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ABSTRACT
Malware authors make use of several techniques to obfuscate code 
from reverse engineering tools such as IdaPro.  Typically, these 
techniques tend to be effective for about three to six instructions, 
but eventually the tools can properly disassemble the remaining 
code once the tool is again synchronized with the operation codes. 
But this loss of synchronization can be used to hide information 
within the instructions – steganography. Our research explores an 
approach to this by presenting “Weaver”, a framework for 
executable steganography.  “Weaver” differs from other techniques 
in how it hides malicious instructions: the hiding instructions are 
prepared by generating an assembly listing of the program and 
finding candidate hiding locations, the steganography instructions 
are prepared by creating an assembly listing of the program to 
obtain the operation codes to be hidden, and the “weaving” process 
merges the two. This “weaving” attempts to place all the 
steganography instructions into candidate locations found in the 
hiding instructions. 
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1. INTRODUCTION
When data is encrypted, users of the data, or others viewing that 
data, can use entropy as a means to detect the presence of a private 
message. Without knowledge of the key, data cannot be read, but 
nonetheless an observer can reasonably know a message is present. 
Steganography, on the other hand, hides data in plain sight, such as 
inside a digital image file as part of its bit structure. An outsider 
viewing the picture may not know that the image contains hidden 
data; it looks like just a typical harmless image. The process of 
steganography (“stego” for short) is valuable where sending 
encrypted messages might raise suspicion, such as in a foreign 

country which suppresses free speech. Steganography might also 
be used for intellectual property protection, for example by 
“watermarking” the ownership of a digital artifact in such a way 
that one can prove the origin of that artifact. 

Many off-the-shelf techniques are readily available for embedding 
digital data, particularly in image files. A simple technique is to 
change the colorization of a photo by manipulating the colors in 
such a minimal way that is too subtle for a notable difference to be 
seen. This method might change the least significant bit in a color, 
distributing the hidden data one bit at a time over the image. Of 
course, changing the least significant bit of a color may not cause 
the image to change much, whereas changing the least significant 
bit of an ASCII character has a much larger impact; the media is 
different. What might the hidden data consist of? Anything; it might 
be a secret message to be delivered, a second picture hidden inside 
the first, or an executable program, delivered by digital photo. 
Embedding executable code in graphic images [36], for example, 
has become a natural extension of hiding arbitrary data 
[32,33,34,37]. If, using steganography, a picture can hide 
executable software, then it is reasonable to think that one might 
use steganography to hide a picture inside of executable code. And 
for that matter, one should be able to hide executable code inside 
of other executable code.  

This is the subject of our work here, which we call executable code 
weaving. We restrict our study specifically to x86-64 since as 
detailed below, variable length instructions are critical for our 
process. With our method, we describe how one executable 
program can be hidden inside another by replacing certain operands 
in the hiding program with operation codes from the hidden 
payload. Our approach necessitates compiling to assembly 
language, examining the output files of the assembler, and then 
merging the two files into one. We demonstrate the feasibility of 
the method by showing an example of a hashing function which 
includes a payload capable of starting a Linux command prompt. 
This example is worked through step by step and results from 
disassemblers show that the payload is not normally detected.  

In section two of the paper we provide background material on 
steganography, including measurements of the encoding rate as 
well as several techniques which have been used. Section three 
describes the reverse engineering process, with both static and 
dynamic analysis and their use for obfuscation and tamper 
proofing.  Our methods are described in section four, and results 
and future work follow in succeeding sections.  

2. BACKGROUND
Steganography using executable code as a hidden message has been 
an active research area for some time, and we are not the first 
researchers to propose executable programs as cover objects for 
steganographic purposes. Other researchers have explored program 
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stego, but mainly for hiding arbitrary data. For example, Shin et al. 
have hidden data in executable files by the simple method of adding 
additional sections to Windows Portable Executable (PE) files [20]. 
A similar method, but with encryption, is proposed by Zaidan 
[26,27,29]. The program Hydan uses semantically equivalent 
variants of instructions in order to hide data in executable code. El-
Khalil and Kerymytis [8] report around a 1/110 bit encoding rate 
for Hydan, but show practical applications for the technique 
nonetheless. In more recent work, Anckaert et al. [30] describe a 
more systematic approach to Hydan and they identify three specific 
redundancies that can be exploited in the cover object (executable 
programs) to achieve more effective capacity and hiding.  Their 
analysis along with that of Wright [31] point out the relative 
insecurity of Hydan from a detectability viewpoint and Anckaert’s 
approach showed a 1/88 bit encoding rate on average that was 
architecture neutral.  

We are also not the first researchers to propose using executable 
code as both the secret message and the cover object. Lu et al. [38] 
present RopSteg as a viable tool for embedding one program in 
another using return-oriented programming (ROP) [39].  Their 
approach utilizes typically nefarious techniques for finding code 
gadgets such as the Galileo algorithm to instead construct 
unintended ROP code segments. RopSteg illustrates a successful 
approach to executable steganography that are hidden from static 
analysis. However, they also acknowledge that current advances in 
defensive mechanisms to prevent ROP-based chaining might 
actually flag RopSteg as malicious code in the future, mainly 
because ROP has been seen as only useful for malicious programs. 
Ma et al. [35] further extend RopSteg and provide a concrete 
realization for using ROP execution as a watermarking scheme.  
Their work shows how ROP can be used advantageously as a 
dynamic watermarking approach because 1) there are no special 
data structures or added code need to support it; 2) there are no 
special code insertions that are independent from the original 
program; and 3) an external extractor does not need embedded 
information in the program to find the watermarked portion of code.  
Ultimately, their technique takes advantage of ROP gadgets which 
are built into the data region of the watermarked program. Our 
approach avoids issues with ROP detection as well as avoiding the 
need for data region changes. 

Our research combines diverse fields of study, practical skill, and 
theory. First, steganography is concerned with how to conceal 
information in plain sight [28,32,33,34]. Reverse engineering and 
static/dynamic analysis [6,7,19,22,23], on the other hand, are 
practically learned skills that build on the theory of program 
analysis and compilers. Our aim is to perform steganography to 
conceal a program, and to prevent that program from easily being 
discovered in the reverse engineering process. Let us detail the 
reverse engineering process first, and include insights into the x86 
instruction set in the process. 

3. REVERSE ENGINEERING 
Reverse engineering, also called back engineering or simply 
reversing, is the process of extracting knowledge and/or design 
information from a man-made artifact and reproducing something 
based on the extracted information [7]. Typical information 
recovered from reverse engineering may include knowledge about 
what tools were used to create the artifact, who the author of the 
artifact might be, or what design components were used in 
construction. In this proposal, we are concerned with a specific type 
of reversing: extracting knowledge about how a computer program 
operates, by looking at the underlying low-level machine code. 
Thus, reverse engineering in our context is the process of taking a 

binary executable artifact, a compiled program, and recreating a 
human-readable representation of the assembly code. Analysts use 
two primary techniques for reversing: 1) static analysis, where the 
program is examined without actually executing it, and 2) dynamic 
analysis, where the program is run under control of another, which 
monitors the behavior of the artifact.  

Eilam [7] describes two common applications of reverse 
engineering in the software world: security-related and software 
development–related. From a security perspective, the technique 
can be used to assess resilience of applications from adversarial 
attacks like cracking and piracy; it can likewise be used to 
understand the working of malicious programs (malware).  From a 
software development perspective, reversing can be used to 
evaluate software quality, develop competing software, or achieve 
interoperability with proprietary software. Both white-hat ethical 
hackers and black-hat hackers use reverse engineering as a 
foundational tool in program analysis [17]. In either case, engineers 
use tools to examine a program in an attempt to visualize the high-
level code that was used to create it, and then use this knowledge 
to search for weaknesses or exploits, or to determine whether the 
code is malicious.  

3.1 Static and Dynamic Analysis 
Many tools exist to aid in the reverse engineering of software. The 
most popular include IdaPro [9], OllyDbg [18], udcli [24], objdump 
[15], as well as others. These tools are quite sophisticated, 
employing several methodologies to determine how the code 
operates. IdaPro is primarily a static analysis tool, although 
frequently used simultaneously with a debugger, while OllyDbg is 
mainly used for dynamic analysis. The udcli and objdump 
programs are simple command-line static disassembly tools. Static 
analysis is performed without actually executing the code and 
derives properties that hold true for all executions of a program. 
Disassembly, decompilation, control flow analysis, and data flow 
analysis are examples of static analysis—all of which produce 
conservative but potentially imprecise information [17]. Properties 
derived from dynamic analysis, on the other hand, only hold for the 
particular executions that are observed. This leaves a potentially 
large number of potential executable pathways within the code 
which will not be analyzed. Debugging, tracing, emulation, and 
profiling are examples of dynamic analysis—all of which produce 
non-conservative information that is always precise [17].  

In static disassembly, the process starts at the program entry point 
by converting the binary (machine code) data back into assembly 
language, and then performing static analysis on the assembly to 
glean the control flow of the original program [6]. Disassemblers 
typically proceed in one of two ways: a linear scan method or a tree-
based method [14]. Linear scan assumes that the instructions are 
contiguous and simply converts the entire instruction section back 
to assembly language one instruction at a time. The tree-based 
method uses intelligence to queue the targets (destinations) of jump 
instructions, starting the reverse assembly process at each target. 
Current tools such as IdaPro combine the two approaches. Others 
such as the Linux objdump utility perform a linear scan only. Some 
tools will also provide a block flow diagram similar to the Control 
Flow Graph (CFG) used by the compiler when the program was 
initially built. As long as the target of a jump instruction is known, 
the reversal process is relatively easy. However, jumps to addresses 
that are calculated within the program are not known through static 
analysis, and, as a result, some code may be missed. In the x86 
architecture there are different types of jump instructions [1,10] 
which can be unconditional or conditional, a relative or absolute 



address, and may be indirect. It is thus not possible to determine the 
target of every jump using only static analysis. 

3.2 Obfuscation and Tamperproofing 
Clever malware authors attempt to obfuscate, or hide, what the 
program actually does in order to thwart reverse engineering. 
Armored malware can utilize several mechanisms in order to 
determine at runtime whether the program is executing in a 
controlled environment, such as a virtual machine (VM) or under 
the control of a debugging program. Often, malware that is 
executed in a debugger can change program behavior to execute 
benign code so that an engineer trying to determine operational 
characteristics does not see what happens when the code is running 
normally. Malware can also use obfuscation or polymorphism to 
hide code by using packing programs such as UPX [25]. A packing 
program extracts the actual machine code from a hidden and 
compressed portion of the file only when the program is executed. 
Static analysis of a packed program will only show the unpacking 
code that expands the actual program; it is necessary to run at least 
some of the program in order to get a true picture of what the 
executable is capable of doing, and then to use dynamic analysis 
tools to trace through the program. In the general case, the privacy 
of executable programs can be enhanced in part by various 
techniques for performing software obfuscation. These techniques 
fall into three categories: 

1.  Obfuscation at the source code level, in order to hide variable 
names, strip comments, remove indentation that is indicative of 
program structure, and other source level modifications.  

2.  Obfuscation at an intermediate level, altering the way the 
program accomplishes certain tasks, but in such a way as to not 
modify the observable behavior of the program [5,13].  

3.  Finally, obfuscation at a binary level. In this low-level 
obfuscation, the assumption is that the reverse engineering 
process is concerned primarily with recreating an accurate 
assembly language representation of the binary code. Here, 
techniques include inserting conditional jumps where a tested 
predicate is known to be false, and inserting junk data into key 
areas in the binary so as to throw off disassemblers in 
architectures with varying length instructions.  

Various methods for binary obfuscation have been examined 
previously: Nagra and Collberg [17] as well as Balakrishnan [4] 
provide extensive breadth and depth of such techniques.  

In this research we are primarily concerned with obfuscating code 
at a binary level using steganography to embed instructions into a 
program. Traditional reversing tools such as IdaPro [19] are often 
used as benchmarks to evaluate correct disassembly when binary 
obfuscation is in view, and we use this tool to demonstrate our 
results below. 

3.3 Algorithmic Foundations 
We introduce our idea in more detail by first describing some 
obfuscation techniques unique to the x86 architecture and which 
are known. Techniques for fooling static analysis include those 
detailed by Aycock [2,3] and those outlined in the textbook by 
Sikorski [22]. These methods are designed to take advantage of 
limitations of the algorithms used in static analysis, including the 
inability to detect a jump target that is calculated at runtime. Linear 
disassembly algorithms that do not consider jump targets are 
particularly vulnerable by the addition of “junk” bytes used to 
throw off the disassembly process. Certain values are more 
effective [21] but the idea in these works is to fool the disassembler 

into mistaken identification of instructions. For example, a byte 
representing the first portion of an instruction that is N bytes in 
length will cause the next N-1 bytes to be assumed as part of the 
instruction. In fact, these may contain shorter instructions that are 
now missed by the reverse assembly process. An example of this 
technique is shown in Figure 1:  

Memory Instruction 
31 ED 
49 89 D1 
5E 
48 89 E2  

XOR EBP, EBP 
MOV R9, RDX 
POP RSI 
MOV RDX, RSP 

05 31 ED 49 89 
D1 5E 48 
89 E2 

ADD EAX, 0x8949ED31 
RCR dword [RSI+0x48],1 
MOV EDX, ESP 

Figure 1. Addition of One Junk Byte 

Note that the only difference between the first and second 
descriptions of memory is the addition of 0x05. Inserting this 
additional byte obscures four instructions; the reverse assembler 
incorrectly assumes that this is a three-instruction sequence as 
shown. After the last instruction the reverse assembler will again 
synchronize with the correct instructions in the program. Since 
inserting an additional byte will cause the disassembler to 
misrepresent the instruction stream, a logical question is what bytes 
to use in order to maximize the disruption. In previous research we 
created a unique version of the GCC compiler which automatically 
inserts “junk” between basic blocks [16]. We examined Linux 
utility binaries in x86-64 format using objdump to determine these 
optimal “junk” values, some of which are illustrated in Table 1. 
Here, “HI” refers to the average number of Hidden Instructions.  

Table 1. Average Count of Hidden Instructions by Junk Byte 

Value 
Avg 
HI Value 

Avg 
HI Value 

Avg 
HI 

0xa0 3.281 0x0F 2.444 0x35 2.342 
0xa1 3.281 0x05 2.342 0x3d 2.342 
0xa2 3.281 0x0D 2.342 0x68 2.342 
0xa3 3.281 0x15 2.342 0xa9 2.342 
0x69 2.911 0x1d 2.342 0xb8 2.342 
0x81 2.911 0x25 2.342 0xb9 2.342 
0xf7 2.561 0x2d 2.342 0xba 2.342 

 

By examining this collection of Linux executable programs, we 
also observed that the average instruction length for x86-64 with 
Linux executable programs is 2.57 bytes per instruction. In general, 
x86-64 (and x86-32) is self-repairing from the reverse engineering 
standpoint. A byte of “junk” may cause a few instructions to be 
misrepresented, but only a few; after typically three instructions, 
occasionally five or six, the disassembly tends to resynchronize 
[12,14,23]. 

Another approach in hiding instructions is described by Jamthagen, 
et al. [11]. The authors describe a Main Execution Path (MEP), and 
a Hidden Execution Path (HEP), and break instructions down into 
three components, called XX, YY, and ZZ. The XX portion 
represents the part of the instruction including the x86 prefixes, the 
actual opcode, and addressing modes that cannot be changed. The 
portion YY is described as the portion of the instruction that can be 
changed, such as immediate operands or addresses which are 
included in the instruction. They note that YY needs to be large 
enough to hide the instructions in their HEP. Likewise, the ZZ 
portion of the instruction must be able to take any value. But 



further, the combination of this ZZ plus the following XX must 
decode into another instruction.  
Jamthagen also partitions the x86 instructions into select groups 
that might qualify for the main execution path and that meet these 
requirements: (1) the instructions must overlap each other and must 
never be aligned such that two instructions end at the same byte, 
and (2) both execution paths must contain valid instructions. It is 
necessary to select the last instructions in both the hidden and main 
execution paths carefully so that the final instructions in both leave 
with the next instruction in common.  They further classify the x86 
instructions into groups that may be used for the MEP. In part this 
is necessary due to the semantics of the instruction, a problem we 
also encounter below.  

4. BINARY STEGANOGRAPHY 
Given this foundational background, we now discuss our research 
effort into executable steganography.  As definitions, we refer to 
different types of instructions by two names: Hiding Instructions 
(HI) are those that appear when reverse engineering the input 
program. These are the instructions in the program that a reversing 
tool such as IdaPro will show to the user. Steganography 
Instructions (SI) are those that are hidden. 

Our method proceeds as follows: 

1. First it is necessary to select the hiding instructions by writing 
high level code which preferably has a large number of 64-bit 
constants. The HI code is compiled to assembly language and 
assembled so that an assembly listing file can be created. The 
listing file is used to separate the operands from the operation 
codes in the instructions. Details on this step are in section 4.1. 

2. Next, the selection of instructions eligible for SI is very 
limited, and as such the code for SI is coded in assembly 
language using this restricted set. The Si instructions are 
assembled so that we again obtain a listing file. This is 
described in section 4.2. 

3. Each line if the listing file for HI is read, and each line of SI is 
also read. The bytes forming the opcodes in the listing of SI 
are placed into eligible operands in the instructions of HI, 
creating a new assembly file which is the combination of the 
two. This is described in section 4.3. 

4. The resulting file is assembled and linked into the application 
as usual.  

 
Our methodology relies on examining instructions in HI to 
determine where instructions in SI can be hidden. For example, if 
one wishes to hide the instructions shown in the top half of Table 
1, a valid method is to use the junk byte of 0x05 as shown in the 
bottom half of Figure 1. This will cause a disassembler to assume 
that the first assembly language command, which is a hiding 
instruction, is the instruction ADD EAX,0x8949ED31.  If the 
program were to jump to the beginning of the block, the 0x05 byte, 
the processor would in fact execute this, adding the constant to the 
indicated register. It would then execute the next instruction: RCR 
dword [RSI+0x48],1.   

The selection of instructions is restricted by several factors so that 
if the main execution path in HI is executed it does not crash the 
program. As such these instructions must be selected with care. For 
example, loading a register from a memory location well outside 
the range of the program will look fine in a static disassembly, but 
will obviously cause a program fault if it is actually executed. 
Candidate instructions are, for example, those that might load 
something into a register but from a constant value as opposed to 
from a memory location. Thus, possible instructions include such 

operations as LEA (Load Effective Address), CMOVcc 
(Conditional Move) with a known false condition, SETcc 
(Conditional Set) with a known false condition, NOP (No 
Operation), and others. However, one can assume that the person 
wishing to hide SI is also the same person that is the author of HI. 
If we accept a slightly more “loose” view and assume that 
instructions are OK as long as they do not cause a program crash, 
then candidates also include instructions which may destroy 
register contents but have no disastrous side effects. An example is 
a MOV instruction with an immediate operand, or a conditional 
jump that is based on a known-false predicate. 

With this idea in mind we now describe each step in turn.  

4.1 Prepare Hiding Instructions 
Based upon the knowledge we have of which candidate instructions 
are useful for HI, the user first creates a program either in assembly 
language or more likely in a language such as C. The program 
should be biased towards providing large amounts of the candidate 
instructions – those with operands which can be replaced with 
hidden instructions. An easy way to accomplish this is to include 
64-bit values in calculations, and we show an example function in 
Figure 2: 
unsigned long long hash( const char *key ) 
{ 
  unsigned long long mash; 
  mash = strtoull( key, NULL, 10 ); 
  mash += 0x1111111111111111LL; 
  mash |= 0x2222222222222222LL; 
  mash -= 0x3333333333333333LL; 
  mash &= 0x4444444444444444LL; 
  mash ^= 0x5555555555555555LL; 
  mash *= 0x6666666666666666LL; 
  return( mash ); 
} 

Figure 2. Example HI Program Code 

The program is next compiled into assembly language and then 
assembled. We do not seek the actual object code for this step, but 
rather ask the assembler to create a “listing file”. This file will 
contain not only the original mnemonics for the generated 
instructions but also the hex opcodes for the instruction, as in the 
Figure 3. (Only a few lines are shown and the figure is reformatted; 
some lines are split across two.)  
Using a simple text manipulation program will yield a file with only 
the operation codes and the original assembly mnemonics included.  
The next step is to identify candidate areas in the opcodes where SI 
can be inserted. These are mainly the operands in the instructions 
such that changing the value of the operand will have no ill effect 
on the program. In order to accomplish this we use a program based 
on a modified library called Udis86 [24]. This library allows one to 
provide a byte stream and retrieve (among other things) a string 
representation of the instruction corresponding to the bytes. The 
library was modified so that if we provide it with a set of bytes it 
will replace certain portions of the opcode to indicate the operands. 
Specifically, the original hex is returned to the caller but with 
certain characters replaced as in table 2. 
 
 
 
 



55           push rbp 
4889E5       mov rbp, rsp 
4883EC20     sub rsp, 32 
48897DE8             
             mov QWORD PTR [rbp-24], rdi 
488B45E8                
             mov rax, QWORD PTR [rbp-24] 
BA0A0000 00  mov edx, 10 
BE000000 00  mov esi, 0 
4889C7       mov rdi, rax 
E8000000 00  call strtoull 
488945F8           
             mov QWORD PTR [rbp-8], rax 
48B81111 11111111 1111  
             movabs rax, 1229782938247303441 
480145F8     add QWORD PTR [rbp-8], rax 
48B82222 22222222 2222  
             movabs rax, 2459565876494606882 
480945F8     or QWORD PTR [rbp-8], rax 

Figure 3. HI Assembly Listing 

 
Table 2. Byte Indicators for Candidate SI Content 

I Position of a 1-byte immediate value 
J Position of a 2-byte immediate value 
K 4-byte immediate value 
L 8-byte immediate value 
W Position of a 1-byte relative offset 
X Position of a 2-byte relative offset 
Y 4-byte relative offset 
Z 8-byte relative offset (impossible) 

 
The above partial listing in Figure 3 using this notation gives the 
results shown in figure 4. The operation codes are retained but the 
resulting strings indicate which operands, and what type and length, 
are in each operation: 
 

55 
4889E5 
4883ECII 
48897DE8 
488B45E8 
BAKKKKKKKK 
BEKKKKKKKK 
4889C7 
E8KKKKKKKK 
488945F8 
48B8LLLLLLLLLLLLLLLL 
480145F8 
48B8LLLLLLLLLLLLLLLL 
480945F8 

Figure 4. HI Assembly Operand Marking 

Although in theory the relative offsets present in the instruction are 
candidates for hiding SI, they suffer from the drawback that 1) they 
are usually too short, and b) represent addresses which are not 
resolved until the program is linked. Thus, the real candidates for 
hiding executable programs via steganography are the immediate 
constants, represented by Ks and Ls in the above. 
 
4.2 Prepare Steganography Instructions 
Next we go down a similar path for the instructions in SI. Here we 
will assume that the author of SI is writing the code directly in 

assembly language, since a key factor is to select instructions which 
are very short. Several tricks can be used to minimize the 
instruction sizes; a few examples are noted here.  

• Exclusive or-ing a register with itself is preferable relative to 
loading zero into that register. 

• Similar, to load one or two, etc. first zero the contents and then 
increment the register. 

• To retrieve the current address, call the next instruction and 
then pop the return address from the stack. This can be used to 
access memory locations by offset from the current position. 

One can consult the intel or AMD opcode map documents, or 
online versions such as at x86asm.net. But to aid the malware 
author – and who wants a stressed-out malware author? – we 
created a program using the Udis86 library that generates all single-
byte, or two-byte, or … instructions in x86. The output from this 
program can also serve as a helpful reference.  
The SI program is again assembled primarily so that we can obtain 
a listing file with the appropriate operation codes as shown in figure 
5: 

#         shell: .asciz "/bin/sh" 
4831C0           xor   rax, rax 
B03B             mov   al, 59 
4831F6           xor   rsi, rsi 
4831D2           xor   rdx, rdx 
E800000000 here: call  .+5 
5F               pop   rdi 
83C700           .byte 0x83, 0xc7,  
                       (shell-here)-5 
0F05             syscall 

  Figure 5. Example SI Program 

In this example, from a 64-bit Linux machine, we will start a shell 
which runs at the privilege level of the user that executes the SI 
code. The parameters are passed in registers and most of them in 
this case can be null/zero. The string for “/bin/sh” is commented 
out here but will be manually added. Note that the GNU assembler 
is limited; although the constant displacement “shell-here” is 
small, and the labels are defined before they are referenced, this 
assembler assumes the displacement must be 32-bits. In the case of 
the Linux GNU assembler it is necessary to hand-code an add 
instruction which has an 8-bit displacement. On our Windows 
implementation the assembler will correctly gauge the short 
distance. 

4.3 Instruction Weaving 
Now that we have an appropriate listing file for HI and SI we can 
intermingle the instructions. Broadly speaking the following steps 
are employed: 
1. Each line if the listing file for HI is read, and the following 

information is retained in a list of tuples which each contain: 
• The original opcode for the instruction. 
• The opcode with operands replaced per Table 2. 
• The original assembly language string, used if this 

instruction in HI is not a candidate for replacement. 
• Various “commands” stored as strings that are used to 

mark locations for later processing. 
2. Each line of the listing file for SI is read, and the following 

information is retained in a list of tuples: 
• The number of opcode bytes for the instruction. 
• The original assembly language string. 



3. Each instruction in HI is examined and if no opcode from SI 
can be hidden, the command for the tuple is set so that the 
instruction is not considered. 

4. Otherwise, 
a. Replace the assembly instruction in HI with a declaration 

of bytes corresponding to the bytes in the operation code 
that will not be replaced. 

b. Insert a “target” command into the list of HI data. 
c. Select as many of the next instructions from SI as will fit 

in the operand for the HI instruction, leaving two bytes 
available for later use. 

d. Insert instructions from SI into the list of tuples for HI. 
e. Insert a “needjump” command into the list of HI. 
f. Insert as many additional bytes as are necessary to “fill” 

the original instruction length.  
The process is repeated until either all instructions in SI have been 
inserted, or the end of the list of HI instructions is encountered. In 
the latter case this implies that SI is too long (or has instructions 
which are too long) for the number of instructions in HI, which is 
considered a fatal error.  
The final step is to traverse the list of HI tuples in reverse order. At 
each “target” we note the byte offset in the machine code, and at 
each “needjump” we insert a short relative jump with the 
appropriate byte offset to go to the next hidden instruction. 
To demonstrate the weaving process, examine the HI code in figure 
3 above. We wish to embed in this function a hidden payload, 
shown in figure 5, which can be used to start a command prompt 
from within the program, if the entry point to the function is offset 
to the first instruction in SI. As described previously, we have 
compiled HI and assembled SI. The (partial) output of the method 
is shown in figure 6: 
        push    rbp 
        mov     rbp, rsp 
        sub     rsp, 32 
        mov     QWORD PTR [rbp-24], rdi 
        mov     rax, QWORD PTR [rbp-24] 
        mov     edx, 10 
        mov     esi, 0 
        mov     rdi, rax 
        call    strtoull 
        mov     QWORD PTR [rbp-8], rax 
# (Was: movabs rax, 1229782938247303441) 
        .byte 0x48, 0xB8         
        xor     rax,  rax 
        mov     al, 59 
        .byte   0xEB, 7 # Go to next SI 
        nop 
        add     QWORD PTR [rbp-8], rax 
# (Was: movabs rax, 2459565876494606882) 
        .byte 0x48, 0xB8         
        xor     rsi, rsi 
        .byte   0xEB, 9 # Go to next SI 
        nop 
        nop 
        nop 

Figure 6. Example SI Program 

Although there is no reason to fill any remaining operand space 
with something special, we elected to fill these areas with no-
operation commands; any byte will actually do for these areas since 
they will not be executed within SI. 
As a check, a partial disassembly for HI is shown in Figure 7.  

Memory 
48 89 45 F8 
48 B8 48 31 C0 B0 3B EB 07 90 
48 01 45 F8 
48 B8 48 31 F6 48 31 D2 EB 06 
Instructions 
mov [rbp-8], rax 
mov rax, 9007EB3BB0C03148h 
add [rbp-8], rax 
mov rax, 6EBD23148F63148h 

Figure 7. Reverse Assembled Hiding Instructions 

Execution continues in sequence after this. If these instructions do 
not cause the program any harm, then at runtime they could be 
executed, while also allowing us to execute the SI sequence starting 
with the instruction XOR EBP,EBP. What is necessary is to jump 
to the correct entry point for the sequence of instructions that is 
desired. But if the entry point is offset in memory, skipping the 
0x48, 0x89, … then the hidden payload, SI, is executed instead as 
shown in Figure 8 starting at 0x48, 0x31, ... 

Memory Instructions 
48 89 45 F8 48 B8 
48 31 C0  
B0 3B 
EB 07 
90 48 01 45 F8 48 
B8  
48 31 F6  
48 31 D2  
EB 06 

(Skipped) 
xor rax, rax  
mov al, 3Bh 
jmp short +7  
(Skipped) 
xor rsi, rsi 
xor rdx, rdx 
jmp short +6 

Figure 8. Reverse Assembled Hiding Instructions 

We can see Si hidden in HI only by starting the disassembly process 
at the correct address. The ramification of instruction hiding is that 
if we choose the bytes with care, the disassembled HI can be made 
to look innocuous: more importantly, if we do select bytes carefully 
we can guarantee the program will not fail if it is executed. 

5. RESULTS 
We have implemented our code weaving using both C# on a 
Windows machine and also the tools available from a Linux 
installation. There are variations in the format of the listing files 
across these two platforms, but we are not addressing these issues 
here. Rather, the next question is whether the steganography 
actually is successful in hiding SI within HI. We turn to two tools, 
IdaPro version 6.9 [9] and the Linux objdump program [15] and in 
these figures show the Linux executable. Figure 9 demonstrates that 
IdaPro has correctly decoded the instructions in HI. 

 
Figure 9. IdaPro x86-64 Reverse Assembly 



The objdump program output is shown in figure 10:  

push   rbp 
mov    rbp,rsp 
sub    rsp,0x20 
mov    QWORD PTR [rbp-0x18],rdi 
mov    rax,QWORD PTR [rbp-0x18] 
mov    edx,0xa 
mov    esi,0x0 
mov    rdi,rax 
call   400590 <strtoull@plt> 
mov    QWORD PTR [rbp-0x8],rax 
movabs rax,0x9007eb3bb0c03148 
add    QWORD PTR [rbp-0x8],rax 
movabs rax,0x90909009ebf63148 

Figure 10. objdump x86-64 Reverse Assembly 

We also tested the executable with the open source edb debugger 
as well as the GNU debugger gdb; figure 11shows the results from 
edb; the disassembly from gdb is similar to figure 10.  

 
Figure 11. Open Source edb Debugger Reverse Assembly 

In order to provide an “acid test” the demonstration program that 
calls our “hash” function can call it via the normal entry point, 
which returns a 64-bit number based in part on the string passed in. 
Alternatively, the destination address for the function can be offset 
by the correct number of bytes and the instructions in SI are 
executed, resulting in a shell prompt. 

6. NOTES and FUTURE WORK 
Our technique works but suffers from shortcomings. Some of these 
shortcomings cannot be avoided, nor can they be dealt with. Others 
could be improved upon in future work. First we itemize several 
areas which are either potential improvements or notes about 
inherent shortcomings:  
• The difficulty as we know is the requirement that instructions 

be sufficiently short that they can fit inside an operand. Since 
the majority of these immediate operands are 32-bit quantities, 
even in a 64-bit architecture, the selection of instructions is 
very limited. It is necessary for the author of the hidden code 
to craft the program with extreme care, by hand, in assembly 
language. While there is no special preparation needed for the 
code – it uses standard tools in order to be assembled – the 
author is extremely restricted in instruction selection.  

• The number of available “slots” to place these instructions 
means that the one-byte relative offset in our jump may not be 
within range. Longer relative offsets would then eat into the 
bytes we need for the already restricted instruction set. 

• The GNU assembler, “as”, simply does not understand 
optimizing the size of jump displacements based upon where 

the jump target is located. It assumes in almost all cases that a 
32-bit relative address is needed. It’s thus necessary to craft 
our own jumps, a byte at a time, on Linux. 

• Not all immediate constants are created equal. An example is 
the instruction “mov edx, 10”, with an opcode BA and 
operand 0A000000. Replacing this 32-bit immediate 
operand with something else obviously causes different results 
when calling “strtoull”.  

• Similarly, consider setting up the stack frame with “sub 
rsp, 32”. Replacing the 32-bit constant here in the function 
prologue with instructions will cause considerable grief at the 
epilogue when the stack needs to be adjusted back.  

• On Windows, the assembly listing file contains the character 
“R” to tell us that the operand portion of an instruction is 
subject to relocation when the linker builds the executable. 
This is very handy because we can simply ignore those 
operands that will need relocations. On Linux it will be 
necessary to examine the object file in greater detail to 
determine which immediate operands are subject to relocation. 
A greater investigation of the Udis86 library code may also be 
a means to solve this on Linux. 

• In our above example it is necessary to manually insert the 
string “/bin/sh” since it is too long to be hidden in an 
operand and still include a jump. 

• A system call to start a command prompt in Linux is fairly 
straightforward, as shown in our example. The Windows 
“CreateProcess” call requires ten parameters. 

While we have shortcomings we also recognize some advantages 
as well. Instruction weaving is an interesting concept but one which 
may be limited in general usage because of the restrictions itemized 
above. But utilizing the more esoteric instructions available in x86-
64 such as those using MMX, 3Dnow, or others, and using 80-bit 
floating point numbers, may be some way forward relative to these 
problems. The technique may be applicable to other complex 
instruction sets as well, but with the design of new CPUs being 
dominated by instructions with fixed lengths the applicability here 
may be small.  
Finally, we also point out that none of the instructions in SI are 
encrypted in any way. A mitigation strategy is thus to utilize a brute 
force approach to reverse engineering the program, starting a 
disassembly process at every byte in the section. Short sequences 
of valid instructions, which possibly also end in an invalid 
decoding, are ignored, while long sequences of valid instructions 
can trigger an alarm for further investigation. An interesting future 
research project would be to come up with a method to obfuscate 
the obfuscated instructions. 
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