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a b s t r a c t 

High-speed and high-accuracy thermal control of reactors has always been of interest to chemical engi- 

neers. In this paper we present a new methodology for thermal control of a continuous-flow chemical 

reactor using non-contact IR thermography combined with computer vision and a predictive Artificial 

Neural Network. The system exhibits several key advantages over thermocouples and PID control includ- 

ing the ability to quantify and account for thermal diffusion in the system, to collect and process data 

very quickly and with high accuracy, to analyze the entire surface of the reactor, and to update its train- 

ing based not only on the current thermal response, but also on external factors. We have constructed 

and validated such a system as well as shown improvements in its accuracy, rise time, settling time, set 

point tracking, and overshoot as compared to more traditional forms of thermal control, validating this 

as a possible approach for experimental and process control. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

1.1. Contextual overview 

Artificial Neural Networks (ANNs) are known for their ability

to accurately represent data in highly non-linear and multivariate

systems. In fact, ANNs have already been successfully used to

model chemical reactions ( Ahmadi et al., 2009; Maltarollo et al.,

2013 ), control small modular reactors ( Manic and Sabharwall,

2011 ), optimize chemical systems ( Polikar et al., 2001; Zhang

et al., 2010 ), predict stock markets ( Zavadskaya, 2017 ) and even

identify malignancies in histological images ( Xue and Ray, 2017 ).
It has been demonstrated in the literature that ANNs offer certain 

Abbreviations: ANN, Artificial Neural network; CAD, Computer Aided Design; 

CAM, Computer Aided Modeling; CNC, Computer Numerical Control; CGB, Con- 

jugate Gradient Backpropagation; CGBPFRU, Conjugate gradient backpropagation 

with Fletcher–Reeves updates; CGBPPBR, Conjugate gradient backpropagation with 

Powell–Beale restarts; CGBPPRU, Conjugate gradient backpropagation with Polak–

ibiére updates; DLL, Direct Link Library, compiled C/C ++ code; FPS, Frames 

per Second; IoT, Internet of Things; LM, Levenberg–Marquardt (Damped Least 

Squares) with forward training; NARMA, Nonlinear Autoregressive Moving Aver- 

age; OSSBP, One-step Secant backpropagation; PID, Proportional Integral Deriva- 

tive control; PWM, Pulse Width Modulation; q-NBP, quasi-Newton backpropagation; 

RBP, Scaled Conjugate Gradient Backpropagation; UART, Universal Asynchronous 

Receiver–Transmitter; UFPA, Uncooled Focal Plane Array; USB, Universal Serial Bus; 

VO x , Vanadium Oxide thin film microbolometer. 
∗ Corresponding author. 

E-mail address: ryan.hartman@nyu.edu (R.L. Hartman). 
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enefits over traditional numerical approaches, both in accuracy,

peed of execution and resiliency to sudden changes in input

arameters ( Ahmad et al., 2017; Parkale, 2012 ). Additionally, and

erhaps most exciting, is that ANNs can self-train through algo-

ithms. This means that in a day and age of distributed modular

ystems, exploiting lab-on-a-chip (LoC) technologies or advanced

aterials (such as in photochemical reactors), system control can

e greatly simplified, and tuning can be merged with quality

ssurance in a production environment. Finally, ANNs can process

ignificantly more data in a reasonable amount of time with mod-

st computing resources. This can be leveraged either to control

ased on multivariate trends or to increase the quality of the

nput data. ANNs can easily be combined with unorthodox sensors

hat produce very large amounts of data through capture at high

esolution, high speed or a combination of both. Overall ANNs

ffer many exciting benefits for process control in a variety of lab-

ratory systems that can also aid in the design of production-scale

rocesses. 

ANNs have been used in the past for process control quite suc-

essfully using various different approaches ( Dayal et al., 1994;

agan et al., 2002; Khalid and Omatu, 1992; Psaltis et al., 1988;

amvoudakis et al., 2015; Zribi et al., 2015 ) and the NARMA-L2

eurocontroller algorithm has gained prevalence in the control of

ighly-nonlinear systems in the last two decades. The issue with

any of these previous control schemes has been the difficulty of

electing an appropriate model and translating the system behav-

or into a data form understandable by the computer. For example,

https://doi.org/10.1016/j.compchemeng.2018.11.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2018.11.016&domain=pdf
mailto:ryan.hartman@nyu.edu
https://doi.org/10.1016/j.compchemeng.2018.11.016
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he NARMA-L2 control algorithm works by canceling nonlinearities

o transform nonlinear dynamics into linear ones and PID-neural

et systems require rigorous models of the system, just like first-

rinciples PID tuning. While these existing algorithms have worked

ell where they have been applied, the fact remains that they

eed a rigorous model of the system, significant computational

ower, and expertise to implement. In this work we present a dif-

erent approach to ANN-based control using computer vision and

ully autonomous training for implementation in a thermal control

ystem for a microfluidic reactor. 

The use of IR thermography in research is a popular method for

onitoring reactions and receiving data from these reactions. Over

he years, advanced IR thermography methods have been devel-

ped to maximize the efficiency of scientists and their research. IR

hermography has demonstrated the ability to provide useful data

eyond temperature control, such as enthalpy and kinetics mea-

urements ( Romano et al., 2015; Zhang et al., 2016 ). There have

lso been studies which have used IR thermography to monitor re-

ctions and indicate the location of their intensity across a two-

imensional system ( Fu et al., 2016 ). These methods have proven

R thermography to be very successful in providing data and mon-

toring reactions in microreactors and microchannels. 

IR thermography has attracted much attention among scientists

llowing for further advancements of its applicability and methods

o be made. Over the years many new methods and techniques

ave been developed. Infrared technology led to the development

f precision thermometry to track temperature profiles of fast

nd highly exothermic reactions ( Haber et al., 2013 ). Recently, a

on-intrusive method to measure fluid temperature and two-phase

ow patterns was developed ( Liu and Pan, 2016 ). IR thermography

as also been coupled with temperature frame processing methods

o estimate heat distribution of chemical reactions along a channel

n a microreactor ( Pradere et al., 2006 ). The development of such

easuring and monitoring techniques demonstrate the ability to

ollect a lot of spatially-dependent information in a short amount

f time, hinting at the broad-scale acceptance of IR thermographic

tudies for micro-scale systems, and validates the benefits of using

R thermography in this study. 

Similarly, Artificial Neural Networks have proven to be ben-

ficial for process control in scientific studies and have become

requently used in basic chemistry research. ANN’s are highly

ffective at monitoring process systems with a lot of variables that

ltogether are too complex to manage without an ANN ( Uraikul et

l., 2007 ). Artificial intelligence has been widely applied to fields

f study ranging from aquaculture to pollution minimization ( Chan

nd Huang, 20 03; Lee, 20 0 0 ). ANNs have also had much success

n representing phenomena in unit operations that are difficult

o model. For example, recent research has focused on studying

eat exchangers and modeling power consumption ( Dudzik, 2011 ).

lthough ANN’s have become a staple in scientific research the

evelopment of new methods involving ANN’s have slowed down.

ome methods that are currently used have been developed over

 decade ago with very few studies involving modern advance-

ents in ANN process control, despite the potential enabled by

iniaturization of silicon technologies leading to much smaller,

ower-efficient and inexpensive processing systems. Despite the

ack of many recent publications of ANN-based control, it is still

 topic of great interest both to chemical engineers, and those

utside the field. 

Overall, having resilient process controllers which can adapt to

 variety of circumstances and operating parameters is of great

nterest to industry. In the past a lot of work has been devoted

o the formulation of robust multivariate controllers ( Ingham et

l., 2015; Kourti and MacGregor, 1995; Kresta et al., 1991 ) and

o the understanding of complex system dynamics. By enabling
 a
ighly multivariate data input into the ANN algorithm, it is ex-

ected that multivariate control, especially in complex industrial

nvironments, can be enabled and simplified, making it compet-

tive with traditional univariate controls. Additionally, due to the

ncreased simplicity of writing and optimizing neural networks,

long with new developments in specialized neural network com-

uting platforms, networks that collect, analyze, and act upon data

an be distributed throughout a plant on small, low-power com-

uters. 

.2. Artificial Neural Network overview 

An ANN is a synthetic representation of the biochemistry seen

n nature, whereby the summation of weighted inputs, if accu-

ulated to a threshold value, leads to a firing of the neuron. In

urn this first neuron triggers other downstream neurons with each

onnection having a given weight. Represented mathematically the

ctivation function of a neuron j at time t + 1 would be: 

 j ( t + 1 ) = f 
(
a j ( t ) , p j ( t ) , θ j 

)
(1) 

here a j symbolizes the activation of a neuron, θ j represents the

hreshold/bias value determined during net training, and p j is the

nput of the network. The signal then propagates through the net-

ork with the function: 

p j ( t ) = 

∑ 

i 

f out 

(
a j ( t ) 

)
ω i j (2) 

here ω ij is the weight of a connection. Due to the simplicity of

hese arithmetic operations a shallow neural network can run very

uickly, while a deep neural network can process unfathomable

mounts of input data. ANNs like these are also known as mul-

ilayer perceptrons. 

In practice several different types of threshold functions for

eurons are used in ANNs, including step functions, linear func-

ions, sigmoid functions, hyperbolic tangents, and Rectified Linear

nits (ReLU). These various forms of neurons are employed in dif-

erent parts of the network including the hidden and output layers.

ften, a network would be composed of a variety of different neu-

ons linked to each other. A basic representation of a network with

hree hidden layers can be seen in Fig. 1 . 

.3. Artificial Neural Network training 

Before a network can be used, it needs to be trained. This is

ccomplished via a variety of different possible training algorithms

or which the general goal is to adjust the weight ω and bias val-

es θ of the various neurons until the desired output is achieved.

djustments to the weights change the contribution of each input

o a neuron, while adjusting bias values will shift the threshold

unction/ adjust the steepness of a sigmoid. In practice, the training

s carried out much like any standard optimization problem would

e solved in engineering- a cost function is defined, and then pa-

ameters are adjusted until the ‘optimal’ solution is found within

ertain performance and accuracy targets. The cost function defines

ow far the current solution is from the optimal one, implying that

he most optimal solution has the lowest cost. Although ANNs can

sually achieve arbitrarily good fit, certain parameters are used to

etermine when to end training as to enable computation in a rea-

onable amount of time. There are numerous training algorithms

vailable for network training, generally divided into conjugate gra-

ient and quasi-Newtonian methods. It is important to remember

hat these algorithms require cleanly differentiable weight, input,

nd transfer functions to compute successfully. 
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Fig. 1. General structure of an Artificial Neural Net. Top: macro overview of input 

to output data flow, middle: inputs to individual neuron, bottom: different possible 

threshold functions for a neuron. Usually a normalized sigmoid is used as it gives 

the greatest flexibility to the training algorithm and thus best represents the data. 
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1.4. Training algorithms 

The various training algorithms investigated herein include: 

1. Levenberg–Marquardt (Damped Least Squares) with forward

training: first, the performance of a network is assessed with

respect to the bias and weight variables. Backpropagation is

used to calculate the Jacobian ( Li et al., 2016 ), from where each

variable is then adjusted to the Levenberg–Marquardt rules

( Levenberg, 1944 ). Training occurs until either maximum com-

putation heuristics are exceeded (time, number of epochs, etc.),

training parameters are not met (performance gradient, mu or

validation failure), or the network reaches its performance goal.

2. quasi-Newton backpropagation: as engineers, we are all famil-

iar with Newton’s method, which relies upon computation of

a Hessian matrix. However, the Hessian is very computation-

ally intensive to compute as it involves the second derivatives.

In quasi-Newtonian methods the Hessian is replaced with an

approximation based on the gradient. The Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm (summarized in Dennis and

Schnabel, 1985 ) uses this approximation to compute updated

weights and biases for the network. Training is continued un-

til performance goals are reached or the number of epochs, or

maximum time are exceeded. 

3. Resilient backpropagation (RProp): essentially, this is a basic

first-order optimization algorithm, the weights in a network are

updated based on the sign of the partial derivative of the error

function ( Riedmiller and Braun, 1993 ). If the sign of the error
is equivalent between two consecutive iterations then the up-

date factor is positive, if it changes sign then the update factor

is negative. Training is continued until either performance goals

are met, or computational heuristics are exceeded. 

4. Scaled conjugate gradient backpropagation: first backpropaga-

tion is used to calculate the derivatives of performance, then

a scaled conjugate gradient algorithm is used ( Møller, 1993 ).

The conjugate gradient algorithm is based on conjugate direc-

tions, but a line search is not performed during each iteration

of training. Training is continued until computation heuristics

(number of epochs, minimum gradient or maximal failure rate)

are exceeded or the performance goal is met. 

5. Conjugate gradient backpropagation with Fletcher–Reeves up-

dates: again, this algorithm is similar to the conjugate gradient

method, but it computes the search direction by dividing the

norm square of the pervious and current iterations ( Fletcher,

1964 ). Training is continued until computation heuristics (num-

ber of epochs, minimum gradient or maximal failure rate) are

exceeded or the performance goal is met. 

6. Conjugate gradient backpropagation with Powell–Beale restarts:

this algorithm is very similar to the conjugate gradient method,

except it uses a search algorithm at each iteration ( Powell,

1977 ). This search algorithm computes a search direction from

the gradient and previous search direction. The search direction

is reset based on a numerical test. Training is continued until

computational heuristics (number of epochs, minimum gradi-

ent or maximal failure rate) are exceeded or the performance

goal is met. 

7. Conjugate gradient backpropagation with Polak–Ribiére up-

dates: again, this algorithm is similar to the conjugate gradient

method, but it computes the search direction by using a for-

mula involving the norm square combined with the gradient

( Khoda et al., 1992 ). Training is continued until computation

heuristics (number of epochs, minimum gradient or maximal

failure rate) are exceeded or the performance goal is met. 

8. One-step secant backpropagation: first, backpropagation is used

to calculate the derivatives of the performance vector with re-

spect to weights and biases. Next, the variables are adjusted ac-

cording to a search algorithm where the direction is calculated

as a function of the gradient, step changes in the weights from

the previous iteration and the gradient change from the previ-

ous iteration ( Battiti, 1992 ). Training is continued until compu-

tation heuristics (number of epochs, minimum gradient or max-

imal failure rate) are exceeded or the performance goal is met. 

9. Gradient descent with momentum and adaptive learning rate

backpropagation: as in the other methods, first backpropaga-

tion is used to compute the necessary derivatives. Next, the

variables are adjusted based on the gradient descent with

momentum ( Moreira and Fiesler, 1995 ). After each iteration if

the performance of the network is closer to the goal then the

learning rate is increased, if it is further away the learning rate

is decreased and the change is not kept. Training is continued

until computation heuristics (number of epochs, minimum gra-

dient or maximal failure rate) are exceeded or the performance

goal is met. 

A final but important factor to consider about ANNs is their

bility to self-train during operation. This is accomplished by se-

uentially updating the weight and bias values of the various neu-

ons during use of the network. This functionality is important for

onger-term instillations where variables such as wear and tear,

eather fluctuations, input power quality or other transient factors

an introduce a drift in the system. It is also useful for “teaching”

he system how to respond to process changes such as flowrate or

omposition. By using each run to keep the training accurate, the

et point accuracy of the controller algorithm can be kept more

onstant over time. 
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Table 1 

Comparison of the accuracy and data speed of IR cameras with traditional forms of thermal measurement. 

Measurement type Accuracy (standard) Accuracy (specialized) Data speed (standard) Data speed (specialized) Number of 

measurement points 

IR Camera ±0.2 °C < ± 0.1 °C 33 ms/frame 5 ms/frame 300k to millions per 

frame 

Thermocouples (T, J, E, K, 

N, R, S, B, C’’) 

±1-2.2 °C ±0.25-1 °C 10 0 0 ms/ measurement 50 ms/ measurement 

(aerospace grade) 

1 

Thermistors ±5 °C Very high over narrow range – – 1 

1
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.5. Introduction to IR imaging 

Infrared is as much part of the electromagnetic spectrum as

s visible light, but unlike visible light its intensity is related to

he temperature of an object through the concept of a black body

mitter, tying it directly to the object’s temperature. Due to ad-

ances in Vanadium Oxide and Uncooled Focal Plane Arrays ( Li et

l., 2011 ), thermal imaging cameras have transitioned from being

ulky contractions requiring cryogenic cooling units to handheld

ebcams powered from a USB port. This has resulted not only in

reater simplicity, but also in drastic price decrease, making them

ompetitive with high accuracy thermocouples. This offers several

istinct advantages to the chemical engineer, primarily ease of ap-

lication, acquisition speed, accuracy, and resolution. Traditional

hermocouples need to be placed all around a reactor, resulting in

ncreased complexity, especially where long shielded wiring runs

re required due to the analog nature of the signal. Thermal cam-

ras can cover a large area of a reactor, or even an entire process,

roviding multiple measurements with minimal hardware. Also, IR

ameras are capable of non-contact measurement, giving a distinct

enefit when dealing with either extreme temperatures or sen-

itive environments such as bioreactors. This is also particularly

seful for in-situ measurements as an entire reactor can be con-

tructed of IR-transparent material. Finally, thermal cameras can

apture data very quickly; standard models can capture 30 FPS

nd specialty units are capable of greater than 30 0 0 FPS. This pro-

ides much higher granularity to the data as opposed to traditional

hermocouples. Overall, IR imaging offers many benefits over tra-

itional forms of temperature measurement, and it is useful in a

ariety of scenarios for which a detailed comparison can be seen

n Table 1 . 

.6. Computer vision concepts 

Computer vision is the application of numerical algorithms to

mage data for the purpose of extracting important parameters.

here are a few important concepts to understand; all are based

n the fact that an image from the IR camera is basically an M × N

atrix of values corresponding to the temperature measured pix-

ls in the array. The first concept is focused on histograms, which

re plots of the pixel quantity and a given intensity. Histograms are

seful for finding the probability of a certain value as: 

 (i ) = hist(i ) / (M · N) (3)

Next, basic algebraic operations can be performed on the matrix

or the extraction of useful parameters. Subtracting two images can

ive information about motion (as only certain pixels will change

alue), multiplication by an array of 0 or 1 values in given shapes

an mask off part of an image, and division by a matrix of intensi-

ies can be used to compensate for non-uniformities in the lighting

r optics. Another important concept is pixel neighborhoods, or

n other words, a pixel and the four pixels directly bordering it.

eighborhoods conform to the principle of symmetry such that: 

( i, j ) ∈ N ↔ ( −i, − j ) ∈ N (4) 
nd a path is defined as a set of ordered indices where consecutive

ndices are adjacent, or P = ( I 1 , I 2 , . . . , I N ) such that I i ∼ I i =1 where

 i = 1 , . . . , n − 1 . Finally, thresholding can be used to segment an

mage based on a given condition, 

 ( x, y ) = 

{
1 i f f ( x, y ) > T 
0 i f f ( x, y ) ≤ T 

(5) 

Using these concepts an image can be manipulated to extract

mportant information, such as the flow regime (slug, laminar or

urbulent), and the position and properties of given fluid slugs. 

In laminar flow the standard deviation of measurements across

 channel should be relatively small, and a consistent thermal gra-

ient should be seen along the walls. This is because non-turbulent

low Reynolds Number) flow has a parabolic flow profile, with a

onsistent velocity in the center and decreased velocity near the

dges. In turbulent (high Reynolds Number) flow the standard de-

iation of measurements would be higher and a consistent ther-

al boundary would not be observed near the walls. This is due

o fluid mixing during flow and lack of a clear flow profile. Fi-

ally, slug flow should also be clearly visible due to the different

hermal nature of the different fluids. Certain fluids would change

emperature at different speeds, and thermal gradients could be

bserved between slugs, making identification and segmentation

ather straightforward. Overall information from thermal measure-

ents could be used to elucidate the flow regime in a microfluidic

ystem. 

Canny edge detection is another important topic to consider in

omputer Vision. This algorithm uses a set of operations to find

dges in images for segmentation purposes ( Canny, 1986 ). The first

tep in the algorithm is to apply a Gaussian filter to remove noise

rom the image. Noise can greatly impact the performance of the

lgorithm and even cause false detections, so it is important to

mooth it out. Gaussian filters with a various kernels can be used

epending on the application and signal quality. Next, the Hessian

atrix is computed such that 

∂ 
∂ x 2 

∂ 
∂ x∂ y 

∂ 
∂ x∂ y 

∂ 
∂ y 2 

]
· I ( x ) = 

[
I xx I xy 

I yx I yy 

]
(6) 

here the principle 2nd derivatives give then eigenvalues 

λ1 

λ2 

]
(7) 

nd the principle directions are given by the eigenvectors

 e v 1 , e v 2 ] . This is implemented in the discrete form by first calcu-

ating the 2nd derivatives in the 4 raster directions, then choosing

he direction with either the minimum or maximum 2nd deriva-

ive, and applying a discrete mask of either [ 1 , −2 , 1 ] for linear

hanges or 1 / 2 · [ 1 , −2 , 1 ] for diagonals. Finally, the peak intensity

n an image can be found by taking 

 

− = ∇ ( G � I ) / | ∇ ( G � I ) | (8) 

hen finding the neighborhood closest to n̄ , finding the angle α to

his neighborhood, and continuing the search until a peak is found.

verall, the methods of Canny edge detection are very useful for

solating segments of interest in a 2D image. 
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Fig. 2. (A) Overview of experimental setup for heat removal, (B) overview of exper- 

imental setup for control and data collection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Overview of microreactor and thermal control system. The reactor was ma- 

chined from PTFE and the IR window is a very thin layer of IR-transparent PTFE 

film over the channel. 
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2. Methods 

2.1. Thermal control setup 

Temperature control was provided by a water-cooled thermo-

electric module operating with a high-speed PWM controller. The

61 W Marlow TR060-6.5-40L thermoelectric module was connected

directly to an Eaton D96115ACZ3 solid-state relay module. In turn,

the relay was connected to a generic 300 W ATX-style power sup-

ply. A voltmeter was placed on the same rail in the power sup-

ply to monitor that no voltage drop was occurring due to load

fluctuations. The gate of the relay was connected to an ATmega

2560 PWM output (Arduino Mega) running at 8-bit resolution and

∼490 Hz. In practice, it is possible to increase the resolution up to

16-bits using standard controllers and up to 32 bits for pico-second

level control using specialized hardware. 

Thermal dissipation for the thermoelectric module consisted of

a water-cooling system comprised of a thermal block, tank, pump,

radiator, and fans. The module was affixed to the block using ther-

mal compound (Protronix Series 7), and a water-glycol solution

was circulated through the block. Water would enter one side, pick

up heat from the module, and carry it to the outlet. From here it

would travel to the 360 mm radiator with three 120 mm fans oper-

ating at 1650 rpm with ∼110 m 

3 /h of air flowrate. The water would

then flow into a small expansion tank with a bottom-mounted cir-

culating pump. A diagram of the system can be seen in Fig. 2 (A).

This system removed heat very efficiently and no significant rise

in cooling water temperature was observed when the system was

operating at load. Since thermoelectric cells operate as heat pumps

with a defined maximum �T, the radiator can be replaced with a

chiller to provide sub-freezing or potentially even cryogenic oper-

ation. 
.2. Control and data acquisition 

Data acquisition was provided by an ICI 9640P IR camera run-

ing at 640 × 480 resolution with a VO x UFPA detector measuring

 spectral band of 7–14 μm at a sensitivity of < 0.02 °C at 14-bits

nd 30 Hz. Data was fed using USB to a computer with an Intel

7-8550 U CPU, 16 GB of RAM and a nvidia GEFORCE 980 M run-

ing MATLAB R2017B and a proprietary Direct Link Library (DLL)

o extract data from the IR camera. Instructions from the algo-

ithm about PWM setpoints were sent, via USB, to the ATmega

560 using up to a 1 Mbps connection. This setup provides a ro-

ust platform for various experiments, allowing for very fast and

recise temperature control and a systems diagram can be seen in

ig. 2 (B). 

A representative microfluidic system was constructed from

ondable PTFE and placed on top of the thermoelectric modules.

wo channels were machined into the PTFE block, a second piece

laced over it, and both were bonded at 360 °C while secured in an

luminum chuck. Temperature was measured in a serpentine chan-

el which had a 1 mm square cross-section and was 30 mm long.

he whole chip measured 41.5 mm wide, 100 mm long and 10 mm

hick. An IR window was then machined into the finished reactor.

ll CNC operations were carried out using a Tormach PCNC440 and

utodesk Fusion 360 for CAM. The reactor was then placed into a

ow chuck and aligned with the thermoelectric modules. PTFE was

hosen because it provides very good chemical resistance neces-

ary for future experiments while also being transparent to IR in

he desired wavelengths. A thin layer of thermal compound was

laced between the reactor and the thermoelectric cells to facili-

ate heat transfer. 

The reactor-thermal system (seen in Fig. 3 ) was placed inside of

 vacuum chamber and all electrical and fluidic connections routed

hrough the enclosure and sealed with epoxy. By placing the sys-

em in a vacuum, thermal losses to the surrounding environment

re minimized and the quality of data produced by the IR camera

s improved. 

.3. System training 

To perform training, the algorithm would first establish com-

unications with the microcontroller and the IR camera. Next, the

ystem would send a 0% setpoint and monitor the response to en-

ure that the system is performing as expected. Then, a 100% sig-

al is sent and after equilibrium is reached this is used as the

igh-temperature shutoff limit of the system. When the system is

t a low temperature, a flow of liquid would be established into
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Fig. 4. Flowchart for control training algorithm. 
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Fig. 6. Surface plot showing the relative fit quality vs. training method and 

the number of hidden layers. B indicated an enlargement of the indicated area 

of A to make the Z -axis scale visible. 1 = Levenberg–Marquardt (Damped Least 

Squares), 2 = quasi-Newton backpropagation, 3 = Resilient backpropagation (RProp), 

4 = Scaled conjugate gradient backpropagation, 5 = Conjugate gradient backpropa- 

gation with Fletcher–Reeves updates, 6 = Conjugate gradient backpropagation with 

Powell-Beale restarts, 7 = Conjugate gradient backpropagation with Polak–Ribiére 

updates, 8 = One-step secant backpropagation. 
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he channel. This would allow the computer vision algorithm, us-

ng a Canny filter, to establish the boundaries of the thermally

ontrolled channel. Knowing the minimum and maximum tem-

eratures achievable in the setup, an array of random set points

s generated. Randomness ensures that as the training algorithm

aries between the points, the effects of consecutive and repetitive

hanges in temperature do not affect the final training. The system

hen sends the controller each individual set point, waits for the

emperature to equilibrate, and retrains the ANN using the new

ata, thereby correlating desired temperature with applied volt-

ge to the thermoelectric devices. A flowchart of the process can

e seen in Fig. 4 . Training is repeated until a desirable result is

eached, as defined by the performance characteristics of the ANN

Root Mean Squared error values). Additional information can be

ncluded in the training algorithm, such as the flowrate of reac-

ants, ambient temperature, vacuum pressure, etc. to increase the

uality of the algorithm’s predictions during operation. 

. Results and discussion 

.1. Computer vision 

Performance of the IR transparent flow channel with the ther-

al control system was verified, and even at very low flowrates
ig. 5. IR image as seen by the thermal camera for no flow (Re = 0) and laminar flow (

hannel imaged here is ∼22.5 μL. 
nd �T , a visible thermal gradient was very quickly observed.

 representative set of frames captured from the camera can be

een in Fig. 5 , both with no flow and low Re-flow. A Canny filter

weight = 0.7) is applied to the frame to determine in which area

emperature is to be computed. This filtering is especially useful

hen changing flow regimes or alignment of the image, as it

ery quickly, and with minimal computing power, established the

ontrolled boundaries inside of the thermal envelope established

y natural conduction within the material. This is a noteworthy

istinction from systems controlled by thermocouples, because

hermocouples can only sense the temperature in the exact point

here they are located and do not account for natural conduction

n the material. In certain systems the thermocouple’s thermal

ass may be large enough that this conduction within the sensing
Re = 50) both as a raw image and with a Canny filter applied. The volume of the 
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Fig. 7. Raw data for the comparison of different training methods. It can be seen that as the number of hidden neurons increases, the quality of the fit becomes better, until 

about 4 neurons, when the quality of the fit rapidly degrades as the data becomes overrepresented. 
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junction itself would impact the quality of the measurement. The

data can also be segmented at various points, both laterally and

horizontally, and the average from each of these regions given a

certain weight in the controller. 

3.2. Network training and selection 

A series of experimental trials was performed using 10 0 0 se-

quential random set point changes to monitor the time-based be-

havior of the system, including monitoring for any kind of hys-

teresis or set point drift. The self-training system would take a set

point, monitor the behavior of the system, and retrain itself using

the new data. 

A number of different training algorithms were inspected along

with various numbers of hidden neurons. The results are summa-

rized in Fig. 6 , with detailed representative fits given in Fig. 7 . It

was observed that the fit of one neuron exactly resembles a sig-

moid, as one would expect. Using two neurons resulted in fit vari-

ability, including some training states which are clearly not phys-

ically representative of the system’s behavior. With more hidden

neurons the quality of the fit progressively improved until the sys-

tem is overrepresented after four neurons (theoretically parallel-

ing the transfer functions of measurement, control, actuation and

the system). Overrepresentation results in oscillations around the
orrect value, and in some cases, has led to undamped behavior

n the system. In Fig. 6 , a comparison of the quality of the fit of

ifferent training algorithms ( 1 )–( 7 ) is shown vs. the number of

idden layers. The one-step secant backpropagation method com-

letely failed to represent the system in some cases, but the other

ethods yielded relatively similar results. Upon close examination,

t is observed that the best representation is achieved by a model

hat uses the conjugate gradient methods with four neurons and

he best fit being derived from the Conjugate Gradient Backpropa-

ation with Powell–Beale Restarts methods. It is predicted that the

onjugate Gradient Backpropagation methods result in the best fit

ecause the training algorithm performs a search at each iteration.

his ensures that the search direction of the system is correct at

ach point during the training routine, eliminating the inconsis-

encies caused by multiple iterations following a search in the in-

orrect direction. 

.3. Network optimization 

Upon determination that the Conjugate Gradient Backpropaga-

ion with Powell–Beale Restarts method yielded the best fit quality,

t was analyzed what kind of impact the number of training points

ad on the system. This is useful in determining the least possi-

le amount of necessary trials to train the system. Fig. 8 shows
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Fig. 8. Surface plot showing the fit quality vs. number of training points and hidden layers for Conjugate gradient backpropagation with Powell–Beale restarts. For very few 

training points ( < 5) the fit quality is rather poor (except for 1 and 2 data points, which corresponds to a linear fit). Fit quality improves at ∼10 training points and remains 

mostly constant except for one dip around data point 12. This was caused because the data point in the setpoint array had a very large change from the previous 11, causing 

a brief period where the network was poorly trained. This can be overcome in future trials by ensuring that the first few setpoints adequately cover the dynamic range of 

the system. 

Fig. 9. Comparison of computation time for an ideal PID and an ANN controller for the same model system using 10 0 0 random setpoint changes. 
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s  
he relationship of fit quality to the number of training points and

idden layers. As before, it is observed that after 4 hidden layers

he fit develops oscillatory behavior. Fits assessed using one or two

ata points resulted in good R -values simply due to the linear na-

ure of the fit represented. It was also observed that systems with

ewer hidden layers were sensitive to changes in setpoint between

rials. Finally, it was observed that fifteen data points was the min-

mum necessary to resiliently train the controller. 

It is important to note that overrepresenting the system (more

han 4–5 neurons) can lead to oscillatory or undamped operation

f the network. A good fit must establish a balance between the

ias and the variance. If the model has too few hidden layers, it

isplays characteristics of high bias, meaning the algorithm fails to

epresent the data fully. It is predicted that when the network has

oo few layers to adequately represent the real number of trans-

er functions in the system (measurement, control, actuation and

he system itself) it fails to fully model the physics. If the net-

ork has too many layers, it can display high variance, meaning

t will catch onto random noise. If there are too many layers there

re two likely scenarios-oscillatory and undamped. In the oscilla-

ory scenario the controller controls the temperature around the

etpoint, but never settles to the correct value. In the undamped

cenario, the controller sets the temperature to stay at some to-

ally unrelated value, either higher or lower. For this reason, it is
 w  
ecessary to choose the right number of layers for the system,

hich we found to be the same as the number of transfer func-

ions in the system. 

.4. Comparison with PID control 

Another important element of the system’s performance was

he time required to perform computations within the control

oop. This is often an area where an inevitable time delay is in-

roduced which limits the amount of useful control actuations that

ould be accomplished per second. This also has implications for

he computational power required by the control loop, as an ap-

lication of this technology lies in low-power IoT or distributed

ystems. Fig. 9 depicts the time required for the calculations dur-

ng a setpoint change, comparing the ANN run over a matrix of

et point changes with a traditional ideally-tuned PID simulated

n the experimental data using transfer functions in MATLAB. It

as observed that when the ANN and PID are both run under

deal computation conditions the total cumulative calculation time

s two orders of magnitude lower for the ANN. This has significant

mplications for both high speed and low power systems. 

Further comparing the ANN and PID control methodologies, it

hould be noted that the rise time, settling time, and overshoot

ere all improved. The rise time was reduced from 41.4 to 32.6 s
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Fig. 10. Setpoint tracking for the ANN controller, showing temperature (Kelvin) vs. time. Both small changes to setpoint (@50 0 s, 10 0 0 s, 150 0 s, 250 0 s) and very large 

disturbances (3300 s, 4000 s, 4700 s) can be seen. Below an example for setpoint tracking for large step changes can be seen. 
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(21.26% improvement), the settling time was reduced from 144 to

11.43 seconds (92.06% improvement), and the overshoot was re-

duced from 6.08% to ∼0.2 °C. 

3.5. Setpoint tracking 

The final and most important aspect validated for the new con-

trol methodology was the ability of the controller to track setpoint

changes and disturbances in the system. In Fig. 10 , it can be ob-

served how the setpoint was varied several times up and down by

a small degree and the system was able to track very quickly with

only a minor overshoot on upward changes, settling into the new

setpoint within seconds. In the last third of the chart, three large

disturbances are seen and the ability of the controller to respond

and return to setpoint is observed. The system is changed from

a flowrate of 0.2 mL/min to 1, 3 and then 5 mL/min. The flowrate

along with the temperature were input into an ANN which would

adapt its training between runs. It is seen that by the third set-

point change the system “knows” how to react and minimizes the

spike quite dramatically. It is also worth noting that the change

in input flowrate results in thermal diffusion through the reactor.

Since thermocouples in microfluidic systems are usually not placed

directly into the flow path, this diffusion time would have intro-

duced a time delay into a traditional thermocouple-based system.

Overall, this tentatively validates that such a control algorithm can

be used for control chemical reactor systems. 
. Conclusions 

The findings presented here demonstrate that an Artificial Neu-

al Network can be self-trained with IR camera images in order to

ontrol the temperature of a microfluidic reactor with high speed

nd accuracy. A system was constructed using two 61-watt Peltier

hermoelectric cells with a water-cooling system to remove heat. A

TFE microreactor was fabricated using CNC machining and placed

nto the cells. The system was trained to predict the correct

etpoint based on the required temperature of the system and the

owrate. It was discovered that a network trained using the Conju-

ate Gradient Backpropagation with Powell–Beale Restarts method

ith four hidden neurons best represented the system. Tests were

onducted to ensure the stability and response of the system to

etpoint changes and disturbances. The performance of the system

as also compared with traditional PID control and thermocouple

easurements. The results of the comparison have shown the sys-

em to have a faster settling time and less overshoot while using

arginally fewer computing resources. The system was able to

aintain the setpoint with high accuracy and it trained itself to re-

uce temperature changes upon a change in flowrate through the

eactor. Systems like these will be able to further adapt their train-

ng over time, gaining resiliency for all sorts of different process

onditions, ranging from outdoor temperature to feed composition.

verall, these results indicate that such a control methodology

ould be useful in both research and industrial applications. 

It should also be noted that the use of an IR camera instead

f thermocouples offers several advantages. First, an IR camera
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llows for non-contact measurement. This means that more points

an be scanned in a system, and thus the granularity of the data

ould be greatly enhanced. This also offers advantages for systems

hat either operate at extreme temperatures, extreme conditions,

r require high levels of sterility (such as bioreactors). It also

llows for better quantification of heat transfer in systems and

educes the time delay caused by thermal diffusion to and through

 thermocouple. Second, an IR camera offers advantages both in

he accuracy and speed that data is delivered as compared to

raditional thermocouples. Finally, IR cameras have self-calibrating

bilities built-in, allowing long-term process stability over time.

ll in all, the use of IR cameras instead of thermocouples offers

everal advantages to engineers focusing on process and controls. 

It is our prediction that systems like these will be of interest in

oT, distributed, or otherwise resource-limited environments where

t is currently impractical to set up multiple thermocouples with

eaders. It could also be of use in areas where very fast and pre-

ise control are required or the tuning of the system changes over

ime. Finally, systems like the one presented here could have im-

lications in data mining, where it would be useful to trace how

ertain (seemingly disjoint) inputs impact production systems. 
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