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Stochasticity plays important roles in reaction systems. Vector fields of probability flux and veloc-

ity characterize time-varying and steady-state properties of these systems, including high probability

paths, barriers, checkpoints among different stable regions, as well as mechanisms of dynamic switch-

ing among them. However, conventional fluxes on continuous space are ill-defined and are problematic

when at the boundaries of the state space or when copy numbers are small. By re-defining the deriva-

tive and divergence operators based on the discrete nature of reactions, we introduce new formulations

of discrete fluxes. Our flux model fully accounts for the discreetness of both the state space and the

jump processes of reactions. The reactional discrete flux satisfies the continuity equation and describes

the behavior of the system evolving along directions of reactions. The species discrete flux directly

describes the dynamic behavior in the state space of the reactants such as the transfer of probability

mass. With the relationship between these two fluxes specified, we show how to construct time-

evolving and steady-state global flow-maps of probability flux and velocity in the directions of every

species at every microstate and how they are related to the outflow and inflow of probability fluxes

when tracing out reaction trajectories. We also describe how to impose proper conditions enabling

exact quantification of flux and velocity in the boundary regions, without the difficulty of enforcing

artificial reflecting conditions. We illustrate the computation of probability flux and velocity using

three model systems, namely, the birth-death process, the bistable Schlögl model, and the oscillating

Schnakenberg model. Published by AIP Publishing. https://doi.org/10.1063/1.5050808

I. INTRODUCTION

Biochemical reactions in cells are intrinsically stochas-

tic.1–4 When the concentrations of participating molecules are

small or the differences in reaction rates are large, stochas-

tic effects become prominent.3,5–7 Many stochastic models

have been developed to gain understanding of these reac-

tion systems.8–12 These models either generate time-evolving

landscapes of probabilities over different microstates9–12 or

generate trajectories along which the systems travel.8,13 Vec-

tor fields of probability flux and probability velocity are also

of significant interest as they can further characterize time-

varying properties of the reaction systems, including that of

the non-equilibrium steady states.14–19 For example, deter-

mining the probability flux can help to infer the mechanism

of dynamic switching among different attractors.20,21 Quan-

tifying the probability flux can also help to characterize the

departure of non-equilibrium reaction systems from detailed

balance16,22,23 and can help to identify barriers and check-

points between different stable cellular states.24 Computing

probability fluxes and velocity fields has found applications in

studies of stem cell differentiation,25 cell cycle,24 and cancer

development.26,27

a)Electronic mail: jliang@uic.edu.

Models of probability fluxes and velocities in well-mixed

mesoscopic chemical reaction systems have been the focus of

many studies.17,18,20,22–24,28–32 They are often based on the

formulation of the Fokker-Planck and the Langevin equa-

tions, both involving the assumption of Gaussian noise of

two moments.17–19,23,24,33 However, these models are not valid

when copy numbers of molecular species are small28,34–36 as

they do not provide a full account of the stochasticity of the

system.28,34–38 For example, the Fokker-Planck model fails to

capture multistability in gene regulation networks with slow

switching between the ON and the OFF states.36 These mod-

els are also of inadequate accuracy when systems are far

from equilibrium.35 Moreover, solving the systems of partial

differential equations resulting from the Fokker-Planck and

Langevin equations requires explicit boundary conditions for

states where one or more molecular species have zero copies.18

These boundary conditions are ill-defined in the context of

Gaussian noise39 and are difficult to impose using the Fokker-

Planck/Langevin formulation, or any other continuous models,

as reactions cannot occur on boundary states when one or more

reactants are exhausted.

Several discrete models of probability flux and velocity

based on continuous-time Markov jump processes associated

with the firing of reactions have also been introduced.20,29,30,32

However, these models have limitations. The models devel-

oped in Refs. 20 and 32 account only for outflow fluxes. While

the probability of transition to a subsequent microstate after
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a reaction jump is accounted for, the inflow flux describing

the probability of transition into the current microstate from a

previous state is not explicitly considered. The work in Ref. 40

studies the phosphorylation and dephosphorylation process. It

introduces a formulation of discrete flux based on a forward

finite difference operator. However, this is only applicable to

this special system of simple single-species reactions, where

there is no mass exchange between the two different molecular

types. The models developed in Refs. 29 and 30 are limited to

analysis of single reactional trajectories. In addition, the proba-

bility flux is often assumed to be associated with reactions that

are reversible.41 While these models offer an in-the-moment

view on how probability mass moves in the system by fol-

lowing trajectories generated from reaction events, they do

not offer a global picture of the time-evolving probability flux

at a specific time or at fixed locations in the state space. To

construct the global flow-map of discrete probability flux and

velocity, proper formulations of discrete flux and velocity as

well as methods to quantify the discrete forward and back-

ward flux between every two states connected by reactions are

required.

In this study, we introduce the appropriate formulations

of discrete flux and discrete velocity for arbitrary mesoscopic

reaction systems. We redefine the derivative operator and dis-

crete divergence based on the discrete nature of chemical

reactions. The discreteness of both the state space and the jump

processes of reactions is taken into consideration, with the dis-

crete version of the continuity equation satisfied. Our approach

allows the quantification of probability flux and velocity at

every microstate, as well as the ability in tracing out the outflow

probability fluxes and the inflow fluxes as reactions proceeds.

In addition, proper boundary conditions are imposed, so vector

fields of flux and velocity can be exactly computed anywhere

in the discrete state space, without the difficulty of enforcing

artificial reflecting conditions at the boundaries.42 Our method

can be used to exactly quantify transfer of probability mass

and to construct the global flow-map of the probability flux in

all allowed directions of reactions over the entire state space.

Results computed using our model can provide useful char-

acterization of the dynamic behavior of the reaction system,

including the high probability paths along which the probabil-

ity mass of the system evolves, as well as properties of their

non-equilibrium steady states.

The accurate construction of the discrete probability flux,

velocity, and their global flow-maps requires the accurate cal-

culation of the time-evolving probability landscape of the

reaction networks. Here we employ the recently developed

ACME (Accurate Chemical Master Equation) method12,43 to

compute the exact time-evolving probability landscapes of net-

works by solving the underlying discrete Chemical Master

Equation (dCME). This eliminates potential problems arising

from inadequate sampling, where rare events of low proba-

bility are difficult to quantify using techniques such as the

stochastic simulation algorithm (SSA).8,13,44

This paper is organized as follows. We first briefly discuss

the theoretical framework of reaction networks and discrete

chemical master equation. We then introduce the concept of

ordering of the microstates of the system, the definitions of dis-

crete derivatives and divergence, as well as flux and velocity on

a discrete state space. We further illustrate how time-evolving

probability flux and velocity fields can be computed for three

classical systems, namely, the birth-death process,12,45 the

bistable Schlögl model,13,46 and the oscillating Schnakenberg

system.18,47,48

II. MODELS AND METHODS

A. Microstates, probability, reaction,
and probability vector

1. Microstate and state space

We consider a well-mixed biochemical system with con-

stant volume and temperature. It has n molecular species

X i, i = 1, . . ., n, which participate in m reactions Rk ,

k = 1, . . ., m. The microstate x(t) of the system at time t is

a column vector of copy numbers of the molecular species:

x(t) ≡ (x1(t), x2(t), . . . , xn(t))T ∈ Z
n
+, where all values are

non-negative integers. All the microstates that the system can

reach form the state space Ω = {x(t)|t ∈ (0, ∞)}. The size of

the state space is denoted as |Ω|.

2. Probability and probability landscapes

The probability of the system to be at a particular

microstate x at time t is denoted as p(x, t) ∈ R[0,1]. The proba-

bility surface or landscape p(t) over the state spaceΩ is denoted

as p(t) = {p(x, t)|x ∈ Ω
)

}.

3. Reaction, discrete increment, and reaction direction

A reaction Rk takes the general form of

Rk : c1k
X1 + · · · + cnk

Xn

rk
→ c′1k

X1 + · · · + c′nk
Xn

so that Rk brings the system from a microstate x to x + sk ,

where the stoichiometry vector

sk ≡ (s1
k , . . . , sn

k ) ≡ (c′1k
− c1k

, . . . , c′nk
− cnk

)

gives the unit vector of the discrete increment of reaction Rk .

sk also defines the direction of the reaction Rk . In a well-

mixed mesoscopic system, the reaction propensity function

Ak(x) is determined by the product of the intrinsic reaction

rate rk and the combinations of relevant reactants in the current

microstate x,

Ak(x) = rk

n
∏

l=1

(

xl

clk

)

.

4. Discrete chemical master equation
and boundary states

The discrete Chemical Master Equation (dCME) is a set

of linear ordinary differential equations describing the changes

of probability over time at each microstate of the system.8,49–51

The dCME for an arbitrary microstate x = x(t) can be written

in the general form as

∂p(x, t)

∂t
=

m
∑

k=1

[Ak(x − sk)p(x − sk , t) − Ak(x)p(x, t)],

x − sk , x ∈ Ω. (1)
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It is possible that only a subset or none of the permis-

sible reactions can occur at a particular state x if it is at the

boundary of the state space Ω, where the number of reactants

is inadequate. Specifically, we define the boundary states ∂Ωk

for reaction k as the states where reaction Rk cannot happen,

∂Ωk ≡ {x = (x1, . . . , xi, . . . , xn)| there exist i : xi < cik }.

(2)

We define the overall boundary states as ∂Ω ≡
m
⋃

k=1

∂Ωk .

5. Reactional probability vector and its time-derivative

We can consider each of the k-th reactions separately and

decompose the right-hand side of Eq . (1) into m components,

one for each reaction, k = 1. . .m,

∂pk(x, t)

∂t
= Ak(x − sk)p(x − sk , t) − Ak(x)p(x, t). (3)

∂p(x, t)
/

∂t in Eq. (1) therefore can also be written as

∂p(x, t)

∂t
=

m
∑

k=1

∂pk(x, t)

∂t
.

Any of the m reactions can alter the value of p(x, t) as specified

by Eq. (3). While the probability p(x, t) is a scalar, we define

the reactional probability vector p(x, t) such that

p(x, t) = (p1(x, t), . . . , pm(x, t)) ∈ Rm, (4)

with p(x, t) = p(x, t) · 1 = (p1(x, t), . . . , pm(x, t)) · (1, . . . , 1)T

=

m
∑

k=1

pk(x, t). We also define the time-derivative of the

probability vector ∂p(x, t)/∂t as

∂p(x, t)

∂t
≡

(

∂p1(x, t)

∂t
, . . . ,

∂pm(x, t)

∂t

)

,

and we have

∂p(x, t)

∂t
=

(

∂p1(x, t)

∂t
, . . . ,

∂pm(x, t)

∂t

)

· (1, . . . , 1)T

=

∂p(x, t)

∂t
· 1 =

m
∑

k=1

∂pk(x, t)

∂t
.

B. Ordering microstates, directional
derivative, and discrete divergence

1. Ordering microstates

As the microstates are discrete and the stochastic jumps

are dictated by the discrete increments {sk} of reactions, we

introduce discrete partial derivative and discrete divergence

to describe the effect of specific reactions.

First, we imposed an unambiguous order relationship “≺”

over all microstates. We impose an ascending order on the

microstates x0 ≺ x1 ≺ · · · ≺ x |Ω | that is maintained at all

time such that for each pair of states xi
, xj, either xi ≺ xj or

xj ≺ xi holds, but not both. There are many ways to impose

such an ordering. Without loss of generality, we can first use

the lexicographic order, so the microstates are initially sorted

by species alphabetically and then by increasing number of

molecules of the species. Other ordering schemes are also

possible.

2. Discrete partial derivative

We now consider the reactional component pk(x, t) of the

probability of the state x [see Eq. (4)]. For reaction Rk , the only

possible change in x is determined by its discrete increment

of sk .

We first consider the case when the state x − sk preceding

the reaction Rk and the state x after the reaction have the order

x − sk ≺ x. This also implies x ≺ x + sk . In this case, the

direction of the reaction coincides with the direction of the

imposed ordering of the microstates [Fig. 1(a)]. We define the

discrete partial derivative ∆pk(x, t)/∆xk of pk(x, t) over the

discrete states in the direction sk of reaction Rk as

∆pk(x, t)

∆xk

≡ pk(x, t) − pk(x − sk , t), (5)

if x − sk ≺ x ≺ x + sk .

We now consider the case when x ≺ x − sk , namely, when

the state x − sk preceding reaction Rk and the state x after Rk

are ordered such that the after-reaction state x is placed prior

to the before-reaction state x − sk . This also implies x + sk

≺ x [Fig. 1(b)]. In this case, the discrete partial derivative

∆pk(x, t)/∆xk is defined as

∆pk(x, t)

∆xk

≡ −(pk(x, t) − pk(x + sk , t)), (6)

if x + sk ≺ x ≺ x − sk . The negative sign “−” indicates that the

direction of the reaction Rk is opposite to the direction of the

imposed order of the states.

3. Discrete divergence

We now introduce the discrete divergence ∇d ·p(x, t) ∈ R

for the probability vector p(x, t) over the m discrete incre-

ments {sk } of the reactions. Applying Eqs. (5) and (6) to each

reactional component pi(x, t) of p(x, t) defined in Eq. (4), the

discrete divergence ∇d · p(x, t) at x is the sum of all discrete

partial derivatives along the directions of reactions,

∇d · p(x, t) ≡

m
∑

k=1

∆pk(x, t)

∆xk

. (7)

FIG. 1. Ordering of microstates: (a) when the order of the state preceding

the reaction Rk and the state after the reaction coincides with the imposed

ascending order of microstates, we have x − sk ≺ x ≺ x + sk and (b) when

the order of the state preceding the reaction Rk and the state after the reaction

is in the opposite direction to the ascending order of the microstates, we have

x + sk ≺ x ≺ x − sk .
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C. Discrete flux and velocity at a fixed microstate

1. Single-reactional flux

There are two types of reaction events affecting flux

between two states x and x + sk : reactions generating flux

flowing from x to x + sk and reactions generating flux flow-

ing from x + sk to x. The ordering of the microstates enables

unique definition of the type of events that the firing of a reac-

tion Rk belongs to. For any two states x and x + sk , only

one of the two orderings is possible: we have either x ≺ x

+ sk or x + sk ≺ x. We define the single-reactional flux of

probability Jk(x, t) ∈ R for reaction Rk at microstate x ∈ Ω

as

Jk(x, t) ≡




Ak(x)p(x, t) x ≺ x + sk ,

Ak(x − sk)p(x − sk , t) x ≺ x − sk .
(8)

Jk(x, t) depicts the change in p(x, t) at the state x due to one

firing of reaction Rk . If x ≺ x + sk , Jk(x, t) depicts the outward

flux (outflux) of probability due to one firing of reaction Rk at

x to bring the system from x to x + sk . If x ≺ x − sk , Jk(x, t)

depicts the inward flux (influx) of probability due to one firing

of reaction Rk at x − sk to bring the system from x − sk to x.

For any two states connected by a reaction Rk , only one of the

two orderings is possible as the imposed ordering of the states

is unique. Therefore, the single-reactional flux can be applied

to all microstates in a self-consistent manner. It also accounts

for all reactions as Jk(x, t) can be defined for every reaction Rk .

The single-reactional Rk velocity is defined correspondingly

as

vk(x, t) ≡ Jk(x, t)/p(x, t).

2. Flux at boundary states

No reactions are possible if any of the reactant molecules

is unavailable or if its copy number is inadequate. If x ≺ x + sk

[Fig. 1(a)], but x ∈ ∂Ωk [Eq. (2)], reaction Rk cannot happen,

and we have Jk(x, t) = 0. If x ≺ x − sk [Fig. 1(b)], but x − sk ∈

∂Ωk [Eq. (2)], reaction Rk cannot happen, and we have Jk(x,

t) = 0. We therefore have the following boundary conditions

for Jk(x, t):

Jk(x, t) ≡




0 x ≺ x + sk and x ∈ ∂Ωk ,

0 x ≺ x − sk and x − sk ∈ ∂Ωk .

3. Discrete derivative of Jk

Similar to Eqs. (5) and (6), the directional derivative

of single-reactional flux ∆Jk(x, t)/∆xk of Jk(x, t) along the

direction sk of reaction Rk is defined as follows:

∆Jk(x, t)

∆xk

≡




Ak(x)p(x, t) − Ak(x − sk)p(x − sk , t) if x − sk ≺ x,

−(Ak(x− sk)p(x − sk , t) − Ak(x− sk + sk)p(x−sk + sk , t)) if x ≺ x − sk .

With simplifications from the trivial identity −sk + sk = 0, the

two expressions of ∆Jk(x, t)/∆xk can be combined into one,

∆Jk(x, t)

∆xk

≡ Ak(x)p(x, t) − Ak(x − sk)p(x − sk , t)

= −
∂pk(x, t)

∂t
. (9)

4. Total reactional flux, divergence,
and continuity equation

We now define the total reactional flux or r-flux Jr(x, t),

which describes the probability flux at a microstate x at time

t,

Jr(x, t) ≡ ( J1(x, t), . . . , Jm(x, t)) ∈ Rm. (10)

Intuitively, the r-flux Jr(x, t) is the vector of rate change of

the probability mass at x in directions of all reactions. Similar

to Eq. (7), we have the discrete divergence of Jr(x, t) at the

microstate x,

∇d · Jr(x, t) ≡

m
∑

k=1

∆Jk(x, t)

∆xk

. (11)

From Eq. (9), we have

∇d ·Jr(x, t) =

m
∑

k=1

[Ak(x)p(x, t)−Ak(x − sk)p(x − sk , t)]. (12)

Similar to its continuous version,31,52 the discrete conti-

nuity equation for the probability mass insists that

∇d · Jr(x, t) = −
∂p(x, t)

∂t
. (13)

From Eqs. (11), (13), and (1), it is clear that r-flux Jr(x, t)

satisfies the continuity equation. The probability mass flows

simultaneously along all m directions, with the continuity

equation satisfied at all time.

5. Single-reactional species flux
and stoichiometric projection

The reactional probability flux Jk(x, t) along the direction

of reaction Rk defined in Eq. (8) can be further decomposed

into components of individual species. With the predetermined

stoichiometry sk = (s1
k
, . . . , sn

k
), we define the stoichiometric

projection of Jk(x, t) into the component of the j-th species X j

as

J
j

k
(x, t) ≡ s

j

k
Jk(x, t).

The set of scalar components of all species {J
j

k
(x, t)} can

be used to form a vector Jk(x, t) ∈ R
n, which we call the

single-reaction species flux,

Jk(x, t) ≡ (J1
k (x, t), . . . , Jn

k (x, t)) = skJk(x, t) ∈ Rn.
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The single-reaction species velocity of probability is defined

correspondingly as vk(x, t) ≡ Jk(x, t)/p(x, t).

6. Total species flux and velocity

The total species flux or s-flux Js(x, t) ∈ Rn is the sum of

all k single-reaction species flux vectors at a microstate x ∈ Rn,

Js(x, t) ≡

m
∑

k = 1

Jk(x, t) =

m
∑

k = 1

skJk(x, t) ∈ Rn. (14)

The total species velocity for probability is defined accordingly

as

vs(x, t) =

m
∑

k = 1

Js(x, t)/p(x, t). (15)

The s-flux Js(x, t) is different from the r-flux Jr(x, t) defined

in Eq. (12). Reaction-centric Jr(x, t) ∈ R
m characterizes the

total probability flux at the current state in the directions of

all reactions, while species-centric Js(x, t) ∈ R
n sums up the

contributions of every reaction to the probability flux at the

state x in the directions of all species.

D. Flux of reversible reaction

1. Flux of reversible reactions system

We now discuss probability flux in reversible reaction sys-

tems that has been previously studied16,53 and how they are

related to fluxes formulated here. For a pair of the reactions,

its directionality needs to be specified upfront, namely, which

reaction is the forward reaction R+ and which is the reversed

reaction R−,

R+ : c1X1 + · · · + cnXn

r+

→ c′1X1 + · · · + c′nXn,

R− : c′1X1 + · · · + c′nXn

r−

→ c1X1 + · · · + cnXn.

Let s = (c′
1
− c1, . . ., c′n − cn) be the stoichiometry of reaction

R+ and −s be the stoichiometry of reaction R−. The flux J

described in Refs. 16 and 53 is the net flux between x and

x + s. It is specified as the difference between the forward flux at

x J+(x, t) = r+
n
∏

l=1

(

xl

cl

)

p(x, t) generated by the forward reaction

R+ and the reverse flux at x + s J−(x + s, t) = r−
n
∏

l=1

(

xl+sl

c′
l

)

p(x

+ s, t) generated by the reverse reaction R−, both connecting x

and x + s,16,53

J(x, t) = r+
n

∏

l=1

(

xl

cl

)

p(x, t) − r−
n

∏

l=1

(

xl + sl

c′
l

)

p(x + s, t). (16)

2. Conversion between single-reactional species
flux and flux in a pair of reversible
reaction system

The flux J(x, t) for a pair of reversible reactions above

can be related to the s-flux Js(x, t) of Eq. (14) by exam-

ining the projection of the J(x, t) in Eq. (16) to individual

species. Specifically, with the stoichiometry s, the projection

of the flux of Eq. (16) to the component of the j-th species

X j is

J(x, t) = sJ(x, t) = sr+
n

∏

l=1

(

xl

cl

)

p(x, t) − sr−

×

n
∏

l=1

(

xl + sl

c′
l

)

p(x + s, t) ∈ Rn. (17)

When the direction of the forward reaction R+ coincides

with the ascending order of the states, one firing of R+ with

the stoichiometry vector s at the state x brings the system

to the state x + s in the direction of the ascending order.

From Eq. (14), the s-flux Js(x, t) for (R+, R−) is Js(x, t)

= sr+
n
∏

l=1

(

xl

cl

)

p(x, t) − sr−
n
∏

l=1

(

xl+sl

c′
l

)

p(x + s, t). In this case, the

projection of the reversible reaction flux by Eq. (17) is identical

to the s-flux by Eq. (14) at the state x.

When the direction of the forward reaction R+ is opposite

to the ascending order of the states, one firing of R−with the

stoichiometry vector −s at the state x + s brings the system

to the state x in the direction of the ascending order. From

Eq. (14), the s-flux Js(x + s, t) for (R+, R−) is Js(x + s, t)

= sr+
n
∏

l=1

(

xl

cl

)

p(x, t) − sr−
n
∏

l=1

(

xl+sl

c′
l

)

p(x + s, t). In this case, the

projection of the reversible reaction flux by Eq. (17) is identical

to s-flux by Eq. (14) at the state x + s.

III. RESULTS

Below we illustrate how time-evolving and steady-state

flux and velocity fields of the probability mass can be com-

puted for three model systems, namely, the birth-death process,

the bistable Schlögl model, and the oscillating Schnakenberg

system. The underlying discrete Chemical Master Equation

(dCME) [Eq. (1)] of these models is solved using the recently

developed ACME method.12,43 The resulting exact probability

landscapes of these models are used to compute the flux and

the velocity fields.

A. The birth and death process

The birth-death process is a simple but ubiquitous pro-

cess of the synthesis and degradation of molecule of a single

specie.12,45 The reaction schemes and rate constants examined

in this study are specified as follows:

R1 : ∅
r1
→ X, r1 = 1,

R2 : X
r2
→ ∅, r2 = 0.025.

Below we use k as the index of the two reactions.

1. Ordering microstates

The microstate in this system is defined by the copy num-

ber x of the molecular specie X. We order the microstates in

the direction of increasing copy numbers of x, namely, (x = 0)

≺ (x = 1) ≺ (x = 2)· · · .

2. Discrete increment and reaction direction

Reaction R1 brings the system from the state x to the state

x + 1, in the direction of increasing order of the microstates.
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Its discrete increment is s1 = 1. Reaction R2 brings the system

from the state x to the state x − 1, in the direction of decreasing

order of the microstates. Its discrete increment is therefore

s2 = −1.

3. Discrete chemical master equation

Following Eq. (1), the discrete chemical master equation

for this system can be written as

∂p(x, t)/∂t = r1p(x, t) − r1p(x − 1, t) − r2(x + 1)

× p(x + 1, t) + r2xp(x, t). (18)

4. Single-reactional flux, velocity,
and boundary conditions

The single-reactional flux Jk(x, t) ∈ R can be written as

J1(x, t) = r1p(x, t), J2(x, t) = r2(x + 1)p(x + 1, t). (19)

Here x = 0, 1, . . .. No special boundary conditions are required

for this system as J1(x, t) and J2(x, t) at the boundary x = 0 take

the values specified by Eq. (19). The single-reactional velocity

vk(x, t) ∈ R can be written as v1(x, t) = J1(x, t)/p(x, t) and

v2(x, t) = J2(x, t)/p(x, t).

5. Discrete partial derivative

The imposed ordering of the microstates implies x ≺ x + s1

as s1 = 1 and x ≺ x + 1. By Eq. (5), the derivative ∆J1(x, t)/∆x1

of the single-reactional flux function J1 is

∆J1(x, t)

∆x1

= J1(x, t) − J1(x − s1, t)

= r1p(x, t) − r1p(x − 1, t).

The imposed ordering of the microstates also has x ≺ x − s2 as

s2 = −1 and x ≺ x + 1. By Eq. (6), the derivative ∆J2(x, t)/∆x2

of the single-reactional flux function J2 is

∆J2(x, t)

∆x2

= −(J2(x, t) − J2(x + s2, t))

= −(r2(x + 1)p(x + 1, t) − r2(x)p(x, t)).

6. Total reactional flux, discrete divergence,
and continuity equation

Following Eq. (10), the total reactional flux Jr(x, t) ∈ R2

is

Jr(x, t) = (J1(x, t), J2(x, t))

= (r1p(x, t), r2(x + 1)p(x + 1, t)).

The total reactional velocity vr(x, t) ∈ R
2 is vr(x, t)

= Jr(x, t)/p(x, t).

Following Eq. (7), the discrete divergence ∇d · Jr(x, t)

of Jr(x, t) ∈ R2 over the discrete increments s1 and s2 can be

written as

∇d · Jr(x, t) ≡

2
∑

k=1

∆Jk(x, t)

∆xk

= r1p(x, t) − r1p(x − 1, t)

− r2(x + 1)p(x + 1, t) + r2(x)p(x, t). (20)

Here the r-flux Jr(x, t) indeed satisfies the continuity equa-

tion as we have ∇d ·Jr(x, t) = −∂p(x, t)/∂t from Eqs. (13), (18),

and (20).

7. Stoichiometry projection and single-reactional
species flux

Since there is only one specie in this system, the stoi-

chiometry projection of Jk(x, t) to the specie X is equal to

the single-reactional species flux Jk(x, t) ∈ R, which can be

written as

J1(x, t) = r1p(x, t) and J2(x, t) = −r2(x + 1)p(x + 1, t).

The single-reactional species velocity vk(x, t) ∈ R can be

written as follows: v1(x, t) = J1(x, t)/p(x, t) and v2(x, t)

= J2(x, t)/p(x, t).

8. Total species flux and velocity

Following Eqs. (14) and (15), the s-flux Js(x, t) and the

total velocity vs(x, t) are

Js(x, t) = r1p(x, t) − r2(x + 1)p(x + 1, t),

vs(x, t) = Js(x, t)/p(x, t).

When Js(x, t) > 0 and vs(x, t) > 0, the probability mass moves

in the direction of increasing copy number of X. This is the

direction of the ascending order of microstates we imposed.

When Js(x, t) < 0 and vs(x, t) < 0, the probability mass moves

in the direction of the decreasing copy number of X. We will

further use just simple flux instead of s-flux.

9. Overall behavior of the birth and death system

We examine the behavior of the birth and death pro-

cess under the initial conditions p(x = 0)|t=0 = 1 [Fig. 2(a),

backside] and that of the uniform distribution [Fig. 2(d),

backside].

For the initial condition of p(x = 0)|t=0 = 1, the probabil-

ity landscape changes from that with a peak at x = 0 to that with

a peak at x = 40 [Fig. 2(a)]. Figure 2(b) shows the heatmap of

the flux Js(x, t), and Fig. 2(c) shows the heatmap of the veloc-

ity vs(x, t). Yellow and red areas represent locations where the

probability moves in the positive direction, while white areas

represent locations where the flux and velocity both are close

to be zero. The flux and velocity of probability mass [Figs. 2(b)

and 2(c)] are positive at all time, indicating that the probabil-

ity mass is moving only in the direction of increasing copy

number of x. Moreover, when the probability is non-zero, the

probability velocity remains constant at any fixed time t across

different microstates. The blue line in Figs. 2(b) and 2(c) cor-

responds to the peak of the system that changes its location

from x = 0 to x = 40.

For the initial condition of the uniform distribution, the

probability landscape changes from the constant line to that

with a peak at x = 40 [Fig. 2(d)]. Figure 2(e) shows the heatmap

of the flux Js(x, t), and Fig. 2(f) shows the heatmap of the

velocity vs(x, t). Blue areas represent locations where the prob-

ability mass moves in the negative direction, yellow and red

areas represent locations where the probability moves in the

positive direction, while white areas represent locations where
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FIG. 2. The time-evolving probability landscape, flux, and velocity of the probability mass of the birth and death system starting from the initial conditions of

p(x = 0) |t=0 = 1 [(a)–(c)] and from the initial conditions of the uniform distribution [(d)–(f)]. (a) and (d): the probability landscape in p(x, t); (b) and (e): the

corresponding value of flux Js(x, t); (c) and (f): the value of velocity vs(x, t).

the flux and velocity both are equal to zero. Specifically, when

x < 40, we have Js(x, t) > 0 and vs(x, t) > 0, namely, the

probability mass moves in the direction of increasing copy

number of x. By contrast, when x > 40, we have Js(x, t) < 0

and vs(x, t) < 0, indicating that the probability mass moves in

the direction of decreasing copy number of x. When x = 40,

we have Js(x, t) = 0 and vs(x, t) = 0. Furthermore, the prob-

ability velocity at a specific time t is different for different

microstates, with the highest velocities located at the boundary

of x = 0. The blue line in Figs. 2(e) and 2(f) x = 40 corresponds

to the peak of the system, which appears starting at about

t = 5.

To solve this problem using the ACME method, we intro-

duced the buffer of capacity x = 92. At the state x = 92 when the

buffer is exhausted, no synthesis reaction can occur. Therefore,

the flux at the boundary x = 92 is set to zero.

Our birth and death system eventually reaches to a steady

state. As expected, the same steady state probability distribu-

tion is reached from both initial conditions [shown in different

scales in Figs. 2(a) and 2(d)]. At the steady state, the prob-

ability landscape has a peak at x = 40. Both the velocity

vs(x, t) and the flux Js(x, t) converge to zero at the steady

state.

B. Bistable Schlögl model

The Schlögl model is a one-dimensional bistable system

consisting of an auto-catalytic network involving one molec-

ular specie X and four reactions.46 It is a canonical model

for studying bistability and state-switching.13,54 The reaction

schemes and kinetic constants examined in this study are

specified as follows:

R1 : A + 2X
k1
→ 3X , k1 = 6;

R2 : 3X
k2
→ A + 2X, k2 = 3.6;

R3 : B
k3
→ X, k3 = 0.25;

R4 : X
k4
→ B, k4 = 2.95.

(21)

Here A and B have constant concentrations a and b, which

are set to a = 1 and b = 2, respectively. We set the volume of

the system to V = 25.46 The rate of reactions are specified as

r1 = k1/V, r2 = k2/V2, r3 = k3V, and r4 = k4.

1. Ordering microstates

We define the microstates of this system using the copy

number x of the molecular specie X. We order the microstates

in the direction of increasing copy numbers of X, namely,

(x = 0) ≺ (x = 1) ≺ (x = 2)· · · .

2. Discrete increment and reaction direction

Reactions R1 and R3 bring the system from the state x

to the state x + 1, in the direction of increasing order of the

microstates. Their discrete increments s1 and s3 are s1 = 1 and

s3 = 1. Reactions R2 and R4 bring the system from the state x

to the state x − 1, in the direction of decreasing order of the

microstates. Their discrete increments s2 and s4 are therefore

s2 = −1 and s4 = −1.

3. Discrete chemical master equation

Following Eq. (1), the discrete chemical master equation

for this system can be written as
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∂p(x, t)

∂t
= r1a

(x − 1)(x − 2)

2
p(x − 1, t) + r2

(x + 1)x(x − 1)

6
p(x + 1, t) + r3bp(x − 1, t) + r4(x + 1)p(x + 1, t)

− r1a
x(x − 1)

2
p(x, t) − r2

x(x − 1)(x − 2)

6
p(x, t) − r3bp(x, t) − r4xp(x, t). (22)

We compute the probability landscape p(x, t) underlying

Eq. (22) using the ACME method.12,43

4. Single-reactional flux, velocity,
and boundary conditions

Following Eq. (8), the single-reactional flux Jk(x, t) ∈ R

can be written as

J1(x, t) = r1a
x(x − 1)

2
p(x, t),

J2(x, t) = r2

(x + 1)x(x − 1)

6
p(x + 1, t),

J3(x, t) = r3bp(x, t),

J4(x, t) = r4(x + 1)p(x + 1, t).

We have the single-reactional fluxes J1(x, t) = 0 and J2(x, t)

= 0 on the boundary with either x = 0 or x = 1, where reac-

tions R1 and R2 cannot happen. The single-reactional fluxes

J3(x, t) and J4(x, t) are as given above and do not vanish at the

boundaries.

The single-reactional velocity vk ∈ R can be written as

vk(x, t) = Jk(x, t)/p(x, t), with k = 1, . . ., 4.

5. Discrete partial derivative

The imposed ordering of the microstates has x ≺ x + 1,

and therefore, x ≺ x + s1, x ≺ x − s2, x ≺ x + s3, and x ≺ x − s4

as s1 = 1, s2 = −1, s3 = 1, and s4 = −1. According to Eqs. (5)

and (6), the derivatives ∆Jk(x, t)/∆xk of the single-reactional

fluxes {Jk} are

∆J1(x, t)

∆x1

= J1(x, t) − J1(x − s1, t)

= r1a
x(x − 1)

2
p(x, t) − r1a

(x − 1)(x − 2)

2
p(x − 1, t),

∆J2(x, t)

∆x2

= −(J2(x, t) − J2(x + s2, t))

= −
(

r2

(x + 1)x(x − 1)

6
p(x + 1, t)

− r2

(x + 2)(x + 1)x

6
p(x, t)

)

,

∆J3(x, t)

∆x3

= J3(x, t) − J3(x − s3, t)

= −(r3bp(x, t) − r3bp(x − 1, t)),

∆J4(x, t)

∆x4

= −(J4(x, t) − J4(x + s4, t))

= −(r4(x + 1)p(x + 1, t) − r4xp(x, t)).

6. Total reactional flux and velocity, discrete
divergence, and continuity equation

Following Eq. (10), the total reactional flux Jr(x, t) ∈ R4

is

Jr(x, t) = (J1(x, t), J2(x, t), J3(x, t), J4(x, t))

=

(

r1a
x(x − 1)

2
p(x, t), r2

(x + 1)x(x − 1)

6

× p(x + 1, t), r3bp(x, t), r4(x + 1)p(x + 1, t)
)

.

The total reactional velocity vr(x, t) ∈ R
4 is vr(x, t)

= Jr(x, t)/p(x, t).

The discrete divergence ∇d · Jr(x, t) of Jr(x, t) ∈ R4 over the discrete increments s1, s2, s3, and s4 can be written as

∇d · Jr(x, t) =

4
∑

k=1

∆Jk(x, t)

∆xk

= −
(x − 1)(x − 2)

2
r1ap(x − 1, t) + r1a

x(x − 1)

2
p(x, t) − r2

(x + 1)x(x − 1)

6
p(x + 1, t)

+ r2

x(x − 1)(x − 2)

6
p(x, t) − r3bp(x − 1, t) + r3bp(x, t) − r4(x + 1)p(x + 1, t) + r4xp(x, t). (23)

The flux Jr(x, t) indeed satisfies the continuity equation as we

have∇d · Jr(x, t) =−∂p(x, t)/∂t from Eqs. (13), (22), and (23).

7. Stoichiometry projection and single-reactional
species flux

Since there is only one specie x in this system, the stoi-

chiometry projection of single-reactional flux Jk(x, t) to x is

equal to the single-reactional species flux Jk(x, t) ∈ R, which

can be written as

J1(x, t) = r1a
x(x − 1)

2
p(x, t),

J2(x, t) = −r2

(x + 1)x(x − 1)

6
p(x + 1, t),

J3(x, t) = r3bp(x, t),

J4(x, t) = −r4(x + 1)p(x + 1, t).
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The single-reactional species velocities vk ∈ R is vk(x, t)

= Jk(x, t)/p(x, t), with k = 1, . . ., 4.

8. Total species flux and velocity

Following Eqs. (14) and (15), the total species flux

Js(x, t) and velocity vs(x, t) for the four reactions are

Js(x, t) = r1a
x(x − 1)

2
p(x, t) − r2

(x + 1)x(x − 1)

6

× p(x + 1, t) + r3bp(x, t) − r4(x + 1)p(x + 1, t),

and vs(x, t) = Js(x, t)/p(x, t).

9. Overall behavior of the Schlögl system

For the set of parameter values used in Eq. (21), the

Schlögl model is bistable. It has two peaks at x = 4 and

x = 92. In order to study how switching between the two peaks

occur, we examine the behavior of the model under the ini-

tial conditions of p(x = 4)|t=0 = 1 [Fig. 3(a)] and the initial

condition of p(x = 92)|t=0 = 1 [Fig. 3(d)].

For the initial distribution of p(x = 4)|t=0 = 1, the prob-

ability landscape changes from that with a single peak at

x = 4 to that with two maximum peaks at x = 4 and x = 92

[Fig. 3(a)]. Figure 3(b) shows the heatmap of the flux Js(x, t),

and Fig. 3(c) shows the heatmap of the velocity vs(x, t). Yellow

and red areas represent locations where the probability moves

in the positive direction, while white areas represent locations

where the flux and velocity both are close to be zero. The

lower blue lines in Figs. 3(b) and 3(c) correspond to the peak at

x = 4. They are straight lines as the location of the peak does not

change over time. Another blue line starts to appear at x = 92

at about t = 3 and corresponds to the second peak. At the same

time, at around t = 3, we observe the appearance of a mini-

mum of the probability landscape (red line), separating the two

maximum peaks. We have Js(x, t) > 0 and vs(x, t) > 0, indi-

cating that the probability moves in the direction of increasing

copy number of molecules [Figs. 3(b) and 3(c)] in the major-

ity of the states. In the white region, we have Js(x, t) = 0 and

vs(x, t) = 0.

For the first initial condition of p(x = 92)|t=0 = 1, the

probability landscape changes from that with a single peak at

x = 92 to that of two peaks at x = 92 and x = 4 [Fig. 3(d)]. Fig-

ure 3(e) shows the heatmap of the flux Js(x, t), and Fig. 3(f)

shows the heatmap of the velocity vs(x, t). Blue areas repre-

sent locations where the probability mass moves in the negative

direction, while white areas represent locations where the flux

and velocity both are equal to zero. The top blue lines in

Figs. 3(e) and 3(f) correspond to the peak at x = 92. These

are straight lines as the location of this peak does not change

over time. Another blue line starts to appear at x = 4 at around

t = 3 and corresponds to the second peak. At around t = 3, we

also observe the appearance of a minimum on the probability

landscape (red line) separating the two maximum peaks. In

the blue region, we have Js(x, t) < 0 and vs(x, t) < 0, and the

probability moves in the direction of increasing copy number

of molecules [Figs. 3(e) and 3(f)] in the majority of states. In

the white region, we have Js(x, t) = 0 and vs(x, t) = 0.

In both cases (Fig. 3), the second peak appears after about

t = 3. We also observe that the absolute values of the flux

driving the system from the system with one peak at x = 4

to the emergence of the second peak at x = 92 and from the

system with one peak at x = 92 to the emergence of the second

peak at x = 4 are of the same scale.

FIG. 3. The time-evolving probability landscape, flux, and velocity of the probability mass in the Schlögl system starting from the initial conditions of

p(x = 4) |t=0 = 1 [(a)–(c)] and from the initial conditions of p(x = 92) |t=0 = 1 [(d)–(f)]. (a) and (d): the probability landscape in p(x, t); (b) and (e): the

corresponding value of flux in Js(x, t); and (c) and (f): the value of velocity vs(x, t).
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The Schlögl process eventually reaches a steady state.

As expected, the same steady state probability distribution is

reached from both initial conditions. At the steady state, the

probability landscape has two peaks at x = 4 and x = 92. Both

the velocity vs(x, t) and the flux Js(x, t) converge to zero at the

steady state.

C. Schnakenberg model

The Schnakenberg model is a simple chemical reaction

system originally constructed to study the behavior of limit

cycle.55 It provides an important model for analyzing oscillat-

ing behavior in reaction systems.18,47,48 The reaction scheme

and rate constants examined in this study are specified as

follows:

R1 : A
k1
→ X1, k1 = 1;

R2 : X1

k2
→ ∅, k2 = 1;

R3 : B
k3
→ X2, k3 = 1;

R4 : X2

k4
→ ∅, k4 = 10−2;

R5 : 2X1 + X2

k5
→ 3X1, k5 = 1;

R6 : 3X1

k6
→ 2X1 + X2, k6 = 10−2.

Here X1 and X2 are molecular species whose copy numbers

x1 and x2 oscillate, and A and B are reactants with fixed copy

numbers. The volume of the system V is set to V = 10−2.55

The rate of reactions are specified as r1 = k1, r2 = k2, r3 = k3,

r4 = k4, r5 = k5/V2, and r6 = k6/V2.

1. Ordering microstates

The microstate x = (x1, x2) in this system is defined by

the ordered pair of copy numbers x1 and x2 of the molecu-

lar species X1 and X2. We impose the ascending order of the

microstates first in the direction of the increasing copies of

X1. At a fixed value of X1, we then sort the states in the order

of increasing copy number of X2. We therefore have (x1 = 0,

x2 = 0) ≺ (x1 = 0, x2 = 1) ≺ (x1 = 0, x2 = 2) ≺ · · · ≺ (x1 = 1,

x2 = 0) ≺ (x1 = 1, x2 = 1)· · · .

2. Discrete increment and reaction direction

The discrete increments s1, s3, and s5 of reactions R1, R3,

and R5 that bring the system in the direction of increasing

order of the microstates and the discrete increments s2, s4,

and s6 of reactions R2, R4, and R6 that bring the system in the

direction of the decreasing order of the microstates are listed in

Table I.

3. Discrete chemical master equation

Following Eq. (1), the discrete chemical master equation

for the system can be written as

∂p(x, t)

∂t
= −r1ap(x1, x2, t) + r1ap(x1 − 1, x2, t)

− r2x1p(x1, x2, t) + r2(x1 + 1)p(x1 + 1, x2, t)

− r3bp(x1, x2, t) + r3bp(x1, x2 − 1, t)

+ r4(x2 + 1)p(x1, x2 + 1, t) − r4x2p(x1, x2, t)

+ r5

(x1 − 1)(x1 − 2)x2

2
p(x1 − 1, x2 + 1, t)

− r5

x1(x1 − 1)x2

2
p(x1, x2, t)

+ r6

(x1 − 1)x1(x1 + 1)

6
p(x1 + 1, x2 − 1, t)

− r6

x1(x1 − 1)(x1 − 2)

6
p(x1, x2, t). (24)

We compute the probability landscape p(x, t) underlying

Eq. (22) using the ACME method.12,43

4. Single-reactional flux, velocity,
and boundary conditions

The single-reactional flux Jk(x, t) ∈ R can be written as

J1(x, t) = r1ap(x1, x2, t),

J2(x, t) = r2(x1 + 1)p(x1 + 1, x2, t),

J3(x, t) = r3bp(x1, x2, t),

J4(x, t) = r4(x2 + 1)p(x1, x2 + 1, t),

J5(x, t) = r5

x1(x1 − 1)x2

2
p(x1, x2, t),

J6(x, t) = r6

(x1 − 1)x1(x1 + 1)

6
p(x1 + 1, x2 − 1, t).

(25)

We have the single-reactional fluxes J5(x, t) = 0 and J6(x,

t) = 0 on the boundary with either x = (0, 0) or x = (1, 0),

where reactions R5 and R6 cannot happen. The other single-

reactional fluxes are as given above and do not vanish at the

boundaries.

The single-reactional velocity vk(x, t) ∈ R can be written

as vk(x, t) = Jk(x, t)/p(x, t).

5. Discrete partial derivative

The imposed ordering of the microstates has x ≺ x + s1,

x ≺ x − s2, x ≺ x + s3, x ≺ x − s4, x ≺ x + s5, and x ≺ x − s6.

According to Eqs. (5) and (6), the derivatives ∆Jk(x, t)/∆xk of

the single-reactional fluxes Jk can be written as

TABLE I. Schnakenberg system reaction stoichiometry.

Reactions R1 R3 R5 R2 R4 R6

Discrete increments s1 = (1, 0) s3 = (0, 1) s5 = (1, �1) s2 = (�1, 0) s4 = (0, �1) s6 = (�1, 1)
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∆J1(x, t)

∆x1

= J1(x, t) − J1(x − s1, t)

= r1ap(x1, x2, t) − r1ap(x1 − 1, x2, t),

∆J2(x, t)

∆x2

= −(J2(x, t) − J2(x + s2, t))

= −
(

r2(x1 + 1)p(x1 + 1, x2, t) − r2x1p(x1, x2, t)
)

,

∆J3(x, t)

∆x3

= J3(x, t) − J3(x − s3, t)

= r3bp(x1, x2, t) − r3bp(x1, x2 − 1, t)
)

,

∆J4(x, t)

∆x4

= −(J4(x, t) − J4(x + s4, t))

= −
(

r4(x2 + 1)p(x1, x2 + 1, t) − r4x2p(x1, x2, t)
)

,

∆J5(x, t)

∆x5

= J5(x, t) − J5(x − s5, t)

= r5

x1(x1 − 1)x2

2
p(x1, (x2 + 1), t)

− r5

(x1 − 1)(x1 − 2)x2

2
p(x1 − 1, x2 + 1, t),

∆J6(x, t)

∆x6

= −(J6(x, t) − J6(x + s6, t))

= −
(

r6

(x1 − 1)x1(x1 + 1)

6
p(x1 + 1, x2 − 1, t)

− r6

x1(x1 − 1)(x1 − 2)

6
p(x1, x2, t)

)

.

6. Total reactional flux and velocity, discrete
divergence, and continuity equation

Following Eq. (10), the total reactional flux Jr(x, t) ∈ R6

is

Jr(x, t) = (J1(x, t), J2(x, t), J3(x, t), J4(x, t), J5(x, t), J6(x, t)),

where {Jk(x, t)} are as specified in Eq. (25). The total

reactional velocity vr(x, t) ∈ R6 is vr(x, t) = Jr(x, t)/p(x, t).

The discrete divergence ∇d · Jr(x, t) of the r-flux Jr(x, t)

∈ R6 over the discrete increments sk can be written as

∇d · Jr(x, t) =

6
∑

k=1

∆Jk(x, t)

∆xk

. (26)

The r-flux Jr(x, t) indeed satisfies the continuity equation

as we have ∇d · Jr(x, t) = −∂p(x, t)/∂t from Eqs. (13), (24),

and (26).

7. Stoichiometry projection and single-reactional
species flux

The single-reactional flux Jk(x, t) along the direction of

reaction Rk can be decomposed into components of individual

species using the predetermined stoichiometry sk = (s1
k
, s2

k
).

The x1 and x2 components of stoichiometric projections of

Jk(x, t) are listed in Table II. The single-reactional species

flux is formed as follows:

Jk(x, t) ≡ (J1
k (x, t), J2

k (x, t)), k = 1, . . . , 6, (27)

where J1
k
(x, t) and J2

k
(x, t) are listed in Table II. The

single-reactional species velocity vk(x, t) ∈2
R is vk(x, t)

≡ Jk(x, t)/p(x, t).

8. Total species flux and velocity

Following Eqs. (14) and (15), the total flux Js(x, t)

∈ R
2 is Js(x, t) =

m
∑

k = 1

Jk(x, t), where {Jk} is as specified in

Eq. (27). The total species velocity vs(x, t) ∈ R
2 is vs(x, t)

= Js(x, t)/p(x, t).

9. Overall behavior of Schnakenberg system

We examine the behavior of the Schnakenberg system

with (a, b) = (10, 50) under two initial conditions, namely,

that of the uniform distribution and p(x = (0, 0))|t=0 = 1. We

computed the time-evolving probability landscape p = p(x, t)

using the ACME method.12,43

For the uniform distribution, the probability landscape

in −log p(x, t) at time t = 0.5 is shown in Fig. 4(a), where

high probability regions are in blue. Its overall shape takes

the form of closed valley, which is similar to an earlier study

based on the Fokker-Planck model.18 The trajectories of the

flux field Js(x, t) at time t = 0.5 in the space of the copy-

numbers from different starting locations (marked by black

arrows at the top and bottom) are shown in blue in Figs. 4 and

5. These trajectories depict the directions of the movement of

the probability mass at different locations after traveling from

the starting points. The heatmaps of the flux in log |Js(x, t)| and

the velocity in log |vs(x, t)| are shown in Figs. 4(b) and 4(c),

respectively. The flux lines are closed curves and are overall

smooth. These closed flux lines reflect the oscillatory nature

of the reaction system. The velocity has larger values at loca-

tions where the flux trajectories are straight lines [green and

yellow regions in the upper right corner, Fig. 4(c)] but drops

TABLE II. Schnakenberg system reactional flux stoichiometry projections.

Reaction J1
k

(x1, x2, t) = s1
k
Jk(x1, x2, t) J2

k
(x1, x2, t) = s2

k
Jk(x1, x2, t)

R1 r1ap(x1, x2, t) 0

R2 �r2(x1 + 1)p(x1 + 1, x2, t) 0

R3 0 r3bp(x1, x2, t)

R4 0 �r4(x2 + 1)p(x1, x2 + 1, t)

R5 r5
x1(x1−1)x2

2
p(x1, x2, t) −r5

x1(x1−1)x2
2

p(x1, x2, t)

R6 −r6
(x1−1)x1(x1+1)(x1−2)

6
p(x1 + 1, x2 − 1, t) r6

(x1−1)x1(x1+1)(x1−2)

6
p(x1 + 1, x2 − 1, t)
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FIG. 4. The time-evolving probability landscape, flux, and velocity of probability mass in the Schnakenberg system with (a, b) = (10, 50) at t = 0.5, starting

from the uniform distribution [(a)–(c)] and from the initial conditions of p(x = (0, 0)) |t=0 = 1 [(d)–(f)]. (a) and (d): the probability landscape in −log(p(x, t));

(b) and (e): the corresponding value of flux in log |Js(x, t)|; and (c) and (f): the log absolute value of velocity log |vs(x, t)|.

significantly when the trajectories make down-right turns (light

and dark blue in the lower right corner, marked with an yellow

arrow).

For the initial conditions of p(x = (0, 0))|t=0 = 1,

−log p(x, t) at time t = 0.5 is shown in Fig. 4(d), where high

probability regions (blue) are located at a small neighborhood

around x = (0, 250). The heatmaps of the flux in log |Js(x, t)|

and the velocity in log |vs(x, t)| are shown in Figs. 4(e) and 4(f),

respectively. The flux lines are closed curves and are overall

smooth. The oscillating flux lines appear again [Figs. 4(d) and

4(f)], but not all form closed curves. Specifically, all flux lines

which start at the upper region (x2 = 500) become broken-off

in the mid-region, where the probability mass becomes neg-

ligible, resulting in negligible flux as well, with its absolute

value close to be zero. The maximum of the flux is reached at

the peak of the probability landscape [Fig. 4(e)]. The heatmap

of the probability velocity exhibits a similar pattern as that of

uniform distribution [Fig. 4(f) vs. Fig. 4(c)]. The color palettes

encoding the values of the velocity log |vs(x, t)| are not-smooth

[Fig. 4(f)]. This is likely due to small numerical values of

probability in this region.

We then examined the steady state behavior of the system

at two conditions of the copy numbers of species A and B: (a,

b) = (10, 50) and (a, b) = (20, 40). The probability landscape

in −log(p(x, t)) for (a, b) = (10, 50) shown in Fig. 5(a) exhibits

similar shape to that of Fig. 4. The probability values are higher

in locations near the left (x1 = 0) and lower (x2 = 0) boundaries.

The flux lines [Figs. 5(a)–5(c)] move from the upper left cor-

ner to the lower right corner and then make sharp right turns

until reaching the neighborhood near the origin. Subsequently,

they make right turns again and move upward, until the cycles

are closed. These closed flux curves move along the contours

on the probability landscape. The absolute values of the flux

[Fig. 5(b)] are largest near the boundaries of the probability

surfaces (x1 = 0 and x2 = 0, red/orange colored ridge) and next

along the flux lines on the diagonal. The flux has small values

in the region above the diagonal (cyan and blue). The heatmap

of the velocity [Fig. 5(c)] exhibits a different pattern, with its

value dropping significantly in the small blue arch (see region

pointed by the yellow arrow), where flux lines make turns in

the lower region.

The probability landscape in −log(p(x, t)) for (a, b)

= (20, 40) is shown in Fig. 5(d). While exhibiting overall sim-

ilar pattern to that of (a, b) = (10, 50), the high probability

regions are more concentrated in locations near the lower-left

[Fig. 5(d)]. The flux lines [Figs. 5(d)–5(f)] are similar to those

of (a, b) = (10, 50) corner but oscillate around much smaller

contour, where x1 ≤ 200 and x2 ≤ 300. The close cycles of

flux lines also move along the contours on the probability

landscape.

The results obtained here are generally consistent with

that obtained using the Fokker-Planck flux model computed

from a landscape constructed using Gillespie simulations.8,18

For example, the directions of the flux lines are the same. How-

ever, there are some differences. While the flux lines from the

Fokker-Planck model exhibit oscillating behavior even in the

boundary regions where x1 < 2 or x2 < 2, where reactions R5

and R6 cannot occur; hence, no oscillating flux is physically

possible. No such inconsistency exists in our model. Further-

more, the system considered here is much larger, with hundreds

of copies of X1 and X2 involved, whereas <10 copies of X1

and X2 were considered in Ref. 18.
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FIG. 5. The steady-state probability landscape, flux, and velocity of probability mass in the Schnakenberg system with (a, b) = (10, 50) [(a)–(c)] and (a, b)

= (20, 40) [(d)–(f)]. (a) and (d): the probability landscape in −log(p(x, t)); (b) and (e): the corresponding values of flux in log |Js(x, t)|; and (c) and (f): the log

absolute value of velocity log |vs(x, t)|.

IV. CONCLUSION

In this study, we introduce new formulations of discrete

flux and discrete velocity for an arbitrary mesoscopic reaction

system. Specifically, we redefine the derivative and divergence

operators based on the discrete nature of chemical reactions.

We then introduce the discrete form of continuity equation

for the systems of reactions. We define two types of discrete

flux, with their relationship specified. The reactional discrete

flux satisfies the continuity equation and describes the behav-

ior of the system evolving along directions of reactions. The

species flux directly describes the dynamic behavior of the

reactions such as the transfer of probability mass in the state

space. Our discrete flux model enables the construction of the

global time-evolving and steady-state flow-maps of fluxes in

all directions at every microstate. Furthermore, it can be used

to tag the fluxes of outflow and inflow of probability mass

as reactions proceed. In addition, we can now impose bound-

ary conditions, allowing exact quantification of vector fields

of the discrete flux and discrete velocity anywhere in the dis-

crete state space, without the difficulty of enforcing artificial

reflecting conditions at the boundaries.42 We note that the accu-

rate construction of the discrete probability flux, velocity, and

their global flow-maps requires the accurate calculation of the

time-evolving probability landscape of the reaction network.

This is made possible by using the recently developed ACME

method.12,43

As a demonstration, we computed the time-evolving

probability flux and velocity fields for three model systems,

namely, the birth-death process, the bistable Schlögl model,

and the oscillating Schnakenberg system. We showed how

flux and velocities converge to zero when the system reaches

the steady-state in the birth-death process and the Schlögl

models. We also showed that the flux and velocity trajecto-

ries in the Schnakenberg system converge to the oscillating

contours of the steady-state probability landscape, similar to

an earlier study,18 although there are important differences.

Overall, the general framework of discrete flux and veloc-

ity and the methods introduced here can be applied to other

networks and dynamical processes involving stochastic reac-

tions. These applications can be useful in quantification of

dynamic changes of probability mass, identification as well as

characterization of the mechanism where movement of prob-

ability mass drives the system toward the steady-state. They

may also aid in our understanding of the mechanisms that

determined the non-equilibrium steady state of many reaction

systems.
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