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Abstract

Decision Forests are popular machine learning techniques
that assist scientists to extract knowledge from massive
data sets. This class of tool remains popular because of
their interpretability and ease of use, unlike other modern
machine learning methods, such as kernel machines and deep
learning. Decision forests also scale well for use with large
data because training and run time operations are trivially
parallelizable allowing for high inference throughputs. A
negative aspect of these forests, and an untenable property
for many real time applications, is their high inference
latency caused by the combination of large model sizes
with random memory access patterns. We present memory
packing techniques and a novel tree traversal method to
overcome this deficiency. The result of our system is a
grouping of trees into a hierarchical structure. At low levels,
we pack the nodes of multiple trees into contiguous memory
blocks so that each memory access fetches data for multiple
trees. At higher levels, we use leaf cardinality to identify
the most popular paths through a tree and collocate those
paths in contiguous cache lines. We extend this layout
with a re-ordering of the tree traversal algorithm to take
advantage of the increased memory throughput provided by
out-of-order execution and cache-line prefetching. Together,
these optimizations increase the performance and parallel
scalability of classification in ensembles by a factor of ten
over an optimized C++ implementation and a popular R-
language implementation.

1 Background and Motivation.

Decision forests are a broad class of machine learning al-
gorithms that include many flavors of gradient boosted
forests [6] and random forests [4]. Decision forests are
interpretable—decision boundaries and features used for
inference can be observed and visualized. This is impor-
tant for scientists and analysts to explain results and
make comprehensible conclusions. These systems are
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extremely flexible, tend not to overfit data, and can
be used for classification, regression, density estima-
tion, and manifold learning [9]. Recent advances have
defined the first scalable implementation [6] integrated
with High Performance Computing (HPC) schedulers
and message-passing distribution [5]. Despite the ex-
treme utility, decision forests have been relegated to ap-
plications where model interpretation is important or to
competitions with low error rate objectives [6, 12].

For many real-time applications, such as computer
vision and spam detection, decision forests are unusable
due to high inference latency caused by the combina-
tion of large model size with random memory access
patterns. As an ensemble classifier decision forests are
composed of many weak classifiers, each of which may
have a size in order with the training set, leading to a
large overall memory footprint. When the model size
is larger than a systems’s cache, typically KBytes for
fast cache and low MBytes for slow cache, the inference
operation relies on the order of magnitude slower main
memory. The paths through a decision forest are pur-
posefully uncorrelated, which leads to random accesses
throughout the model for each inference task, making
common acceleration tools—such as GPUs—unusable
for general forest inference.

Decision forest research typically focuses on model
training systems without mention of run time operation.
Application of these powerful tools is hindered by
this oversight, which has lead to increased research
into forest inference acceleration and development of
several third-party post training optimizations. Current
solutions either place structure limiting requirements
on the forests, e.g. maximum node depth, or focus on
increasing throughput at the cost of increased inference
latency, e.g. batching. Forest packing extends previous
research on this topic by introducing several tree storage
memory optimizations and a reordering of the tree
traversal process to take advantage of modern CPU
enhancements.

2 Methods and Technical Solutions.

Attempts to increase the speed of decision forest in-
ference falls into two categories: memory access opti-
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mizations and inference algorithm modifications. Our
proposed improvement to forest based inference, Forest
Packing, takes advantage of both improvement types.
We use inference latency, specifically classification la-
tency, to indicate model performance (training time is
a popular complementary topic that we do not consider
here). Other decision forest variants such as regression
or distance learning forests are not specifically discussed
here, but the techniques we describe should extend to
these tools. The input to forest packing is a trained
forest, F', that consists of decision trees, t. Each inter-
nal node of the trees describes a splitting condition on
the data and has two children. Each leaf node contains
a single class label; a criteria typical of random forests
[4, 11], but not true for all variants. One of the novel
optimizations that we present relies on the single class
assumption.

Forest Packing, the system presented here, reorga-
nizes the trees in a forest to minimize cache misses, allow
for use of modern CPU capabilities, and improve paral-
lel scalability. The system outputs [T/B] bins, where
T is the number of trees in the forest and B is the bin
size—a user provided parameter defining the number of
trees in a bin. A bin is a grouping of at most B trees
into a contiguous memory structure. Most bins will
contain B trees while one bin may contain between 1
and B-1 trees. Within each bin, we interleave low-level
nodes of multiple trees to realize memory parallelism
in each cache line access. We decrease cache misses
by using split cardinality information to store popular
paths contiguously in memory. During inference, each
bin is assigned to an OpenMP thread (for shared mem-
ory). Forest packing includes a runtime system that
prefetches data and evaluates tree nodes out-of-order as
data is ready, leveraging the memory layout to maxi-
mize performance.

2.1 Memory Layout Optimization. We describe
our memory layout as a progression of improvements
over the breadth-first layout, BF, typically used in ran-
dom forests, with each improvement reducing cache
misses or encoding parallelism. Fig. 1 describes this
evolution with each panel displaying a tree in which
the nodes are numbered breadth-first and the resulting
layout in memory is shown as an array at the bottom
of the panel. Breadth-first layouts are typical in deci-
sion forests because they provide the sequential traver-
sal through all nodes used by batched inference process-
ing. The depth-first (DF) layout is preferred for single
observation inference because it allows for the possible
reuse of a memory load. We will use aspects of both
breadth- and depth-first layouts in our ultimate design.

Our first optimization reduces the duplication of
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Figure 1: The representation of trees as arrays of
nodes in memory for breadth-first (BF), depth-first
(DF), depth-first with class nodes (DF-), statistically
ordered depth-first with leaf nodes replaced by class
nodes (Stat), and root nodes interleaved among multiple
trees (Bin). Colors denote order of processing, where
like colors are placed contiguously in memory.

information contained in leaf nodes thereby reducing the
number of nodes in the forest almost in half. In many
classification forest variants, each leaf node provides
both a signal that the tree traversal is complete and a
class label determined during training by the plurality
observation class in a leaf node. Rather than pointing
parent nodes to their own unique children, parent nodes
instead point to communal leaf nodes which provide
the functionality of a typical leaf node without the
duplication. We call this encoding DF-. We are unaware
of other literature recommending this encoding, which
reduces the size of a tree from n nodes to n/2+C nodes,
where C is the number of classes present in a dataset.

In most datasets, the number of distinct classes are
many orders of magnitude smaller than the number of
nodes in the tree and so we expect the DF- trees to be
nearly half the size of DF trees. Removing these nodes
has the dual benefit of allowing more useful nodes to be
loaded by each memory fetch (a fact we exploit in the
Stat layout) and also greatly reduces cache pollution.
The class nodes that replace leaf nodes are placed at
the end of each tree’s block of contiguous memory. The
DF- panel of Fig. 1 shows the resulting layout when
building a decision tree for a two-class («, ) problem.
DF- indicates depth-first with leaf nodes removed.

The next improvement encodes paths through trees
sequentially in memory based on the number of obser-
vations used to create the nodes during training. This
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statistical redefinition of the BF- layout is called Stat.
We use the leaf cardinalities collected during training
to determine the likelihood that any given data point
routes to a specific leaf. If cardinality information is
unavailable, these statistics can be inferred after train-
ing using a suitably large set of observations. We then
enumerate depth first paths based on their probability
of access. The Stat panel of Fig. 1 illustrates this pro-
cess with “+” indicating a more likely path, leading to
the decision to enumerate the path to node 3 prior to
node 4. The statistical ordering applies to nodes from
the root to the leaf parents, because class nodes that re-
place leaf nodes are at the end of the block of memory
and so are not considered for statistical ordering.

In more detail, Stat considers each parent node and
its two children. The child that is accessed most often
is placed adjacent to the parent node in memory while
the less accessed child is placed later in the block of
memory. If a parent node has a leaf node child and an
internal node child, the internal child node is always
placed adjacent to the parent while the leaf node is
shared among all leaf nodes of the same class at the
end of the memory block. Similar optimizations have
been recommended in one form or another by other
researchers [13].

Our final memory optimization, Bin, interleaves the
nodes of multiple trees into a single block of memory,
called a bin, to both reduce memory latency and to
allow for the encoding of parallel memory accesses. This
layout takes advantage of the fact that a parent node
is accessed about twice as often as each of it’s children
and so nodes at lower levels of a tree are accessed far
more often then nodes at higher levels. This is similar to
the hot (often used nodes) and cold (rarely used nodes)
memory model recommended by Chilimbi et al. [7]. By
interleaving the lower level nodes from multiple trees
in a bin, we are increasing the density of “likely to
be used” nodes which allows a single cache line fetch
to be more useful while also reducing cache pollution.
The Bin panel of Fig. 1 shows the root (level 0) nodes
interleaved in the layout and all higher level nodes are
stored one tree at a time using the Stat method. A
similar recommendation was proposed by Ren et al.
where trees are interleaved by level for the entirety of
the tree [14]. In our testing, interleaving trees past a
certain depth results in an increase of inference latency
(see Fig. 2).

There are two parameters used when interleaving
nodes. (1) The bin size determines the number of trees
interleaved in a bin. Larger bin sizes encode more
parallelism for each memory fetch at low levels in the
tree. Each bin is an independent array of trees that can
be distributed for parallel evaluation across threads or
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Figure 2: Prediction time as a function of the number
of trees in each bin and their interleaved depths. Ideal
bin parameters are forest dependent. Interleaving trees
beyond a certain depth becomes detrimental to perfor-
mance.

a cluster, so at least one bin is required per thread in
order to occupy parallel resources. In other words, the
number of bins will ideally be a multiple of the number
of threads used to perform inference. (2) Interleaved
depth determines how many lower levels of the trees in
a bin are interleaved; the remaining levels of each tree
are stored according to the Stat encoding. Interleaving
too many levels results in breadth-first like behavior
resulting in degraded performance.

The Bin layout combines binned interleaving for the
top levels of a tree and statistical depth-first layout,
Stat, for the bottom levels in a tree. A more in depth
example of this layout can be found in Fig. 3, which
demonstrates the layout for a forest of 4 trees and 3
classes with varying bin sizes and depths interleaved.
A design experiment helps choose the bin size that
makes sense in light of the properties of the processor
memory hierarchy and forest characteristics. Fig. 2
explores the effects bin size and interleaved depth has on
a trained forest. The figure displays average prediction
time (lower is better) for an observation given varying
values of bin size. The characteristics of the datasets
and their resulting forests can be seen in Table 1.

Fig. 4 shows performance comparisons between the
memory optimizations described above. The first three
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Figure 3: Forest packing with the Bin memory layout given four trees and varying setting. We show different
parameterizations of number of trees per bin and depth of interleaving. Colors of internal nodes denote node level
in the tree. Levels Interleaved denotes the highest level of each tree interleaved.

Table 1: Dataset and Resulting Forest Information

Allstate Higgs MNIST

Observations 500000 250000 60000
Test Observations 50000 25000 10000
Features in Dataset 33 30 784
Trees in Forest 2048 2048 2048
Internal Nodes (avg) 90020 23964 5008
Avg Leaf Depth 25 21 17
Deepest Leaf Depth 74 65 50

performance improvements (DF, DF-, and Stat) are
purely reorganizations of nodes within memory. In
addition to reorganizing nodes, Bin groups trees into
bins and interleaves the nodes of trees within a bin.

2.2 Tree Traversal Modification. The inference
algorithm includes the traversal of trees from root to
leaf using a path determined by a simple comparison of
data stored in each node to the test observation, Algo-
rithm 1. The most common modification of this traver-
sal processes multiple test observations through a tree
simultaneously in batches. This optimization results
in much higher throughput of classification inference
[8, 15]. Although groups of observations are processed
faster, the latency of each inference task is increased.

49

Other methods have been used to accelerate forest based
inference using GPUs, SIMD operations, traversal un-
rolling, and branch prediction [3, 8, 14]. Many of these
optimizations place restrictions on forest structure such
as a maximum depth or require a full tree [10].

The binned forest memory optimization, Bin, de-
scribed in 2.1 allows us to efficiently modify the pro-
cessing order of trees (Algorithm 2) to simultaneously
traverse multiple trees in a manner that takes advantage
of modern CPU enhancements while also allowing us to
use intra-observation threaded parallelism. Forest Pack-
ing, our acceleration technique, is the use of the culmi-
nation of memory improvements, Bin, with this efficient
tree traversal method described below. For brevity, we
will refer to Forest Packing, the combination of memory
improvements and efficient tree traversal, as Bin+.

Our binning strategy adds an additional layer of
hierarchy within the forest (i.e. the bins) which provides
for multiple levels of parallelism. The first level of
parallelism, inter-bin parallelism, takes advantage of the
embarrassingly parallel nature of trees, allowing each
bin to be processed by a thread independent of work
done in other bins. This form of parallelism was always
available within forests using individual trees rather
than bins.

Intra-bin parallelism realizes performance improve-
ments through fine-grained, low-level prefetching and
scheduling provided inherently in modern CPUs. Bin+
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takes advantage of this capability by evaluating all trees
in a bin using a round-robin order, thereby giving a
single thread additional non-blocking avenues of work.
This has the dual benefit of using more of each thread’s
processing capability and gives us an opportunity to ex-
plicitly prefetch the upcoming node prior to it being
required (line 17, Algorithm 2).

Algorithm 1 Single Tree Traversal

1: procedure TREEPREDICTION(t, ol])

2 > Tree, ¢, an array of nodes

3 cen <0 > start at tree root
4 while ¢[cn] is internal node do

5: > get split feature of node cn

6 sf « tlen].splitFeature

7 > compare observation’s feature to split value
8 if o[sf] < t[en].splitValue then

9 cn  tlen]leftChild

10: else

11: en « tlen].rightChild
12: end if
13: end while
14: return t[cn].classNumber

15: end procedure

We use simple policies to encode execution overlap
because more complex policies incur scheduling over-
heads that exceed gains. Overlap happens among tens
of memory accesses and hundreds to thousands of in-
structions. Trying to control this fine-grained process
in software is not practical. Instead, we assign a sin-
gle thread to each interleaved bin which evaluates the
bin’s trees in round-robin order. For each node that we
evaluate, we issue a prefetch instruction for the mem-
ory address of the resulting child node, with the idea
that useful work from other trees can be performed
while the resulting child node is being loaded into cache.
We proceed navigating through the levels of the tree
in the same order that we processed the root nodes.
This round-robin scheduling submits independent in-
structions for each tree. In practice, the processor ex-
ecutes these independent instructions out-of-order as
data becomes available.

3 Empirical Evaluation.

We evaluate Forest Packing in order to quantify the
benefits from memory layout and scheduling optimiza-
tions. We start with a breakdown of the contributions
of each optimization, applying them incrementally. An
overview experiment using CPU performance counters
demonstrates the improvement of Forest Packing ver-
sus other layouts. We explore the scalability of each of

the optimizations across a shared-memory multithread
system to minimize inference latency. We finish our
evaluation by comparing the inference latency of Forest
Packing to two commonly used forest systems.

3.1 Experimental Setup. We implement all of the
optimizations described in Section 2 and apply them
successively. We start with BF as our baseline imple-
mentation because it performs similarly to a popular
decision forest implementation, XGBoost. Thus, com-
parative evaluations are against our re-implementation,
BF. We focus on standard decision forests that create
deep trees with a single class per leaf node. We infer the
class of each test observation sequentially, only starting
the inference of an observation at the completion of the
previous observation in order to measure test latency.

All experiments were run on a 64-bit Ubuntu 16.04
platform with four Intel Xeon E7-4860V2 2.6 GHz
processors, with 1TB RAM. gce 5.4.1 compiled the
project using -fopenmp, -O3, and -ffast-math compiler
flags.

Algorithm 2 Binned Tree Traversal

1: procedure BINPREDICTION(b, o[])

2: > Bin, b, composed of intertwined trees

3 > binSize < number of trees in a bin

4 > int np[binSize] > node pointers
5: > int predictionsinumClasses] < 0

6 np[] < 0:binSize —1 > set np to root nodes
7 do

8 notInLeaf < 0

9 for all p in np do
10: if b[p] is an internal node then
11: sf < blp].split Feature
12: if o[sf] < b[p].splitValue then
13: p < blp|.leftChild

14: else

15: p < blp|.rightChild

16: end if

17: prefetch(b[p])

18: + + notInLeaf

19: end if
20: end for
21: while notInLeaf # 0
22: for all p in np do
23: + + predictions[blp|.class Number|
24: end for
25: return predictions]]

26: end procedure

We perform all experiments against three common
machine-learning datasets that are widely used in com-
petitions and benchmarks. Training size is reported
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here as this determines the size and structure of the
resulting forests. Categorical data is one-hot encoded
so that all datasets contain numeric data represented
as doubles in our data structures. MNIST is a popu-
lar numeric dataset of 60,000 handwritten digit images.
The Higgs dataset was used in a popular Kaggle com-
petition and contains 250,000 observations of numeric
features [2]. We use a subset of the Kaggle competi-
tion Allstate dataset which consists of categorical and
numeric features [1]. Categorical features are converted
to numeric features by the forest growing system (RerF
or XGBoost). The principles shown are independent of
the system used to grow the forest, but for benchmark-
ing purposes RerF is used to create our forests which
are then post-processed into packed forests. Further
information about these datasets and resulting trained
forests can be found in Table 1.
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Figure 4: Our optimized breadth first (BF) layout
serves as a baseline for all performance gains. Bin
shows performance gains based on all memory layout
optimizations. Bin+ is the combination of Bin with
efficient tree traversal methods. This experiment uses a
single thread.

Each of the datasets contain both training and
testing observations. The training observations were
used to train the forests and provide node traversal
statistics. The testing observations were only used
for measuring prediction speeds and were not used to
determine traversal statistics.

3.2 Layout Contributions. We now turn to a de-
tailed study of the effects of layout optimizations on
runtime performance. Tab. 2 shows the incremental im-
provement of runtime statistics for the optimizations.
The high ratio of wasted cycles of each of the encodings
shows that runtimes are dominated by CPU stalls which
are typically caused by slow memory accesses or high
numbers of branch mispredictions. Because the run-
time is nearly cut in half between the BF and Bin with
little change in the numbers of instructions executed,
branches, and branch mispredictions, we conclude that
stalls occur mainly because of slow memory accesses.
This is corroborated by greater than one Cycles Per In-
struction (CPI), which indicates an application is mem-
ory bound.

We attribute the improvement of run times for
DF, DF-, and Stat to reductions in the level at which
cache misses are resolved. Average stall duration is
reduced by finding required memory lower in the cache
hierarchy, which is shown in “Avg Stall (cycles)” column
of Tab. 2. The Bin optimization sees a slight increase in
stall duration which we attribute to interleaving trees.
This happens because “likely to be used” nodes, those
near the roots, of several trees are stored together. This
makes the access of a needed node in one tree likely
to also load a soon to be useful node from another
tree. Whereas other encodings quickly recover from
stalls due to cache misses for often used nodes, the Bin
encoding avoids these stalls altogether. In other words,
the Bin optimization avoids quickly resolved stalls which
increases the overall average stall duration.

3.3 Algorithm Contributions. Fig. 4 shows the
inference time of the encodings relative to Bin+, the
combination of memory and algorithm improvements.
Bin+, improves single thread performance by a factor
of five on the MNIST forest and by a factor of three on
the Allstate forest. The Bin and Bin+ layouts use a bin
size of 32 trees per bin and interleaved level of 3.
Forest Packing, Bin+ reduces the affects of being
memory bound by re-ordering tree traversals (Algo-
rithm 2). Our improvement paradoxically doubles the
number of CPU instructions and branches required dur-
ing runtime—leading to an increase in branch mispre-
dictions. Despite these negative changes, Forest Packing
halves the ratio of wasted cycles and stall duration, lead-
ing to the demonstrated performance improvements.
The Bin+ optimization is less likely to stall because
of the overlapped, out-of-order, execution allowed by
our traversal modification. When using Algorithm 1
a thread recovers from a stall when the sole execution
buffer slot in use becomes ready to execute its instruc-
tions. The updated traversal method allows the thread

Copyright © 2019 by SIAM
51 Unauthorized reproduction of this article is prohibited



Downloaded 05/28/19 to 162.129.250.13. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Table 2: Execution Statistics for 25,000 Higgs Observations, Single Thread

CPI Instructions Total Useful Wasted Avg Branches Branch
Cycles Cycles Cycles Stall Misses
(cycles)

BF 7.78  2.53el0 1.97e11 3.84e10 80.48% 12.67 4.24€9 6.33e8
DF 6.30 2.53el0 1.59el11 3.59e10 77.47% 11.74 4.24¢9 6.33e8
DF- 5.70  2.53el0 1.44el1 3.59e10 75.05% 10.58 4.24¢9 6.32e8
Stat 5.09  2.53el0 1.28e11 3.41el0 73.38% 10.05 4.24e9 6.32e8
Bin 4.33  2.68e10 1.17el1 3.30e10 73.30% 10.43 4.66€9 6.35e8
Bin+ 1.28 5.13el0 6.69e10 4.18e10 37.45% 4.64 7.91e9 7.76e8

to use all execution buffers. The loading of any of the
multiple execution buffers in use allows the thread to
continue execution, thereby reducing both the liklihood
a stall occurs and the duration of a stall when it does
occur.

The benefits of Bin+ can only be realized with many
concurrent tree traversals. As the inference process
progresses through a bin, the trees arrive at their leaf
nodes at different depths. The overlap of memory
requests is reduced for each tree in a bin that reaches it’s
leaf node. This potential for skew is shown in Table 1,
where the average leaf depth and deepest leaf depth
of each of the test forests is shown, the latter being
triple the former. As an example, when all but one tree
finishes processing, the remaining tree will no longer
benefit from out-of-order execution because there are
no other trees with which to overlap memory accesses.
When this occurs the remainder of the tree traversal
reverts back to the Stat traversal pattern.

3.4 Parallel Evaluation to Reduce Latency. We
study the effect on latency of parallelizing classification
in a shared memory multithreaded system. This is a
strong scaling experiment that runs a single classifica-
tion on one to 32 threads. For the Bin and Bin+ encod-
ings, the number of trees per bin is set to 16 and nodes
are interleaved to depth of 3. To focus on reducing la-
tency, we only begin processing an observation at the
completion of the previous observation.

The bin data structure and improved algorithm
allows Bin+4 to scale more efficiently than the other
encodings. Binning allows us to statically pin an
execution thread to a subset of bins which allows a
thread to process a subset of trees using out-of-order
execution, maintain usefulness of all levels of cache, and
reduce skew. Without the optimizations provided by
binning, we can pin trees to threads and experience
degraded parallelism due to skewed execution, or, we
can allow threads to dynamically process trees and
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experience degraded parallelism due to poor use of
cache. In neither case can we take advantage of out-
of-order processing.

Shared-memory parallelism reduces latency effec-
tively for each of the encodings (except Bin), but, de-
spite being embarrassingly parallel, scaling is sublin-
ear, Fig. 5(a) and (b). We expected this suboptimal
scaling due to both increased contention in the mem-
ory subsystem and the skewed nature of observation
traversal depths (Table 1). Multithread Bin performs
poorly because threads receive extraneous nodes with
each memory request because of the interleaved trees.
This adds cache pollution, reduces cache locality, and re-
quires multiple requests for cache lines with interleaved
nodes.

To realize the full benefit of both threaded paral-
lelism and the intra-thread parallelism provided by out-
of-order execution, it is necessary that the number of
trees in the forest be at least 16 to 32 times the number
of threads used. This limitation can be seen in Fig. 6
where intra-thread parallelism is shown to work well
with at least 16 to 32 trees per bin. In addition, the
number of bins in a forest should be a multiple of the
intended number of threads used for parallelism in order
to ensure equal workloads are provided to each thread.
In general, larger bin sizes perform better during mul-
tithread operation, but increasing bin sizes reduces the
number of bins available for threaded parallelism.

3.5 Comparison to Popular Tools. We found no
forests implementations that specifically target the re-
duction of inference latency, so instead comparisons will
be made to two popular decision tree systems: XGBoost
and RerF. Because both of these systems typically pro-
cess observations in batches, we chose to use throughput
as a measurement of comparison despite our system be-
ing optimized to reduce latency. We vary the size of
forests in both the number of trees and size of trees (us-
ing max depth) to show the efficacy of Forest Packing for
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Figure 5: Multithread characteristics. Bin+ performance with one thread is superior to the other encodings and
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where applicable.
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a variety of forest sizes, Fig. 7. We set the batch size to
5000 for XGBoost and RerF. All systems except Forest
Packing use all 96 threads of our machine—XGBoost
uses forest characteristics to dynamically choose how
many of the 96 threads to use. We limit Forest Packing
to use only 16 threads in order to maximize intra-thread
parallelism, a limitation described in Sec. 3.4. The use
of 16 threads requires the use of at least 16 bins, which,
for 2048 trees, limits the bin size to 128 trees. For a for-
est of 128 trees, the use of 16 threads limits the bin size
to 8 trees. Despite the limitation on thread use, Forest
Packing continues to outperform all other systems.

4 Significance and Impact.

The two major contributions provided by Forest Pack-
ing are the reduced memory footprint of a forest model
and the novel tree traversal process made possible by
tree binning. The removal of redundant leaf nodes
halves decision forest memory requirements, which is a
critical improvement for machine learning applications
on memory limited devices such as mobile devices or
stand-alone sensors. The tree traversal modification
provides a faster, more scalable, system with multi-
thread performance more than an order of magnitude
faster than the naive solution. This reduced latency
can make decision forests a more competitive option for
real-time vision, recommender, and anomaly detection
systems.
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