulsed terahertz imaging and
spectroscopy system at the University of Arkansas [5-8]. A diagram of the system is
given in Fig. 1(a). An 800nm Ti:Sapphire laser provides the excitation for a biased
GaAs antenna serving as the THz emitter. The emitted THz pulse shown in Fig. 1(b)
is then directed by mirrors to reflect off of the sample mounted on the scanning stage.
For all imaging in this work, the stage is moved in 200um steps, and the reflected
signal at each stage position is collected at a THz detector with the same structure as
the THz emitter [7, 19]. The Fourier transform of the incident signal is shown in Fig.
1(c) with a spectrum ranging from 0.1 to 4 THz.

Terahertz images of xenograft mouse tumors are obtained for statistical correla-
tion with pathology images in this work. C57BL/6 black laboratory mice are main-
tained on a high fat diet (D12492 from Research Diets) to generate sufficient fat
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Fig. 1: (a) Diagram of Pulsed THz Imaging and Spectroscopy System, with (b) emit-
ted time domain pulse in air purged with Nitrogen gas and (c) frequency domain
spectrum obtained using Fourier transform.

deposits for injection until they reach a target weight of 35 g [20]. EO771 murine-
derived breast adenocarcinoma cells are then injected into fat deposits on the mice
flanks [11]. The resulting xenograft tumors are excised when they reach around 1
cm in diameter and immersed for a few minutes in phosphate-buffered saline (PBS)
to be transferred to the THz imaging laboratory [11]. Following the imaging of the
freshly excised tumors, the samples are immersed in formalin to be shipped overnight
to the Oklahoma Animal Disease Diagnostic Laboratory (OADDL) for histopathol-
ogy processing. At OADDL, the samples are embedding in paraffin blocks making
FFPE tissue block samples. A thin ~ 3 — 4um slice of the FFPE tissue is taken to
be imaged under the microscope to produce the pathology images. The FFPE tissue
blocks are also imaged using the THz system to be compared with the pathology and
the THz images of the fresh tumors [11]. The imaging procedures of the samples are
illustrated in Fig. 2.

For fresh tissue, samples are mounted on the reflection stage using a sandwich of
two polystyrenes plates. THz images are then obtained by normalizing the frequency
domain signals at the polystyrene-sample interface by the polystyrene-air reflection
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Fig. 2: Experimental procedures.

and integrating magnitude at each point from 0.5 to 1.0 THz. This provides a multi-
spectral response (power spectra) that avoids high and low frequency noise.

For FFPE tissue, the tissue block is mounted in the air for reflection and the
reflected signals from the sample are normalized against the peak reflection from a
gold calibration mirror. Due to frequency domain oscillations arising from multiple
reflections in the FFPE block, just the time domain peak is used to generate the THz
image.

We have analyzed 16 xenograft breast cancer samples collected from 13 tumors.
Sections collected from the same sample were named A or B [11]. The results ob-
tained from 7 samples (samples 2, 4, 7A, 7B, 8A, 8B, and 9A) were presented in [11]
by using an interpolation-based morphing approach. For this study, we selected 3 rep-
resentative samples (tumor 5 section B with two tissue regions, and tumor 10 section
A and tumor 13 section A with three tissue regions) to assess the performance of the
proposed mesh morphing algorithm.

All animals received care in compliance with the guidelines outlined in the Guide
for the Care and Use of Laboratory Animals. The procedures were approved by the
University of Arkansas Institutional Animal Care and Use Committee (IACUC). The
tumors used in the experimental results section were grown in xenograft mice and
were excised in Dr. N. Rajaram’s lab in the Biomedical Engineering Department at
the University of Arkansas [11].

3 Problem Formulation

The pathology image with a resolution of N, x N, pixels can be represented by using
a red-green-blue (RGB) model, where each pixel in the image can be represented as
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Fig. 3: Sample 5B fresh. (a) Pathology image. (b) THz image.

he(z,y), where ¢ € {r, g, b} is the index for red, green, or blue, z € [1,--- , N,] and
y € [1,---, N,] are the horizontal and vertical coordinates of the pixel, respectively.

As explained in Section 2, the THz data is summarized by using either the maxi-
mum value (peak) or the integration (power spectra) of the signal per pixel for block
and fresh tissue, respectively. The summarized intensity can be used to form a THz
image with resolution M, x M, pixels. The summarized intensity at each pixel can
be represented as ¢(x,y) withxz € {1,--- ,M,}and y € {1,---, M,} are the hori-
zontal and vertical coordinates of the pixel, respectively.

Figs. 3(a) and 3(b) show an example of the pathology image and THz image,
respectively. The two images are obtained by using the same tissue samples, but under
different conditions. The THz image is obtained by performing THz scanning on the
freshly exercised tumor tissues. On the other hand, to obtain the pathology image, the
tissue sample is first embedded in paraffin blocks, sliced, stained using Haemotoxylin
and Eosin (H&E) ink, then evaluated under the microscope. As a result, the pathology
and THz images of the same sample could look quite different. A direct pixel-by-
pixel comparison between the pathology and THz image is not possible due to the
following reasons.

1. Resolution mismatch: since histopathology results are obtained form a micro-
scopic evaluation of the tissue, its resolution M, x M, is usually much larger
than that of the THz image N, x N,,.

2. Shape deformation: when imaging fresh tissue samples with the THz system,
there is considerable shape shifting due to the deformation of the tissue; the shape
will further change during transportation, slicing, and paraffin embedding for the
preparation of the FFPE sample that is necessary for histopathology evaluation.

3. Misalignment: the orientation of the two images are not aligned because the THz
and pathology images are evaluated at different locations.

To enable a pixel-by-pixel comparison between the two images, we propose to
morph the pathology image based on the shape of the THz image, such that the mor-
phed pathology image has the same resolution, orientation, and shape as its THz
counterpart. The main distinction between the proposed algorithm with existing mor-
phing algorithms is that the proposed method will only use the information on the
external contour of the pathology and THz images, while almost all existing morph-
ing algorithms try to match two images with their corresponding internal features.
No internal feature is utilized in this case to avoid unintentional bias in the morphing
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results. This is especially important for our application, which aims at quantitatively
evaluating the performance of cancer detection with THz imaging by comparing it to
its pathology counterpart.

4 Image Morphing

This section describes the procedures to morph the pathology mask into the shape
of the THz image. Image morphing is an image processing technique that reshapes
an image into the shape of another. In this paper, we propose to use mesh warping
to achieve shape shifting between the pathology and THz images. The pathology
morphing algorithm proposed in this paper consists of five steps: mask creation, mask
alignment, mesh creation, image warping, and matrix creation.

1) Mask Creation. The pathology image is a colored image obtained by using
optical microscope. It does not clearly show the classification of the different regions
at low magnification, and its accurate interpretation requires high magnification and
the expertise of a pathologist. To enable the direct and pixel-by-pixel comparison be-
tween the pathology and THz image, it is necessary to convert the colored pathology
image into a new one that clearly define the classification of each pixel based on the
report from the pathologist [4]. The algorithm uses the gray scale color representation
of the pathology image for the classification of the regions in samples with 2 regions
and the hue-saturation-value (HSV) color representation in samples with 3 or more
regions. For both cases, a threshold is defined in order to classify the intensities for
each pixel. In samples with 3 or more regions, the saturation levels are used to iden-
tify fat, and the hue levels are used to classify muscle/fibro and cancer. The selection
of the thresholds changes from sample to sample because it depends on the contrast
and brightness of the pathology image.

2) Mask Alignment. The objective of mask alignment is to align the orientation
of the pathology mask with the THz image based on their external contours. Fig. 4(a)
and 4(c) show the THz image and the pathology mask for sample 5B, which clearly
shows the misalignment between the two images. Since the alignment is performed
by only using the external contours, we first convert the THz image and pathology
mask into monochromatic masks. Given that the resolution of the pathology mask is
much higher than that of the THz mask, the resolution of the monochromatic pathol-
ogy mask is reduced by using bicubic interpolation. The algorithm uses Pearson’s
correlation coefficient between the two monochromatic masks to find the angle of
maximum correlation [21]. Once the angle of alignment 6° is found, the pathology
mask of the original resolution is rotated by 6°.

3) Mesh Creation. To create the meshes, it is necessary to define control points
between the two images such that the source and target control points match with each
other after mesh warping [13]. One prominent distinction of the proposed algorithm
with existing algorithms is that no control points inside the tumor should be used.
Such a restriction is imposed to avoid the situation that the shapes of two internal
regions are artificially matched, which will create bias in the THz image evaluations.
In addition, given that the shape mismatch is a consequence of fixing the fresh tissue
in paraffin, the stretching and shrinking varies from sample to sample and most areas
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Fig. 4: Image misalignment for sample 5B fresh. (a) THz image. (b) Pathology image.
(c) Pathology mask before alignment. (d) Pathology mask after alignment.

change unpredictably. As a result, it is not possible to automatically identify the con-
trol points due to the lack of common features on the external boundary between the
images.

Based on n control points selected by the user, we can create triangular meshes
by using Delaunay triangulation [15], which divides the image into a tile of non-
overlapping smaller triangles. Each triangle element can be warped separately such
that the triangle on the source (rotated pathology mask) matches its counterpart on the
target (THz image). To successfully warp the images, the meshes should not present
any folding or discontinuities, and should be topologically equivalent [13]. Fig. 5
shows examples of Delaunay mesh created for sample 10A. To ensure complete cov-
erage of the image, in addition to the control points on the image contour, the four
corners of the image are also chosen as control points.

4) Homography Image Warping. The objective of homography image warping
is to map each triangle within the source mesh into the same shape as its counterpart
in the target mesh. A homography is an invertible mapping from a two-dimensional
plane to itself if and only if the mapped points of three points on the same line are
also co-linear [12]. Since there are M triangles in each mesh, different homography
mapping matrices should be computed for each triangle in the mesh. The homog-
raphy mapping matrix of each triangle is calculated by using the coordinates of the
3 vertices of the triangles and its corresponding centroid. The matrix is obtained by
using the singular value decomposition method as described in [16].

Even though the application of homography mapping is sufficient to completely
morph the image, the requirement of having topologically equivalent meshes in both
images remains as a challenge. To solve this problem, we adopt an iterative morph-
ing approach. In each iteration we try to morph a few regions in the source image.
The source image in each iteration is the target image from the previous iteration. An
example of the iterative morphing process is shown in Fig. 5, where the iterative mor-
phing process ensures the creation of topologically equivalent meshes. The number
of iterations and number of regions to morph at each iteration varies depending on
the severity of the mismatch between the images.

5) Matrix Creation. Once the pathology mask has been successfully morphed,
we need to convert it into a reference matrix that summarizes the tissue classifica-
tion of each pixel as presented in the histopathology report (e.g. pixels labeled as 1
represent cancer, 2 represent muscle, etc) [11]. This reference matrix D is created
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based on the RGB color assigned during the creation of the pathology mask. Since
the colors might change slightly due to morphing, each pixel in the pathology mask is
classified by minimizing the difference between the assigned color and the color after
morphing. The created reference matrix D has the same size as the THz image, thus it
is possible to perform a pixel-by-pixel comparison between the two to quantitatively
evaluate the results.

5 Experimental Results

This section presents the experimental results acquired from the mesh morphing al-
gorithm described in Section 4. As described in Section 2, we present the results ob-
tained with 3 samples: tumor 5 section B, tumor 10 section A, and tumor 13 section
A.

The performance of the proposed mesh morphing algorithm is compared to an
interpolation-based algorithm presented in [11, 17]. The interpolation-based algo-
rithm simply stretches or shrinks the pathology mask vertically or horizontally to
match the contour of the THz image. The results of the two algorithms are visually
compared in Fig. 6 for the three samples, for both fresh tissues and FFPE samples.
Compared to the interpolation-based algorithm, there is a better match between the
mesh morphed pathology masks with their respective THz counterparts. The main
advantage of the mesh morphing algorithm is that it reshapes the pathology image
in any direction, yet the interpolation-based algorithm reshapes the image only in
the vertical and horizontal directions. Therefore, the mesh morphing algorithm more
accurately accounts for the deformation of the sample during the histopathological
process.
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To further evaluate the mesh morphing algorithm, the samples were classified
using an unsupervised Bayesian learning algorithm based on Markov chain Monte
Carlo (MCMC), as presented in [11]. The Bayesian learning algorithm assumes that
the summarized intensities of pixels belonging to different regions follow different
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probability distribution models. The unsupervised classification method is chosen
because a supervised classification method will require a large number of tumor sam-
ples for training, while we only have a relatively small number of samples (a total of
16 samples), especially for tumors with 3 or more regions. We will explore supervised
classification methods in our future works as we collect more samples.

In this paper, both Gaussian mixture and the ¢-mixture models were used to es-
timate the classification of the regions. The classification results were quantitatively
evaluated by performing a pixel-by-pixel comparison between the classification re-
sults and the reference matrix obtained through the morphing procedure.

5.1 Samples with two regions

Sample 5B contains two regions, cancer and fat. The results for fresh and FFPE sam-
ples are shown in Figs. 7 and 8, respectively.

Fig. 7(a) presents the THz image collected from sample 5B while it was still fresh.
In this case, the spectral power of the reflected signal per pixel was used to generate
the THz image. Fig. 7(b) shows the pathology results obtained after fixing the tissue in
paraffin. Fig. 7(c) shows the morphed pathology results, where blue represents cancer
and red represents fat. Figs. 7(d) and 7(e) represent the classification results of the
THz image with the Gaussian and the ¢-mixture models, respectively. It is important
to highlight that any white region within the samples represents either background or
gaps (i.e. air gap that is missing tissues). Although gaps can appear only after fixing
the sample in paraffin, the gaps were considered in freshly excised tumors due to
their presence in the histopathological results. Therefore, the gap was not considered
as part of the region of interest to avoid bias in the analysis.
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Even though the THz images of fixed tissue (FFPE) do not present a considerable
shape shifting as the fresh tissue, the morphing algorithm should still be performed
to correct the resolution and alignment mismatch between the THz and pathology
images. Fig. 8(a) presents the THz image collected from the FFPE sample 5B, where
the maximum peak of the normalized reflected signal per pixel is used to summarize
the pixel intensity. Fig. 8(b) shows the pathology results obtained after fixing the
tissue in paraffin. The morphed pathology results, and the classification results of the
THz images with Gaussian and ¢-mixture models are shown in Figs. 8(c), Figs. 8(d),
and 8(e), respectively.

The classification results of both fresh and FFPE samples are compared to their
respective morphed pathology results for quantitative evaluations. Figs. 9(a) and 9(b)
show the ROC curves for sample 5B fresh and FFPE, respectively. From the ROC
curves, we can quantitatively evaluate the performance of the cancer and fat detection
in terms of its true positive (sensitivity) vs. false positive ratio (1-specificity). The
ROC curves show that both cancer and fat can be accurately classified with low false
positive ratio. The high accuracy in the classification results also demonstrates the
accuracy of the proposed mesh morphing algorithm. These results are corroborated
by Figs. 9(c) and 9(d), which show the estimated probability distributions of cancer
and fat with the Gaussian mixture model.

5.2 Samples with three or more regions

Samples 10A and 13A contains three or more regions, including cancer, lymph node,
muscle or fibro, and fat. While this research focuses on the detection of margins for
lumpectomy, there are other approaches for breast cancer excision that include sen-
tinel node biopsy. In that procedure, the surgeon excises the lymph node closest to the
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tumor to verify if the cancer has spread to other parts of the body. Since this sample
presented a lymph node close to the tumor that showed signs of cancer spreading, we
do not consider the lymph node as a separate region. Hence, the sample was analyzed
by considering 3 regions: cancer, muscle, and fat.

Fig. 10(a) presents the THz image collected from sample 10A fresh. Fig. 10(b)
shows the pathology results obtained after fixing the tissue in paraffin. Fig. 10(c)
shows the morphed pathology mask of this sample, where blue represents cancer,
green constitutes muscle, and red represents fat. Figs. 10(d) and 10(e) represent the
classification results of the THz image with the Gaussian and the ¢-mixture models,
respectively.

Figs. 11(a), 11(b), and 11(c) present the THz image, the pathology image, and
the morphed pathology results collected from sample 10A FFPE, respectively. The
classification results with Gaussian and ¢-mixture models are shown in Figs. 11(d)
and 11(e), respectively.

The classification results were compared to the morphed pathology results, and
the corresponding ROC curves are shown in Fig. 12(a). The curves show that the de-
tection of fat and muscle is compromised when considering 3 regions. This result can
be explained from Fig. 12(c), which shows an overlapping of the probability distribu-



14 Tanny Chavez, Tyler Bowman, Jingxian Wu, Keith Bailey, Magda El-Shenawee

[l Cancer
W Muscle
lFat

(a) (b) (©

y(mm)
o
[
o
N
spectral power

-10

Ml Cancer
M Muscle
WFat

(d) ©

Fig. 10: Sample 10A fresh with 3 regions. (a) THz image. (b) Pathology image. (c)
Morphed Pathology. (d) Gaussian mixture model. (e) ¢t-mixture model.
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Fig. 11: Sample 10A FFPE with 3 regions. (a) THz image. (b) Pathology image. (c)
Morphed Pathology. (d) Gaussian mixture model. (e) ¢-mixture model.

tions of muscle and cancer. While Figs. 10(a) and 10(c) show good visual correlation,
the statistical model does not sufficiently distinguish the region of muscle between fat
and cancer. Figs. 12(b) and 12(d) show the ROC curve and probability distributions
for sample 10A FFPE, respectively. Again, there is significant overlapping between
the distributions of muscle and cancer, and this results in poor detection results for
muscles in the ROC curves in almost all figures.



Assessment of Terahertz Imaging for Excised Breast Cancer Tumors with Image Morphing 15

1 1
Y/,
0038 008
© T
o o
g 0.6 _02') 0.6 /I
‘D ‘@ /
@ 0.4 ——Cancer Gaussian mixture model EE 0.4 — Cancer Gaussian mixture model]
g Muscle Gaussian mixture model g Muscle Gaussian mixture model
= ——Fat Gaussian mixture model = — Fat Gaussian mixture model
0.2 - = Cancer t-mixture model 0.2 - —Cancer t-mixture model
Muscle t-mixture model Muscle t-mixture model
0 - —Fat t-mixture model 0 = —Fat t-mixture model
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive Ratio False Positive Ratio
(@) (®)

S 20 S 150
2 — Cancer 2 —Cancer
215 Muscle 2 Muscle
2 —Fat 2100 —Fat
2 2
o 10 [}
° °
= 2 50
35 3
2 3
o [ \
s 0 ” 5 0

-0.5 0 0.5 1 0.05 0.1 0.15 0.2 0.25 0.3

spectral power time-domain peak
(© (@

Fig. 12: ROC curves and probability distributions for sample 10A fresh and FFPE.
(a) ROC curves for sample 10A fresh. (b) ROC curves for sample 10A FFPE. (c)
Probability distribution for sample 10A fresh. (d) Probability distribution for sample
10A FFPE.

Similar analysis was performed for sample 13A, which contains cancer, fibro, fat,
and lymph node. The results for sample 13A fresh are shown in Figs. 10 and 15, and
those for sample 13A FFPE are shown in Figs. 14 and 15.

For the fresh sample, the ROC curves in Fig. 15(a) indicate that cancer and fat can
be detected with high accuracy, yet the detection accuracy of fibro is relatively poor.
From the statistical model’s point of view, the compromised performance of fibro is
mainly due the the significant overlapping in distributions between fat and fibro as
shown in Fig. 15(c). Similar results are also observed for the FFPE samples as shown
in Fig. 15(d).

To summarize the overall performance of the morphing algorithm with unsuper-
vised Bayesian learning, Table 1 presents the areas under the curves of each sample.
The area under the ROC curve represents an indicator of the performance of the
Bayesian learning algorithm to distinguish a particular region from the rest of the
tissue. From this table, we can highlight that the performance of the MCMC algo-
rithm is successful for samples with 2 regions. In sample 5B, the areas under the
curve for cancer and fat are greater than 95%, for both fresh and FFPE tissue. For
samples with 3 regions, the areas under the curve for cancer are greater than 85% in



16 Tanny Chavez, Tyler Bowman, Jingxian Wu, Keith Bailey, Magda El-Shenawee

IS}
o
o

Ml Cancer
5 & MIFibro
= 04 8 A
E 0 ]
= B
5 02 ¢
&
-10 0
10 5 0 5 10
x(mm)
(@) (b) (©)

Il Cancer

iFibro
MFat

@ (e)

Fig. 13: Sample 13A fresh with 3 regions. (a) THz image. (b) Pathology image. (c)
Morphed Pathology. (d) Gaussian mixture model. (e) ¢t-mixture model.
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Fig. 14: Sample 13A FFPE with 3 regions. (a) THz image. (b) Pathology image. (c)
Morphed Pathology. (d) Gaussian mixture model. (e) ¢-mixture model.

fresh tissue and 77% in FFPE tissue. According to the results, the MCMC algorithm
successfully identifies cancer and fat in samples with 2 regions, but it’s performance
is compromised at the presence of a third region. Although the algorithm should be
further improved for the classification of samples with 3 or more regions, the results
demonstrate the potential of the proposed mesh morphing algorithm combined with
the unsupervised Bayesian learning algorithm for the classification of THz imaging.

Considering all the samples presented in this section, we can highlight that the
quantitative evaluation of the unsupervised Bayesian learning approach was success-
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Fig. 15: ROC curves and probability distributions for sample 13A fresh and FFPE.
(a) ROC curves for sample 13A fresh. (b) ROC curves for sample 13A FFPE. (c)
Probability distribution for sample 13A fresh. (d) Probability distribution for sample
13A FFPE.

Table 1: Area under the ROC curve for all samples.

Muscle /
Sample Type  Cancer Fibro Fat
sB Fresh  0.9522 — 0.9522
FFPE 0.9754 — 0.9754
10A Fresh  0.8518 0.7139 0.7372
FFPE 0.7743 0.2089 0.8073
13A Fresh  0.8604 0.6656 0.8646

FFPE  0.9399 0.6545 0.9385

ful due to the creation of the reference matrix through the proposed mesh morphing
algorithm. Therefore, we demonstrated the effectiveness of the morphing algorithm
for the quantitatively evaluation of breast cancer tissue samples.
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6 Conclusions

The results of this paper demonstrated a quantitative evaluation methodology of THz
imaging with pathology images of excised breast cancer tumors. The presented method-
ology included the development of a mesh morphing algorithm followed by a statis-
tical classifier. The mesh morphing algorithm was based on homography mapping
of histopathology images to adjust the alignment, shape, and resolution to match the
external contour of the tissue in the THz image. It is important to mention that the
proposed algorithm works properly if the resolution of the histopathology image is
larger than that of the THz image. This requirement can always be met in practical
applications because the histopathology utilizes optical images from a microscope,
which possess inherently higher resolution.

The statistical classifier was based on the well-known technique, the unsuper-
vised Bayesian learning algorithm based on Markov chain Monte Carlo (MCMC).
The results showed successful evaluation of samples with two regions, and challenges
remained when three different tissue regions were included. Specifically, the classifi-
cation of both muscle and fibro was not successful in the results presented here. This
is due to the fact that compressing the THz data to a scalar value for each pixel causes
overlap in the probability distributions of cancer and fibro regions. For future studies,
the selection and usage of additional parameters of the THz data by using advanced
dimension reduction techniques such as basis expansion or principal component anal-
ysis [22,23] will be studied to further improve the classification algorithm.

In addition, the THz imaging of fresh tissues is still facing challenges to be quanti-
tatively evaluated since the pathology images were the only available images to com-
pare with. These images were taken from two different states of the tissue; the THz
was taken once the tissue was excised from the xenograft mouse while the pathology
images were obtained after the tissue was immersed in formalin and embedded in
paraffin to produce the tissue block. In the histopathology process, there was defor-
mation, misalignment, and stretching of the tissue leading to comparing two different
image states. Furthermore, THz imaging of fresh tissue still suffer challenges due to
the presence of blood and fluid floating on the tissue surface that affects the THz re-
flection results. This is the reason that the results of the quantitative evaluation of THz
imaging of FFPE tissues is more reliable than that of the THz imaging of fresh tissue.
Future studies will focus on improving the alignment of smaller, more distributed re-
gions (e.g. ductal carcinoma in situ DCIS), using morphing as more heterogeneous
samples are investigated.
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