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High-speed and high-accuracy thermal control of reactors has always been of interest to chemical engi-
neers. In this paper we present a new methodology for thermal control of a continuous-flow chemical
reactor using non-contact IR thermography combined with computer vision and a predictive Artificial
Neural Network. The system exhibits several key advantages over thermocouples and PID control includ-
ing the ability to quantify and account for thermal diffusion in the system, to collect and process data
very quickly and with high accuracy, to analyze the entire surface of the reactor, and to update its train-
ing based not only on the current thermal response, but also on external factors. We have constructed
and validated such a system as well as shown improvements in its accuracy, rise time, settling time, set
point tracking, and overshoot as compared to more traditional forms of thermal control, validating this
as a possible approach for experimental and process control.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Contextual overview

Artificial Neural Networks (ANNs) are known for their ability
to accurately represent data in highly non-linear and multivariate
systems. In fact, ANNs have already been successfully used to
model chemical reactions (Ahmadi et al., 2009; Maltarollo et al.,
2013), control small modular reactors (Manic and Sabharwall,
2011), optimize chemical systems (Polikar et al., 2001; Zhang
et al., 2010), predict stock markets (Zavadskaya, 2017) and even
identify malignancies in histological images (Xue and Ray, 2017).
It has been demonstrated in the literature that ANNs offer certain

Abbreviations: ANN, Artificial Neural network; CAD, Computer Aided Design;
CAM, Computer Aided Modeling; CNC, Computer Numerical Control; CGB, Con-
jugate Gradient Backpropagation; CGBPFRU, Conjugate gradient backpropagation
with Fletcher-Reeves updates; CGBPPBR, Conjugate gradient backpropagation with
Powell-Beale restarts; CGBPPRU, Conjugate gradient backpropagation with Polak-
Ribiére updates; DLL, Direct Link Library, compiled C/C++ code; FPS, Frames
per Second; IoT, Internet of Things; LM, Levenberg-Marquardt (Damped Least
Squares) with forward training; NARMA, Nonlinear Autoregressive Moving Aver-
age; OSSBP, One-step Secant backpropagation; PID, Proportional Integral Deriva-
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benefits over traditional numerical approaches, both in accuracy,
speed of execution and resiliency to sudden changes in input
parameters (Ahmad et al.,, 2017; Parkale, 2012). Additionally, and
perhaps most exciting, is that ANNs can self-train through algo-
rithms. This means that in a day and age of distributed modular
systems, exploiting lab-on-a-chip (LoC) technologies or advanced
materials (such as in photochemical reactors), system control can
be greatly simplified, and tuning can be merged with quality
assurance in a production environment. Finally, ANNs can process
significantly more data in a reasonable amount of time with mod-
est computing resources. This can be leveraged either to control
based on multivariate trends or to increase the quality of the
input data. ANNs can easily be combined with unorthodox sensors
that produce very large amounts of data through capture at high
resolution, high speed or a combination of both. Overall ANNs
offer many exciting benefits for process control in a variety of lab-
oratory systems that can also aid in the design of production-scale
processes.

ANNs have been used in the past for process control quite suc-
cessfully using various different approaches (Dayal et al., 1994;
Hagan et al, 2002; Khalid and Omatu, 1992; Psaltis et al., 1988;
Vamvoudakis et al., 2015; Zribi et al., 2015) and the NARMA-L2
neurocontroller algorithm has gained prevalence in the control of
highly-nonlinear systems in the last two decades. The issue with
many of these previous control schemes has been the difficulty of
selecting an appropriate model and translating the system behav-
ior into a data form understandable by the computer. For example,
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the NARMA-L2 control algorithm works by canceling nonlinearities
to transform nonlinear dynamics into linear ones and PID-neural
net systems require rigorous models of the system, just like first-
principles PID tuning. While these existing algorithms have worked
well where they have been applied, the fact remains that they
need a rigorous model of the system, significant computational
power, and expertise to implement. In this work we present a dif-
ferent approach to ANN-based control using computer vision and
fully autonomous training for implementation in a thermal control
system for a microfluidic reactor.

The use of IR thermography in research is a popular method for
monitoring reactions and receiving data from these reactions. Over
the years, advanced IR thermography methods have been devel-
oped to maximize the efficiency of scientists and their research. IR
thermography has demonstrated the ability to provide useful data
beyond temperature control, such as enthalpy and kinetics mea-
surements (Romano et al., 2015; Zhang et al., 2016). There have
also been studies which have used IR thermography to monitor re-
actions and indicate the location of their intensity across a two-
dimensional system (Fu et al., 2016). These methods have proven
IR thermography to be very successful in providing data and mon-
itoring reactions in microreactors and microchannels.

IR thermography has attracted much attention among scientists
allowing for further advancements of its applicability and methods
to be made. Over the years many new methods and techniques
have been developed. Infrared technology led to the development
of precision thermometry to track temperature profiles of fast
and highly exothermic reactions (Haber et al., 2013). Recently, a
non-intrusive method to measure fluid temperature and two-phase
flow patterns was developed (Liu and Pan, 2016). IR thermography
has also been coupled with temperature frame processing methods
to estimate heat distribution of chemical reactions along a channel
in a microreactor (Pradere et al.,, 2006). The development of such
measuring and monitoring techniques demonstrate the ability to
collect a lot of spatially-dependent information in a short amount
of time, hinting at the broad-scale acceptance of IR thermographic
studies for micro-scale systems, and validates the benefits of using
IR thermography in this study.

Similarly, Artificial Neural Networks have proven to be ben-
eficial for process control in scientific studies and have become
frequently used in basic chemistry research. ANN’'s are highly
effective at monitoring process systems with a lot of variables that
altogether are too complex to manage without an ANN (Uraikul et
al.,, 2007). Artificial intelligence has been widely applied to fields
of study ranging from aquaculture to pollution minimization (Chan
and Huang, 2003; Lee, 2000). ANNs have also had much success
in representing phenomena in unit operations that are difficult
to model. For example, recent research has focused on studying
heat exchangers and modeling power consumption (Dudzik, 2011).
Although ANN’s have become a staple in scientific research the
development of new methods involving ANN’s have slowed down.
Some methods that are currently used have been developed over
a decade ago with very few studies involving modern advance-
ments in ANN process control, despite the potential enabled by
miniaturization of silicon technologies leading to much smaller,
power-efficient and inexpensive processing systems. Despite the
lack of many recent publications of ANN-based control, it is still
a topic of great interest both to chemical engineers, and those
outside the field.

Overall, having resilient process controllers which can adapt to
a variety of circumstances and operating parameters is of great
interest to industry. In the past a lot of work has been devoted
to the formulation of robust multivariate controllers (Ingham et
al,, 2015; Kourti and MacGregor, 1995; Kresta et al., 1991) and
to the understanding of complex system dynamics. By enabling

highly multivariate data input into the ANN algorithm, it is ex-
pected that multivariate control, especially in complex industrial
environments, can be enabled and simplified, making it compet-
itive with traditional univariate controls. Additionally, due to the
increased simplicity of writing and optimizing neural networks,
along with new developments in specialized neural network com-
puting platforms, networks that collect, analyze, and act upon data
can be distributed throughout a plant on small, low-power com-
puters.

1.2. Artificial Neural Network overview

An ANN is a synthetic representation of the biochemistry seen
in nature, whereby the summation of weighted inputs, if accu-
mulated to a threshold value, leads to a firing of the neuron. In
turn this first neuron triggers other downstream neurons with each
connection having a given weight. Represented mathematically the
activation function of a neuron j at time t + 1 would be:

a;(t + 1) = f(a;(t). pj(1). 6)) (M

where a; symbolizes the activation of a neuron, 6; represents the
threshold/bias value determined during net training, and p; is the
input of the network. The signal then propagates through the net-
work with the function:

pi(t) = Zfout(aj(t))wij (2)

where w;; is the weight of a connection. Due to the simplicity of
these arithmetic operations a shallow neural network can run very
quickly, while a deep neural network can process unfathomable
amounts of input data. ANNs like these are also known as mul-
tilayer perceptrons.

In practice several different types of threshold functions for
neurons are used in ANNSs, including step functions, linear func-
tions, sigmoid functions, hyperbolic tangents, and Rectified Linear
Units (ReLU). These various forms of neurons are employed in dif-
ferent parts of the network including the hidden and output layers.
Often, a network would be composed of a variety of different neu-
rons linked to each other. A basic representation of a network with
three hidden layers can be seen in Fig. 1.

1.3. Artificial Neural Network training

Before a network can be used, it needs to be trained. This is
accomplished via a variety of different possible training algorithms
for which the general goal is to adjust the weight @ and bias val-
ues O of the various neurons until the desired output is achieved.
Adjustments to the weights change the contribution of each input
to a neuron, while adjusting bias values will shift the threshold
function/ adjust the steepness of a sigmoid. In practice, the training
is carried out much like any standard optimization problem would
be solved in engineering- a cost function is defined, and then pa-
rameters are adjusted until the ‘optimal’ solution is found within
certain performance and accuracy targets. The cost function defines
how far the current solution is from the optimal one, implying that
the most optimal solution has the lowest cost. Although ANNs can
usually achieve arbitrarily good fit, certain parameters are used to
determine when to end training as to enable computation in a rea-
sonable amount of time. There are numerous training algorithms
available for network training, generally divided into conjugate gra-
dient and quasi-Newtonian methods. It is important to remember
that these algorithms require cleanly differentiable weight, input,
and transfer functions to compute successfully.
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Fig. 1. General structure of an Artificial Neural Net. Top: macro overview of input
to output data flow, middle: inputs to individual neuron, bottom: different possible
threshold functions for a neuron. Usually a normalized sigmoid is used as it gives
the greatest flexibility to the training algorithm and thus best represents the data.

1.4. Training algorithms

The various training algorithms investigated herein include:

1. Levenberg-Marquardt (Damped Least Squares) with forward
training: first, the performance of a network is assessed with
respect to the bias and weight variables. Backpropagation is
used to calculate the Jacobian (Li et al., 2016), from where each
variable is then adjusted to the Levenberg-Marquardt rules
(Levenberg, 1944). Training occurs until either maximum com-
putation heuristics are exceeded (time, number of epochs, etc.),
training parameters are not met (performance gradient, mu or
validation failure), or the network reaches its performance goal.

2. quasi-Newton backpropagation: as engineers, we are all famil-
iar with Newton’s method, which relies upon computation of
a Hessian matrix. However, the Hessian is very computation-
ally intensive to compute as it involves the second derivatives.
In quasi-Newtonian methods the Hessian is replaced with an
approximation based on the gradient. The Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (summarized in Dennis and
Schnabel, 1985) uses this approximation to compute updated
weights and biases for the network. Training is continued un-
til performance goals are reached or the number of epochs, or
maximum time are exceeded.

3. Resilient backpropagation (RProp): essentially, this is a basic
first-order optimization algorithm, the weights in a network are
updated based on the sign of the partial derivative of the error
function (Riedmiller and Braun, 1993). If the sign of the error

is equivalent between two consecutive iterations then the up-
date factor is positive, if it changes sign then the update factor
is negative. Training is continued until either performance goals
are met, or computational heuristics are exceeded.

4, Scaled conjugate gradient backpropagation: first backpropaga-
tion is used to calculate the derivatives of performance, then
a scaled conjugate gradient algorithm is used (Mgller, 1993).
The conjugate gradient algorithm is based on conjugate direc-
tions, but a line search is not performed during each iteration
of training. Training is continued until computation heuristics
(number of epochs, minimum gradient or maximal failure rate)
are exceeded or the performance goal is met.

5. Conjugate gradient backpropagation with Fletcher-Reeves up-
dates: again, this algorithm is similar to the conjugate gradient
method, but it computes the search direction by dividing the
norm square of the pervious and current iterations (Fletcher,
1964). Training is continued until computation heuristics (num-
ber of epochs, minimum gradient or maximal failure rate) are
exceeded or the performance goal is met.

6. Conjugate gradient backpropagation with Powell-Beale restarts:
this algorithm is very similar to the conjugate gradient method,
except it uses a search algorithm at each iteration (Powell,
1977). This search algorithm computes a search direction from
the gradient and previous search direction. The search direction
is reset based on a numerical test. Training is continued until
computational heuristics (number of epochs, minimum gradi-
ent or maximal failure rate) are exceeded or the performance
goal is met.

7. Conjugate gradient backpropagation with Polak-Ribiére up-
dates: again, this algorithm is similar to the conjugate gradient
method, but it computes the search direction by using a for-
mula involving the norm square combined with the gradient
(Khoda et al,, 1992). Training is continued until computation
heuristics (number of epochs, minimum gradient or maximal
failure rate) are exceeded or the performance goal is met.

8. One-step secant backpropagation: first, backpropagation is used
to calculate the derivatives of the performance vector with re-
spect to weights and biases. Next, the variables are adjusted ac-
cording to a search algorithm where the direction is calculated
as a function of the gradient, step changes in the weights from
the previous iteration and the gradient change from the previ-
ous iteration (Battiti, 1992). Training is continued until compu-
tation heuristics (number of epochs, minimum gradient or max-
imal failure rate) are exceeded or the performance goal is met.

9. Gradient descent with momentum and adaptive learning rate
backpropagation: as in the other methods, first backpropaga-
tion is used to compute the necessary derivatives. Next, the
variables are adjusted based on the gradient descent with
momentum (Moreira and Fiesler, 1995). After each iteration if
the performance of the network is closer to the goal then the
learning rate is increased, if it is further away the learning rate
is decreased and the change is not kept. Training is continued
until computation heuristics (number of epochs, minimum gra-
dient or maximal failure rate) are exceeded or the performance
goal is met.

A final but important factor to consider about ANNSs is their
ability to self-train during operation. This is accomplished by se-
quentially updating the weight and bias values of the various neu-
rons during use of the network. This functionality is important for
longer-term instillations where variables such as wear and tear,
weather fluctuations, input power quality or other transient factors
can introduce a drift in the system. It is also useful for “teaching”
the system how to respond to process changes such as flowrate or
composition. By using each run to keep the training accurate, the
set point accuracy of the controller algorithm can be kept more
constant over time.
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Table 1

Comparison of the accuracy and data speed of IR cameras with traditional forms of thermal measurement.

Measurement type Accuracy (standard)  Accuracy (specialized)

Number of
measurement points

Data speed (standard) Data speed (specialized)

IR Camera +0.2°C <+0.1°C
Thermocouples (T, ], E, K, +1-2.2°C +0.25-1°C
N, R S, B, C”)
Thermistors +5°C Very high over narrow range

33 ms/frame 5ms/frame 300k to millions per
frame
1000 ms/ measurement 50 ms/ measurement 1

(aerospace grade)
- - 1

1.5. Introduction to IR imaging

Infrared is as much part of the electromagnetic spectrum as
is visible light, but unlike visible light its intensity is related to
the temperature of an object through the concept of a black body
emitter, tying it directly to the object’s temperature. Due to ad-
vances in Vanadium Oxide and Uncooled Focal Plane Arrays (Li et
al.,, 2011), thermal imaging cameras have transitioned from being
bulky contractions requiring cryogenic cooling units to handheld
webcams powered from a USB port. This has resulted not only in
greater simplicity, but also in drastic price decrease, making them
competitive with high accuracy thermocouples. This offers several
distinct advantages to the chemical engineer, primarily ease of ap-
plication, acquisition speed, accuracy, and resolution. Traditional
thermocouples need to be placed all around a reactor, resulting in
increased complexity, especially where long shielded wiring runs
are required due to the analog nature of the signal. Thermal cam-
eras can cover a large area of a reactor, or even an entire process,
providing multiple measurements with minimal hardware. Also, IR
cameras are capable of non-contact measurement, giving a distinct
benefit when dealing with either extreme temperatures or sen-
sitive environments such as bioreactors. This is also particularly
useful for in-situ measurements as an entire reactor can be con-
structed of IR-transparent material. Finally, thermal cameras can
capture data very quickly; standard models can capture 30 FPS
and specialty units are capable of greater than 3000 FPS. This pro-
vides much higher granularity to the data as opposed to traditional
thermocouples. Overall, IR imaging offers many benefits over tra-
ditional forms of temperature measurement, and it is useful in a
variety of scenarios for which a detailed comparison can be seen
in Table 1.

1.6. Computer vision concepts

Computer vision is the application of numerical algorithms to
image data for the purpose of extracting important parameters.
There are a few important concepts to understand; all are based
on the fact that an image from the IR camera is basically an M x N
matrix of values corresponding to the temperature measured pix-
els in the array. The first concept is focused on histograms, which
are plots of the pixel quantity and a given intensity. Histograms are
useful for finding the probability of a certain value as:

P(i) = hist(i)/(M - N) (3)

Next, basic algebraic operations can be performed on the matrix
for the extraction of useful parameters. Subtracting two images can
give information about motion (as only certain pixels will change
value), multiplication by an array of 0 or 1 values in given shapes
can mask off part of an image, and division by a matrix of intensi-
ties can be used to compensate for non-uniformities in the lighting
or optics. Another important concept is pixel neighborhoods, or
in other words, a pixel and the four pixels directly bordering it.
Neighborhoods conform to the principle of symmetry such that:

(L) eN o (-i,—j)eN (4)

and a path is defined as a set of ordered indices where consecutive
indices are adjacent, or P = (Iy, Iy, ..., Iy) such that [; ~ _; where
Vi=1,...,n— 1. Finally, thresholding can be used to segment an
image based on a given condition,

1if f(x,y)>T
g(X’y)z{Oiff(X,y)fT (5)

Using these concepts an image can be manipulated to extract
important information, such as the flow regime (slug, laminar or
turbulent), and the position and properties of given fluid slugs.

In laminar flow the standard deviation of measurements across
a channel should be relatively small, and a consistent thermal gra-
dient should be seen along the walls. This is because non-turbulent
(low Reynolds Number) flow has a parabolic flow profile, with a
consistent velocity in the center and decreased velocity near the
edges. In turbulent (high Reynolds Number) flow the standard de-
viation of measurements would be higher and a consistent ther-
mal boundary would not be observed near the walls. This is due
to fluid mixing during flow and lack of a clear flow profile. Fi-
nally, slug flow should also be clearly visible due to the different
thermal nature of the different fluids. Certain fluids would change
temperature at different speeds, and thermal gradients could be
observed between slugs, making identification and segmentation
rather straightforward. Overall information from thermal measure-
ments could be used to elucidate the flow regime in a microfluidic
system.

Canny edge detection is another important topic to consider in
Computer Vision. This algorithm uses a set of operations to find
edges in images for segmentation purposes (Canny, 1986). The first
step in the algorithm is to apply a Gaussian filter to remove noise
from the image. Noise can greatly impact the performance of the
algorithm and even cause false detections, so it is important to
smooth it out. Gaussian filters with a various kernels can be used
depending on the application and signal quality. Next, the Hessian
Matrix is computed such that

9 )
[% %ﬂ 100 = [”‘" ”‘Y] (6)
a9y e Ly

where the principle 2nd derivatives give then eigenvalues

A
- o)

and the principle directions are given by the eigenvectors
[evq, evy]. This is implemented in the discrete form by first calcu-
lating the 2nd derivatives in the 4 raster directions, then choosing
the direction with either the minimum or maximum 2nd deriva-
tive, and applying a discrete mask of either [1, -2, 1] for linear
changes or 1/2-[1, -2, 1] for diagonals. Finally, the peak intensity
in an image can be found by taking

n=V(Geh/|V(Eal)| (8)

then finding the neighborhood closest to 7, finding the angle o to
this neighborhood, and continuing the search until a peak is found.
Overall, the methods of Canny edge detection are very useful for
isolating segments of interest in a 2D image.
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Fig. 2. (A) Overview of experimental setup for heat removal, (B) overview of exper-
imental setup for control and data collection.

2. Methods
2.1. Thermal control setup

Temperature control was provided by a water-cooled thermo-
electric module operating with a high-speed PWM controller. The
61 W Marlow TR060-6.5-40L thermoelectric module was connected
directly to an Eaton D96115ACZ3 solid-state relay module. In turn,
the relay was connected to a generic 300 W ATX-style power sup-
ply. A voltmeter was placed on the same rail in the power sup-
ply to monitor that no voltage drop was occurring due to load
fluctuations. The gate of the relay was connected to an ATmega
2560 PWM output (Arduino Mega) running at 8-bit resolution and
~490Hz. In practice, it is possible to increase the resolution up to
16-bits using standard controllers and up to 32 bits for pico-second
level control using specialized hardware.

Thermal dissipation for the thermoelectric module consisted of
a water-cooling system comprised of a thermal block, tank, pump,
radiator, and fans. The module was affixed to the block using ther-
mal compound (Protronix Series 7), and a water-glycol solution
was circulated through the block. Water would enter one side, pick
up heat from the module, and carry it to the outlet. From here it
would travel to the 360 mm radiator with three 120 mm fans oper-
ating at 1650 rpm with ~110 m3/h of air flowrate. The water would
then flow into a small expansion tank with a bottom-mounted cir-
culating pump. A diagram of the system can be seen in Fig. 2(A).
This system removed heat very efficiently and no significant rise
in cooling water temperature was observed when the system was
operating at load. Since thermoelectric cells operate as heat pumps
with a defined maximum AT, the radiator can be replaced with a
chiller to provide sub-freezing or potentially even cryogenic oper-
ation.

Torqued

r Top chuck
bolts

' Fluid
connections

IR wind
window ~ / (back)

61W Peltier
Inlet cells
Thermal
block

Fig. 3. Overview of microreactor and thermal control system. The reactor was ma-
chined from PTFE and the IR window is a very thin layer of IR-transparent PTFE
film over the channel.

2.2. Control and data acquisition

Data acquisition was provided by an ICI 9640P IR camera run-
ning at 640 x 480 resolution with a VOx UFPA detector measuring
a spectral band of 7-14pum at a sensitivity of <0.02°C at 14-bits
and 30Hz. Data was fed using USB to a computer with an Intel
i7-8550U CPU, 16 GB of RAM and a nvidia GEFORCE 980 M run-
ning MATLAB R2017B and a proprietary Direct Link Library (DLL)
to extract data from the IR camera. Instructions from the algo-
rithm about PWM setpoints were sent, via USB, to the ATmega
2560 using up to a 1Mbps connection. This setup provides a ro-
bust platform for various experiments, allowing for very fast and
precise temperature control and a systems diagram can be seen in
Fig. 2(B).

A representative microfluidic system was constructed from
bondable PTFE and placed on top of the thermoelectric modules.
Two channels were machined into the PTFE block, a second piece
placed over it, and both were bonded at 360 °C while secured in an
aluminum chuck. Temperature was measured in a serpentine chan-
nel which had a 1 mm square cross-section and was 30 mm long.
The whole chip measured 41.5 mm wide, 100 mm long and 10 mm
thick. An IR window was then machined into the finished reactor.
All CNC operations were carried out using a Tormach PCNC440 and
Autodesk Fusion 360 for CAM. The reactor was then placed into a
flow chuck and aligned with the thermoelectric modules. PTFE was
chosen because it provides very good chemical resistance neces-
sary for future experiments while also being transparent to IR in
the desired wavelengths. A thin layer of thermal compound was
placed between the reactor and the thermoelectric cells to facili-
tate heat transfer.

The reactor-thermal system (seen in Fig. 3) was placed inside of
a vacuum chamber and all electrical and fluidic connections routed
through the enclosure and sealed with epoxy. By placing the sys-
tem in a vacuum, thermal losses to the surrounding environment
are minimized and the quality of data produced by the IR camera
is improved.

2.3. System training

To perform training, the algorithm would first establish com-
munications with the microcontroller and the IR camera. Next, the
system would send a 0% setpoint and monitor the response to en-
sure that the system is performing as expected. Then, a 100% sig-
nal is sent and after equilibrium is reached this is used as the
high-temperature shutoff limit of the system. When the system is
at a low temperature, a flow of liquid would be established into
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Fig. 4. Flowchart for control training algorithm.

the channel. This would allow the computer vision algorithm, us-
ing a Canny filter, to establish the boundaries of the thermally
controlled channel. Knowing the minimum and maximum tem-
peratures achievable in the setup, an array of random set points
is generated. Randomness ensures that as the training algorithm
varies between the points, the effects of consecutive and repetitive
changes in temperature do not affect the final training. The system
then sends the controller each individual set point, waits for the
temperature to equilibrate, and retrains the ANN using the new
data, thereby correlating desired temperature with applied volt-
age to the thermoelectric devices. A flowchart of the process can
be seen in Fig. 4. Training is repeated until a desirable result is
reached, as defined by the performance characteristics of the ANN
(Root Mean Squared error values). Additional information can be
included in the training algorithm, such as the flowrate of reac-
tants, ambient temperature, vacuum pressure, etc. to increase the
quality of the algorithm’s predictions during operation.

3. Results and discussion
3.1. Computer vision

Performance of the IR transparent flow channel with the ther-
mal control system was verified, and even at very low flowrates

IR Image

Re =50

Relative fit quality
o
EEEEEEEEEEEEEN

8

6
methOd

6
i pidden 1¥e™®

2 4
8 urmber of

Fig. 6. Surface plot showing the relative fit quality vs. training method and
the number of hidden layers. B indicated an enlargement of the indicated area
of A to make the Z-axis scale visible. 1=Levenberg-Marquardt (Damped Least
Squares), 2 = quasi-Newton backpropagation, 3 = Resilient backpropagation (RProp),
4 =Scaled conjugate gradient backpropagation, 5= Conjugate gradient backpropa-
gation with Fletcher-Reeves updates, 6 = Conjugate gradient backpropagation with
Powell-Beale restarts, 7=Conjugate gradient backpropagation with Polak-Ribiére
updates, 8 =One-step secant backpropagation.

and AT, a visible thermal gradient was very quickly observed.
A representative set of frames captured from the camera can be
seen in Fig. 5, both with no flow and low Re-flow. A Canny filter
(weight=0.7) is applied to the frame to determine in which area
temperature is to be computed. This filtering is especially useful
when changing flow regimes or alignment of the image, as it
very quickly, and with minimal computing power, established the
controlled boundaries inside of the thermal envelope established
by natural conduction within the material. This is a noteworthy
distinction from systems controlled by thermocouples, because
thermocouples can only sense the temperature in the exact point
where they are located and do not account for natural conduction
in the material. In certain systems the thermocouple’s thermal
mass may be large enough that this conduction within the sensing

Canny filter

Fig. 5. IR image as seen by the thermal camera for no flow (Re=0) and laminar flow (Re=50) both as a raw image and with a Canny filter applied. The volume of the

channel imaged here is ~22.5 L.
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Fig. 7. Raw data for the comparison of different training methods. It can be seen that as the number of hidden neurons increases, the quality of the fit becomes better, until
about 4 neurons, when the quality of the fit rapidly degrades as the data becomes overrepresented.

junction itself would impact the quality of the measurement. The
data can also be segmented at various points, both laterally and
horizontally, and the average from each of these regions given a
certain weight in the controller.

3.2. Network training and selection

A series of experimental trials was performed using 1000 se-
quential random set point changes to monitor the time-based be-
havior of the system, including monitoring for any kind of hys-
teresis or set point drift. The self-training system would take a set
point, monitor the behavior of the system, and retrain itself using
the new data.

A number of different training algorithms were inspected along
with various numbers of hidden neurons. The results are summa-
rized in Fig. 6, with detailed representative fits given in Fig. 7. It
was observed that the fit of one neuron exactly resembles a sig-
moid, as one would expect. Using two neurons resulted in fit vari-
ability, including some training states which are clearly not phys-
ically representative of the system’s behavior. With more hidden
neurons the quality of the fit progressively improved until the sys-
tem is overrepresented after four neurons (theoretically parallel-
ing the transfer functions of measurement, control, actuation and
the system). Overrepresentation results in oscillations around the

correct value, and in some cases, has led to undamped behavior
in the system. In Fig. 6, a comparison of the quality of the fit of
different training algorithms (1)-(7) is shown vs. the number of
hidden layers. The one-step secant backpropagation method com-
pletely failed to represent the system in some cases, but the other
methods yielded relatively similar results. Upon close examination,
it is observed that the best representation is achieved by a model
that uses the conjugate gradient methods with four neurons and
the best fit being derived from the Conjugate Gradient Backpropa-
gation with Powell-Beale Restarts methods. It is predicted that the
Conjugate Gradient Backpropagation methods result in the best fit
because the training algorithm performs a search at each iteration.
This ensures that the search direction of the system is correct at
each point during the training routine, eliminating the inconsis-
tencies caused by multiple iterations following a search in the in-
correct direction.

3.3. Network optimization

Upon determination that the Conjugate Gradient Backpropaga-
tion with Powell-Beale Restarts method yielded the best fit quality,
it was analyzed what kind of impact the number of training points
had on the system. This is useful in determining the least possi-
ble amount of necessary trials to train the system. Fig. 8 shows
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Fig. 8. Surface plot showing the fit quality vs. number of training points and hidden layers for Conjugate gradient backpropagation with Powell-Beale restarts. For very few
training points (< 5) the fit quality is rather poor (except for 1 and 2 data points, which corresponds to a linear fit). Fit quality improves at ~10 training points and remains
mostly constant except for one dip around data point 12. This was caused because the data point in the setpoint array had a very large change from the previous 11, causing
a brief period where the network was poorly trained. This can be overcome in future trials by ensuring that the first few setpoints adequately cover the dynamic range of

the system.
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Fig. 9. Comparison of computation time for an ideal PID and an ANN controller for the same model system using 1000 random setpoint changes.

the relationship of fit quality to the number of training points and
hidden layers. As before, it is observed that after 4 hidden layers
the fit develops oscillatory behavior. Fits assessed using one or two
data points resulted in good R-values simply due to the linear na-
ture of the fit represented. It was also observed that systems with
fewer hidden layers were sensitive to changes in setpoint between
trials. Finally, it was observed that fifteen data points was the min-
imum necessary to resiliently train the controller.

It is important to note that overrepresenting the system (more
than 4-5 neurons) can lead to oscillatory or undamped operation
of the network. A good fit must establish a balance between the
bias and the variance. If the model has too few hidden layers, it
displays characteristics of high bias, meaning the algorithm fails to
represent the data fully. It is predicted that when the network has
too few layers to adequately represent the real number of trans-
fer functions in the system (measurement, control, actuation and
the system itself) it fails to fully model the physics. If the net-
work has too many layers, it can display high variance, meaning
it will catch onto random noise. If there are too many layers there
are two likely scenarios-oscillatory and undamped. In the oscilla-
tory scenario the controller controls the temperature around the
setpoint, but never settles to the correct value. In the undamped
scenario, the controller sets the temperature to stay at some to-
tally unrelated value, either higher or lower. For this reason, it is

necessary to choose the right number of layers for the system,
which we found to be the same as the number of transfer func-
tions in the system.

3.4. Comparison with PID control

Another important element of the system’s performance was
the time required to perform computations within the control
loop. This is often an area where an inevitable time delay is in-
troduced which limits the amount of useful control actuations that
could be accomplished per second. This also has implications for
the computational power required by the control loop, as an ap-
plication of this technology lies in low-power IoT or distributed
systems. Fig. 9 depicts the time required for the calculations dur-
ing a setpoint change, comparing the ANN run over a matrix of
set point changes with a traditional ideally-tuned PID simulated
on the experimental data using transfer functions in MATLAB. It
was observed that when the ANN and PID are both run under
ideal computation conditions the total cumulative calculation time
is two orders of magnitude lower for the ANN. This has significant
implications for both high speed and low power systems.

Further comparing the ANN and PID control methodologies, it
should be noted that the rise time, settling time, and overshoot
were all improved. The rise time was reduced from 41.4 to 32.6 s
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Fig. 10. Setpoint tracking for the ANN controller, showing temperature (Kelvin) vs. time. Both small changes to setpoint (@500s, 1000s, 1500s, 25005s) and very large
disturbances (33005, 40005, 47005s) can be seen. Below an example for setpoint tracking for large step changes can be seen.

(21.26% improvement), the settling time was reduced from 144 to
11.43 seconds (92.06% improvement), and the overshoot was re-
duced from 6.08% to ~0.2 °C.

3.5. Setpoint tracking

The final and most important aspect validated for the new con-
trol methodology was the ability of the controller to track setpoint
changes and disturbances in the system. In Fig. 10, it can be ob-
served how the setpoint was varied several times up and down by
a small degree and the system was able to track very quickly with
only a minor overshoot on upward changes, settling into the new
setpoint within seconds. In the last third of the chart, three large
disturbances are seen and the ability of the controller to respond
and return to setpoint is observed. The system is changed from
a flowrate of 0.2 mL/min to 1, 3 and then 5mL/min. The flowrate
along with the temperature were input into an ANN which would
adapt its training between runs. It is seen that by the third set-
point change the system “knows” how to react and minimizes the
spike quite dramatically. It is also worth noting that the change
in input flowrate results in thermal diffusion through the reactor.
Since thermocouples in microfluidic systems are usually not placed
directly into the flow path, this diffusion time would have intro-
duced a time delay into a traditional thermocouple-based system.
Overall, this tentatively validates that such a control algorithm can
be used for control chemical reactor systems.

4. Conclusions

The findings presented here demonstrate that an Artificial Neu-
ral Network can be self-trained with IR camera images in order to
control the temperature of a microfluidic reactor with high speed
and accuracy. A system was constructed using two 61-watt Peltier
thermoelectric cells with a water-cooling system to remove heat. A
PTFE microreactor was fabricated using CNC machining and placed
onto the cells. The system was trained to predict the correct
setpoint based on the required temperature of the system and the
flowrate. It was discovered that a network trained using the Conju-
gate Gradient Backpropagation with Powell-Beale Restarts method
with four hidden neurons best represented the system. Tests were
conducted to ensure the stability and response of the system to
setpoint changes and disturbances. The performance of the system
was also compared with traditional PID control and thermocouple
measurements. The results of the comparison have shown the sys-
tem to have a faster settling time and less overshoot while using
marginally fewer computing resources. The system was able to
maintain the setpoint with high accuracy and it trained itself to re-
duce temperature changes upon a change in flowrate through the
reactor. Systems like these will be able to further adapt their train-
ing over time, gaining resiliency for all sorts of different process
conditions, ranging from outdoor temperature to feed composition.
Overall, these results indicate that such a control methodology
could be useful in both research and industrial applications.

It should also be noted that the use of an IR camera instead
of thermocouples offers several advantages. First, an IR camera
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allows for non-contact measurement. This means that more points
can be scanned in a system, and thus the granularity of the data
could be greatly enhanced. This also offers advantages for systems
that either operate at extreme temperatures, extreme conditions,
or require high levels of sterility (such as bioreactors). It also
allows for better quantification of heat transfer in systems and
reduces the time delay caused by thermal diffusion to and through
a thermocouple. Second, an IR camera offers advantages both in
the accuracy and speed that data is delivered as compared to
traditional thermocouples. Finally, IR cameras have self-calibrating
abilities built-in, allowing long-term process stability over time.
All in all, the use of IR cameras instead of thermocouples offers
several advantages to engineers focusing on process and controls.
It is our prediction that systems like these will be of interest in
IoT, distributed, or otherwise resource-limited environments where
it is currently impractical to set up multiple thermocouples with
readers. It could also be of use in areas where very fast and pre-
cise control are required or the tuning of the system changes over
time. Finally, systems like the one presented here could have im-
plications in data mining, where it would be useful to trace how
certain (seemingly disjoint) inputs impact production systems.
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