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ABSTRACT

Malware authors make use of several techniques to obfuscate code
from reverse engineering tools such as IdaPro. Typically, these
techniques tend to be effective for about three to six instructions,
but eventually the tools can properly disassemble the remaining
code once the tool is again synchronized with the operation codes.
But this loss of synchronization can be used to hide information
within the instructions — steganography. Our research explores an
approach to this by presenting “Weaver”, a framework for
executable steganography. “Weaver” differs from other techniques
in how it hides malicious instructions: the hiding instructions are
prepared by generating an assembly listing of the program and
finding candidate hiding locations, the steganography instructions
are prepared by creating an assembly listing of the program to
obtain the operation codes to be hidden, and the “weaving” process
merges the two. This “weaving” attempts to place all the
steganography instructions into candidate locations found in the
hiding instructions.
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1. INTRODUCTION

When data is encrypted, users of the data, or others viewing that
data, can use entropy as a means to detect the presence of a private
message. Without knowledge of the key, data cannot be read, but
nonetheless an observer can reasonably know a message is present.
Steganography, on the other hand, hides data in plain sight, such as
inside a digital image file as part of its bit structure. An outsider
viewing the picture may not know that the image contains hidden
data; it looks like just a typical harmless image. The process of
steganography (“stego” for short) is valuable where sending
encrypted messages might raise suspicion, such as in a foreign
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country which suppresses free speech. Steganography might also
be used for intellectual property protection, for example by
“watermarking” the ownership of a digital artifact in such a way
that one can prove the origin of that artifact.

Many off-the-shelf techniques are readily available for embedding
digital data, particularly in image files. A simple technique is to
change the colorization of a photo by manipulating the colors in
such a minimal way that is too subtle for a notable difference to be
seen. This method might change the least significant bit in a color,
distributing the hidden data one bit at a time over the image. Of
course, changing the least significant bit of a color may not cause
the image to change much, whereas changing the least significant
bit of an ASCII character has a much larger impact; the media is
different. What might the hidden data consist of? Anything; it might
be a secret message to be delivered, a second picture hidden inside
the first, or an executable program, delivered by digital photo.
Embedding executable code in graphic images [36], for example,
has become a natural extension of hiding arbitrary data
[32,33,34,37]. If, using steganography, a picture can hide
executable software, then it is reasonable to think that one might
use steganography to hide a picture inside of executable code. And
for that matter, one should be able to hide executable code inside
of other executable code.

This is the subject of our work here, which we call executable code
weaving. We restrict our study specifically to x86-64 since as
detailed below, variable length instructions are critical for our
process. With our method, we describe how one executable
program can be hidden inside another by replacing certain operands
in the hiding program with operation codes from the hidden
payload. Our approach necessitates compiling to assembly
language, examining the output files of the assembler, and then
merging the two files into one. We demonstrate the feasibility of
the method by showing an example of a hashing function which
includes a payload capable of starting a Linux command prompt.
This example is worked through step by step and results from
disassemblers show that the payload is not normally detected.

In section two of the paper we provide background material on
steganography, including measurements of the encoding rate as
well as several techniques which have been used. Section three
describes the reverse engineering process, with both static and
dynamic analysis and their use for obfuscation and tamper
proofing. Our methods are described in section four, and results
and future work follow in succeeding sections.

2. BACKGROUND

Steganography using executable code as a hidden message has been
an active research area for some time, and we are not the first
researchers to propose executable programs as cover objects for
steganographic purposes. Other researchers have explored program



stego, but mainly for hiding arbitrary data. For example, Shin et al.
have hidden data in executable files by the simple method of adding
additional sections to Windows Portable Executable (PE) files [20].
A similar method, but with encryption, is proposed by Zaidan
[26,27,29]. The program Hydan uses semantically equivalent
variants of instructions in order to hide data in executable code. El-
Khalil and Kerymytis [8] report around a 1/110 bit encoding rate
for Hydan, but show practical applications for the technique
nonetheless. In more recent work, Anckaert et al. [30] describe a
more systematic approach to Hydan and they identify three specific
redundancies that can be exploited in the cover object (executable
programs) to achieve more effective capacity and hiding. Their
analysis along with that of Wright [31] point out the relative
insecurity of Hydan from a detectability viewpoint and Anckaert’s
approach showed a 1/88 bit encoding rate on average that was
architecture neutral.

We are also not the first researchers to propose using executable
code as both the secret message and the cover object. Lu et al. [38]
present RopSteg as a viable tool for embedding one program in
another using return-oriented programming (ROP) [39]. Their
approach utilizes typically nefarious techniques for finding code
gadgets such as the Galileo algorithm to instead construct
unintended ROP code segments. RopSteg illustrates a successful
approach to executable steganography that are hidden from static
analysis. However, they also acknowledge that current advances in
defensive mechanisms to prevent ROP-based chaining might
actually flag RopSteg as malicious code in the future, mainly
because ROP has been seen as only useful for malicious programs.
Ma et al. [35] further extend RopSteg and provide a concrete
realization for using ROP execution as a watermarking scheme.
Their work shows how ROP can be used advantageously as a
dynamic watermarking approach because 1) there are no special
data structures or added code need to support it; 2) there are no
special code insertions that are independent from the original
program; and 3) an external extractor does not need embedded
information in the program to find the watermarked portion of code.
Ultimately, their technique takes advantage of ROP gadgets which
are built into the data region of the watermarked program. Our
approach avoids issues with ROP detection as well as avoiding the
need for data region changes.

Our research combines diverse fields of study, practical skill, and
theory. First, steganography is concerned with how to conceal
information in plain sight [28,32,33,34]. Reverse engineering and
static/dynamic analysis [6,7,19,22,23], on the other hand, are
practically learned skills that build on the theory of program
analysis and compilers. Our aim is to perform steganography to
conceal a program, and to prevent that program from easily being
discovered in the reverse engineering process. Let us detail the
reverse engineering process first, and include insights into the x86
instruction set in the process.

3. REVERSE ENGINEERING

Reverse engineering, also called back engineering or simply
reversing, is the process of extracting knowledge and/or design
information from a man-made artifact and reproducing something
based on the extracted information [7]. Typical information
recovered from reverse engineering may include knowledge about
what tools were used to create the artifact, who the author of the
artifact might be, or what design components were used in
construction. In this proposal, we are concerned with a specific type
of reversing: extracting knowledge about how a computer program
operates, by looking at the underlying low-level machine code.
Thus, reverse engineering in our context is the process of taking a

binary executable artifact, a compiled program, and recreating a
human-readable representation of the assembly code. Analysts use
two primary techniques for reversing: 1) static analysis, where the
program is examined without actually executing it, and 2) dynamic
analysis, where the program is run under control of another, which
monitors the behavior of the artifact.

Eilam [7] describes two common applications of reverse
engineering in the software world: security-related and software
development-related. From a security perspective, the technique
can be used to assess resilience of applications from adversarial
attacks like cracking and piracy; it can likewise be used to
understand the working of malicious programs (malware). From a
software development perspective, reversing can be used to
evaluate software quality, develop competing software, or achieve
interoperability with proprietary software. Both white-hat ethical
hackers and black-hat hackers use reverse engineering as a
foundational tool in program analysis [17]. In either case, engineers
use tools to examine a program in an attempt to visualize the high-
level code that was used to create it, and then use this knowledge
to search for weaknesses or exploits, or to determine whether the
code is malicious.

3.1 Static and Dynamic Analysis

Many tools exist to aid in the reverse engineering of software. The
most popular include IdaPro [9], OllyDbg [18], udcli [24], objdump
[15], as well as others. These tools are quite sophisticated,
employing several methodologies to determine how the code
operates. IdaPro is primarily a static analysis tool, although
frequently used simultaneously with a debugger, while OllyDbg is
mainly used for dynamic analysis. The udcli and objdump
programs are simple command-line static disassembly tools. Static
analysis is performed without actually executing the code and
derives properties that hold true for all executions of a program.
Disassembly, decompilation, control flow analysis, and data flow
analysis are examples of static analysis—all of which produce
conservative but potentially imprecise information [17]. Properties
derived from dynamic analysis, on the other hand, only hold for the
particular executions that are observed. This leaves a potentially
large number of potential executable pathways within the code
which will not be analyzed. Debugging, tracing, emulation, and
profiling are examples of dynamic analysis—all of which produce
non-conservative information that is always precise [17].

In static disassembly, the process starts at the program entry point
by converting the binary (machine code) data back into assembly
language, and then performing static analysis on the assembly to
glean the control flow of the original program [6]. Disassemblers
typically proceed in one of two ways: a linear scan method or a tree-
based method [14]. Linear scan assumes that the instructions are
contiguous and simply converts the entire instruction section back
to assembly language one instruction at a time. The tree-based
method uses intelligence to queue the targets (destinations) of jump
instructions, starting the reverse assembly process at each target.
Current tools such as IdaPro combine the two approaches. Others
such as the Linux objdump utility perform a linear scan only. Some
tools will also provide a block flow diagram similar to the Control
Flow Graph (CFG) used by the compiler when the program was
initially built. As long as the target of a jump instruction is known,
the reversal process is relatively easy. However, jumps to addresses
that are calculated within the program are not known through static
analysis, and, as a result, some code may be missed. In the x86
architecture there are different types of jump instructions [1,10]
which can be unconditional or conditional, a relative or absolute



address, and may be indirect. It is thus not possible to determine the
target of every jump using only static analysis.

3.2 Obfuscation and Tamperproofing

Clever malware authors attempt to obfuscate, or hide, what the
program actually does in order to thwart reverse engineering.
Armored malware can utilize several mechanisms in order to
determine at runtime whether the program is executing in a
controlled environment, such as a virtual machine (VM) or under
the control of a debugging program. Often, malware that is
executed in a debugger can change program behavior to execute
benign code so that an engineer trying to determine operational
characteristics does not see what happens when the code is running
normally. Malware can also use obfuscation or polymorphism to
hide code by using packing programs such as UPX [25]. A packing
program extracts the actual machine code from a hidden and
compressed portion of the file only when the program is executed.
Static analysis of a packed program will only show the unpacking
code that expands the actual program; it is necessary to run at least
some of the program in order to get a true picture of what the
executable is capable of doing, and then to use dynamic analysis
tools to trace through the program. In the general case, the privacy
of executable programs can be enhanced in part by various
techniques for performing software obfuscation. These techniques
fall into three categories:

1. Obfuscation at the source code level, in order to hide variable
names, strip comments, remove indentation that is indicative of
program structure, and other source level modifications.

2. Obfuscation at an intermediate level, altering the way the
program accomplishes certain tasks, but in such a way as to not
modify the observable behavior of the program [5,13].

3. Finally, obfuscation at a binary level. In this low-level
obfuscation, the assumption is that the reverse engineering
process is concerned primarily with recreating an accurate
assembly language representation of the binary code. Here,
techniques include inserting conditional jumps where a tested
predicate is known to be false, and inserting junk data into key
areas in the binary so as to throw off disassemblers in
architectures with varying length instructions.

Various methods for binary obfuscation have been examined
previously: Nagra and Collberg [17] as well as Balakrishnan [4]
provide extensive breadth and depth of such techniques.

In this research we are primarily concerned with obfuscating code
at a binary level using steganography to embed instructions into a
program. Traditional reversing tools such as IdaPro [19] are often
used as benchmarks to evaluate correct disassembly when binary
obfuscation is in view, and we use this tool to demonstrate our
results below.

3.3 Algorithmic Foundations

We introduce our idea in more detail by first describing some
obfuscation techniques unique to the x86 architecture and which
are known. Techniques for fooling static analysis include those
detailed by Aycock [2,3] and those outlined in the textbook by
Sikorski [22]. These methods are designed to take advantage of
limitations of the algorithms used in static analysis, including the
inability to detect a jump target that is calculated at runtime. Linear
disassembly algorithms that do not consider jump targets are
particularly vulnerable by the addition of “junk” bytes used to
throw off the disassembly process. Certain values are more
effective [21] but the idea in these works is to fool the disassembler

into mistaken identification of instructions. For example, a byte
representing the first portion of an instruction that is N bytes in
length will cause the next N-1 bytes to be assumed as part of the
instruction. In fact, these may contain shorter instructions that are
now missed by the reverse assembly process. An example of this
technique is shown in Figure 1:

Memory Instruction

31 ED XOR EBP, EBP

49 89 D1 MOV R9, RDX

5E POP RSI

48 89 E2 MOV RDX, RSP

05 31 ED 49 89 | ADD EAX, 0x8949ED31
D1 5E 48 RCR dword [RSI+0x48],1
89 E2 MOV EDX, ESP

Figure 1. Addition of One Junk Byte

Note that the only difference between the first and second
descriptions of memory is the addition of 0x05. Inserting this
additional byte obscures four instructions; the reverse assembler
incorrectly assumes that this is a three-instruction sequence as
shown. After the last instruction the reverse assembler will again
synchronize with the correct instructions in the program. Since
inserting an additional byte will cause the disassembler to
misrepresent the instruction stream, a logical question is what bytes
to use in order to maximize the disruption. In previous research we
created a unique version of the GCC compiler which automatically
inserts “junk” between basic blocks [16]. We examined Linux
utility binaries in x86-64 format using objdump to determine these
optimal “junk” values, some of which are illustrated in Table 1.
Here, “HI” refers to the average number of Hidden Instructions.

Table 1. Average Count of Hidden Instructions by Junk Byte

Avg Avg Avg
Value HI Value HI Value HI
0xa0l 3.281 0xO0F 2.444 0x35 2.342
Oxal 3.281 0x05 2.342 0x3d 2.342
Oxa2 3.281 0x0D 2.342 0x68 2.342
Oxa3 3.281 0x15 2.342 0xa9 2.342
0x69 2.911 Ox1d | 2.342 0xb8 2.342
0x81 2.911 0x25 2.342 0xb9 2.342
Ox£f7 2.561 O0x2d | 2.342 Oxba 2.342

By examining this collection of Linux executable programs, we
also observed that the average instruction length for x86-64 with
Linux executable programs is 2.57 bytes per instruction. In general,
x86-64 (and x86-32) is self-repairing from the reverse engineering
standpoint. A byte of “junk” may cause a few instructions to be
misrepresented, but only a few; after typically three instructions,
occasionally five or six, the disassembly tends to resynchronize
[12,14,23].

Another approach in hiding instructions is described by Jamthagen,
etal. [11]. The authors describe a Main Execution Path (MEP), and
a Hidden Execution Path (HEP), and break instructions down into
three components, called XX, YY, and ZZ. The XX portion
represents the part of the instruction including the x86 prefixes, the
actual opcode, and addressing modes that cannot be changed. The
portion Y is described as the portion of the instruction that can be
changed, such as immediate operands or addresses which are
included in the instruction. They note that YY needs to be large
enough to hide the instructions in their HEP. Likewise, the ZZ
portion of the instruction must be able to take any value. But



further, the combination of this ZZ plus the following XX must
decode into another instruction.

Jamthagen also partitions the x86 instructions into select groups
that might qualify for the main execution path and that meet these
requirements: (1) the instructions must overlap each other and must
never be aligned such that two instructions end at the same byte,
and (2) both execution paths must contain valid instructions. It is
necessary to select the last instructions in both the hidden and main
execution paths carefully so that the final instructions in both leave
with the next instruction in common. They further classify the x86
instructions into groups that may be used for the MEP. In part this
is necessary due to the semantics of the instruction, a problem we
also encounter below.

4. BINARY STEGANOGRAPHY

Given this foundational background, we now discuss our research
effort into executable steganography. As definitions, we refer to
different types of instructions by two names: Hiding Instructions
(HI) are those that appear when reverse engineering the input
program. These are the instructions in the program that a reversing
tool such as IdaPro will show to the user. Steganography
Instructions (SI) are those that are hidden.

Our method proceeds as follows:

1. Firstit is necessary to select the hiding instructions by writing
high level code which preferably has a large number of 64-bit
constants. The HI code is compiled to assembly language and
assembled so that an assembly listing file can be created. The
listing file is used to separate the operands from the operation
codes in the instructions. Details on this step are in section 4.1.

2. Next, the selection of instructions eligible for SI is very
limited, and as such the code for SI is coded in assembly
language using this restricted set. The Si instructions are
assembled so that we again obtain a listing file. This is
described in section 4.2.

3. Eachline if the listing file for HI is read, and each line of SI is
also read. The bytes forming the opcodes in the listing of SI
are placed into eligible operands in the instructions of HI,
creating a new assembly file which is the combination of the
two. This is described in section 4.3.

4.  The resulting file is assembled and linked into the application
as usual.

Our methodology relies on examining instructions in HI to
determine where instructions in SI can be hidden. For example, if
one wishes to hide the instructions shown in the top half of Table
1, a valid method is to use the junk byte of 0x05 as shown in the
bottom half of Figure 1. This will cause a disassembler to assume
that the first assembly language command, which is a hiding
instruction, is the instruction ADD EAX, 0x8949ED31. If the
program were to jump to the beginning of the block, the 0x05 byte,
the processor would in fact execute this, adding the constant to the
indicated register. It would then execute the next instruction: RCR
dword [RSI+0x487,1.

The selection of instructions is restricted by several factors so that
if the main execution path in HI is executed it does not crash the
program. As such these instructions must be selected with care. For
example, loading a register from a memory location well outside
the range of the program will look fine in a static disassembly, but
will obviously cause a program fault if it is actually executed.
Candidate instructions are, for example, those that might load
something into a register but from a constant value as opposed to
from a memory location. Thus, possible instructions include such

operations as LEA (Load Effective Address), CMOVcc
(Conditional Move) with a known false condition, SETcc
(Conditional Set) with a known false condition, NOP (No
Operation), and others. However, one can assume that the person
wishing to hide SI is also the same person that is the author of HI.
If we accept a slightly more “loose” view and assume that
instructions are OK as long as they do not cause a program crash,
then candidates also include instructions which may destroy
register contents but have no disastrous side effects. An example is
a MOV instruction with an immediate operand, or a conditional
jump that is based on a known-false predicate.

With this idea in mind we now describe each step in turn.

4.1 Prepare Hiding Instructions

Based upon the knowledge we have of which candidate instructions
are useful for HI, the user first creates a program either in assembly
language or more likely in a language such as C. The program
should be biased towards providing large amounts of the candidate
instructions — those with operands which can be replaced with
hidden instructions. An easy way to accomplish this is to include
64-bit values in calculations, and we show an example function in
Figure 2:

unsigned long long hash( const char *key )
{
unsigned long long mash;

mash = strtoull( key, NULL, 10 );
mash += 0x1111111111111111LL;
mash |= 0x2222222222222222LL;
mash -= 0x3333333333333333LL;
mash &= 0x44444444444444441L;
mash "= 0x5555555555555555LL;
mash *= 0x6666666666666666LL;
return( mash );

Figure 2. Example HI Program Code

The program is next compiled into assembly language and then
assembled. We do not seek the actual object code for this step, but
rather ask the assembler to create a “listing file”. This file will
contain not only the original mnemonics for the generated
instructions but also the hex opcodes for the instruction, as in the
Figure 3. (Only a few lines are shown and the figure is reformatted;
some lines are split across two.)

Using a simple text manipulation program will yield a file with only
the operation codes and the original assembly mnemonics included.

The next step is to identify candidate areas in the opcodes where SI
can be inserted. These are mainly the operands in the instructions
such that changing the value of the operand will have no ill effect
on the program. In order to accomplish this we use a program based
on a modified library called Udis86 [24]. This library allows one to
provide a byte stream and retrieve (among other things) a string
representation of the instruction corresponding to the bytes. The
library was modified so that if we provide it with a set of bytes it
will replace certain portions of the opcode to indicate the operands.
Specifically, the original hex is returned to the caller but with
certain characters replaced as in table 2.



55 push rbp
4889E5 mov rbp, rsp
4883EC20 sub rsp, 32
48897DE8

mov QWORD PTR [rbp-24], rdi
488B45E8

mov rax, QWORD PTR [rbp-24]
BAOAOOOO 00 mov edx, 10
BE0OOOOOO 00 mov esi, O
4889C7 mov rdi, rax
E8000000 00 call strtoull
488945F8

mov QWORD PTR [rbp-8], rax
48B81111 11111111 1111

movabs rax, 1229782938247303441
480145F8 add QWORD PTR [rbp-8], rax
48B82222 22222222 2222

movabs rax, 2459565876494606882

480945F8 or QWORD PTR [rbp-8], rax

Figure 3. HI Assembly Listing

Table 2. Byte Indicators for Candidate SI Content

Position of a 1l-byte immediate wvalue
Position of a 2-byte immediate wvalue
4-byte immediate value

8-byte immediate value

Position of a 1l-byte relative offset
Position of a 2-byte relative offset
4-byte relative offset

8-byte relative offset (impossible)

N[ X| S| =G| H

The above partial listing in Figure 3 using this notation gives the
results shown in figure 4. The operation codes are retained but the
resulting strings indicate which operands, and what type and length,
are in each operation:

55

4889E5

4883ECII

48897DES8

488B45E8

BAKKKKKKKK
BEKKKKKKKK

4889C7

E8KKKKKKKK

488945F8
48BSLLLLLLLLLLLLLLLL
480145F8
48BSLLLLLLLLLLLLLLLL
480945F8

Figure 4. HI Assembly Operand Marking

Although in theory the relative offsets present in the instruction are
candidates for hiding SI, they suffer from the drawback that 1) they
are usually too short, and b) represent addresses which are not
resolved until the program is linked. Thus, the real candidates for
hiding executable programs via steganography are the immediate
constants, represented by Ks and Ls in the above.

4.2 Prepare Steganography Instructions
Next we go down a similar path for the instructions in SI. Here we
will assume that the author of SI is writing the code directly in

assembly language, since a key factor is to select instructions which
are very short. Several tricks can be used to minimize the
instruction sizes; a few examples are noted here.

e  Exclusive or-ing a register with itself is preferable relative to
loading zero into that register.

e  Similar, to load one or two, etc. first zero the contents and then
increment the register.

e  To retrieve the current address, call the next instruction and
then pop the return address from the stack. This can be used to
access memory locations by offset from the current position.

One can consult the intel or AMD opcode map documents, or
online versions such as at x86asm.net. But to aid the malware
author — and who wants a stressed-out malware author? — we
created a program using the Udis86 library that generates all single-
byte, or two-byte, or ... instructions in x86. The output from this
program can also serve as a helpful reference.

The SI program is again assembled primarily so that we can obtain
a listing file with the appropriate operation codes as shown in figure
S:

# shell: .asciz "/bin/sh"
4831C0 XOor rax, rax
BO3B mov al, 59
4831F6 XOor rsi, rsi
4831D2 XOor rdx, rdx
E800000000 here: call .+5

5F pop rdi

83C700 .byte 0x83, 0xc7,

(shell-here) -5
0FO05 syscall

Figure 5. Example SI Program

In this example, from a 64-bit Linux machine, we will start a shell
which runs at the privilege level of the user that executes the SI
code. The parameters are passed in registers and most of them in
this case can be null/zero. The string for “/bin/sh”is commented
out here but will be manually added. Note that the GNU assembler
is limited; although the constant displacement “shell-here” is
small, and the labels are defined before they are referenced, this
assembler assumes the displacement must be 32-bits. In the case of
the Linux GNU assembler it is necessary to hand-code an add
instruction which has an 8-bit displacement. On our Windows
implementation the assembler will correctly gauge the short
distance.

4.3 Instruction Weaving

Now that we have an appropriate listing file for HI and SI we can
intermingle the instructions. Broadly speaking the following steps
are employed:

1. Each line if the listing file for HI is read, and the following
information is retained in a list of tuples which each contain:
e  The original opcode for the instruction.
e  The opcode with operands replaced per Table 2.
e The original assembly language string, used if this
instruction in HI is not a candidate for replacement.
e  Various “commands” stored as strings that are used to
mark locations for later processing.
2. Each line of the listing file for SI is read, and the following
information is retained in a list of tuples:
e  The number of opcode bytes for the instruction.
e  The original assembly language string.




3. Each instruction in HI is examined and if no opcode from SI
can be hidden, the command for the tuple is set so that the
instruction is not considered.

4. Otherwise,

a. Replace the assembly instruction in HI with a declaration
of bytes corresponding to the bytes in the operation code
that will not be replaced.

. Insert a “target” command into the list of HI data.

c. Select as many of the next instructions from SI as will fit
in the operand for the HI instruction, leaving two bytes
available for later use.

d. Insert instructions from SI into the list of tuples for HI.

Insert a “needjump” command into the list of HI.

f.  Insert as many additional bytes as are necessary to “fill”
the original instruction length.

o

The process is repeated until either all instructions in SI have been
inserted, or the end of the list of HI instructions is encountered. In
the latter case this implies that SI is too long (or has instructions
which are too long) for the number of instructions in HI, which is
considered a fatal error.

The final step is to traverse the list of HI tuples in reverse order. At
each “target” we note the byte offset in the machine code, and at
each “needjump” we insert a short relative jump with the
appropriate byte offset to go to the next hidden instruction.

To demonstrate the weaving process, examine the HI code in figure
3 above. We wish to embed in this function a hidden payload,
shown in figure 5, which can be used to start a command prompt
from within the program, if the entry point to the function is offset
to the first instruction in SI. As described previously, we have
compiled HI and assembled SI. The (partial) output of the method
is shown in figure 6:

push rbp

mov rbp, rsp

sub rsp, 32

mov QWORD PTR [rbp-24], rdi
mov rax, QWORD PTR [rbp-24]
mov edx, 10

mov esi, O

mov rdi, rax

call strtoull

mov QWORD PTR [rbp-8], rax

# (Was: movabs rax, 1229782938247303441)
.byte 0x48, 0xB8

XOor rax, rax

mov al, 59

.byte 0xEB, 7 # Go to next SI
nop

add QWORD PTR [rbp-8], rax

# (Was: movabs rax, 2459565876494606882)
.byte 0x48, 0xB8
XOr rsi, rsi
.byte 0xEB, 9 # Go to next SI
nop
nop
nop

Figure 6. Example SI Program

Although there is no reason to fill any remaining operand space
with something special, we elected to fill these areas with no-
operation commands; any byte will actually do for these areas since
they will not be executed within SI.

As a check, a partial disassembly for HI is shown in Figure 7.

Memory

48 89 45 F8

48 B8 48 31 CO BO 3B EB 07 90
48 01 45 F8

48 B8 48 31 F6 48 31 D2 EB 06
Instructions

mov [rbp-8], rax

mov rax, 9007EB3BB0C03148h
add [rbp-8], rax

mov rax, 6EBD23148F63148h
Figure 7. Reverse Assembled Hiding Instructions

Execution continues in sequence after this. If these instructions do
not cause the program any harm, then at runtime they could be
executed, while also allowing us to execute the SI sequence starting
with the instruction XOR EBP, EBP. What is necessary is to jump
to the correct entry point for the sequence of instructions that is
desired. But if the entry point is offset in memory, skipping the
0x48, 0x89, ... then the hidden payload, SI, is executed instead as
shown in Figure 8 starting at 0x48, 0x31, ...

Memory Instructions
48 89 45 F8 48 BS (Skipped)

48 31 CO XOr rax, rax
BO 3B mov al, 3Bh
EB 07 jmp short +7
90 48 01 45 F8 48 | (Skipped)

B8 xor rsi, rsi
48 31 Fo xor rdx, rdx
48 31 D2 Jjmp short +6
EB 06

Figure 8. Reverse Assembled Hiding Instructions

We can see Si hidden in HI only by starting the disassembly process
at the correct address. The ramification of instruction hiding is that
if we choose the bytes with care, the disassembled HI can be made
to look innocuous: more importantly, if we do select bytes carefully
we can guarantee the program will not fail if it is executed.

S. RESULTS

We have implemented our code weaving using both C# on a
Windows machine and also the tools available from a Linux
installation. There are variations in the format of the listing files
across these two platforms, but we are not addressing these issues
here. Rather, the next question is whether the steganography
actually is successful in hiding SI within HI. We turn to two tools,
IdaPro version 6.9 [9] and the Linux objdump program [15] and in
these figures show the Linux executable. Figure 9 demonstrates that
IdaPro has correctly decoded the instructions in HI.

public hash
hash: ; CODE XREF|
push rbp
mowv rbp, rsp
sub rsp, 28h
moy [rbp-18h], rdi
mow rax, [rbp-1&h]
mov edx, 0ah
mow esi, @
mouv rdi, rax
call _strtoull
mowv [vbp-8], rax
mow rax, 9007EB3BBACO3148h
add [vbp-8], rax
mouy rax, 90009009EBF63148h
or [rbp-8], rax

Figure 9. IdaPro x86-64 Reverse Assembly



The objdump program output is shown in figure 10:

push rbp

mov rbp, rsp

sub rsp, 0x20

mov QWORD PTR [rbp-0x18], rdi

mov rax,QWORD PTR [rbp-0x18]
mov edx, Oxa
mov esi,0x0
mov rdi, rax

call 400590 <strtoull@plt>

mov QWORD PTR [rbp-0x8],rax
movabs rax,0x9007eb3bb0c03148
add QWORD PTR [rbp-0x8],rax
movabs rax,0x90909009ebf63148

Figure 10. objdump x86-64 Reverse Assembly

We also tested the executable with the open source edb debugger
as well as the GNU debugger gdb; figure 11shows the results from
edb; the disassembly from gdb is similar to figure 10.

imul ebp, dword [rsi+0x2f], Bx55006873
mov rbp, rsp
sub rsp, 0x20
mov [rbp-8x18], rdi
mov rax, [rbp-0x18]
mov edx, Bxa
mov esi, @
mov rdi, rax
call demo!strtoullgplt
mov [rbp-8], rax
movabs rax, -0x6ff8ldcddf3ifcebd
add [rbp-8], rax
movabs rax, -Oxefefeffeld4B9cebd
or [rbp-8]., rax
Figure 11. Open Source edb Debugger Reverse Assembly

In order to provide an “acid test” the demonstration program that
calls our “hash” function can call it via the normal entry point,
which returns a 64-bit number based in part on the string passed in.
Alternatively, the destination address for the function can be offset
by the correct number of bytes and the instructions in SI are
executed, resulting in a shell prompt.

6. NOTES and FUTURE WORK

Our technique works but suffers from shortcomings. Some of these
shortcomings cannot be avoided, nor can they be dealt with. Others
could be improved upon in future work. First we itemize several
areas which are either potential improvements or notes about
inherent shortcomings:

e  The difficulty as we know is the requirement that instructions
be sufficiently short that they can fit inside an operand. Since
the majority of these immediate operands are 32-bit quantities,
even in a 64-bit architecture, the selection of instructions is
very limited. It is necessary for the author of the hidden code
to craft the program with extreme care, by hand, in assembly
language. While there is no special preparation needed for the
code — it uses standard tools in order to be assembled — the
author is extremely restricted in instruction selection.

e The number of available “slots” to place these instructions
means that the one-byte relative offset in our jump may not be
within range. Longer relative offsets would then eat into the
bytes we need for the already restricted instruction set.

e The GNU assembler, “as”, simply does not understand
optimizing the size of jump displacements based upon where

the jump target is located. It assumes in almost all cases that a
32-bit relative address is needed. It’s thus necessary to craft
our own jumps, a byte at a time, on Linux.

e Not all immediate constants are created equal. An example is
the instruction “mov edx, 107, with an opcode BA and
operand OA000000. Replacing this 32-bit immediate
operand with something else obviously causes different results
when calling “strtoull”.

e Similarly, consider setting up the stack frame with “sub
rsp, 32”.Replacing the 32-bit constant here in the function
prologue with instructions will cause considerable grief at the
epilogue when the stack needs to be adjusted back.

e  On Windows, the assembly listing file contains the character
“R” to tell us that the operand portion of an instruction is
subject to relocation when the linker builds the executable.
This is very handy because we can simply ignore those
operands that will need relocations. On Linux it will be
necessary to examine the object file in greater detail to
determine which immediate operands are subject to relocation.
A greater investigation of the Udis86 library code may also be
a means to solve this on Linux.

e In our above example it is necessary to manually insert the
string “/bin/sh” since it is too long to be hidden in an
operand and still include a jump.

e A system call to start a command prompt in Linux is fairly
straightforward, as shown in our example. The Windows
“CreateProcess” call requires ten parameters.

While we have shortcomings we also recognize some advantages
as well. Instruction weaving is an interesting concept but one which
may be limited in general usage because of the restrictions itemized
above. But utilizing the more esoteric instructions available in x86-
64 such as those using MMX, 3Dnow, or others, and using 80-bit
floating point numbers, may be some way forward relative to these
problems. The technique may be applicable to other complex
instruction sets as well, but with the design of new CPUs being
dominated by instructions with fixed lengths the applicability here
may be small.

Finally, we also point out that none of the instructions in SI are
encrypted in any way. A mitigation strategy is thus to utilize a brute
force approach to reverse engineering the program, starting a
disassembly process at every byte in the section. Short sequences
of valid instructions, which possibly also end in an invalid
decoding, are ignored, while long sequences of valid instructions
can trigger an alarm for further investigation. An interesting future
research project would be to come up with a method to obfuscate
the obfuscated instructions.
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