(7))
=
| V.
o3
—_—
((v]
cl
:t‘U
S
0o
L C
=

Discrete flux and velocity fields of
probability and their global maps in
reaction systems

Cite as: J. Chem. Phys. 149, 185101 (2018); https://doi.org/10.1063/1.5050808
Submitted: 02 August 2018 . Accepted: 18 October 2018 . Published Online: 09 November 2018

Anna Terebus, Chun Liu, and Jie Liang

AR
22
)

ARTICLES YOU MAY BE INTERESTED IN

Perspective: Computational chemistry software and its advancement as illustrated through
three grand challenge cases for molecular science
The Journal of Chemical Physics 149, 180901 (2018); https://doi.org/10.1063/1.5052551

Nanoscale domains in ionic liquids: A statistical mechanics definition for molecular
dynamics studies
The Journal of Chemical Physics 149, 184502 (2018); https://doi.org/10.1063/1.5054999

GCraph theory for automatic structural recognition in molecular dynamics simulations
The Journal of Chemical Physics 149, 184102 (2018); https://doi.org/10.1063/1.5045818

of chemical physics 2018 EDITORS’CHOICE ~ /AEomony

J. Chem. Phys. 149, 185101 (2018); https://doi.org/10.1063/1.5050808 149, 185101

© 2018 Author(s).



THE JOURNAL OF CHEMICAL PHYSICS 149, 185101 (2018)

Discrete flux and velocity fields of probability and their global
maps in reaction systems

Anna Terebus,! Chun Liu,? and Jie Liang"?
IDepartment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
2Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA

(Received 2 August 2018; accepted 18 October 2018; published online 9 November 2018)

Stochasticity plays important roles in reaction systems. Vector fields of probability flux and veloc-
ity characterize time-varying and steady-state properties of these systems, including high probability
paths, barriers, checkpoints among different stable regions, as well as mechanisms of dynamic switch-
ing among them. However, conventional fluxes on continuous space are ill-defined and are problematic
when at the boundaries of the state space or when copy numbers are small. By re-defining the deriva-
tive and divergence operators based on the discrete nature of reactions, we introduce new formulations
of discrete fluxes. Our flux model fully accounts for the discreetness of both the state space and the
jump processes of reactions. The reactional discrete flux satisfies the continuity equation and describes
the behavior of the system evolving along directions of reactions. The species discrete flux directly
describes the dynamic behavior in the state space of the reactants such as the transfer of probability
mass. With the relationship between these two fluxes specified, we show how to construct time-
evolving and steady-state global flow-maps of probability flux and velocity in the directions of every
species at every microstate and how they are related to the outflow and inflow of probability fluxes
when tracing out reaction trajectories. We also describe how to impose proper conditions enabling
exact quantification of flux and velocity in the boundary regions, without the difficulty of enforcing
artificial reflecting conditions. We illustrate the computation of probability flux and velocity using
three model systems, namely, the birth-death process, the bistable Schlogl model, and the oscillating
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Schnakenberg model. Published by AIP Publishing. https://doi.org/10.1063/1.5050808

. INTRODUCTION

Biochemical reactions in cells are intrinsically stochas-
tic.!* When the concentrations of participating molecules are
small or the differences in reaction rates are large, stochas-
tic effects become prominent.>>~’ Many stochastic models
have been developed to gain understanding of these reac-
tion systems.®!> These models either generate time-evolving
landscapes of probabilities over different microstates’~!2 or
generate trajectories along which the systems travel.®!3 Vec-
tor fields of probability flux and probability velocity are also
of significant interest as they can further characterize time-
varying properties of the reaction systems, including that of
the non-equilibrium steady states.'*' For example, deter-
mining the probability flux can help to infer the mechanism
of dynamic switching among different attractors.’*>! Quan-
tifying the probability flux can also help to characterize the
departure of non-equilibrium reaction systems from detailed
balance!%?>23 and can help to identify barriers and check-
points between different stable cellular states.”* Computing
probability fluxes and velocity fields has found applications in
studies of stem cell differentiation,? cell (:ycle,24 and cancer
development.??’
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Models of probability fluxes and velocities in well-mixed
mesoscopic chemical reaction systems have been the focus of
many studies.!”18:20:22-24.28-32 They are often based on the
formulation of the Fokker-Planck and the Langevin equa-
tions, both involving the assumption of Gaussian noise of
two moments.!7~19-23-24.33 However, these models are not valid
when copy numbers of molecular species are small*®34-3¢ as
they do not provide a full account of the stochasticity of the
system.?®34-38 For example, the Fokker-Planck model fails to
capture multistability in gene regulation networks with slow
switching between the ON and the OFF states.*® These mod-
els are also of inadequate accuracy when systems are far
from equilibrium.?> Moreover, solving the systems of partial
differential equations resulting from the Fokker-Planck and
Langevin equations requires explicit boundary conditions for
states where one or more molecular species have zero copies. '®
These boundary conditions are ill-defined in the context of
Gaussian noise® and are difficult to impose using the Fokker-
Planck/Langevin formulation, or any other continuous models,
as reactions cannot occur on boundary states when one or more
reactants are exhausted.

Several discrete models of probability flux and velocity
based on continuous-time Markov jump processes associated
with the firing of reactions have also been introduced.??-%-30-32
However, these models have limitations. The models devel-
oped in Refs. 20 and 32 account only for outflow fluxes. While
the probability of transition to a subsequent microstate after

Published by AIP Publishing.
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a reaction jump is accounted for, the inflow flux describing
the probability of transition into the current microstate from a
previous state is not explicitly considered. The work in Ref. 40
studies the phosphorylation and dephosphorylation process. It
introduces a formulation of discrete flux based on a forward
finite difference operator. However, this is only applicable to
this special system of simple single-species reactions, where
there is no mass exchange between the two different molecular
types. The models developed in Refs. 29 and 30 are limited to
analysis of single reactional trajectories. In addition, the proba-
bility flux is often assumed to be associated with reactions that
are reversible.*! While these models offer an in-the-moment
view on how probability mass moves in the system by fol-
lowing trajectories generated from reaction events, they do
not offer a global picture of the time-evolving probability flux
at a specific time or at fixed locations in the state space. To
construct the global flow-map of discrete probability flux and
velocity, proper formulations of discrete flux and velocity as
well as methods to quantify the discrete forward and back-
ward flux between every two states connected by reactions are
required.

In this study, we introduce the appropriate formulations
of discrete flux and discrete velocity for arbitrary mesoscopic
reaction systems. We redefine the derivative operator and dis-
crete divergence based on the discrete nature of chemical
reactions. The discreteness of both the state space and the jump
processes of reactions is taken into consideration, with the dis-
crete version of the continuity equation satisfied. Our approach
allows the quantification of probability flux and velocity at
every microstate, as well as the ability in tracing out the outflow
probability fluxes and the inflow fluxes as reactions proceeds.
In addition, proper boundary conditions are imposed, so vector
fields of flux and velocity can be exactly computed anywhere
in the discrete state space, without the difficulty of enforcing
artificial reflecting conditions at the boundaries.*> Our method
can be used to exactly quantify transfer of probability mass
and to construct the global flow-map of the probability flux in
all allowed directions of reactions over the entire state space.
Results computed using our model can provide useful char-
acterization of the dynamic behavior of the reaction system,
including the high probability paths along which the probabil-
ity mass of the system evolves, as well as properties of their
non-equilibrium steady states.

The accurate construction of the discrete probability flux,
velocity, and their global flow-maps requires the accurate cal-
culation of the time-evolving probability landscape of the
reaction networks. Here we employ the recently developed
ACME (Accurate Chemical Master Equation) method'?>*? to
compute the exact time-evolving probability landscapes of net-
works by solving the underlying discrete Chemical Master
Equation (dCME). This eliminates potential problems arising
from inadequate sampling, where rare events of low proba-
bility are difficult to quantify using techniques such as the
stochastic simulation algorithm (SSA).%1344

This paper is organized as follows. We first briefly discuss
the theoretical framework of reaction networks and discrete
chemical master equation. We then introduce the concept of
ordering of the microstates of the system, the definitions of dis-
crete derivatives and divergence, as well as flux and velocity on
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a discrete state space. We further illustrate how time-evolving
probability flux and velocity fields can be computed for three
classical systems, namely, the birth-death prOCGSS,12’45 the
bistable Schldgl model,'** and the oscillating Schnakenberg
system, 84748

Il. MODELS AND METHODS

A. Microstates, probability, reaction,
and probability vector

1. Microstate and state space

We consider a well-mixed biochemical system with con-
stant volume and temperature. It has n molecular species

X;, i =1, ..., n, which participate in m reactions Ry,
k =1, ..., m. The microstate x(t) of the system at time ¢ is
a column vector of copy numbers of the molecular species:
X(t) = (x1(8), 2(0), ..., x, (1)) € Z", where all values are

non-negative integers. All the microstates that the system can
reach form the state space Q = {x(r)lt € (0, o0)}. The size of
the state space is denoted as |Q|.

2. Probability and probability landscapes

The probability of the system to be at a particular
microstate X at time ¢ is denoted as p(X, t) € Rjo,1}. The proba-
bility surface or landscape p(¢) over the state space Q is denoted
as p(7) = {p(x,DIx € Q) }.

3. Reaction, discrete increment, and reaction direction

A reaction Ry takes the general form of
Tk
Reten, Xi+ +en Xy > Xi+o o+, Xy

so that R; brings the system from a microstate X to X + Sy,
where the stoichiometry vector

— ol _
Sk = (S, ... 80) = (cik = Clys -5 Cpp = Ciy)

gives the unit vector of the discrete increment of reaction Ry.
s, also defines the direction of the reaction Ry. In a well-
mixed mesoscopic system, the reaction propensity function
Aj(x) is determined by the product of the intrinsic reaction
rate ry and the combinations of relevant reactants in the current

microstate X,
N x
1
Ak(X)=rk| |( )
ioi \Clk

4. Discrete chemical master equation
and boundary states

The discrete Chemical Master Equation (ACME) is a set
of linear ordinary differential equations describing the changes
of probability over time at each microstate of the system. 4!
The dCME for an arbitrary microstate X = X(¢) can be written
in the general form as

m

D AKX = sOp(x = si, 1) — Akp(x, D),

k=1

ap(x,t)
ar

X — S, X € Q. (1)
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It is possible that only a subset or none of the permis-
sible reactions can occur at a particular state x if it is at the
boundary of the state space (2, where the number of reactants
is inadequate. Specifically, we define the boundary states 0Q,
for reaction k as the states where reaction Ry cannot happen,

0 ={x=(x1,...,x;,...,x,)| thereexist i:x <c;}.
. @
We define the overall boundary states as 0Q = | 0.
k=1

5. Reactional probability vector and its time-derivative

We can consider each of the k-th reactions separately and
decompose the right-hand side of Eq . (1) into m components,
one for each reaction, k = 1. ..m,

opr(x,t
Pk(;t ) = Ar(X — spp(x — g, 1) — Av(xX)p(x,1).  (3)
dp(x,1)/0t in Eq. (1) therefore can also be written as
opx.1) _ i Ipx,1)
ot p ot :

Any of the m reactions can alter the value of p(x, ¢) as specified
by Eq. (3). While the probability p(x, ) is a scalar, we define
the reactional probability vector p(X, t) such that

P(X, t) = (pl(xa t)’”-’Pm(X, t)) € Rm» (4)
with p(x,1) = p(x,1) - 1 = (p1(X, 1), ..., pm(x,2)) - (1,..., DT
= Y pi(x,t). We also define the time-derivative of the

k=1

pVOb;lbility vector Op(X, 1)/0t as

IpKx,1) _ (dp1(x,1)
o o

Opm(x,1)
ot 0ot ’

and we have

op(x,1) _ (6p1(x, 2

ap’”("’t)).(l T

ot o 7 ot
ap(x, 1) O Opr(x,1)
= — 1 = —_—
ot kzz:l ot

B. Ordering microstates, directional
derivative, and discrete divergence

1. Ordering microstates

As the microstates are discrete and the stochastic jumps
are dictated by the discrete increments {s;} of reactions, we
introduce discrete partial derivative and discrete divergence
to describe the effect of specific reactions.

First, we imposed an unambiguous order relationship “<”
over all microstates. We impose an ascending order on the
microstates x° < x! < --- < x/?l that is maintained at all
time such that for each pair of states x! # %/, either x' < %/ or
x/ < x holds, but not both. There are many ways to impose
such an ordering. Without loss of generality, we can first use
the lexicographic order, so the microstates are initially sorted
by species alphabetically and then by increasing number of
molecules of the species. Other ordering schemes are also
possible.

J. Chem. Phys. 149, 185101 (2018)

2. Discrete partial derivative

We now consider the reactional component pi (X, ¢) of the
probability of the state x [see Eq. (4)]. For reaction Ry, the only
possible change in x is determined by its discrete increment
of si.

We first consider the case when the state x — s; preceding
the reaction Ry and the state x after the reaction have the order
X — S < X. This also implies X < x + s;. In this case, the
direction of the reaction coincides with the direction of the
imposed ordering of the microstates [Fig. 1(a)]. We define the
discrete partial derivative Api(X, t)/AXy of pr(X, t) over the
discrete states in the direction s of reaction Ry as

Api(x,1)

A Epk(x’t)_l?k(x_sk,t)’ (5)
Xx

if X — 8§ <X <X+S8;.

We now consider the case when X < X — s, namely, when
the state x — s; preceding reaction Ry and the state x after Ry
are ordered such that the after-reaction state x is placed prior
to the before-reaction state x — s;. This also implies X + s
< x [Fig. 1(b)]. In this case, the discrete partial derivative
Api(x, t)/AXy is defined as

Api(x. 1) = —(pe(X, 1) — p(X + 8¢, 1)), ©®
AXk

if X + 8§ < x < x — s;. The negative sign “~” indicates that the
direction of the reaction Ry is opposite to the direction of the
imposed order of the states.

3. Discrete divergence

We now introduce the discrete divergence V4 -p(X,t) € R
for the probability vector p(x, ¢) over the m discrete incre-
ments {s;} of the reactions. Applying Eqs. (5) and (6) to each
reactional component p;(X, t) of p(x, r) defined in Eq. (4), the
discrete divergence V,; - p(X, ) at X is the sum of all discrete
partial derivatives along the directions of reactions,

m

Vopin=z ) A0 ™

= AXk

Ascending order of the microstates

(a) X-Sg X X+Sk>
- - g -~ ng
S0 © ;609 005
(b) X+Sy X X=Sk
- -
@ v v
0P 092 %S

FIG. 1. Ordering of microstates: (a) when the order of the state preceding
the reaction Ry and the state after the reaction coincides with the imposed
ascending order of microstates, we have X — s < X < X + s; and (b) when
the order of the state preceding the reaction Ry, and the state after the reaction
is in the opposite direction to the ascending order of the microstates, we have
X +S; <X <X — §.
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C. Discrete flux and velocity at a fixed microstate
1. Single-reactional flux

There are two types of reaction events affecting flux
between two states x and X + s;: reactions generating flux
flowing from x to x + s; and reactions generating flux flow-
ing from x + s; to X. The ordering of the microstates enables
unique definition of the type of events that the firing of a reac-
tion Ry belongs to. For any two states x and X + sg, only
one of the two orderings is possible: we have either x < x
+ s or X + s < X. We define the single-reactional flux of
probability Jy(x,t) € R for reaction R; at microstate X €
as

Ar(xX)p(x, 1) X < X + S,
Jr(x, 1) = ®)
Ar(X —sp)p(X — S, 1) X < X — S

Jr(x, t) depicts the change in p(x, t) at the state x due to one
firing of reaction Ry. If x < X + s, Jx(X, t) depicts the outward
flux (outflux) of probability due to one firing of reaction Ry at
X to bring the system from x to x + sg. If x < x — s¢, Jx(X, 1)
depicts the inward flux (influx) of probability due to one firing
of reaction Ry at X — sy to bring the system from x — s; to x.
For any two states connected by a reaction Ry, only one of the
two orderings is possible as the imposed ordering of the states

|

AXk -

AJ(x,1) _ {

With simplifications from the trivial identity —s; + s; = 0, the
two expressions of AJx(X, t)/Ax; can be combined into one,

A 4 xp(x, 1) = Ag(x = $0p(x = 56, 1)
AXy,
_ apk(x, 1)
_ = )

4. Total reactional flux, divergence,
and continuity equation

We now define the total reactional flux or r-flux J,(x, t),
which describes the probability flux at a microstate x at time
ts

Jr(X,t)E(Jl(X,t),...,Jm(x,t))eRm. (10)

Intuitively, the r-flux J,(x, ¢) is the vector of rate change of
the probability mass at x in directions of all reactions. Similar
to Eq. (7), we have the discrete divergence of J.(x, t) at the
microstate X,

R ECHEDY

k=1

AJi(x,1)

A, (11)

From Eq. (9), we have

m

Va-Jr(x,1) = Z[Ak(X)P(X, 1) = Ap(X = s)p(x = s, 1)]. (12)
k=1

Ar(X)p(X,t) — Ap(X = sp)p(X — S, )
—(Ar(X = Sp)p(X — S, 1) — Ap(X — S + S )p(X—Si + Sy, 1))

J. Chem. Phys. 149, 185101 (2018)

is unique. Therefore, the single-reactional flux can be applied
to all microstates in a self-consistent manner. It also accounts
for all reactions as J(x, t) can be defined for every reaction Ry.
The single-reactional Ry velocity is defined correspondingly
as

(X, 1) = Jy (X, 1)/p(X, 1).

2. Flux at boundary states

No reactions are possible if any of the reactant molecules
is unavailable or if its copy number is inadequate. If X < X + s
[Fig. 1(a)], but x € € [Eq. (2)], reaction R; cannot happen,
and we have Ji(x, 1) =0. If x < x — s; [Fig. I(b)], but x — s €
0Q; [Eq. (2)], reaction Ry cannot happen, and we have J(x,
t) = 0. We therefore have the following boundary conditions
for Ji(x, 1):

0 x<x+s; and x € 9Q),
Ji(x,1) =
0 x<Xx-—s;and x—s; € Q.

3. Discrete derivative of Ji

Similar to Egs. (5) and (6), the directional derivative
of single-reactional flux AJy(X, t)/Ax; of Ji(X, t) along the
direction s; of reaction Ry, is defined as follows:

if x-—s; <x,

if X <Xx-s.

Similar to its continuous version,3!? the discrete conti-

nuity equation for the probability mass insists that

op(x, 1)
ot

From Egs. (11), (13), and (1), it is clear that r-flux J,(x, )
satisfies the continuity equation. The probability mass flows
simultaneously along all m directions, with the continuity
equation satisfied at all time.

Va-Jr(x,1) = - 13)

5. Single-reactional species flux
and stoichiometric projection

The reactional probability flux Ji(X, t) along the direction
of reaction Ry defined in Eq. (8) can be further decomposed
into components of individual species. With the predetermined
stoichiometry s; = (s}(, R sZ), we define the stoichiometric
projection of Ji(x, t) into the component of the j-th species X
as

T X, 1) = SJe(x, 1)

The set of scalar components of all species {J{;(x, )} can
be used to form a vector Jy(x,1) € R”", which we call the
single-reaction species flux,

Jex, 1) = (JL(x, 1), ... . JH(x, 1)) = spJp(x, 1) € R".
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The single-reaction species velocity of probability is defined
correspondingly as vi(X, 1) = Jx(X, )/p(X, 1).

6. Total species flux and velocity

The total species flux or s-flux J;(x,t) € R" is the sum of
all k single-reaction species flux vectors at a microstate x € R",

m

L= Y I =) sxneR"  (14)
k=1

k=1

The total species velocity for probability is defined accordingly
as

Vox, 1) = )" Ji(%,0)/p(x, 1), (15)
k

=1

The s-flux J,(x, ¢t) is different from the r-flux J,(x, ) defined
in Eq. (12). Reaction-centric J,(x,7) € R™ characterizes the
total probability flux at the current state in the directions of
all reactions, while species-centric J4(x,¢) € R" sums up the
contributions of every reaction to the probability flux at the
state x in the directions of all species.

D. Flux of reversible reaction
1. Flux of reversible reactions system

We now discuss probability flux in reversible reaction sys-
tems that has been previously studied'®>* and how they are
related to fluxes formulated here. For a pair of the reactions,
its directionality needs to be specified upfront, namely, which
reaction is the forward reaction R* and which is the reversed
reaction R™,

r+
RU:eiXi+-+¢Xy > X1+ -+ Xn,
_ r
R :ciXi+-+¢X, = aXi+- -+ X

Lets= (c{ —-c1, ..., C) — cp) be the stoichiometry of reaction
R* and —s be the stoichiometry of reaction R™. The flux J
described in Refs. 16 and 53 is the net flux between x and
x +s. [tis specified as the difference between the forward flux at

n
xJtx, 1) =r* [] (fi ) p(X, t) generated by the forward reaction
I=1

n
R* and the reverse flux atx +s J™(x +5s,1) = r~ [] (X/:,s’ ) p(x
=1
+s, 1) generated by the reverse reaction R™, both connecting x

and x + s,103

Jxn=r[] (Z)p(x, n-r[] (xl:,”)p(x +5,0. (16)

I=1 =1 [

2. Conversion between single-reactional species
flux and flux in a pair of reversible
reaction system

The flux J(x, ¢) for a pair of reversible reactions above
can be related to the s-flux Js(x, ) of Eq. (14) by exam-
ining the projection of the J(x, ¢) in Eq. (16) to individual
species. Specifically, with the stoichiometry s, the projection
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of the flux of Eq. (16) to the component of the j-th species
X j is

Jxn=sixn=st| | (Z)p(x, 1 —sr

=1

<[] (x’:,”)p(“s,z) eR". (17)

=1 I

When the direction of the forward reaction R* coincides
with the ascending order of the states, one firing of R* with
the stoichiometry vector s at the state x brings the system
to the state X + s in the direction of the ascending order.
From Eq. (14), the s-flux Jy(x, 1) for (R*, R7) is Js(x,1)

n n
= sr* [1 ()p(x.0) = s [T (5")p(x + . 1). In this case, the
=1 =1\ ¢

projection of the reversible reaction flux by Eq. (17) is identical
to the s-flux by Eq. (14) at the state x.

When the direction of the forward reaction R* is opposite
to the ascending order of the states, one firing of R™with the
stoichiometry vector —s at the state X + s brings the system
to the state x in the direction of the ascending order. From
Eq. (14), the s-flux Js(x + s, t) for (R*, R7) is Js(x +8,1)

n n
=sr[] (’C")p(x, H-sr[] (xltsl>p(x+s, t). In this case, the
=1 =1 G

projection of the reversible reaction flux by Eq. (17) is identical
to s-flux by Eq. (14) at the state x + s.

lll. RESULTS

Below we illustrate how time-evolving and steady-state
flux and velocity fields of the probability mass can be com-
puted for three model systems, namely, the birth-death process,
the bistable Schlogl model, and the oscillating Schnakenberg
system. The underlying discrete Chemical Master Equation
(dCME) [Eq. (1)] of these models is solved using the recently
developed ACME method.'>*3 The resulting exact probability
landscapes of these models are used to compute the flux and
the velocity fields.

A. The birth and death process

The birth-death process is a simple but ubiquitous pro-
cess of the synthesis and degradation of molecule of a single
specie.'>* The reaction schemes and rate constants examined
in this study are specified as follows:

R1: (Z)rﬁlX, I"1=1,
Ry: X330, r=0.025.

Below we use k as the index of the two reactions.
1. Ordering microstates

The microstate in this system is defined by the copy num-
ber x of the molecular specie X. We order the microstates in
the direction of increasing copy numbers of x, namely, (x = 0)
<@kx=DH)<x=2)--.

2. Discrete increment and reaction direction

Reaction R| brings the system from the state x to the state
x + 1, in the direction of increasing order of the microstates.
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Its discrete increment is 51 = 1. Reaction R; brings the system
from the state x to the state x — 1, in the direction of decreasing
order of the microstates. Its discrete increment is therefore
S2 = —-1.

3. Discrete chemical master equation

Following Eq. (1), the discrete chemical master equation
for this system can be written as

op(x,t)/0t = rip(x,t) —rip(x — 1,1) = rn(x + 1)
Xpx+1,1) + roxp(x, t). (18)

4. Single-reactional flux, velocity,
and boundary conditions

The single-reactional flux J;(x, ) € R can be written as
Ji(x, 1) = rip(x, 1), Jo(x, 1) = n(x+ Dpx+ 1,1, (19)

Herex =0, 1, .. .. No special boundary conditions are required
for this system as J (x, #) and J (x, t) at the boundary x = 0 take
the values specified by Eq. (19). The single-reactional velocity
vk(x,7) € R can be written as v (x, t) = Ji(x, 1)/p(x, t) and
va(x, t) = Ja(x, DIp(x, ).

5. Discrete partial derivative

The imposed ordering of the microstates implies x < x + 51
ass; =1andx <x + 1. By Eq. (5), the derivative AJ(x, t)/Ax;
of the single-reactional flux function J; is

AJq(x,t
% i) =Dy =s51.0)

= rpx, 1) —ripx = 1,1).

The imposed ordering of the microstates also has x <x — s as
sp» =—1land x < x + 1. By Eq. (6), the derivative AJ»(x, t)/Ax,
of the single-reactional flux function J; is

AJa(x, 1)

A, —(2(x, 1) = Jo(x + 52,1))

—(r2(x + Dp(x + 1, 1) = n(x)p(x, 1)).

6. Total reactional flux, discrete divergence,
and continuity equation

Following Eq. (10), the total reactional flux J,(x, ) € R?
is
Jl’(xa t) = (Jl(xa t)a Jz(x» t))
= (rip(x, 1), rx+ Dpx+1,1)).

The total reactional velocity v,(x,?) € R? is v, (x, t)
=J,(x, )/p(x, 1).

Following Eq. (7), the discrete divergence V; - J,(x, 1)
of J,(x,1) € R? over the discrete increments s 1 and s, can be
written as

2

ZRECOEDY

k=1

AJi(x, 1)
Axy,

= rlp(-xs t) - rlp(-x - 17t)
—rx+ Dpx+ 1,0+ rnp,t). (20)
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Here the r-flux J,.(x, ) indeed satisfies the continuity equa-
tion as we have V4-J,(x, t) = —9p(x, )/0t from Egs. (13), (18),
and (20).

7. Stoichiometry projection and single-reactional
species flux

Since there is only one specie in this system, the stoi-
chiometry projection of Ji(x, t) to the specie X is equal to
the single-reactional species flux Ji(x,#) € R, which can be
written as

Ji(x,t) = ripx,t) and Ja(x,t) = —rp(x + Dpx + 1,1).

The single-reactional species velocity vi(x,f) € R can be
written as follows: vi(x, 1) = Ji(x, D)/p(x, t) and v(x, )
=Ja(x, Hip(x, ).

8. Total species flux and velocity

Following Eqgs. (14) and (15), the s-flux J(x, ¢) and the
total velocity vs(x, ) are

Js(x, 1) = np(x, 1) = ra(x + Dp(x + 1, 1),

vs(x, 1) = Jy(x, ) /p(x, 1).

When J(x, ) > 0 and v5(x, ¢) > 0, the probability mass moves
in the direction of increasing copy number of X. This is the
direction of the ascending order of microstates we imposed.
When J(x, 1) < 0 and vs(x, t) < 0, the probability mass moves
in the direction of the decreasing copy number of X. We will
further use just simple flux instead of s-flux.

9. Overall behavior of the birth and death system

We examine the behavior of the birth and death pro-
cess under the initial conditions p(x = 0)|,_o = 1 [Fig. 2(a),
backside] and that of the uniform distribution [Fig. 2(d),
backside].

For the initial condition of p(x = 0)|,_o = 1, the probabil-
ity landscape changes from that with a peak at x = 0 to that with
a peak at x = 40 [Fig. 2(a)]. Figure 2(b) shows the heatmap of
the flux J(x, t), and Fig. 2(c) shows the heatmap of the veloc-
ity vs(x, 1). Yellow and red areas represent locations where the
probability moves in the positive direction, while white areas
represent locations where the flux and velocity both are close
to be zero. The flux and velocity of probability mass [Figs. 2(b)
and 2(c)] are positive at all time, indicating that the probabil-
ity mass is moving only in the direction of increasing copy
number of x. Moreover, when the probability is non-zero, the
probability velocity remains constant at any fixed time # across
different microstates. The blue line in Figs. 2(b) and 2(c) cor-
responds to the peak of the system that changes its location
from x = 0 to x = 40.

For the initial condition of the uniform distribution, the
probability landscape changes from the constant line to that
with a peak at x =40 [Fig. 2(d)]. Figure 2(e) shows the heatmap
of the flux J(x, t), and Fig. 2(f) shows the heatmap of the
velocity vs(x, ¢). Blue areas represent locations where the prob-
ability mass moves in the negative direction, yellow and red
areas represent locations where the probability moves in the
positive direction, while white areas represent locations where
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FIG. 2. The time-evolving probability landscape, flux, and velocity of the probability mass of the birth and death system starting from the initial conditions of
p(x =0)|,—¢g = 1 [(a)—(c)] and from the initial conditions of the uniform distribution [(d)—(f)]. (a) and (d): the probability landscape in p(x, t); (b) and (e): the

corresponding value of flux J(x, 7); (c) and (f): the value of velocity vs(x, 1).

the flux and velocity both are equal to zero. Specifically, when
x < 40, we have Jg(x, 1) > 0 and vg(x, ) > 0, namely, the
probability mass moves in the direction of increasing copy
number of x. By contrast, when x > 40, we have J(x, 1) <0
and v,(x, ) < 0, indicating that the probability mass moves in
the direction of decreasing copy number of x. When x = 40,
we have J(x, 1) = 0 and v5(x, ¢) = 0. Furthermore, the prob-
ability velocity at a specific time ¢ is different for different
microstates, with the highest velocities located at the boundary
of x =0. The blue line in Figs. 2(e) and 2(f) x = 40 corresponds
to the peak of the system, which appears starting at about
t=5.

To solve this problem using the ACME method, we intro-
duced the buffer of capacity x = 92. At the state x = 92 when the
buffer is exhausted, no synthesis reaction can occur. Therefore,
the flux at the boundary x = 92 is set to zero.

Our birth and death system eventually reaches to a steady
state. As expected, the same steady state probability distribu-
tion is reached from both initial conditions [shown in different
scales in Figs. 2(a) and 2(d)]. At the steady state, the prob-
ability landscape has a peak at x = 40. Both the velocity
vs(x, 1) and the flux Js(x, #) converge to zero at the steady
state.

B. Bistable Schidgl model

The Schlogl model is a one-dimensional bistable system
consisting of an auto-catalytic network involving one molec-
ular specie X and four reactions.*® It is a canonical model
for studying bistability and state-switching.'>>* The reaction
schemes and kinetic constants examined in this study are
specified as follows:

k
R : A+2X—l>3X, k1=6;

Ry: 3XBA+2X. k=36

. @1)
Ry: B-SX, ky=025;

k.
Ry: XSB, ky=2095.

Here A and B have constant concentrations a and b, which
are set to a = 1 and b = 2, respectively. We set the volume of
the system to V = 25.46 The rate of reactions are specified as
ry = k]/V, rp = kz/Vz, r3 = k3V, and rq4 = k4.

1. Ordering microstates

We define the microstates of this system using the copy
number x of the molecular specie X. We order the microstates
in the direction of increasing copy numbers of X, namely,
x=0)<x=)<x=2)--

2. Discrete increment and reaction direction

Reactions R; and Rj3 bring the system from the state x
to the state x + 1, in the direction of increasing order of the
microstates. Their discrete increments s; and s3 are s; = 1 and
s3 = 1. Reactions R, and R4 bring the system from the state x
to the state x — 1, in the direction of decreasing order of the
microstates. Their discrete increments s, and s4 are therefore
N —1and S4 = -1.

3. Discrete chemical master equation

Following Eq. (1), the discrete chemical master equation
for this system can be written as
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op(x,t -DHx-2 1 -1
% = rlaLZ(x)p(x -1,0H+ ”2%17@ +1,0)+mbp(x — 1,1) + ra(x + Dp(x + 1, 1)
x(x-1) x(x = Dx=-2)
—ra 5 p(x, 1) — rsz(x, t) — r3bp(x,t) — raxp(x, t). 22)
[
We compute the probability landscape p(x, f) underlying Ai(x, 1) = J1(x6, 1) = J1 (x = s1,1)
Eq. (22) using the ACME method.!>* Ax
x(x—1) x-—Dx-2)
=ra p(x,t) — rna————p(x — 1, 1),
4. Single-reactional flux, velocity, AJ 2 2
g m ’t
and boundary conditions 2;?5 ) _ (1) = Ja(x + 50.1))
Following Eq. (8), the single-reactional flux Ji(x,7) € R : (c+ Dx(x — 1)
can be written as =—(n TP(X +1,0)
-1 x+2)(x+ x
Jl()c7 t) = rlax(xz )p(x, t)’ - 6 p(X, l)),
_ AJ3(x, 1)
D(x,t)=n Wp(x +1,0), —ng = J3(x, 1) = J3(x — 53, 1)
J3(x,t) = r3bp(x, 1), = —(r3bp(x,1) — r3bp(x — 1,1)),
_ AJy(x,t
Ja(x, 1) = rg(x + Dp(x + 1, 1). Zi): ) = (e 1) = Ja(x + 54.1))

We have the single-reactional fluxes J(x, ) = 0 and J,(x, )
= 0 on the boundary with either x = 0 or x = 1, where reac-
tions R; and R, cannot happen. The single-reactional fluxes
J3(x, 1) and J4(x, t) are as given above and do not vanish at the
boundaries.

The single-reactional velocity vy € R can be written as
vr(x, £) =Jr(x, DIp(x, 1), withk =1, ..., 4.

5. Discrete partial derivative

The imposed ordering of the microstates has x < x + 1,
and therefore, x < x + 51, X <x —s2, x <x+s3,and x < x — 54
ass; =1,sp=—1,s53 =1, and s4 = —1. According to Egs. (5)
and (6), the derivatives AJ(x, 1)/Ax; of the single-reactional
fluxes {J} are

J

= —(rs(x + Dp(x + 1, 1) — raxp(x, 1)).

6. Total reactional flux and velocity, discrete
divergence, and continuity equation

Following Eq. (10), the total reactional flux J,(x, ) € R*
is
Jr(x’ t) = (Jl(-x’ t)’ Jz(x» t)5J3(-x9 t)» J4(.X, t))
x(x—-1) x+Dx(x—-1)
6
X p(x+ 1,1), r3bp(x, 1), ra(x + Dp(x + 1,1)).

= (ra p(x, 1), 2

The total reactional velocity v,(x,t) € R* is v (x, 1)
=J,(x, Dip(x, 1).

The discrete divergence V - J.(x, 1) of J.(x, 1) € R* over the discrete increments S1, 82, 83, and s4 can be written as

4
Vo don=y S O DD 14 - SRS D
=1 k
x(x=1Dx=-2)
+ rsz(x, 1) — r3bp(x — 1,1) + r3bp(x,t) — ra(x + Dp(x + 1, 1) + raxp(x, t). (23)

The flux J,(x, #) indeed satisfies the continuity equation as we
have V; - J.(x, t) = —0p(x, 1)/0t from Egs. (13), (22), and (23).

7. Stoichiometry projection and single-reactional
species flux

Since there is only one specie x in this system, the stoi-
chiometry projection of single-reactional flux Ji(x, t) to x is
equal to the single-reactional species flux Ji(x, ) € R, which

can be written as

(1) = ’”la)C(xz_ D e,
Bty = - R Dy

J3()C, t) = r3bp(xs l),
Ja(x, 1) = —rg(x + Dp(x + 1, 1).
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The single-reactional species velocities v, € R is vi(x, )
=Ji(x, lp(x, 1), withk =1, ..., 4.

8. Total species flux and velocity

Following Egs. (14) and (15), the total species flux
Js(x, 1) and velocity v,(x, ) for the four reactions are

x(x — Dp(x, £ =1y (x+ 1)2(x -1

Xpx+1,0) + r3bp(x, 1) — ra(x + Dp(x + 1, ),

Jo(x,1) = ria

and vg(x, 1) = Js(x, )/p(x, t).

9. Overall behavior of the Schlégl system

For the set of parameter values used in Eq. (21), the
Schlogl model is bistable. It has two peaks at x = 4 and
x =92. In order to study how switching between the two peaks
occur, we examine the behavior of the model under the ini-
tial conditions of p(x = 4)|,_q = 1 [Fig. 3(a)] and the initial
condition of p(x = 92)|,_o = 1 [Fig. 3(d)].

For the initial distribution of p(x = 4)|,—¢y = 1, the prob-
ability landscape changes from that with a single peak at
x = 4 to that with two maximum peaks at x = 4 and x = 92
[Fig. 3(a)]. Figure 3(b) shows the heatmap of the flux J(x, 7),
and Fig. 3(c) shows the heatmap of the velocity vs(x, f). Yellow
and red areas represent locations where the probability moves
in the positive direction, while white areas represent locations
where the flux and velocity both are close to be zero. The
lower blue lines in Figs. 3(b) and 3(c) correspond to the peak at
x =4.They are straight lines as the location of the peak does not

J. Chem. Phys. 149, 185101 (2018)

change over time. Another blue line starts to appear at x = 92
at about 7 = 3 and corresponds to the second peak. At the same
time, at around ¢ = 3, we observe the appearance of a mini-
mum of the probability landscape (red line), separating the two
maximum peaks. We have J(x, t) > 0 and vy(x, ¢) > 0, indi-
cating that the probability moves in the direction of increasing
copy number of molecules [Figs. 3(b) and 3(c)] in the major-
ity of the states. In the white region, we have J(x, ) = 0 and
vg(x, 1) = 0.

For the first initial condition of p(x = 92)|,_y = 1, the
probability landscape changes from that with a single peak at
x =92 to that of two peaks at x =92 and x = 4 [Fig. 3(d)]. Fig-
ure 3(e) shows the heatmap of the flux J(x, ¢), and Fig. 3(f)
shows the heatmap of the velocity vy(x, ). Blue areas repre-
sent locations where the probability mass moves in the negative
direction, while white areas represent locations where the flux
and velocity both are equal to zero. The top blue lines in
Figs. 3(e) and 3(f) correspond to the peak at x = 92. These
are straight lines as the location of this peak does not change
over time. Another blue line starts to appear at x = 4 at around
t = 3 and corresponds to the second peak. At around ¢ = 3, we
also observe the appearance of a minimum on the probability
landscape (red line) separating the two maximum peaks. In
the blue region, we have J(x, ) < 0 and v,(x, t) < 0, and the
probability moves in the direction of increasing copy number
of molecules [Figs. 3(e) and 3(f)] in the majority of states. In
the white region, we have J(x, t) = 0 and v,(x, ) = 0.

In both cases (Fig. 3), the second peak appears after about
t = 3. We also observe that the absolute values of the flux
driving the system from the system with one peak at x = 4
to the emergence of the second peak at x = 92 and from the
system with one peak at x = 92 to the emergence of the second
peak at x = 4 are of the same scale.

Jy(x.1)

pxt) (a)

(b)

80
X
10

v, (x.1)

p(x.0)  (d)

"t

FIG. 3. The time-evolving probability landscape, flux, and velocity of the probability mass in the Schlogl system starting from the initial conditions of
p(x =4)|,—9 = 1 [(a)—(c)] and from the initial conditions of p(x = 92)|,.o = 1 [(d)—(})]. (a) and (d): the probability landscape in p(x, t); (b) and (e): the
corresponding value of flux in J(x, 7); and (c) and (f): the value of velocity vs(x, 7).
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The Schlogl process eventually reaches a steady state.
As expected, the same steady state probability distribution is
reached from both initial conditions. At the steady state, the
probability landscape has two peaks at x =4 and x = 92. Both
the velocity vs(x, t) and the flux J(x, t) converge to zero at the
steady state.

C. Schnakenberg model

The Schnakenberg model is a simple chemical reaction
system originally constructed to study the behavior of limit
cycle.” It provides an important model for analyzing oscillat-
ing behavior in reaction systems.'®*7#% The reaction scheme
and rate constants examined in this study are specified as
follows:

k

R]I A—I>X], klzl;
k

R: X150, k=1;
k

Ry: BSXs, ky=1;

k.
R4 . X2 —4) @, k4 = 10_2;

k
R52 2X1+X2—5> 3X1, k5=1;

k)
Re: 3X1 > 2Xi+Xs, ke=1072

Here X; and X, are molecular species whose copy numbers
x1 and x, oscillate, and A and B are reactants with fixed copy
numbers. The volume of the system V is set to V = 1072
The rate of reactions are specified as r| = ky, rp = ko, r3 = k3,
rg = k4, rs = ks/Vz, and re = kG/Vz.

1. Ordering microstates

The microstate x = (x1, x2) in this system is defined by
the ordered pair of copy numbers x; and x of the molecu-
lar species X and X;. We impose the ascending order of the
microstates first in the direction of the increasing copies of
X . At a fixed value of X, we then sort the states in the order
of increasing copy number of X,. We therefore have (x; =0,
x2=0)<(x1 =0,XQ= 1)<(x| =O,x2=2)< <(x1 = 1,
x2=0)<(x1 =1,)C2=1)-~~.

2. Discrete increment and reaction direction

The discrete increments s;, S3, and s5 of reactions Ry, R3,
and Rs that bring the system in the direction of increasing
order of the microstates and the discrete increments S;, S4,
and sg of reactions R;, R4, and Ry that bring the system in the
direction of the decreasing order of the microstates are listed in
Table 1.

TABLE I. Schnakenberg system reaction stoichiometry.

J. Chem. Phys. 149, 185101 (2018)

3. Discrete chemical master equation

Following Eq. (1), the discrete chemical master equation
for the system can be written as

ap(x,t
—p;t ) = —riap(x1,x2, 1) + riap(x; — 1,x2, 1)

—rx1p(x1,x2,1) + r2(x1 + Dp(xy + 1, x2, 1)
—r3bp(x1,x2,1) + r3bp(x1,x2 — 1,1)
+r4(x + DpCer, x2 + 1, 1) — raxop(x1, x2, 1)

-1 -2
+rswp(x1 -Lx+1,1)

2
-1
—rswp(xl,xz,l)
~1 1
srgaz e+ )"6‘()‘” Doy + 1,32 = 1,1)
— D =2
—m%p(mmt) (24)

We compute the probability landscape p(x, #) underlying
Eq. (22) using the ACME method.'>*3

4. Single-reactional flux, velocity,
and boundary conditions

The single-reactional flux J;(x, ) € R can be written as
Ji1(x, 1) = riap(xy, x2, ),
DX, 1) = (1 + Dp(xy + 1, x2, 1),

J3(x,1) = r3bp(x1,x2, 1),

Ja(X, 1) = rqg(xp + l)p(xl,xz +1,1), (25)
-1
J5s(x,1) =5 Mp(m , X2, 1),
-1 1
J(,(X, t) = r6%p(xl + l’xz - 17t)

We have the single-reactional fluxes Js(x, ) = 0 and Jg(X,
t) = 0 on the boundary with either x = (0, 0) or x = (1, 0),
where reactions Rs and R¢ cannot happen. The other single-
reactional fluxes are as given above and do not vanish at the
boundaries.

The single-reactional velocity v (X, ) € R can be written
as vr(x, 1) = Ji(x, HIp(x, t).

5. Discrete partial derivative

The imposed ordering of the microstates has X < X + sy,
X<X—8,X<X+83,X<X—S4,X <X+S5,and X < X — Sg.
According to Egs. (5) and (6), the derivatives AJ (X, t)/Ax; of
the single-reactional fluxes J; can be written as

Reactions Ry R3

Rs Ry R4 Re

Discrete increments sy =(1,0)  s3=(0, 1)

ss=(1,-1)

s5=(-1L0) s4=(0,-1) se=(-11
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AJi(x,t
ANYD _ gn) - x - s1.1)
AX]
= riap(x1,x2,1) — riap(x; — 1,x2,1),
A (X, t
BEYD _ yx,t) = x4 50.1)
AXZ
= —(ro(x1 + Dp(x1 + 1, x2,1) — raxip(x1,x2, 1)),
AJ5(x,t
BEYD _ pn) - Iyx - s3.1)
AX3
= r3bp(x1,x2,1) — r3bp(x1,x2 — 1,1)),
AJg(x,t
BAD _ (Ja1) — Jax +50.1)
AX4
= —(rs(x2 + Dp(x1, x2 + 1,8) = raxop(xy, x2, 1)),
AJs(x, ¢t
AEOD sty — dstx = 55,1
X5
x1(x; — Dx
= r5¥17(x1’(x2 +1),1)
-1 -2
—mgL—¥?—lﬂmM—Lm+L&
AJg(X, t
BIeD) _ (o, 1) — Jo(x + 86.1)
AX(,

(1 = Dxp(xp + 1)

:—(}"6 6 p(.Xl+1,.X2_l,t)
x1(x = Dxp =2
—rﬁ%p(xl,xg,t)).

6. Total reactional flux and velocity, discrete
divergence, and continuity equation

Following Eq. (10), the total reactional flux J,(x, 1) € R®
is

Jr(x, 1) = (i(x, 1), Ja(X, 1), J3(X, 1), Ja(X, 1), J5(X, 1), Jo(X, 1)),

where {Ji(x, 1)} are as specified in Eq. (25). The total
reactional velocity v,(X,t) € R® is v,(x, 1) = J(x, Hip(x, t).

The discrete divergence V,; - J,(X, t) of the r-flux J,(x, f)
€ R® over the discrete increments S; can be written as

6

Va Jixn =)

k=1

AJi(x,1)

o — 26

Axc (26)

The r-flux J,(x, 7) indeed satisfies the continuity equation

as we have V; - J.(x, 1) = —dp(x, 1)/0t from Egs. (13), (24),
and (26).
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7. Stoichiometry projection and single-reactional
species flux

The single-reactional flux Ji(x, ¢) along the direction of
reaction Rj can be decomposed into components of individual
species using the predetermined stoichiometry s, = (s,i, s,%).
The x; and x, components of stoichiometric projections of
Ji(x, 1) are listed in Table II. The single-reactional species
flux is formed as follows:

Jx, 1) = (Jl(x, 1), Jp(x, 1), k=1,....6, (27)

where JI:(X, t) and J]f(x, t) are listed in Table II. The
single-reactional species velocity vi(X, 1) €2 Ris vi(x, 1)
= Jr(x, I)/p(X, 1).

8. Total species flux and velocity
Following Eqgs. (14) and (15), the total flux Js(x,¢)
m
€ R%is Jy(x,1) = Y Ju(x,1), where {J;} is as specified in
k=1

Eq. (27). The total species velocity vs(X,t) € R? is vy(x, 1)
= Js(x, DIp(x, 1).

9. Overall behavior of Schnakenberg system

We examine the behavior of the Schnakenberg system
with (a, b) = (10, 50) under two initial conditions, namely,
that of the uniform distribution and p(x = (0,0))|,-o = 1. We
computed the time-evolving probability landscape p = p(x, t)
using the ACME method.'>*3

For the uniform distribution, the probability landscape
in —logp(x, t) at time ¢ = 0.5 is shown in Fig. 4(a), where
high probability regions are in blue. Its overall shape takes
the form of closed valley, which is similar to an earlier study
based on the Fokker-Planck model.'® The trajectories of the
flux field Js(x, ¢) at time ¢ = 0.5 in the space of the copy-
numbers from different starting locations (marked by black
arrows at the top and bottom) are shown in blue in Figs. 4 and
5. These trajectories depict the directions of the movement of
the probability mass at different locations after traveling from
the starting points. The heatmaps of the flux in log I/(x, #)l and
the velocity in log lvg(x, 1)l are shown in Figs. 4(b) and 4(c),
respectively. The flux lines are closed curves and are overall
smooth. These closed flux lines reflect the oscillatory nature
of the reaction system. The velocity has larger values at loca-
tions where the flux trajectories are straight lines [green and
yellow regions in the upper right corner, Fig. 4(c)] but drops

TABLE II. Schnakenberg system reactional flux stoichiometry projections.

Reaction Jkl(xl,xz,t) = s,l]k(xl,xg,t) sz(xl,xz,t) = S%Jk()q,xz,t)

Ry riap(xi, xa, 1) 0

Ry —ra(x1 + Dp(xy + 1, x2, 1) 0

R3 0 r3bp(x1,x2, 1)

Ry 0 —rq(xp + l)p(xl, xp+ 1,1)

Rs szp(xw%l) —rswp(xw&,t)

Re —rﬁwpmn,xz—l,z) rswp(xl+l,n—l,t)
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FIG. 4. The time-evolving probability landscape, flux, and velocity of probability mass in the Schnakenberg system with (a, b) = (10, 50) at ¢ = 0.5, starting
from the uniform distribution [(a)—(c)] and from the initial conditions of p(x = (0,0))|,—¢o = 1 [(d)—(f)]. (a) and (d): the probability landscape in —log(p(x, 1));
(b) and (e): the corresponding value of flux in log IJs(x, #)I; and (c) and (f): the log absolute value of velocity log Ivs(x, )I.

significantly when the trajectories make down-right turns (light
and dark blue in the lower right corner, marked with an yellow
arrow).

For the initial conditions of p(x=(0,0)),.¢ = 1,
—log p(x, ) at time ¢ = 0.5 is shown in Fig. 4(d), where high
probability regions (blue) are located at a small neighborhood
around x = (0, 250). The heatmaps of the flux in log I/5(x, £)|
and the velocity in log lvy(X, 7)l are shown in Figs. 4(e) and 4(f),
respectively. The flux lines are closed curves and are overall
smooth. The oscillating flux lines appear again [Figs. 4(d) and
4(f)], but not all form closed curves. Specifically, all flux lines
which start at the upper region (x, = 500) become broken-off
in the mid-region, where the probability mass becomes neg-
ligible, resulting in negligible flux as well, with its absolute
value close to be zero. The maximum of the flux is reached at
the peak of the probability landscape [Fig. 4(e)]. The heatmap
of the probability velocity exhibits a similar pattern as that of
uniform distribution [Fig. 4(f) vs. Fig. 4(c)]. The color palettes
encoding the values of the velocity log lvs(x, 7)l are not-smooth
[Fig. 4(f)]. This is likely due to small numerical values of
probability in this region.

We then examined the steady state behavior of the system
at two conditions of the copy numbers of species A and B: (a,
b) = (10, 50) and (a, b) = (20, 40). The probability landscape
in —log(p(x, 1)) for (a, b) = (10, 50) shown in Fig. 5(a) exhibits
similar shape to that of Fig. 4. The probability values are higher
in locations near the left (x; = 0) and lower (x, = 0) boundaries.
The flux lines [Figs. 5(a)-5(c)] move from the upper left cor-
ner to the lower right corner and then make sharp right turns
until reaching the neighborhood near the origin. Subsequently,
they make right turns again and move upward, until the cycles

are closed. These closed flux curves move along the contours
on the probability landscape. The absolute values of the flux
[Fig. 5(b)] are largest near the boundaries of the probability
surfaces (x| =0 and x; = 0, red/orange colored ridge) and next
along the flux lines on the diagonal. The flux has small values
in the region above the diagonal (cyan and blue). The heatmap
of the velocity [Fig. 5(c)] exhibits a different pattern, with its
value dropping significantly in the small blue arch (see region
pointed by the yellow arrow), where flux lines make turns in
the lower region.

The probability landscape in —log(p(x, t)) for (a, b)
= (20, 40) is shown in Fig. 5(d). While exhibiting overall sim-
ilar pattern to that of (a, b) = (10, 50), the high probability
regions are more concentrated in locations near the lower-left
[Fig. 5(d)]. The flux lines [Figs. 5(d)-5(f)] are similar to those
of (a, b) = (10, 50) corner but oscillate around much smaller
contour, where x; < 200 and x; < 300. The close cycles of
flux lines also move along the contours on the probability
landscape.

The results obtained here are generally consistent with
that obtained using the Fokker-Planck flux model computed
from a landscape constructed using Gillespie simulations.!8
For example, the directions of the flux lines are the same. How-
ever, there are some differences. While the flux lines from the
Fokker-Planck model exhibit oscillating behavior even in the
boundary regions where x; < 2 or x < 2, where reactions Rs
and Rg cannot occur; hence, no oscillating flux is physically
possible. No such inconsistency exists in our model. Further-
more, the system considered here is much larger, with hundreds
of copies of X and X, involved, whereas <10 copies of X
and X, were considered in Ref. 18.



185101-13 Terebus, Liu, and Liang

o log(pxn)

500

400

300 12 300
X, 10 X,
200 8 200
6
100 4 100
L ]
| g a

J. Chem. Phys. 149, 185101 (2018)

v log|J(x.0)] - " " log|vs(§.t)|
’ 2 ©)

a ————
200 A 300 A a0 A s00

0

00 20

A 100 A 200 A 300 A a0 A s00
X|

% v log|J, (vat)| v ¥ ¥ ¥

v v v v ‘¥ -log(p()fo,t))

\\ :
N
N

500

400

300 12 300

N\ 10 X,
s 200
\ 6
3

200 N 300 A 400 A &
X, X

200

A 100 7

A 4 lOg! Vg({O'

SN B

\ 4 400

200 A 300 A 400 A 500
1

A 100 A

FIG. 5. The steady-state probability landscape, flux, and velocity of probability mass in the Schnakenberg system with (a, b) = (10, 50) [(a)—(c)] and (a, b)
= (20, 40) [(d)—(f)]. (a) and (d): the probability landscape in —log(p(x, )); (b) and (e): the corresponding values of flux in log 1Js(x, #)I; and (c) and (f): the log

absolute value of velocity log Ivg(x, £)l.

IV. CONCLUSION

In this study, we introduce new formulations of discrete
flux and discrete velocity for an arbitrary mesoscopic reaction
system. Specifically, we redefine the derivative and divergence
operators based on the discrete nature of chemical reactions.
We then introduce the discrete form of continuity equation
for the systems of reactions. We define two types of discrete
flux, with their relationship specified. The reactional discrete
flux satisfies the continuity equation and describes the behav-
ior of the system evolving along directions of reactions. The
species flux directly describes the dynamic behavior of the
reactions such as the transfer of probability mass in the state
space. Our discrete flux model enables the construction of the
global time-evolving and steady-state flow-maps of fluxes in
all directions at every microstate. Furthermore, it can be used
to tag the fluxes of outflow and inflow of probability mass
as reactions proceed. In addition, we can now impose bound-
ary conditions, allowing exact quantification of vector fields
of the discrete flux and discrete velocity anywhere in the dis-
crete state space, without the difficulty of enforcing artificial
reflecting conditions at the boundaries.*> We note that the accu-
rate construction of the discrete probability flux, velocity, and
their global flow-maps requires the accurate calculation of the
time-evolving probability landscape of the reaction network.
This is made possible by using the recently developed ACME
method.'>*3

As a demonstration, we computed the time-evolving
probability flux and velocity fields for three model systems,
namely, the birth-death process, the bistable Schlogl model,
and the oscillating Schnakenberg system. We showed how
flux and velocities converge to zero when the system reaches
the steady-state in the birth-death process and the Schlogl

models. We also showed that the flux and velocity trajecto-
ries in the Schnakenberg system converge to the oscillating
contours of the steady-state probability landscape, similar to
an earlier study,'® although there are important differences.
Overall, the general framework of discrete flux and veloc-
ity and the methods introduced here can be applied to other
networks and dynamical processes involving stochastic reac-
tions. These applications can be useful in quantification of
dynamic changes of probability mass, identification as well as
characterization of the mechanism where movement of prob-
ability mass drives the system toward the steady-state. They
may also aid in our understanding of the mechanisms that
determined the non-equilibrium steady state of many reaction
systems.
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