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NON-ISOTHERMAL ELECTROKINETICS: ENERGETIC
VARIATIONAL APPROACH*
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Abstract. Fluid dynamics accompanies with the entropy production, thus increases the local
temperature, which plays an important role in charged systems, such as the ion channel in biological
environment and electrodiffusion in capacitors/batteries. In this article, we propose a general framework
to derive the transport equations with heat flow through the energetic variational approach. According
to the first law of thermodynamics, the total energy is conserved and we can use the least action principle
to derive the conservative forces. From the second law of thermodynamics, the entropy increases and
the dissipative forces can be computed through the maximum dissipation principle. Combining these
two laws, we then conclude with the force balance equations and a temperature equation. To emphasize,
our method provides a self-consistent procedure to obtain the dynamical equations satisfying proper
energy laws and it not only works for the charge systems but also for general systems.

Keywords. Electrokinetics; Electro-thermal Motion; Energetic Variation Approach.

AMS subject classifications. 35Q35; 35Q79; 76A02; 80A20.

1. Introduction

The inhomogeneous and time-dependent temperature could be of great importance
in the electrodiffusion processes. It also plays a key role in many biological and chemical
applications. For example, a number of ion channels are observed to be sensitive to
the temperature changes [2,20]. These temperature-gated ion channels can detect the
temperature; thus regulating the internal homeostasis and disease-related processes such
as the thermal adaptation and the fever response. Also the electro-osmotic flow (EOF)
in the microfluidic devices will cause the internal heat generation, which is known to be
the Joule heating effects [13,14]. This inhomogeneous increase of the temperature will
change the fluid dynamical properties, thus it is important in controlling the EOF and
designing microfluidic devices.

The ionic transport can be modeled through the classical Poisson-Nernst-Planck
(PNP) theory and its various modified versions [3,7,10,12,17,19,22,24], which are shown
to be successful in describing various phenomena and properties. Through the energetic
variational approach (EnVarA), C. Liu et al. derived the modified PNP equations with
given free energy functional and the form of entropy production [9,11,23]. However,
these models are all isothermal: the temperature is fixed as a constant.

To model the non-isothermal dynamic processes, we need to couple the mechanical
equation and the thermal equation together. In [1], Bulicek et al. considered the
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incompressible homogeneous Newtonian fluids with temperature-dependent coefficients
and obtained the long-time and large-data existence for a suitable weak solution. For the
heat conducting compressible Newtonian fluid, Feireisl [5] developed a Navier-Stokes-
Fourier system and derived a priori estimates and the weak stability based on variational
weak formulation and the thermodynamic second law. Eleuteri et al. [4] studied the non-
isothermal diffuse-interface model for two incompressible Newtonian fluids, resulting in a
Cahn-Hilliard system. Also, many papers are devoted to real applications. For example,
Xuan and Li [25] reported that the Joule heating effects in the electrokinetic flow could
increase the current load, enhance the flow rate and reduce the separation efficiency.
Sénchez et al. [21] analyzed the Joule heating effect on a purely electroosmotic flow
of non-Newtonian fluids through a slit microchannel. In addtion, Gonzalez et al. [8]
studied the electrothermal motion in microsystems generated by AC electrical field.

In this work, we adapt the EnVarA, aiming to propose an unified framework to
self-consistently describe the electrothermal motion. With given form of the free energy
functional and the entropy production, the conservative forces can be derived through
the least action principle (LAP) and the dissipative forces are given by the maximum
dissipation principle (MDP). For any open subset of the fluid region, the energy balance
and the entropy increase lead to the mechanical and thermal equations. Here, we derive
the model in Euler coordinates, in contrast to the classical approach in literature based
on the Lagrange formalism. The reason is that the charged systems usually involve
more than one ionic species, thus several velocity fields appear, employing the material
derivative like previous papers might cause confusion and inconvenience.

To emphasize, our approach guarantees the resulting equations satisfying funda-
mental laws of thermodynamics and it can be generalized to a variety of complex fluid
systems such as liquid crystal [6].

2. Theory of charge dynamics

Consider a closed system with IV ionic species in domain 2. Define the local density
distribution for ith species as space dependent: p;(r,t), i=1,2,---,N, and the charges
are denoted by z; respectively. The time evolution is usually modeled through the PNP
equation:

Friche V-D;i(kpTVpi+piziV),

N (2.1)
—V-eVo=> . piz-

Here ¢ is the mean electrical potential, D; is the mobility coefficient, kg is the Boltzmann

constant. T is the temperature, which is homogeneous and remains independent of time

within the PNP model. The corresponding energy dissipation is known to be,

N N
% (; IVo|? + Zk‘BTpi(logpi - 1)) dr= —Z/ &UcBTVpZ‘ +piziVo|2dr, (2.2)
Q i=1 =17/ Pi
where the left integral is the Helmholtz free energy including the mean electrical energy
and the entropic contribution. Since the classical PNP system is a mean field theory,
the correlations between particles are neglected. The right hand side represents the
energy dissipation. With the energy dissipation law (2.2), the PNP Equation (2.1) can
be derived through the EnVarA [23]. In the PNP theory, the system entropy increases
without affecting the temperature, which indicates that a specific amount of heat/energy
must be transferred to the system. Through the second law of thermodynamics, it is
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straightforward to evaluate the heat absorption rate of the system,

dQ Z/ (kTVpi+piziN)-p;iz;Ve dr. (2.3)

When the heat conducting rate is very large or the total heat generated is negligible
compared with the system heat capacitance, it is reasonable to assume that the tem-
perature T is a constant. But more generally, we have to consider the temperature
evolution with given heat sources.

2.1. Energy functional. To study the effects of temperature, we use T'(r,t)
to describe the temperature distribution at time . We write the general form of the
free energy F'(V,t) for the system in any subdomain V' C 2, which is a functional of the
temperature and particle densities,

F(V,t) Z/ i(pi(r,t),T(r,t)) dr+zzzzm//pl ) pm (' t)v(r, v’ )drdr’

7,m=0

+;Zi/vpi(r)< P(r,t) —|—sz/ pm (T )V )dr)dr. (2.4)

The first term ¥; is a local function of density p;(r,t) and temperature T'(r,t), repre-
senting the free energy density from the entropy contribution. It should be noted that
one can include the steric effect, ionic correlation and the variable dielectrics into proper
form of ¥,;. The index i=0 stands for the solvent particles, which is imcompressible
with constant density po, and index 1,---, N represents the solute species. The second
term in (2.4) represents the potential energy from the Coulomb interaction z; z,v(r,r’),
and the kernel v satisfies —V-eVo(r,r’) =§(r,r’). The last term is the potential energy
from the external field, including the external electrical potential ¢ and the contribu-
tion from particles outside domain V. Since the negative local entropic density is the
derivative of the free energy density with respect to the temperature, the entropy,

oW, ( rt
Z/ aT & t)( ) . (2.5)

Then the corresponding internal energy is given by the Legendre transform of the
Helmholtz free energy with respect to the temperature,

U(V,t) = F(V,t) Z / A pé(;(?g(r’t))dr (2.6)

For each species, the VeIO(31ty field is denoted as wu;(r,t), then their densities sat-
isfy the mass conservation: 2 p;+V-(piu;)=0. Each velocity field u;(x;(X,t),t) de-
termines a unique flow map x;(X,¢) for the corresponding particle species through
%xi(X,t) =u;(x;(X,t),t). Introduce the mass m; of each species and the kinetic energy

K(V, ;z;vofv m;p;(r,t)u?(r,t)dr. Then the total action of the whole system is

A= fo (Q,t) — F(Q,t)]dt. According to LAP, the conservative force on each species
can be obtalned through the variation of the action with respect to the flow map,

0A
) —mM;P; <§tul+u1VU1> fVPifpizngb, (27)

i (x,t) = <5x,(7Xt
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where ¢(r,t ):w(r,t)—FZfV:l i [qpi(r/ t)v(r,r’)dr’ is the mean electrical potential,

Py(r,t)=p(r, )ap? 7 (\I”'(p"l(f’(?f)r(r’t))) is the thermal pressure [23] for ¢=1,---,N.
Since the solvent is incompressible, the thermal pressure Py appears as a Lagrange

multiplier and is undetermined.

REMARK 2.1.  Define the entropic density: n;(r,t)=—_. (1r ) a%(pég&?g(ryt)) and the

internal energy density: €™ (p;(r,t),n;(r,t)) =W, (pi(r,t), T (r,t))+T(r,t)p;(r,t)n;(r,1).
According to the property of Legendre transform, the definition of thermal pressure is

equivalent to P; (r7t> = p? (I’,t) Bpi(?r’t) (eznt (ng(,‘tr),%m(r,t))

), which is used in literature [5].

According to the first law of thermodynamics, the internal energy is conserved with
the work done and the heat absorbed. The rate of work is given by,

—WVt Zzl/plrtatl +sz/ ,v')dr’ | dr

m=0

+Z/ (r,t)u;(r,t)-dr. (2.8)

Here the first integral is due to the time-dependent external field, including the contri-
bution from the ions in domain Q\V. The second term is from the work of the stress
tensor T; on the boundary 9V, which includes the contribution from the thermal pres-
sure P; and the dissipative force. The form of T;(r,t) will be specified when we have
the dissipative force in Equation (2.14). The rate of heat transfer is given by the heat
flux j and body heat source gq,

d .
ﬁQ(V’t):_/BVJ.dr—i_/\/qdr. (2.9)

We should notice here that the control volume V' does not move along with the velocity
field as different solute species have different flow maps. At the boundary 0V, the
mechanical flux will also introduce a total energy flux, which should be considered,

N
1 .
Je(V,1) :Z/ Ui [mipiuf—ke;“t(pi,m)+zipi¢} dr. (2.10)
—Jov |2
So, the energy conservation is expressed as,
d d d
T [U(V,t)+ KV, )]+ Jp(Vit)= £W(V,t) + aQ(Vyt) (2.11)

With (2.6) and (2.8)-(2.11), and using the fact that the control volume V' is arbitrarily
chosen, we then obtain a differential equation (see Appendix for more details),

N
P, \ (0T ov, 0w, 0P
=T T ; ;T
Z( aT2><at+“’v)+Z< P, L ar TP aTap )V“l

=0

N
0
1=0 =0

This equation provides a relation between the temperature evolution and the mechanical
velocities. In order to form a closed PDE system, we need another relation which can
be given by the entropy production.
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2.2. Entropy production. The second law of thermodynamics states the fact
that the entropy increase of any closed system must not be less than the heat absorbed
from the environment, and the equality only holds for reversible process. We choose the
entropy production density to be,

~ vipilu; —uol® +&|V -] Ai| V| 1,
Afr,t)=> 7 +) T +EH2' (2.13)
i—1 i=0

Then the entropy production rate in arbitrary domain V is A(V,t) fV r,t)dr. Here
&, is the bulk viscosity, A; is the shear viscosity coefficient for zth species, v; descrlbes
the viscosity between the ith particle and the solvent, j represents the heat flux, k is
a constant relating with the heat conductance. It should be noted that all of these
coeflicients can depend on the concentration distribution and the temperature. Here we
only consider the relative drag between the solvent and the solute while neglecting the
friction between different solvent species. This is generally true for dilute solutions, and
the correction can be made following the argument in [10]. Compared with the entropy
production in the classical fluid dynamic equations, we have one extra term from the
heat flux. Then the dissipative force is given by the MDP,
fdis(r t)zl(;fQTAdI‘ _ yipi(ui—uo)—V(SiV-ui) —-V-A\Vu;, i=1,---,N.
vy 2 Ouy(r,t) ZTanlympm(uo—um)—V~)\0Vuo, 1=0.
(2.14)
The terms related with the relative velocity u; —ug between the solvent and the solute
species are the body forces and they do not provide work to the system. The terms
V&V -u; and V- \;Vu,; represents the surface forces, which can be expressed into the
divergence form: V-(&V-u;I14+\;Vu;). Since the stress tensor T; is symmetric, by
noticing V- )\szuz = V()\1V . Ui), we should have T1 = [7Pi + (El - )\,)V . Uz]]l+ 2)\iDUi,
for i=1,---,N, where I is a 3-by-3 identity matrix, Du; = [Vu; +(Vu;)T]/2 is the sym-
metric part of Vu;. For the imcompressible solvent, To=—Pyl+2\gDug. Similarly, we
should take into account the entropic flux at the boundary 0V,

O, (p;i(r,t),T(r,t))
Z/W AT D u; - dr. (2.15)

So the second law of thermodynamics is expressed as,
iS(VtH—/ i.-dr—/ gdr+Js:A(Vt)>O (2.16)
dt ’ av T v T e

where ¢ is the heat source. Combining (2.5), (2.13) and (2.16), we then obtain (see
Appendix for more details),

N
0?V,; (0T oY, 0?v ~
_; {8T2 (8t +u; - VT) <8T plaTé' )V ul} =A+

This equation provides another relation between the temperature evolution and the
velocity fields.

-V- (2.17)

Nl
ﬂ.\w.
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2.3. Governing equations. Multiply Equation (2.17) by the local temperature
T(r,t) and then subtracting Equation (2.12) gives,

Z“l feon _ fdw):~.<'+VTT> (2.18)

Here, we have used the definition of the conservative force (2.7) and the dissipative
force (2.14). The right hand side of Equation (2.18) is about the heat flux which is
invariant under any inertial frames of reference, while the left hand side is about the
particle velocities which depend on the reference frame we choose. So it is reasonable
to claim their coefficients must vanish, thus the Onsager Principle holds, f¢°" = fdis for
1=0,---,N. The heat flux: j=—kVT, which is the Fourier law. Finally, the dynamic
equations for the solute particles become,

0
ﬁﬂﬂrv'(fh‘ui)—o

mz’pz( ot +uzvuz)+vp +pzzzv¢—l’zpz( ui)+v(§iv'ui)+v'>\ivui; (2'19)
V- VH= YN pmzm oy

Here, we use the fact that —V-eVu(r,r')=§(r—r’). Together with proper boundary
conditions, py = —V eV describes the external field 9. For the imcompressible solvent,

0
ey <8tu0 +UOVUO> +VPy+pozoVo= Z%Pz u; —ug)+ V- AoV,

e (2.20)
V'UOZO.
And the temperature equation,
N
0%, oT
=T VT
Z;( aw)(aﬁ“ v ) ( T )
=V. kVT—O—z:VszuZ ug| +&|V- ul|2—|—2/\ |Vus)® +q. (2.21)

i=1 =0

In Equation (2.21), ZZ 0 ( T%2T‘I’2"’> can be viewed as the weighted average heat capac-

itance of the system. The second term represents the work of thermopressure transfer
into heat. On the right hand side, V-kVT describes the heat diffusion. We should
notice that the entropy production from mechanical viscosity appears as an internal
heat source.

Together with proper boundary conditions, the Equations (2.19), (2.20) and (2.21)
form a closed PDE system to describe the non-isothermal electro-thermal flow.

REMARK 2.2. For real physical systems, we usually have % <0, corresponding to
a positive heat capacitance. For example, ¥ =kpTp(logp— ClogT) describes the ideal
gas system, g;% = —%. Thus %—{ and V-kVT in (2.21) have the same sign as in the

heat equation.

REMARK 2.3. The heat source term Zfil vipilui —upl? in Equation (2.21) takes the
form of ionic flux square times the resistance. If the temperature and densities are all
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homogeneous in space, then the electrical current as well as the ionic fluxes p;(u; —ug)
are proportional to the local electrical field. Thus the energy dissipation is equivalent to
the well known Joule heating effect, which states the current square times the resistance
becomes heat in a circuit. For more general situation, our model suggests to use fluxes
of each ionic species instead of the total electrical current.

3. Examples

With given free energy density ¥; and entropy production A, the above approach
can be applied and generalized to a wide variety of systems, such as the modified PNP
equations with ionic correlation, size effects and relative drags. In this section, we
consider two examples.

3.1. Imcompressible Navier-Stokes-Fourier system. By setting the number
of ionic species to zero, we can also investigate the solvent system alone. Consider the
fluid in a confined domain 2 and at the boundary 02 there is neither mechanical nor
heat flux. Suppose the solvent is charge-neutral and incompressible, the free energy
functional is just,

F(V,t) —C/ r)logT(r)dr. (3.1)
Here C is a constant. The entropy production takes the form,

A(&/,t):/v<A|z“|2+k|T| )dr (3.2)

We also take into account the kinetic energy K (V,t) = fv mu?(r,t)dr. So the governing
equations become,

U=

0
<§tu+uVu> +VP=V-\Vu,
T

0
(-l—u-VT) —V-kVT+\|Vul>+q.

\%
Cat

This set of equations satisfy the thermodynamic laws automatically,

jt[U(Q B+ K (1)) = /q(m)dr,

d q )\|Vu|2 1.7
L2904 = 9 1L
<s(.n) /Q<T+ L),

Where the entropy is S(Q,t)=C fQ logT(r)+1)dr and the internal energy is given by
uQ,e)=C fQ r)dr. Note that the diffusion coefficients A and k can depend on space
and the state Varlables.

(3.4)

3.2. Poisson-Nernst-Planck-Fourier system. Consider a system in a confined
domain 2 and there is no flux at the boundary. The free energy density function ¥; is
given by,

v, (pl (I‘,t),T(I‘,t)) = kBT(r’t)pi (I‘,t) [logpi (rvt) - logT(r,t)] ) (35)
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REMARK 3.1. In the classical PNP system, the temperature is a constant, so there is
only the plogp term. Here Equation (3.5) uses the complete form of the ideal gas free
energy density as a function of both density and temperature. C; is a constant related
to the heat capacitance of each species.

The entropy production rate is,

~ )\0|V’LL()‘2 N l/ipi|ui—u0|2 1 j 2
AVt :/ A(r,t dr:/ + +—|%|* | dr. 3.6
V)= | Awp) V( oL 4y ARl o1 (3.6)

=1

Neglecting the kinetic energy, the governing equations for the ionic species become,

0
E,OH-V'(PW%‘) =0,

vipi(u; —ug) = —kpV(pT) —zip; Vo, (3.7)
—V V=301 PmZm + Py

Here pf(r,t)=—V-eVi)(r,t) describes the external field ¢ (r,t). For the solvent,

V'UO:O, (3 8)
VPO—FZijiluipi(uo—ui)—V~)\0Vu0:O. .

And the temperature equation,

(ZkBC pl> (Zch sz,l) VT + (i kBin-uz) T

=1
N
:V]{)VT+)\0|VUO‘2+ZV2[JZ|U17U0|2+q (39)
i=1

REMARK 3.2. Equation (3.7) is the modified PNP equation, where particles are driven

by the pressure gradient and the mean electrical potential. The chemical potential of
ith ion species is given by, p;(r,t)= gi((?::)) =kpT(r,t)[logpi(r,t)+1—CilogT(r,t)]+
z;¢(r,t). Thus the equations in (3.7) are not equivalent to %pi =V 2.V p;, indicating
that when temperature is a variable, we should use pressure instead of using chemical
potential.

REMARK 3.3. Here we cannot simply assume ug is a constant, since the solvent energy
and entropy are included. This is different from the original PNP equation where the
velocity, energy and entropy of the solvent are not considered. Equation (3.8) might
not be solvable without the solvent viscosity Ag.

Equation (3.7), (3.8), (3.9) form a closed PDE system, which we call Poisson-Nernst-
Planck-Fourier (PNPF). We can also check that they satisfy the thermodynamic laws,

d
ZU@Q.1) /<q+z pizi >dr, o

N .
d q /\0|VU0| vipilui—uol®* 1,7 5
Csqan=[ (1 3 21212 ar.
S(,¢) /Q<T+ +¢f + 22 ) dr

dt T
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Here the entropy and internal energy are given by,
N
S(8,t)= —Z/ kppi(r,t)[logpi(r,t) — C;logT (r,t) — C;ldr,
U(Q,t)= Zzzzm//p,rtpmrt) r,r’ drdr+ZkBC/plrt (r,t)d

i,m=1

Note that only for the isothermal system, we can combine the above two thermodynamic
laws together, obtaining the free energy dissipation,

d
ZF@.1)= d[U(Qt) TS(Q,1)] /Z“

Dar—ra0,0). (3.11)

When the external field v is independent of time, this is equivalent to (2.2),

4. Numerical results

In this section, we present the numerical results of the PNPF equations. Consider
a one-dimensional channel with 100mM NaCl water solution at room temperature
To=25°C'=298.15K, so that N =2, z==e, where e is the elementary charge. The
water velocity vanishes due to the incompressible condition. We choose the parameters
from the real experimental data. The diffusion coefficients for Na* is 1.334nm?/ns and
for Cl~ is 2.032nm? /ns [15]. Water mass density is 10%kg/m?, dielectric permittivity is
78.3 [18] and the specific heat capacity is 75.375.J/(mol - K) [16]. For an ion, we choose
C+ =3. After nondimensionalizing with £=1nm, 7=1ns, 75 =298.15K, the whole set
of dimensionless equations becomes,

0

HePi TV (piui) =0,

vipiwi ==V (piT) —2ipiV,

—V~€V¢:47TZBZ;)1-ZZ-, (4.1)
==

Zzo:iC pz 5 —i—zZiC’ i Dill; - VT—&-ZZipZTV u;=V- k;VT—&-ZZiV“oAul ,

with initial conditions, p4(z,0)=po=0.06 and T(x,0)=1.The dimensionless parame-
ters are, z+ =41, Copo =302, 1/vy =1.334, 1/v_=2.032, e=1, I =0.714. In order to
highlight the contribution from the temperature, we choose a relatively small heat con-
ductance k=100. The computational domain is L =10. The boundary conditions for
ion density and temperature are Dirichlet, i.e. p;(0,t)=p;(L,t)=po, T(0,t)=T(L,t)=1.

The initial concentration and temperature distribution are all constants in space.
Then we apply constant electrical voltage on the boundary, ¢(0)=0 and ¢(L)=V, so
that the ions immigrate under the electrical field. Under the same setup, for the classical
PNP system, where the temperature is a constant, there is no temperature equation;
thus we can derive its analytical solution: pii® (x,t) PNF(z,t) =1, ¢™"(z,t) = 2L and
the VI relation is linear.

However, from panel (a) and (b), we can see the ionic distributions from the PNPF
model become nonhomogeneous. Both the Na* and CI~ have lower concentrations
in between the boundaries. This is related with the local temperature enhanced by
the electrodiffusion, as shown in panel (¢). With higher voltage applied, the entropy
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FIG. 4.1. The steady state properties of the system. (a) NaT density distribution. (b) Cl~ density
distribution. (c) Temperature distribution. (d) Voltage-Current relation of the system. PNP stands
for the classical Poisson-Nernst-Planck model, PNPF stands for the Poisson-Nernst-Planck-Fourier
system with the temperature effect.

production or we say the Joule heating effect becomes more significant, so that we
have higher temperature distribution and lower ionic concentrations. As a consequence,
although the diffusion efficiency increases with the temperature, the overall ionic current
reduces as shown in panel (d).

5. Conclusion

The temperature diffusion and mechanical diffusion are coupled for a non-isothermal
fluid. We have proposed a self-consistent framework to derive the equations for elec-
trothermal diffusion, which can also be applied and generalized to many other systems
with different kinds of inter-molecular interaction. When applied to the imcompressible
Navier-Stokes system, we obtain the Navier-Stokes-Fourier equations; when applied
to the classical Poisson-Nernst-Planck system, we obtain the Poisson-Nernst-Planck-
Fourier equations. Our approach is consistent with the laws of thermodynamics. The
constitutive relation for the mechanical fluxes are governed by the force balance equa-
tions, where we use the pressure instead of the chemical potential. The thermal distri-
bution is given by the heat equation with additional heat convection and heat sources.
Within the framework, all the diffusion coefficients can depend on the space, time and
even state variables.

Appendix. In the appendix, we present the mathematical details of Equation
(2.11) and Equation (2.17).

Derivation of Equation (2.11). We first compute the time derivative of the in-
ternal energy and the kinetic energy. Here, we use ¥; to represent U;(p;(r,t),T(r,t) for
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short,
d a pi(r,t)
dt[U(Vt )+ K(V,t)] ZZZ/V < +sz/pmrt (r,r’)dr )d
N P - N
+Zzz/ pi(r,t 3( mZ: /Q\V (r',t)v(r, )dr’) dr

L1 dpi  .0%T; dT ou;
—|—Z/ {(302 BT&)pZ 5t ) 5 -T 572 E—lepluz 5 } dr, (5.1)
ov; 32\11 1 *v,; aT D
dW V,t) /

it 5.2
Z ov (5.2)

ou; i 1

:Z/ [Pz’ui (miu +V(m /) +Zz¢)> <piui(miuf+zi¢)>

=0’V ot 2 5

- ( Op; B 8T8pi> V- (piui) =T 8T2 a -V (Tiui):| dr+T7 (5.3)

N
6Ui 8\1171 82\111
_;/\/ [Piui (mi(at +uNui)+zN¢> - (api _T8T6p1v> V- (piui)

oV, 820, T AW (V1)
+9- (wlwi =15 ) -1 G- Ve (M) an + L) v, (5
32 oT
_E / [pzuZ (mz —I—quuz)—Fszgb) 572 (8t +u; - VT> V- (Tiu;)
o, OV, 9%, dW (V1)

Equation (5.1) to (5.2) uses the mass conservation, the definition of the mean electrical
potential (2.7) and the work (2.8). Equation (5.3) to (5.4) uses the form of the energy
flux (2.10). Comparing with Equation (2.11), we can see,

2y .
/Z{plul (ml +u1Vu1)+21V¢> 88;}22 (aaf W; - VT> V- (Tu;)

=0
o, v, 0% )
+(‘I’i—Pz‘api— 8T+ T8T8 )V u]dr—/v(q—v-j)dr. (5.6)

Since the control volume V is arbitrary, we then conclude with Equation (2.11).

Derivation of Equation (2.17). Similarly, we first compute the time derivative
of the entropy (2.5),

9%, i , 9w, T
75 Vit)= Z/ 9907 Bt + o7 g M (5.7)
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82w, T
Z / 5‘p15T (i) = G g 4 (58)
82, 82, 82w, T
—;/‘/plaplaTvU1+ulaplaTvpz— 972 Edr, (5.9)
N
82, ov, 0%, 920, T
_;/vpiapiairv‘“' uN G gz VI e g (5-10)

N
. ' - e T . 11
Jﬁ;/v[(pzaﬂifﬁ 0T)V YT (at v ﬂd (5.11)

Comparing with Equation (2.16), we can see,

N |
0*w; oY, 0%, (01 ~ q J

2 |, |\Papar Vou - o) ae—Ase L vl (50

i_o/‘/[(p 0p;0T 8T) Wi o2 <8t w >} r T T (5.12)

Taking into account that the control volume V is arbitrary, we then conclude with
Equation (2.17).
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