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Abstract—We study the optimum designs of a unicast
push-based information delivery system, where information is
sent from a server to a user by using server-initiated push-
ing actions. Information arrives at the server at random and
the server adopts a “hold-then-serve” strategy, where new infor-
mation is temporarily stored in a queue for a later one-time
transmission. At any given time instant the server decides
whether to stop waiting and push all information in the queue to
the user, or to keep waiting based on the current queue status and
the long-term design objective. A shorter waiting time can pre-
serve the “freshness” or timeliness of the information, which can
be measured by using various delay penalty functions. However,
frequent pushing actions will increase the power consumption
of user devices by frequently waking up the client. The objec-
tive is to identify the optimum stopping rule that can optimize
the tradeoff between the delay penalty and energy consumption.
Motivated by the fact that different applications have differ-
ent delay requirements, we adopt three different types of delay
penalty functions, including linear, exponential, and logarithmic
penalty functions. Using optimum stopping theories, optimum
stopping rules are developed to minimize a weighted combination
of delay penalty and energy efficiency. Different Pareto-optimum
tradeoffs between delay and energy efficiency can be achieved
by tuning the weight coefficient in the objective function. In par-
ticular, if the delay penalty function is convex, it is proved that
the one-step look ahead stopping rule is optimum.

Index Terms—Optimum stopping rule, information pushing,
scheduling.

I. INTRODUCTION

THE EXPLOSIVE growth of mobile devices and mobile
applications have enabled the ubiquitous and timely

access to a large variety of information, such as news, stock
prices, weather, and traffic, etc. It has transformed how we
access and consume information. Mobile services are expected
to make any information available anytime and anywhere.
However, fulfilling these expectations is difficult at times due
to limited resources on mobile devices and communication
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links. The growing demands for these types of applications
have motivated various research works on how to efficiently
deliver information to mobile users [1]. In any information
delivery system, the information can be delivered to a client
through either server-initiated information pushing, or client-
initiated information pulling, or both. The push and pull
models are compared in details in [2].

One of the main design objectives of information deliv-
ery systems is to preserve the timeliness or “freshness” of
the information because the values of information depreciate
rapidly as time elapses. The “freshness”, or conversely, “stal-
eness” of information can be measured by using the delay
between information generation and consumption, or by using
age-of-information (AoI) [3]–[8]. Under an energy harvest-
ing setting, various status update policies are developed to
minimize the AoI for systems with infinite [9], [10] or finite
batteries [11]. The tradeoff between delay and energy effi-
ciency is studied in [12] by using optimum stopping theory.
All above results assume a linear penalty function. Non-linear
penalty functions are introduced in [13] to capture the diverse
information aging processes in practical applications.

In a traditional “request-then-serve” unicast scheme adopted
by a push-based information delivery system, the delay can be
minimized by pushing information to the user (mobile client)
as soon as it arrives at the server. However, frequent pushing
operations will also increase the power consumption of a client
since the client needs to wake up every time new information
arrives. Alternatively, the server can adopt a “hold-then-serve”
strategy, in which the server temporarily holds the information
in the queue for a later one-time transmission. This will reduce
the frequency of information pushing, at the cost of a larger
delay. Thus it is vital to design push scheduling schemes that
can balance the tradeoff between delay and energy efficiency.

Optimum scheduling has been studied extensively in the lit-
erature. A network-centric scheduling mechanism is proposed
in [1], where mobile push notifications are scheduled by sens-
ing and predicting users’ cellular network activities. In [14], a
data push scheduling scheme is proposed for efficient mobile
advertisement delivery by using a content preference model of
the users. In [15], multicast scheduling strategies are proposed
to optimize the tradeoff between energy efficiency and queuing
delay, and the impacts of different delay constraints are con-
sidered during the design. The effect of transmission delay is
not considered in [15] based on the assumption that the trans-
mission rate is much larger than the information arrival rate.
The optimum multicast scheduling for cache-enabled content-
centric networks is studied in [16] and [17], where the cost
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functions are linear combinations of average delay, power,
and/or fetching cost. The problems are solved by using Markov
decision process (MDP), and it is shown that the optimum
scheduling is of a threshold type.

In this paper, we study the optimum tradeoff between
delay and energy efficiency by designing optimum schedul-
ing strategies in a push-based unicast information delivery
system. New information arrives at the server randomly and
it is stored in a queue waiting for transmission. At any given
time instant, the server decides whether to keep waiting or
push all information in the queue to the user. This decision
depends on the causal observations of the state of the queue,
hence the time instants of the push action can be modeled as
a stopping time [18]. So, the problem of optimum pushing
scheduling can be cast in the framework of optimum stopping
theory.

The optimum stopping theory is about the problem of
deciding the time for a given action based on causal and
sequential observations of system state information [18]. It
has a wide range of applications in statistics, engineering,
finance, etc [19]–[22]. The optimum stopping theory is used
to develop optimum scheduling strategies for multicast in cel-
lular networks [15] or opportunistic random access in ad hoc
networks [23].

In this paper, the optimum stopping theory will be used to
identify the optimum stopping rules regarding the condition
under which the server should stop waiting and initiate the
pushing action. Particularly, the optimum stopping rule will
be designed to minimize an objective function expressed as a
weighted combination of energy efficiency and delay penalty
functions. During the analysis, it is assumed that the informa-
tion arrival rate is much less than the information transmission
rate, such that the transmission delay is less than one slot
with a high probability. Consequently, the delay is mainly
due to waiting time in the buffer. It will be shown that the
achievable energy-delay tradeoff region is convex, and differ-
ent Pareto-optimum tradeoff points between delay and energy
can be achieved by tuning the weight coefficient in the objec-
tive function. Since it is hard to directly minimize the original
objective function, a surrogate objective function is introduced
and the equivalence between the original and surrogate objec-
tive function is analytically established. Using the surrogate
objective function, we first identify the optimum stopping
rule for a system with the general form of delay penalty
functions. Then the optimum stopping rules for systems with
linear and nonlinear delay penalty function are developed. It
is shown that if the delay penalty function is convex, which
includes both the linear and exponential delay penalty as spe-
cial cases, then the optimum stopping rule can be formulated
as a low complexity one-step look-ahead rule (LAR), where
the server can achieve the optimum performance by compar-
ing the current objective function with the expected objective
function of the next time slot. For systems with linear delay
penalty, we analytically identify the design parameters and
the associated minimum objective function through statisti-
cal analysis of the random stopping time. For systems with
non-linear delay penalty, the parameters of the optimum stop-
ping rule can be obtained through a mixture of analytical and

TABLE I
LIST OF NOTATIONS

numerical methods, where the numerical method only needed
to be performed once offline. The performances of the opti-
mum stopping rules for systems with different types of delay
penalty functions are compared with each other in terms of the
optimum objective function and the energy efficiency-delay
tradeoff.

A list of the notations used in this paper is summarized in
Table I. The remainder of this paper is organized as follows.
Section II presents the system model and problem formula-
tion. The optimum stopping rule for a system with general
delay penalty function is developed in Section III. Optimum
stopping rules for systems with linear and nonlinear delay
penalty functions are studied in Sections IV and V, respec-
tively. Optimum stopping rules for an alternative problem
formulated with time-normalized metrics are discussed in
Section VI. Simulation results are presented in Section VII,
and Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a push-based information delivery system with the
“hold-then-serve” strategy adopted at the server. We divide
the time into slots and denote the amount of information
arriving at the server at the beginning of the t-th slot as Nt

bits, where Nt, for t = 1, 2, . . ., are identically and indepen-
dently distributed (i.i.d.) random variable (RV) with mean μ
and variance σ2

N. Let F t = σ([N1, . . . ,Nt ]) be the σ-algebra
generated by N 1:t � [N1, . . . ,Nt ].

We assume, without loss of generality, that the previous
push action occurs at time slot 0. The server decides when to
push all the queued information based on the current system
status, that is, the total number of queued bits, and the long-
term design objective. Define the action space of the server
as A = {0, 1}, where 1 represents the action of pushing all
queued information to the user at the current slot, and 0 rep-
resents the action of waiting or not pushing. The stopping rule
can then be represented as a mapping from Ft to the action
space as

φ : Ft → A , (1)

where φ(Ft ) = 1 means that the server will push all
the queued information bits to the user at time slot t,
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and φ(Ft ) = 0 means the server will keep waiting and
postpone pushing to future slots.

Define the set of all feasible stopping rules as

S = {φ | φ(FT ) = 1, 1 ≤ T ≤ D}, (2)

where D > 0 is a hard deadline for the pushing action. The
variable T is used to represent the index of the slot of the push-
ing action. It is clear that T is a stopping time as it depends
only on the causal observations of the information Ft [18].
The stopping time T is a random variable, the distribution of
which depends on the distribution of N1:t and the stopping
rule φ.

A. Information Delay

In the hold-then-serve model, the information delay is
contributed by two factors: the queuing delay τQ and the trans-
mission delay τTx . The queuing delay is the time duration that
a bit needs to spend in the buffer before transmission. The
transmission delay is the actual transmission time of the infor-
mation in buffer. Assume the transmission rate of the system
is R bits per second, then the transmission delay associated
with stopping time T is

τTx =
∑T

t=1 Nt

RT0
slots, (3)

where T0 is the duration of one slot. Since Nt and T are
random, τTx is a random variable. Based on the Wald equation
[18, Ch. 3.3] and the fact that T ≤ D, it can be easily shown
that the average transmission delay satisfies

E[τTx ] =
E[T ]μ
RT0

≤ Dμ

RT0
. (4)

To ensure queue stability, the average arrival rate must be
less than or equal to the average transmission rate [24], that is
μ ≤ RT0. When μ = RT0 or very close to RT0, the schedul-
ing problem is trivial, because in this case the data needs
to be transmitted in almost every slot. For almost all practi-
cal mobile pushing-based applications such as news, weather,
stock prices, etc, we have μ � RT0. Specifically, under the
assumption μ

RT0
� 1, we pick the hard deadline D based on

the following constraint

Dμ

RT0
< 1 − Δ, (5)

where Δ ∈ [0, 1] is an adjustable parameter. Given μ
RT0

�
1, the constraint in (5) can be easily met by picking the
appropriate hard deadline D and parameter Δ.

From (4), we can see that the constraint in (5) implies
E[τTx ] < 1 − Δ, that is, the average transmission delay is
less than 1 slot for Δ ∈ [0, 1]. The following Lemma bounds
the probability that τTx > 1.

Lemma 1: Assume that Nt follows i.i.d. Poisson distribu-
tion with mean μ. Under the constraint (5), the probability that
the transmission delay is longer than one slot is bounded by

Pr(τTx > 1) <
μ2

R2T 2
0 Δ2

(
D
μ

+ D2
)

. (6)

Proof: The proof is in Appendix A.

Under the assumption that μ
RT0

� 1 and the constraint
in (5), it can be seen from (6) that the probability that the
transmission delay is greater than 1 slot is negligible for appro-
priate choices of D and Δ. In addition, the constraint in (5)
ensures that the average transmission delay is less than 1
slot. Therefore in this paper, we assume that the transmis-
sion delay is bounded by one slot. Since the time domain
considered in the system model is discrete, we can assume
that for a given stopping time T in a particular transmis-
sion, the information bits will reach the user at the (T + 1)-th
time slot. Correspondingly, if a bit arrives at the server at
the t-th slot, then the total delay experienced by the bit is
τ = τQ + τTx = T − t + 1.

The impact of delay is measured by using a penalty func-
tion f (τ ), where τ ≥ 0 is the summation of waiting time for
the information in the queue and the aforementioned constant
transmission delay. The delay penalty function f (τ ) satis-
fies the following two conditions: 1) f (τ ) is a monotonically
increasing function; and 2) f (0) = 0. As τ goes to infinity,
f (τ ) can be either bounded or unbounded. In this paper, we
will consider three different delay penalty functions [13],

1) Linear Delay: f (τ ) = ατ ,
2) Exponential Delay: f (τ) = exp(ατ) − 1,
3) Logarithmic Delay: f (τ) = log(ατ + 1),

where α > 0 is a tuning parameter. It is easy to verify that all
three functions satisfy the two conditions required for delay
penalty functions.

The three penalty functions corresponding to applications
with different tolerances on information delays. The exponen-
tial delay penalty function can be used for applications with
information that is highly sensitive to delays, thus a small
delay will incur a big penalty. Examples of such applications
are instant messages and stock prices, because the values of
these information depreciate rapidly as time elapses. The lin-
ear delay penalty can be assigned to applications like news or
weather updates, where a small delay in information delivery
is acceptable. The logarithmic penalty function is more appro-
priate for applications that can tolerate longer delays, such as
advertisements or entertainment.

B. Delay-Energy Tradeoff

Suppose that for a given stopping rule φ, the pushing oper-
ations are carried out L times, and denote T1,T2, . . . ,TL as
the corresponding stopping times. The average delay penalty
normalized by the amount of delivered information can then
be calculated as

Aφ =
∑L

l=1

∑Tl
t=1 Nl ,t f (Tl − t + 1)

∑L
l=1

∑Tl
t=1 Nl ,t

, (7)

where Nl,t is the amount of information arriving at the start of
the t-th time slot associated with the l-th pushing operation.
It must be noted that in the delay penalty function a constant
transmission delay of one time-slot is considered as previously
explained. The system model is illustrated in the Fig. 1.

Denote the amount of energy consumed for receiving one
bit of information at the user as Eb. Moreover, each pushing
operation will wake up the client, and this will consume a fixed
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Fig. 1. Sample realizations of queued information bits followed by pushing
operations.

amount of energy E0. The energy efficiency can be measured
by using the average normalized energy consumption, which
can be calculated as

Eφ =

∑L
l=1

[
E0 + Eb

∑Tl
t=1 Nl ,t

]

∑L
l=1

∑Tl
t=1 Nl ,t

. (8)

If both the numerators and denominators of (7) and (8) are
divided by L, then by the law of large numbers, as L → ∞,
we have

Aφ →
E

[∑T
t=1 Nt f (T − t + 1)

]

E

[∑T
t=1 Nt

] , a.s., (9)

Eφ →
E

[
E0 + Eb

∑T
t=1 Nt

]

E

[∑T
t=1 Nt

] , a.s. (10)

Here the expectation operator E() is performed with respect
to both T and N1:T. The distribution of the stopping time T is
determined by the stopping rule φ and the distribution of N1:t.

The energy efficiency can be improved by increasing T,
because a longer T means less pushing actions in a unit time,
thus less power consumption due to E0. On the other hand, a
longer T will increase the normalized delay penalty Aφ. Thus
we need to find a stopping rule that can balance the tradeoff
between Eφ and Aφ.

Define the achievable Eφ-Aφ region R as,

R = {(Eφ,Aφ), φ ∈ S}. (11)

It will be shown in the following lemma that the achievable
region R is convex.

Lemma 2: The achievable Eφ-Aφ region R defined in (11)
is convex.

Proof: The proof is in Appendix B.
Due to the convexity of the achievable region, the optimum

tradeoff between Eφ and Aφ can be achieved on the Pareto-
optimum boundary as shown in Fig. 2. The Pareto-optimum
boundary corresponds to the region that Aφ and Eφ cannot
be increased simultaneously, and it is between the two points
with stopping rules corresponding to minEφ and minAφ,
respectively. Any point on the Pareto-optimum boundary char-
acterizes a different tradeoff between Eφ and Aφ. We can
identify each point on the Pareto-optimum boundary by iden-
tifying a linear function, Eφ + ωAφ, that is tangent to the
boundary of R as shown in Fig. 2, where ω > 0 is a tun-
ing parameter used to adjust the tradeoff between Eφ and Aφ.
Different values of ω correspond to different points on the
Pareto-optimum boundary.

Fig. 2. Optimum tradeoff between Eφ and Aφ.

The problem can thus be formulated as

(P1) minimizeφ∈S Eφ + ωAφ.

Problem (P1) is a stochastic optimization problem and is
usually difficult to solve. Given the fact that T is a stopping
time, we propose to solve the problem by applying the stop-
ping time theory [18]. However, since the expectation operator
is on both numerator and denominator of the objective func-
tion, the stopping time theory cannot be readily applied to
(P1). To facilitate the solution to the problem, we define a
surrogate objective function as follows,

VT (λ) = E0 + Eb

T∑

t=1

Nt + ω
T∑

t=1

Nt f (T − t + 1)

− λ

T∑

t=1

Nt , (12)

where λ is a parameter to be solved later.
For a given stopping rule φ ∈ S , define

Vφ(λ) = E[VT (λ)] = Cφ − λDφ, (13)

where

Cφ = E

[

E0 + Eb

T∑

t=1

Nt + ω
T∑

t=1

Nt f (T − t + 1)

]

,

(14)

Dφ = E

[
T∑

t=1

Nt

]

. (15)

We define a new optimization problem

(P2) minimizeφ∈S Vφ(λ).

Denote the optimum solution to the above problem as

V ∗(λ) = inf
φ∈S

Vφ(λ), (16)

where the infimum operation is performed over all feasible
stopping rules in S .

Let λ∗ be the solution to V ∗(λ) = 0. Then we have
the following lemma regarding the relationship between
(P1) and (P2).

Lemma 3: The optimum stopping rule for (P1) is the same
as the optimum stopping rule for (P2) when λ = λ∗. In
addition, the optimum objective function of (P1) is

λ∗ = inf
φ∈S

Eφ + ωAφ. (17)

Proof: The proof is in Appendix C.
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Algorithm 1 Two-Step Solution to (P1)

1: Step 1: Solve (P2) for arbitrary λ, identify V∗(λ), and
denote the optimum stopping rule with respect to (P2) as
φ∗(λ).

2: Step 2: Identify the value of λ∗ by solving V ∗(λ) = 0.
3: Output: The optimum stopping rule for (P1) is hence

φ∗(λ∗).

Based on these results, (P1) can be solved by using the
following two-step approach.

The solution to (P2) in Step 1 will be discussed in the next
Section. In order to ensure that there is always a solution to
V∗(λ) = 0 in Step 2, we have the following Lemma regarding
the property of V∗(λ).

Lemma 4: The optimum objective function of (P2), V∗(λ),
is decreasing and concave.

Proof: The proof is in Appendix D.
When λ = 0, it can be easily seen from (13) that Vφ(0) > 0

and V ∗(0) = infφ∈S Vφ(0) > 0. Based on Lemma 4, we
must have limλ→∞ V ∗(λ) < 0, otherwise it will violate the
concavity of the function. Since V ∗(0) = infφ∈S (0) > 0 and
limλ→∞ V ∗(λ) < 0 and Vφ(λ) is continuous in λ, there must
exists λ∗ > 0 such that V ∗(λ∗) = 0. Thus the existence of
λ∗ and the optimum stopping rule is guaranteed.

III. OPTIMUM STOPPING RULE FOR (P2) WITH

ARBITRARY DELAY PENALTY FUNCTION

The optimum stopping rule with respect to (P2) for systems
with the general form of delay penalty function is studied
in this section. The optimum stopping rule that can solve
(P1) with linear or non-linear delay penalty functions will be
discussed in subsequent sections.

A. Optimum Stopping Rule

Theorem 1: The stopping rule that can minimize Vφ(λ) in
(P2) can be written as a threshold test as

T ∗(λ) = inf
{

1 ≤ T ≤ D : min
1≤k≤D−T

U k
T (λ) ≥ 0

}

, (18)

where

U k
T (λ) = ω

T∑

t=1

Nt [ f (T + k − t + 1) − f (T − t + 1)]

+ (Eb − λ)kμ + ωμ

k∑

i=1

f (i). (19)

Proof: The proof is in Appendix E.
The stopping rule given in Theorem 1 is a threshold test.

The server will stop waiting and push all information at slot T
if the condition min

1≤k≤D−T
U k

T (λ) ≥ 0 is satisfied. From (19),

the value of U k
T (λ) can be updated in every time slot as new

values of Nt come in. For the optimum stopping rule given in
Theorem 1, at each slot T we need to look ahead k-steps, that
is, calculate the expected objective function, E[VT+k (λ)|FT ],
for 1 ≤ k ≤ D–T. This is the k-step look ahead rule (LAR) as

defined in (62) in Appendix E. In the following subsection, it
will be shown that the k-step LAR is equivalent to the one-step
LAR if the delay penalty function is convex.

B. Optimum Stopping Rule for (P2) With Convex Delay
Penalty Function

In this subsection, we will study the optimum stopping
rule of (P2) for systems with convex delay penalty functions.
Specifically, we will show that for systems with convex delay
penalty function, the k-step LAR in Theorem 1 is equivalent
to the one-step LAR.

Theorem 2: For a convex delay penalty function, the opti-
mum stopping rule for (P2) is

T ∗(λ) = inf
{

1 ≤ T ≤ D : U 1
T (λ) ≥ 0

}
, (20)

where

U 1
T (λ) = ω

T∑

t=1

Nt [ f (T − t + 2) − f (T − t + 1)]

+ (Eb − λ)μ + ωμf (1). (21)

Proof: The proof is in Appendix F.
The significance of Theorem 2 is that, for a system with

convex delay penalty function, we only need to look one step
ahead in the threshold test, and this will considerably reduce
the computation complexity.

For the one-step LAR, at any time slot T, for 1 ≤ T ≤ D ,
we only need to evaluate U 1

T (λ) as shown in Theorem 2,
and this has a fixed complexity. Thus the total complexity of
one-step LAR scales linearly with D as O(D).

For the k-step LAR, at any time slot T, for 1 ≤ T ≤ D ,
we need to evaluate U k

T (λ), for 1 ≤ k ≤ D–T as shown in
Theorem 1. Thus the total complexity of k-step LAR scales
with

∑D
T=1(D − T ) = D(D−1)

2 , or O(D2).
Therefore, k-step LAR has quadratic complexity, and one-

step LAR has linear complexity.
In the following two sections, we will develop the optimum

stopping rules that can solve (P1) for systems with linear or
nonlinear delay penalty functions, respectively.

IV. OPTIMUM STOPPING RULE FOR LINEAR

DELAY PENALTY FUNCTION

The optimum stopping rule that can solve (P1) for systems
with linear delay penalty function is studied in this section.

For a system with a linear delay penalty function, the
optimum stopping rule that can solve (P2) can be further
simplified, and the result is given in the following Corollary.

Corollary 1: For a linear delay penalty function, f (τ ) = ατ ,
where α > 0 is a constant, the optimum stopping rule of (P2) is

T ∗(λ) = min

{

1 ≤ T ≤ D :
T∑

t=1

Nt ≥ (λ − Eb)μ
ωα

− μ

}

.

(22)

Proof: The proof is in Appendix G.
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For the optimum stopping rule given in (22), at each slot T,
the server compares the accumulated number of information
in the queue to a constant threshold and it will stop waiting
and start pushing as soon as the accumulated number of infor-
mation in the queue exceeds the threshold. The stopping time
T∗(λ) is a random variable, the distribution of which depends
on the stopping rule (22) and the distribution of N1:t.

If Nt follows i.i.d. Poisson distribution [25]–[27] with mean
μ, we can obtain the probability mass function (PMF) of the
optimum stopping time T∗(λ) for the stopping rule given in
Corollary 1.

Corollary 2: Assume Nt follows i.i.d. Poisson distribution
with mean μ. For a linear delay penalty function f (τ ) = ατ and
stopping rule given in Corollary 1, the PMF of the optimum
stopping time T∗(λ) is

Pr(T ∗(λ) = 1) = Λ(C , μ),
Pr(T ∗(λ) = T ) = Λ(C , μT ) − Λ(C , μ(T − 1)),

1 < T < D ,

Pr(T ∗(λ) = D) = 1 − Λ(C , μ(D − 1)),

where C = (λ−Eb)μ
ωα − μ, and

Λ(x , μ) =

{
1 − e−μ∑�x�

i=0
μi

i ! , x ≥ 0
1, x < 0

(23)

is the complementary cumulative distribution function (CCDF)
of the Poisson distribution with parameter μ.

Proof: The proof is in Appendix H.
By using the results in Corollary 2, we can calculate the

optimum surrogate objective function V∗(λ), and the result is
given in the following theorem.

Theorem 3: Assume Nt follows i.i.d. Poisson distribution
with mean μ. For a linear delay penalty function f (τ ) = ατ
and stopping rule given in Corollary 1, the minimum surrogate
objective function is

V ∗(λ) = E0 +
[
(Eb − λ)μ +

ωμα

2

]
m1(λ) +

ωμα

2
m2(λ),

(24)

where

m1(λ) = D −
D−1∑

T=1

Λ
(

(λ − Eb)μ
ωα

− μ, μT
)

, (25)

m2(λ) = D2 −
D−1∑

T=1

(2T + 1)Λ
(

(λ − Eb)μ
ωα

− μ, μT
)

.

(26)

Proof: The proof is in Appendix I.
Theorem 3 gives the minimum objective function associated

with (P2), which is expressed as a function of λ. In order to
solve (P1), we first solve V∗(λ) = 0 by using the result in
Theorem 3, and denote the result as λ∗. With the analytical
expression of V∗(λ) given in Theorem 3, the value of λ∗ can
be easily solved by using numerical methods such as Bisection
search or Newton’s method, etc. Then the optimum stopping
rule for (P1) can be obtained by replacing λ with λ∗ in (22).
The minimum objective function associated with (P1) is λ∗.

The results in Corollary 2 and Theorem 3 are developed
based on the assumption of Poisson information arrival. For
more general distributions on information arrival, we can
always solve the problem by using the method described in
the next section.

V. OPTIMUM STOPPING RULE FOR NONLINEAR

DELAY PENALTY FUNCTIONS

In this section, we study optimum stopping rules for systems
with general delay penalty functions, including both the expo-
nential and logarithmic delay penalty functions. The stopping
rule developed in this section can also be applied to the general
forms of delay penalty functions, including the linear penalty
function as a special case.

In order to solve (P1), we need to identify the opti-
mum objective function V ∗(λ) = E[VT∗(λ)(λ)] and solve
V ∗(λ∗) = 0, where the expectation is performed over both
T∗(λ) and N1:T. It is in general difficult to obtain the ana-
lytical expression of V∗(λ) for systems with nonlinear delay
penalty functions. Thus we need to exploit the properties of
V∗(λ) and solve λ∗ numerically.

Based on Lemma 4, V∗(λ) is decreasing and concave in λ.
We will utilize this property to develop an iterative numeric
method to solve λ∗, which is described in details as follows.

For a given stopping time T, the conditional expected
objective function is

EN 1:T [VT (λ)|T ] = E0 + ωμ

T∑

t=1

f (T − t + 1)

+ (Eb − λ)μT . (27)

For a given λ = λn , denote the optimum stopping rule
as φ∗(λn), and the corresponding optimum stopping time
as T ∗(λn). The optimum objective function can then be
calculated as

V ∗
n (λ) = E

[
VT∗(λn )(λ)

]

=
D∑

T=1

EN 1:T [VT (λ)|T ] Pr(T ∗(λn) = T ).

(28)

Combining (27) and (28) yields

V ∗
n (λ) =

D∑

T=1

[

EbμT + ωμ

T∑

t=1

f (T − t + 1)

]

× Pr(T ∗(λn) = T )

+ E0 − λμ

D∑

T=1

T Pr(T ∗(λn) = T ). (29)

We propose to identify λ∗ by using the Newton’s method
[18, Ch. 6.1] as

λn+1 = λn − V ∗
n (λn )

V ′∗
n (λn )

=
E0+

∑D
T=1

[
EbμT + ωμ

∑T
t=1 f (T − t + 1)

]
Pr(T∗(λn ) = T )

μ
∑D

T=1 T Pr(T∗(λn ) = T )
,

(30)
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where V ′∗
n (λ) is the first derivative of V ∗

n (λ) with respect to λ.
The above iteration in Newton’s method can be initiated with
any λ1 > 0, and the iteration has quadratic convergence to the
solution λ∗. Simulation results demonstrate that the iterative
algorithm converges in about 2 iterations under most system
configurations.

In order to implement Newton’s iterative procedure in (30),
we need to find the PMF of the optimum stopping time
T ∗(λn), which is difficult to evaluate analytically. Thus we
propose to evaluate the PMF Pr(T ∗(λn) = T ), for T =
1, . . . ,D , by using numerical simulations of the threshold
test described in Theorem 1. For each λn , we will per-
form simulation of the threshold test in Theorem 1 to obtain
Pr(T ∗(λn) = T ), and the result is then used in (30) to get
λn+1. It should be noted that the simulations only need to be
performed once offline for the calculation of λ∗. Once λ∗ is
identified, we can directly replace λ in (18) with λ∗ to obtain
the optimum stopping rule for (P1).

Algorithm 2 summarizes the algorithm for computing λ∗,
i.e., the minimum objective associated with (P1). Using the
value of λ∗, the optimum stopping rule for (P1) can be
obtained by replacing λ with λ∗ in Theorem 1.

The above algorithm is applicable to systems with arbi-
trary delay penalty functions, including both the exponential
and logarithmic delay penalty functions as special cases.
Specifically, the exponential delay penalty function is convex,
thus the stopping rule can be further simplified.

Corollary 3: For an exponential delay penalty function,
f (τ) = exp (ατ)−1, where α > 0 is a constant, the optimum
stopping rule of (P2) is

T∗(λ) = min

{

1 ≤ T ≤ D :

T∑

t=1

Nte
α(T+1−t) ≥ (λ − Eb)μ

ω(eα − 1)
− μ

}

.

(31)

Proof: The proof is in Appendix J.
Due to the complex nature of the threshold test in (31), it

is hard to get the PMF of the optimum stopping time T∗(λ)
analytically. So, we need to numerically evaluate T∗(λ) and
search for λ∗ using Algorithm 2. The optimum stopping rule
for (P1) can then be obtained by replacing λ with λ∗ in (31).

VI. OPTIMUM STOPPING RULE FOR

TIME-NORMALIZED METRICS

In all previous discussions, the metrics Eφ and Aφ are
obtained by normalizing with respect to the average num-
ber of bits. In this section, we consider the design with
time-normalized metrics. It will be shown that replacing bit-
normalized metrics with time-normalized ones will not affect
the energy-delay tradeoff.

Define the new metrics normalized with respect to the
average time as

A′
φ =

E

[∑T
t=1 Nt f (T − t + 1)

]

E[T ]
, (32)

E ′
φ =

E

[
E0 + Eb

∑T
t=1 Nt

]

E[T ]
, (33)

Algorithm 2 Algorithm for Computing λ∗
1: Initialize the parameters λ1 > 0, error tolerance κ > 0,

and a large integer L > 0.
2: for i = 1 to L do
3: Generate a random number of information bits Nt for

t = 1, 2, . . . ,D .
4: Find T ∗(λn) based on [N1,N2, . . . ,ND ] using (18).
5: end for
6: Compute the numerical PMF of T ∗(λn), i.e.,

Pr (T ∗(λn) = T ) for T = 1, 2, . . . ,D .
7: Compute λn+1 by using (30).
8: if |λn+1−λn |

λn
> κ then

9: n = n + 1.
10: Repeat steps 2-7.
11: else
12: λ∗ = λn+1.
13: Return.
14: end if

where T is the stopping time obtained by the stopping rule φ.
Based on the Wald equation [18, Ch. 3.3], we have

E[
∑T

t=1 Nt ] = E[T ]μ. Thus it can be easily shown that
A′

φ = μAφ and E ′
φ = μEφ. This result indicates that the met-

rics normalized with respect to time are just scaled versions
of the metrics normalized with respect to the number of bits.
Since the scaling factors are the same for both A′

φ and E ′
φ, the

tradeoff relationship between (E ′
φ,A′

φ) are exactly the same
as that for (Eφ,Aφ) under any feasible stopping rule φ ∈ S .

The alternative optimization problem with the new metrics
can be formulated as

(P3) minimizeφ∈S E ′
φ + ωA′

φ,

and the surrogate objective function can be expressed as

V ′
T (λ) = E0 + Eb

T∑

t=1

Nt + ω

T∑

t=1

Nt f (T − t + 1) − λT .

(34)

Comparing (34) with (12) reveals that the only difference is
the last term, where λ

∑T
t=1 Nt is replaced by λT. Following

similar procedures as for the bit-normalized metrics, we can
show that the optimum stopping rules for (P3) are quite sim-
ilar to those with respect to (P1) and (P2), with the only
difference being that the λμ terms in the original stopping
rules are replaced by λ. This change is applicable to almost
all the results, including Lemmas 2–4, Theorems 1–3, and
Corollaries 1, 2, and 3.

The only exception to the above simple replacement is the
numerical iterative calculation of λ∗ for system with general
delay penalties. For a given stopping time T, the conditional
expected objective function becomes

EN 1:T

[
V ′

T (λ)|T ] = E0 + Ebμ

+ ωμ

T∑

t=1

f (T − t + 1) − λT . (35)
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For a given λ = λn , denote the optimum stopping rule
as φ∗(λn), and the corresponding optimum stopping time
as T ∗(λn). The optimum objective function can then be
calculated as

V ∗
n (λ) = E

[
VT∗(λn )(λ)

]

=
D∑

T=1

EN 1:T [V ′
T (λ)|T ] Pr(T ∗(λn) = T )

=
D∑

T=1

[

EbμT + ωμ
T∑

t=1

f (T − t + 1)

]

× Pr(T ∗(λn) = T )

+ E0 − λ

D∑

T=1

T Pr(T ∗(λn) = T ). (36)

Using the iterative approach mentioned in Section V yields

λn+1

=
E0 +

∑D
T=1

[
EbμT + ωμ

∑T
t=1 f (T − t + 1)

]
Pr(T∗(λn ) = T )

∑D
T=1 T Pr(T∗(λn ) = T )

,

(37)

where λn converges to λ∗, as n → ∞. The difference between
the iterative solutions of λ∗ for the original problem and the
new problem is the μ term in the denominator as observed
from (30) and (37).

Once λ∗ is obtained, following the same two-step solution
approach as mentioned in Section II, new stopping rules can
be developed regarding the new metrics. Simulation results
verify that the two different groups of metrics yield the same
energy-delay tradeoff.

VII. SIMULATION RESULTS

Simulation results are presented in this section to demon-
strate the performance of the optimum stopping rule for
information pushing systems. In the simulation, we set the
duration of each time slot T0 = 1 ms, R = 1 Mbps, Eb = 1 μJ
and E0 = 10 μJ [28], [29]. The average information arrival
rate is set at μ/T0 = 1 kbps, the delay penalty parameter is
α = 0.1, and the relative tolerance value used in the iterative
solution of λ∗ is κ = 10−3. With the above configuration,
we have μ

RT0
= 0.001 � 1. In addition, we consider vari-

ous values of the hard deadline D ≤ 25, which always satisfy
the mean transmission delay constraint in (5) with Δ = 0.975.
Based on Lemma 1, we have Pr(τTx > 1) < 6.84×10−4, thus
the event {τTx > 1} has negligible probability. All simulation
results are obtained by averaging over 10,000 Monte-Carlo
trials.

Fig. 3 shows the optimum objective function as a function
of the hard deadline D, under the values of ω = 0.5 × 10−6

and ω = 1.5 × 10−6, respectively. Since the delay penal-
ties do not have any unit, the objective functions are unitless.
Under all system configurations, the optimum objective func-
tions converge to constant values when D is sufficiently large.
The convergence is due to the fact that when D is sufficiently
large, the pushing action is in general executed before the
hard deadline, thus the performance is no longer affected by

Fig. 3. Optimum objective function as a function of hard deadline D.

Fig. 4. Objective function as a function of the tuning parameter ω.

D. For a given value of D, the optimum objective function
increases with ω. It is worth mentioning that a smaller opti-
mum objective function does not necessarily mean a better
Eφ∗ -Aφ∗ tradeoff due to the impacts of ω. Under the same
value of ω, the system with the exponential delay penalty
function has the largest objective function, followed by the
linear and logarithmic penalties, respectively. In addition, it
is beneficial to use a larger hard deadline for systems with
a smaller ω. For example, in the case of linear delay penalty
function, when ω = 1.5 × 10−6 and 0.5 × 10−6, the optimum
objective functions reach their minimum values at D = 11 and
17, respectively. This is due to the fact that a smaller ω will
put less weight on delay, hence favoring longer delays.

Fig. 4 shows the optimum objective function as a func-
tion of the tuning parameter ω, under various values of D
and delay penalties. For comparison, we also plot the objec-
tive functions obtained from a non-optimum approach that
always stops at a deterministic value T = 20 regardless of
the system status. Since the stopping time of the non-optimum
approach is deterministic, no computation is needed for find-
ing the stopping rule or stopping time. In the simulations,
the hard deadline for the optimum rule is set as D = 20.
As expected, the objective functions obtained from the non-
optimum approaches are worse compared to their optimum
counterpart. The non-optimum objective functions grow lin-
early with ω, yet the optimum ones grow in a sub-linear
fashion.
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Fig. 5. Energy efficiency vs delay penalty tradeoff. The tuning parameter
ω ∈ (0.2 × 10−6, 2.6 × 10−6).

Fig. 6. PMF for different deadlines D and penalty functions. The tuning
parameter ω = 2.5 × 10−6.

Fig. 5 shows the optimum Eφ∗ as a function of Aφ∗ .
Different tradeoff points between Eφ∗ and Aφ∗ on a sin-
gle curve are obtained by adjusting the tuning parameter ω.
As expected, Eφ∗ decreases monotonically with Aφ∗ due to
their tradeoff relationship. As ω increases, the optimum Aφ∗
decreases under the same Eφ∗ , because more weight is put
on the delay during the optimization process. Under the same
Eφ∗ , the system with the logarithmic delay penalty function
has the smallest Aφ∗ , followed by the systems with linear and
exponential penalties, respectively. We also obtained the trade-
off curves of E ′

φ∗ and A′
φ∗ for systems with time-normalized

Fig. 7. Minimum objective vs E0
Eb

. The hard deadline D = 20.

Fig. 8. Convergence of λn for a system with exponential delay penalty.

metrics. The curves overlap with those from systems with
bit-normalized metrics as predicted in Section VI, and they
are not shown here for clarity of presentation.

To demonstrate the impacts of D on the energy-delay trade-
off, we also show the results for systems with linear penalty
under different values of D. Increasing D results in better
energy-delay tradeoff. The benefits of using a larger D gradu-
ally diminishes as D is sufficiently large. The energy-delay
tradeoff for systems with D = 20 and 24 are very close
to each other. Similar results are observed for systems with
exponential and logarithmic delay penalties.

To better understand the behaviors of the optimum stopping
rule, Fig. 6 shows the PMF of the stopping time T for different
deadlines D and delay penalty functions. As can be seen in
the figure, when T is much smaller than the hard deadline D
(e.g., T = 8 and D = 16), for a given T, the system with
the exponential delay penalty has the largest probability of
stopping, followed by the systems with linear and logarithmic
penalties, respectively. This trend is reversed when T is closer
to D. Specifically, the system with the logarithmic penalty
always has the highest probability of stopping at T = D. This
is because the logarithmic penalty grows sub-linearly with T,
thus the system can tolerate a longer delay. On the other hand,
for systems with the exponential penalty, the probability of
stopping at larger T is very small.

Fig. 7 shows the optimum objective function as a func-
tion E0/Eb . It can be seen from the results that the minimum
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objective is a monotonic decreasing function in E0/Eb , and it
converges to a constant value when E0/Eb is large.

The convergence of the numerical iterative algorithm
described in Algorithm 2 is demonstrated in Fig. 8 for a system
with the exponential delay penalty function. The algorithm is
used to identify λ∗ by iteratively updating λn with (30). The
numerical algorithm converges in 2 iterations for all cases con-
sidered in this example. Thus the iterative algorithm is very
efficient.

VIII. CONCLUSION

We have studied the optimum stopping rules for informa-
tion pushing systems with different types of delay penalty
functions. The analysis was performed under the assumption
that the information arrival rate is much less than the infor-
mation transmission rate, such that the transmission delay
is less than one slot with high probability. The design was
performed to identify the Pareto-optimum tradeoff between
energy and delay penalty. For systems with convex delay
penalty functions (such as linear and exponential functions),
the optimum delay-energy tradeoff can be achieved by using
the one-step look ahead stopping rule. For systems with lin-
ear delay penalty function, the optimum objective function has
been analytically derived by studying the statistical properties
of the optimum stopping time, and the results have been used
to identify the operation parameters of the optimum stopping
rule. For systems with arbitrary delay penalty functions, the
optimum objective function and the operation parameter of
the stopping rule are evaluated numerically using an iterative
approach. The developed algorithms have enabled flexible con-
trol between the energy efficiency and delay under various
system configurations.

APPENDIX A
PROOF OF LEMMA 1

To bound the probability of τTx , we will first derive the
variance of τTx , which can be calculated by evaluating the
following second moment.

E

⎡

⎣

(
T∑

t=1

Nt

)2
⎤

⎦ =
D∑

n=1

T∑

i=1

T∑

j=1

E
[
1(T = n)NiNj

]
(38a)

=
D∑

i=1

D∑

j=1

D∑

n=max(i ,j )

E
[
1(T = n)NiNj

]
(38b)

=
D∑

i=1

D∑

j=1

Pr(T ≥ max(i , j ))E
[
NiNj

]
(38c)

=
D∑

i=1

Pr(T ≥ i)E
[
N 2

i

]

+
D∑

i ,j=1
i �=j

Pr(T ≥ max(i , j ))E[Ni ]E
[
Nj
]

(38d)

=
(
σ2
N + μ2

)
E[T ] + μ2

D∑

i ,j=1
i �=j

Pr(T ≥ max(i , j )), (38e)

where 1(E) is the indicator function with 1(E) = 1 if the
event E is true and 0 otherwise, (38c) is based on the fact that
T is a stopping time, thus T ≥ max(i , j ) is independent of
Ni or Nj , (38e) is based on the fact that

∑D
i=1 Pr(T ≥ i) =

∑D
i=1

∑D
k=i Pr(T = k) =

∑D
k=1

∑k
i=1 Pr(T = k) = E[T ].

Next, we evaluate
∑D

i ,j=1
i �=j

Pr(T ≥ max(i , j )), which can

be alternatively written as

D∑

i ,j=1
i �=j

Pr(T ≥ max(i , j )) =
D∑

i=1

i−1∑

j=1

Pr(T ≥ i)

+
D∑

i=1

D∑

j=i+1

Pr(T ≥ j ) (39a)

=
D∑

i=1

(i − 1)
D∑

k=i

Pr(T = k) +
D∑

j=1

j−1∑

i=1

Pr(T ≥ j )

(39b)

=
D∑

k=1

Pr(T = k)
k∑

i=1

(i − 1)

+
D∑

k=1

Pr(T = k)
k∑

j=1

(j − 1) (39c)

= E[T (T − 1)]. (39d)

Thus E[(
∑T

t=1 Nt )2] = σ2
N E[T ] + μ2

E[T 2]. As a result,
we get

Var

(
T∑

t=1

Nt

)

= σ2
N E[T ] + μ2

(
E[T 2] − E

2[T ]
)

= σ2
N E[T ] + μ2σ2

T , (40)

where σ2
T is the variance of T. Since T is bounded between

0 and D, σ2
T ≤ D2.

Under the constraint (5), we have E[τTx ] ≤ Dμ
RT0

< 1 −
Δ, thus the event {τTx > 1} implies {τTx > E[τTx ] + Δ}.
Consequently,

Pr(τTx > 1) < Pr(τTx − E[τTx ] > Δ). (41)

Based on Chebyshev’s inequality, we have

Pr(τTx − E[τTx ] > Δ) ≤ Var(τTx)
Δ2

≤ σ2
N D + μ2D2

R2T 2
0 Δ2

. (42)

Specifically, if Nt follows Poisson distribution, then σ2
N = μ.

This completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Let (Eφ1
,Aφ1

) and (Eφ2
,Aφ2

) denote two achievable
energy-delay pairs, which are achieved by stopping rules φ1

and φ2, respectively. In the following, we prove that for an
arbitrary 0 ≤ θ ≤ 1, the energy-delay pair θ(Eφ1

,Aφ1
)+(1−

θ)(Eφ2
,Aφ2

) is also achievable by a certain stopping rule.
First, we examine θEφ1

+(1− θ)Eφ2
. Assume that we per-

form L = L1 + L2 independent trials with the two stopping
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rules. Among them, stopping rule φ1 is applied L1 times, and
stopping rule φ2 is applied L2 times. Denote Tln as the stop-
ping time associated with stopping rule φn during the l-th trial,
and Nl ,t as the number of bits arriving at the t-th slot during
the l-th trial, for l = 1, . . . ,Ln , and n = 1 or 2.

The total energy consumption due to stopping rule φn is
thus

Φn =
Ln∑

l=1

⎡

⎣E0 + Eb

Tln∑

t=1

⎤

⎦, n = 1, 2. (43)

The total number of bits transmitted with stopping rule
φn is

Πn =
L1∑

l=1

Tl1∑

t=1

Nl ,t , n = 1, 2. (44)

We have

Eφn = lim
Ln→∞

Φn

Πn
, n = 1, 2. (45)

The average energy consumption per bit due to the mixture
of stopping rules φ1 and φ2 can then be calculated as

Eφ =
Φ1 + Φ2

Π1 + Π2
=

Π1

Π1 + Π2

Φ1

Π1
+

Π1

Π1 + Π2

Φ2

Π2
. (46)

As both L1 → ∞ and L2 → ∞, we have

Eφ =

(

lim
L1,L2→∞

Π1

Π1 + Π2

)

Eφ1
+

(

lim
L1,L2→∞

Π2

Π1 + Π2

)

Eφ2
.

(47)

If we let

θ = lim
L1,L2→∞

Π1

Π1 + Π2

= lim
L1,L2→∞

L1∑

l=1

Tl1∑

t=1
Nl ,t

L1∑

l=1

Tl1∑

t=1
Nl ,t +

L2∑

l=1

Tl2∑

t=1
Nl ,t

, (48)

then

Eφ = θEφ1
+ (1 − θ)Eφ2

(49)

is achievable, and it can be achieved by a new stopping strategy
φ that uses L1

L1+L2
× 100% of φ1 and L2

L1+L2
× 100% of φ2

among all trials.
Specifically, define β = L1

L1+L2
and keep it as a constant as

we change L1 and L2, then (48) can be alternatively written
as

θ = lim
L1,L2→∞

β 1
L1

∑L1
l=1

∑Tl1
t=1 Nl,t

β 1
L1

∑L1
l=1

∑Tl1
t=1 Nl,t + (1 − β) 1

L2

∑L2
l=1

∑Tl2
t=1 Nl,t

.

(50)

Based on the law of large numbers, we can write that

θ =
βE

[∑T1
t=1 Nt

]

βE

[∑T1
t=1 Nt

]
+ (1 − β)E

[∑T2
t=1 Nt

] , (51)

which implies

β =
θE

[∑T2
t=1 Nt

]

(1 − θ)E
[∑T1

t=1 Nt

]
+ θE

[∑T2
t=1 Nt

] . (52)

Thus for any 0 ≤ θ ≤ 1, we can choose L1 and L2 such
that β = L1

L1+L2
satisfies (52). We can obtain a new stopping

rule by mixing β × 100% of θ1 with (1 − β) × 100% of
θ2. The normalized energy of the new stopping rule is Eφ =
θEφ1

+ (1 − θ)Eφ2
, which is achievable. Thus Eφ is convex.

The convexity of Aφ can be proved in a similar manner. As
a result, for any (Eφn

,Aφn
) ∈ R with n = 1, 2, we have

θ(Eφ1
,Aφ1

) + (1 − θ)(Eφ2
,Aφ2

) ∈ R for any 0 ≤ θ ≤ 1.
Thus R is convex.

APPENDIX C
PROOF OF LEMMA 3

Denote the optimum stopping rule for (P1) as φ1, and the
optimum stopping rule for (P2) when λ = λ∗ as φ2. We will
show that φ1 = φ2.

Proof by contradiction. Assume φ1 �= φ2. Since φ2 is the
solution to (P2), we have

0 = Vφ2
(λ∗) ≤ Vφ1

(λ∗). (53)

Denote the solution to the equation Vφ1
(λ) = 0 as λ†. Then

Vφ1
(λ∗) ≥ 0 = Vφ1

(
λ†
)
. (54)

For any φ ∈ S , it is apparent that Vφ(λ) is a decreasing
function in λ. Thus from (54), we have

λ∗ ≤ λ†. (55)

Based on the fact that Vφ2
(λ∗) = 0 and Vφ1

(λ†) = 0,
we have

λ∗ =
Cφ2

Dφ2

= Eφ2
+ ωAφ2

, (56)

λ† =
Cφ1

Dφ1

= Eφ1
+ ωAφ1

. (57)

Combining (55) with (57) yields

Eφ2
+ ωAφ2

≤ Eφ1
+ ωAφ1

. (58)

This contradicts with the fact that φ1 is the optimum
solution to (P1) thus it minimizes Eφ + ωAφ.

Thus φ1 is the same as φ2, and (17) follows from (57).

APPENDIX D
PROOF OF LEMMA 4

Denote the optimum stopping rule with respect to (P2) as
φ∗(λ). Then using the definitions in (13) and (16) we can write

V ∗(λ) = inf
φ∈S

Vφ(λ) = Cφ∗(λ) − λDφ∗(λ).

Let λ1 < λ2. Then,

V ∗(λ1) = Cφ∗(λ1) − λ1Dφ∗(λ1)

> Cφ∗(λ1) − λ2Dφ∗(λ1)

≥ Cφ∗(λ2) − λ2Dφ∗(λ2) = V ∗(λ2).
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So, V∗(λ) is decreasing in λ.
To show concavity, let 0 < θ < 1 and λ = θλ1 +(1−θ)λ2.

Then,

V ∗(λ) = Cφ∗(λ) − (θλ1 + (1 − θ)λ2)Dφ∗(λ)

= θ
(
Cφ∗(λ) − λ1Dφ∗(λ)

)

+ (1 − θ)
(
Cφ∗(λ) − λ2Dφ∗(λ)

)

≥ θV ∗(λ1) + (1 − θ)V ∗(λ2).

This completes the proof.

APPENDIX E
PROOF OF THEOREM 1

The problem has a finite horizon due to the hard deadline D,
that is, we must stop at time slot D. A finite horizon problem
can be solved by using backward recursion, that is, since we
must stop at slot D, we can first find the optimum stopping
rule at slot D–1. Then, knowing the optimum rule at slot D–1,
we can find the optimum rule at slot D − 2, and so on back
to the initial stage 1.

1) T = D. Since we must stop at slot D, the optimum
stopping rule at T = D is thus φD (FD ) = 1, and the opti-
mum objective function associated with stopping at T = D is
V ∗

D (λ) = VD (λ) as defined in (12).
2) 1 ≤ T < D . Assume the optimum stopping rule at

t = T+1 is known, and we can thus find the correspond-
ing optimum objective function V ∗

T+1(λ). We will find the
optimum stopping rule at t = T. When t = T, if we stop at
the current slot, the corresponding objective function will be
VT (λ) as defined in (12), given that N1:T is known. If we do
not stop at the current slot, we will execute the optimum stop-
ping rule at t = T+1, and the corresponding objective function
will be E[V ∗

T+1(λ)|FT ]. Thus the optimum stopping rule at
t = T is

φT (λ) =

⎧
⎨

⎩

1, if VT (λ) ≤ E

[
V ∗

T+1(λ)|FT

]

0, if VT (λ) > E

[
V ∗

T+1(λ)|FT

] , 1 ≤ T < D .

(59)

The corresponding optimum objective function is

V ∗
T (λ) = min

{
VT (λ), E

[
V ∗

T+1(λ)|FT

]}
. (60)

Eqn. (60) gives a recursive definition of the optimum objec-
tive function at each slot 1 ≤ T < D , with V ∗

D (λ) = VD (λ).
Based on backward recursion, (60) can be alternatively writ-
ten as

V ∗
T (λ) = min

{
VT (λ), E

[
V ∗

T+1(λ)|FT

]}

= min
{
VT (λ), E

[
min

{
VT+1(λ), E

[
V ∗

T+2(λ)|FT

]}|FT

]}

= min{VT (λ), E[VT+1(λ)|FT ], . . . , E[VD (λ)|FT ]}. (61)

Combining (59) with (61) yields

φT (λ) =

{
1, if VT (λ) ≤ min1≤k≤D−T E[VT+k (λ)|FT ]

0, if VT (λ) > min1≤k≤D−T E[VT+k (λ)|FT ]
,

(62)

for 1 ≤ T < D.

The optimum stopping rule in (62) is called the k-step look
ahead rule (LAR). Conditioned on the knowledge of current
system status at time slot T, the k-step LAR makes a decision
by comparing the current objective function with the expected
objective function of the next k steps, for 1 ≤ k ≤ D−T. It
will stop only if the current objective function is no greater
than the expected objective functions of all future slots.

With the definition of VT (λ) in (12), we have

E[VT+k (λ)|FT ]

= E0 + Eb

T∑

t=1

Nt + ω

T∑

t=1

Nt f (T + k + 1 − t) − λ

T∑

t=1

Nt

+ E

[

(Eb − λ)

T+k∑

t=T+1

Nt

+ ω

T+k∑

t=T+1

Nt f (T + k + 1 − t)

∣
∣
∣
∣FT

]

= VT (λ) + U k
T (λ), (63)

where U k
T (λ) = E[VT+k (λ)|FT ] − VT (λ). Combining (12)

with (63) yields the expression of U k
T (λ) in (19).

Based on the k-step LAR, we will stop at slot T if
min1≤k≤D−T U k

T (λ) ≥ 0, or
∑T

t=1 Nt ≥ R, and continue
to the next slot otherwise. This completes the proof.

APPENDIX F
PROOF OF THEOREM 2

Setting k = 1 in (19) yields (21). The difference between
U k+1

T (λ) and U k
T (λ) can be calculated as

U k+1
T (λ) − U k

T (λ) = (Eb − λ)μ + ωμf (k)

+ ω
T∑

t=1

Nt [ f (T + k + 2 − t) − f (T + k + 1 − t)].

(64)

Combining (21) and (64) results in

U k+1
T (λ) − U k

T (λ) − U 1
T (λ) = ωμf (k)

+ ω

T∑

t=1

Nt [ f (T + k + 2 − t) − f (T + k + 1 − t)

− {f (T + 2 − t) − f (T + 1 − t)}]. (65)

Now for any given value of T, t, and k, it is evident that
T + 1 − t < T + 2 − t ≤ T + k + 1 − t < T + k +
2 − t . Since the delay penalty function f (τ ) is a convex and
monotonically increasing function in τ , and both the first and
second derivatives of such function is non-negative, it can be
easily verified that

f (T + k + 2 − t) − f (T + k + 1 − t) ≥ f (T + 2 − t) − f (T + 1 − t).

Consequently from (65) we get,

U k+1
T (λ) − U k

T (λ) − U 1
T (λ) > 0. (66)

Next, we will prove that U k+1
T (λ) > (k + 1)U 1

T (λ), for k =
1, . . . ,D − T − 1, through mathematical induction.
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When k = 1, from (66), we have U 2
T (λ) − U 1

T (λ) −
U 1

T (λ) > 0, or, U 2
T (λ) > 2U 1

T (λ).
Assume U k+1

T (λ) > (k + 1)U 1
T (λ). At k + 2, from (66),

we have U k+2
T (λ) > U k+1

T (λ) + U 1
T (λ) > (k + 2)U 1

T (λ).
Thus U k+1

T (λ) > (k + 1)U 1
T (λ). If U 1

T (λ) ≥ 0, then
U k

T (λ) is monotonically increasing in k, and

min
1≤k≤D−T

U k
T (λ) = U 1

T (λ). (67)

On the other hand, if U 1
T (λ) < 0, then

min1≤k≤D−T U k
T (λ) < 0, which does not satisfy the

stopping condition described in Theorem 1. As a result, the
server will not initiate the push operation at slot T. So, we
only need to look one step ahead in the stopping rule in
Theorem 1. Combining (18) with (67) completes the proof.

APPENDIX G
PROOF OF COROLLARY 1

Since a linear function is convex, the optimum stop-
ping rule for (P2) can be derived by using the one-step
LAR as in Theorem 2. For a linear delay penalty function,
f (τ ) = ατ , (21) can be simplified to

U 1
T (λ) = (Eb − λ)μ + ωα

T∑

t=1

Nt + ωαμ. (68)

From (68), the threshold test U 1
T (λ) ≥ 0 is equivalent to that

in (22).

APPENDIX H
PROOF OF COROLLARY 2

Define ZT =
∑T

t=1 Nt . Since Nt are i.i.d. Poisson random
variables with parameter μ, ZT is a Poisson random variable
with parameter μ T . The probability that we stop at slot T or
earlier, where T < D, is therefore

Pr(T ∗(λ) ≤ T ) = Pr(ZT > C ) = Λ(C , μT ),

where C = (λ−Eb)μ
ωα − μ. Since D is the hard deadline, we

have Pr(T ∗(λ) ≤ D) = 1. Combining the above results with
Pr(T ∗(λ) = T ) = Pr(T ∗(λ) ≤ T ) − Pr(T ∗(λ) ≤ T − 1)
completes the proof.

APPENDIX I
PROOF OF THEOREM 3

If we stop at slot T, the conditional expected objective
function can be calculated as

EN 1:T [VT (λ)|T ] = E0 + (Eb − λ)μT + ωμα
T (T + 1)

2
,

(69)

where the expectation is performed over N1:T for a fixed T.
With the optimum stopping rule in Theorem 1, the minimum
surrogate objective function can then be calculated as

V ∗(λ) = E

[
VT∗(λ)(λ)

]

=
D∑

T=1

EN 1:T [VT (λ)|T ] Pr(T ∗(λ) = T ). (70)

Combining (69) and (70) yields (24), where

m1(λ) = E[T ∗(λ)] =
D∑

T=1

T Pr(T ∗(λ) = T ), (71)

m2(λ) = E

[
{T ∗(λ)}2

]
=

D∑

T=1

T 2 Pr(T ∗(λ) = T ), (72)

are the first and second moments of the optimum stopping time
T∗(λ), respectively. The results in (25) and (26) is obtained
by combining Corollary 2 with (71) and (72), respectively.

APPENDIX J
PROOF OF COROLLARY 3

Since the exponential function is convex, the optimum stop-
ping rule for (P2) can be derived from the one-step LAR
in Theorem 2. For an exponential delay penalty function,
f (τ) = exp (ατ) − 1, (21) can be written as

U 1
T (λ) = ω

T∑

t=1

Nt

[
eα(T+2−t) − eα(T+1−t)

]

+ (Eb − λ)μ + ωμ(eα − 1). (73)

Substituting the expression of U 1
T (λ) in (20) completes the

proof.
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