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ABSTRACT The action potential of nerve and muscle is produced by voltage-sensitive channels that include a specialized

device to sense voltage. The voltage sensor depends on the movement of charges in the changing electric field as sug-

gested by Hodgkin and Huxley. Gating currents of the voltage sensor are now known to depend on the movements of posi-

tively charged arginines through the hydrophobic plug of a voltage sensor domain. Transient movements of these

permanently charged arginines, caused by the change of transmembrane potential V, further drag the S4 segment and

induce opening/closing of the ion conduction pore by moving the S4-S5 linker. This moving permanent charge induces

capacitive current flow everywhere. Everything interacts with everything else in the voltage sensor and protein, and so it

must also happen in its mathematical model. A Poisson-Nernst-Planck (PNP)-steric model of arginines and a mechanical

model for the S4 segment are combined using energy variational methods in which all densities and movements of charge

satisfy conservation laws, which are expressed as partial differential equations in space and time. The model computes

gating current flowing in the baths produced by arginines moving in the voltage sensor. The model also captures the capac-

itive pile up of ions in the vestibules that link the bulk solution to the hydrophobic plug. Our model reproduces the signature

properties of gating current: 1) equality of ON and OFF charge Q in integrals of gating current, 2) saturating voltage depen-

dence in the Q(charge)-voltage curve, and 3) many (but not all) details of the shape of gating current as a function of

voltage. Our results agree qualitatively with experiments and can be improved by adding more details of the structure

and its correlated movements. The proposed continuum model is a promising tool to explore the dynamics and mechanism

of the voltage sensor.

INTRODUCTION

Much of biology depends on the voltage across cell mem-

branes. The voltage across the membrane must be sensed

before it can be used by proteins. Permanent charges

move in the strong electric fields within membranes, so car-

riers of sensing charge were proposed as voltage sensors

even before membrane proteins were known to span lipid

membranes (1). The movement of permanent charges of

the voltage sensor is gating current, and the movement is

the voltage-sensing mechanism. Permanent charge is our

name for a charge or charge density independent of the

local electric field (for example, the charge and charge dis-

tribution of Naþ but not the charge in a highly polarizable

anion like Br� or the nonuniform charge distribution of

H2O in the liquid state with its complex time dependent

(and perhaps nonlinear) polarization response to the local

electric field).

Knowledge of membrane protein structure has allowed

us to identify and look at the atoms that make up the voltage

sensor. Protein structures do not include the membrane

potentials and macroscopic concentrations that power gating

currents, and therefore, simulations are needed. Atomic-level

simulations likemolecular dynamics (MD) do not provide an

easy extension from the atomic timescale�10�15 s to the bio-

logical timescale of gating currents that starts at �10�6 s

and reaches �10�2 s. Calculations of gating currents from

simulations must average the trajectories (lasting �10�1 s

sampled every 10�15 s) of �106 atoms, all of which interact

through the electric field to conserve charge and current

while conserving mass. It is difficult to enforce continuity

of current flow in simulations of atomic dynamics because

simulations compute only local behavior, whereas continuity
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of current is global, involving current flow far from the atoms

that control the local behavior. It is impossible to enforce con-

tinuity of current flow in calculations that assume equilib-

rium (zero net flow) under all conditions.

A hybrid approach is needed, starting with the essential

knowledge of structure but computing only those parts of

the structure used by biology to sense voltage. In close-

packed (‘‘condensed’’) systems like the voltage sensor

or ionic solutions, ‘‘everything interacts with everything

else’’ because electric fields are long ranged as well as

exceedingly strong (2). In ionic solutions, ion channels,

even enzyme active sites, steric interactions that prevent

the overfilling of space in well-defined protein structures

are also of great importance because they produce short-

range correlations (3).

Closely packed charged systems are well handled math-

ematically by energy variational methods. Energy varia-

tional methods guarantee that all variables satisfy all

equations (and boundary conditions) at all times and under

all conditions and are thus always consistent. We use the

energy variational approach developed in (4) and (5) to

derive a consistent model of gating charge movement,

based on the basic features of the structure of crystallized

voltage-sensitive channels. A schematic of the model is

shown below. The continuum model we use simulates the

mechanical dynamics in a single voltage sensor, although

the experimental data is from many independent voltage

sensors. Ensemble averages of recordings of individual in-

dependent voltage sensors are equivalent to macroscopic

continuum modeling in a single voltage sensor if correla-

tions are captured correctly in the model of the single

voltage sensor.

MATERIALS AND METHODS

Theory: Mathematical model

The reduced mechanical model for a voltage sensor is shown in Fig. 1 a

with four arginines (Ri, i¼ 1, 2, 3, 4), each attached to the S4 helix by iden-

tical springs with the same spring constant K. The electric field will drag

these four arginines because each arginine carries þ1 charge. The charged

arginines can also move as a group. S4 connects to S3 and S5 at its two ends

by identical springs with spring constant KS4/2.

Once the membrane is depolarized from, for example, �90 mV inside

negative to þ10 mV inside positive, arginines together with S4 will

be driven toward the extracellular side. A repolarization from þ10 to

�90 mV moves the arginines back to the intracellular side. This movement

is the basic voltage-sensing mechanism. The movement of S4 triggers the

opening or closing of the lower gate—consisting mainly of S6 forming

the ion permeation channel—by a mechanism widely assumed to be me-

chanical, although electrical aspects of the linker motion are likely to be

involved as well.

When arginines are driven by an electric field, they are forced to move

through a hydrophobic plug composed of several nonpolar amino acids

from S1, S2, to S3 (6). Arginines reside initially in the hydrated lumen of

the intracellular vestibule. They then move though the hydrophobic plug

and wind up in the vestibule on the extracellular side. This movement in-

volves dehydration when the arginines move through the hydrophobic

plug, in which the arginines encounter a barrier in the potential of mean

force (PMF), mainly dominated by the difference of the solvation energy

in bulk situation and in the hydrophobic plug (7). Note that Naþ and Cl�

(which are the only ions in the bulk solution in this article for simplicity)

are found only in vestibules and are not allowed into the hydrophobic

plug in our model. The ends of the two vestibules on each side of the hy-

drophobic plug act as impermeable walls for Naþ and Cl� in our model.

When the voltage is turned on and off, these two walls store/release charge

(carried by ions) in their electric double layers (EDL) that have many of the

properties of capacitors.

In this continuum model, the four arginines (Ri, i ¼ 1, 2, 3, 4) are

described by their individual density distributions (concentrations) (ci,

i ¼ 1, 2, 3, 4), allowing the arginines to interact with Naþ and Cl� in

vestibules. The density (i.e., concentration) distributions represent prob-

ability density functions as shown explicitly in the theory of stochastic

processes used to derive such equations in (8) using the general methods

of (9). The important issue here is how well the correlations are captured

in the continuum model. Some are more likely to be faithfully captured

in molecular or coarse-grained dynamics simulations (e.g., more or less

local hard sphere interactions) (10–14) and others in continuum models

(e.g., correlations induced by far-field boundary conditions like the

potentials imposed by bath electrodes to maintain a voltage clamp)

(15–18).

Here, we treat the S4 itself as a rigid body, so we can capture the basic

mechanism of a voltage sensor without considering the full details of struc-

ture, which might lead to a three-dimensional model difficult to compute in

reasonable time. We construct an axisymmetric one-dimensional (1D)

model with a three-zone geometric configuration illustrated in Fig. 1 b,

following Fig. 1 a. Zone 1 with z ˛ [0, LR] is the intracellular vestibule;

zone 2 with z ˛ [LR, LR þ L] is the hydrophobic plug; zone 3 with z ˛

[LR þ L, 2LR þ L] is the extracellular vestibule. Arginines, Naþ, and Cl�

can all reside in zone 1 and 3. Zone 2 only allows the residence of arginines,

albeit with a severe hydrophobic penalty because of their permanent charge,

in a region of low dielectric coefficient, hence called hydrophobic.

Based on Fig. 1 b, the governing 1D dimensionless Poisson-Nernst-

Planck (PNP)-steric equations are expressed below with the detailed nondi-

mensionalization process shown in Supporting Materials and Methods,

Section S1. The first one is a Poisson equation that shows how charge cre-

ates potential:

�
1

A

d

dz

�

GA
df

dz

�

¼
X

N

i¼ 1

qici; i ¼ Na;Cl; 1; 2; 3; 4; (1)

where f is electric potential; ci is concentration of species i with valence

qNa ¼ 1, qCl ¼ �1, qi ¼ qarg ¼ 1, i ¼ 1, 2, 3, 4; G ¼ l2D=R
2 with

lD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εrε0kBT=c0e2
p

being the Debye length, and the characteristic length

(radius of vestibule) R ¼ 1 nm here. A(z) is the channel cross-sectional area

at position z. For zones 1 and 3, G ¼ 1 by setting NaCl bulk concentration

c0 ¼ 184 mM and εr ¼ 80. For zone 2, we assume a hydrophobic environ-

ment with εr ¼ 8 and therefore G¼ 0.1. The value of the dielectric constant

inside the hydrophobic plug (zone 2) is not experimentally available; how-

ever, the computational result is not sensitive to this value based on our

sensitivity analysis.

The second equation is the species transport equation based on conserva-

tion laws:

vci

vt
þ

1

A

v

vz
ðAJiÞ ¼ 0; i ¼ Na;Cl; 1; 2 ; 3; 4; (2)

with the content of flux Ji expressed below based on the Nernst-Planck

equation for Naþ and Cl�:

Ji ¼ �Di

vci

vz
þ ciqi

vf

vz

� �

; i ¼ Na;Cl; z in zone 1 and 3;

(3)
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and for four arginines ci, i ¼ 1, 2, 3 and 4 based on the Nernst-Planck equa-

tion with steric effect and some imposed potentials:

Ji ¼ � Di

 

vCi

vz
þ qargci

vf

vz
þ ci

�

vVi

vz
þ
vVb

vz

�

þ gci
X

jsi

vcj

vz

!

; z in all zones;

(4)

where Di is the diffusion coefficient for species i.

The first and second terms in Eqs. 3 and 4 describe diffusion and electro-

migration, respectively. The third terms in Eq. 4 are external potential terms

with Vi, i¼ 1, 2, 3, and 4 being the constraint potential for the four arginines

ci to S4, represented here by a spring connecting each arginine ci to S4, as

shown in Fig. 1 a. Governing equations Eqs. 1, 2, 3, and 4 were derived by

energy variational methods, which is further shown in Supporting Materials

and Methods, Section S3.

The elastic system is described by

Viðz; tÞ ¼ Kðz� ðzi þ ZS4ðtÞÞÞ
2
; (5)

where K is the spring constant, zi is the fixed anchoring position of the

spring for each arginine ci on S4, and ZS4(t) is the center-of-mass z position

of S4 by treating S4 as a rigid body. Here, we set z1 ¼ 0.6, z2 ¼ 0.2,

z3 ¼ �0.2, and z4 ¼ �0.6 using structural information that gives the argi-

nine anchoring interval on S4 as 0.4 nm. ZS4(t) follows the motion of equa-

tion based on the spring-mass system:

mS4

d2ZS4

dt2
þ bS4

dZS4

dt
þ KS4ðZS4 � ZS4;0Þ

¼
X

4

i¼ 1

Kðzi;CM � ðzi þ ZS4ÞÞ; (6)

where mS4, bS4, and KS4 are the mass, damping coefficient, and restraining

spring constants for S4. ZS4,0 is the resting position of ZS4(t). Here, zi,CM is

the center of mass for the set of arginines ci, which can be calculated by

zi;CM ¼

R Lþ2LR

0
AðzÞzcidz

R Lþ2LR

0
AðzÞcidz

; i ¼ 1; 2; 3; 4: (7)

We assume that the spring-mass system for S4 is overdamped, which

means the inertia term in Eq. 6 can be neglected.

The energy barrier Vb in Eq. 4 is nonzero only in zone 2, which mainly

represents the difference in solvation energy, chiefly characterized by the

FIGURE 1 (a) Geometric configuration of

gating pore in this model, including the attach-

ments of arginines to the S4 segment. (b) Following

(a), an axisymmetric three-zone domain shape is

designated in r-z coordinate for the current 1D

model. Here, the diameter of the hydrophobic

plug is 0.3 nm (arginine’s diameter); L ¼ 0.7 nm;

LR ¼ 1.5 nm; and the radius of the vestibule is

R ¼ 1 nm. BC means boundary condition. To see

this figure in color, go online.
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difference of dielectric constants, in the hydrophobic plug and bulk solu-

tion. The structure of the energy barrier is actually very complicated.

Here, we simply assume a hump shape for PMF (see more in Supporting

Materials and Methods, Section S2), although we will seek greater realism

in later work.

The last term in Eq. 4 is the steric term that accounts for steric interaction

among arginines (5,19). Here, we set g ¼ 0.5, a reasonable value. Though

there is actually no experimental measurement available for g, the compu-

tation results have been verified to be insensitive to its value.

Here, we assume quasisteady state for Naþ and Cl�, which means

vci=vt ¼ 0; i ¼ Na;Cl; in Eq. 2, and the reasons are elaborated in Support-

ing Materials and Methods, Section S4. The formulation of boundary and

interface conditions is also shown in Supporting Materials and Methods,

Section S5.

Besides the main input parameter V, which is the applied voltage bias

(corresponding to the command potential in voltage-clamp experiments),

other parameters like Di (i ¼ 1, 2, 3, 4), K, KS4, and bS4 are also required.

Results are especially sensitive to the values of K, KS4, and bS4. We

have tried and found Di ¼ 50; i ¼ 1, 2, 3, and 4; K ¼ 3; KS4 ¼ 3;

and bS4 ¼ 1.5 provide the best fit to the experimental Q(charge)-voltage

(QV) curve reported in (20). Some additional explanation on fitting these

parameter values is described in Supporting Materials and Methods,

Section S6.

Usually, the electric current in the ion channel is treated simply as the

flux of charge and is uniform in the z direction when steady in time. This

is not so in this nonsteady dynamic situation because the storing and

releasing of charge in vestibules is involved. Here, the flux of charge

at the middle of hydrophobic plug, z ¼ LR þ L/2, was computed to es-

timate the experimentally observed gating current. However, it is actu-

ally impossible (so far) to experimentally measure the current at the

middle of the hydrophobic plug. In experiments, the voltage-clamp tech-

nique is used, and on/off gating current through the membrane is

measured, which should be equal to the flux of charge at z ¼ 0 in this

framework, as shown in Fig. 1 b. The flux of charges at any z position

I(z, t) can be related to the flux of charges at z ¼ 0, I(0, t), simply by

charge conservation:

v

vt
Qnetðz; tÞ ¼ Ið0; tÞ � Iðz; tÞ; (8)

where

Qnetðz; tÞ ¼

Z

z

0

AðxÞ
X

all i

qicidx; (9)

and flux of charges at any z position I(z, t) is defined by

Iðz; tÞ ¼ AðzÞ
X

all i

qiJiðz; tÞ: (10)

We identify v=vtQnetðz; tÞ as the displacement current and denote it as

Idisp (z, t) because Eq. 8 is equivalent to Ampere’s law in Maxwell’s equa-

tions, and v=vt Qnet z; tð Þð Þ is exactly the displacement current in Ampere’s

law. The proof is elaborated on in Supporting Materials and Methods, Sec-

tion S7. A general discussion about displacement current can be found in

(21–23), which does not involve assumptions concerning the dielectric co-

efficient εr or polarization properties of matter at all. Hence, Eq. 8 can be

simply rewritten as

Itotðz; tÞ ¼ Iðz; tÞ þ Idispðz; tÞ ¼ Ið0; tÞ; (11)

where we define the sum of displacement current and flux of charges as

the total current Itot (z, t). The z distribution of the total current should be

uniform by Kirchhoff’s law, and we verify this by computations shown

in the section under heading Flux of Charges at Different Locations.

Note the ionic current I(z, t) changes a great deal with location. The

displacement current Idisp(z, t) varies a great deal with location. The total

current, the sum Itot(z, t), does not vary at all with location, although of

course it varies a great deal with time. For example, calculations of cur-

rent in the baths (which are not reported here) would show only ionic

current in the time range considered here, but it would equal the total

current that flows anywhere in our 1D model of the voltage sensor

domain.

We are also interested in observing the net charge at vestibules. Consider,

for example, the net charge at the intracellular vestibule,Qnet(LR, t). The net

charge consists of arginine charges and their countercharges formed by the

EDL of ionic solution in that location. Electroneutrality is approximate but

will not be exact there. Flux of charge, displacement current, and net charge

at vestibules will be discussed further in the section under heading Flux of

Charges at Different Locations.

To evaluate the current theoretical model, it is important to compare

our computational results with experimental measurements (20) in

the curves of gating current and amount of gating charge moved

versus applied voltage (I(current)-voltage [IV] and QV curves).

To construct the QV curve, we calculate Q1 ¼
R LR
0

AðzÞ
P4

i¼1cidz; Q2 ¼
R LRþL

LR
AðzÞ

P4

i¼1cidz, Q3 ¼
R 2LRþL

LRþL
AðzÞ

P4

i¼1cidz, which are the amounts

of arginine found in zone 1, 2, and 3, respectively. Usually Q2z 0 is due

to the energy barrier Vb in zone 2. Arginines tend to jump across zone 2

when driven from zone 1 to zone 3 as the voltage V is turned on. The

number of arginines that move and settle at zone 3 depends on the

magnitude of V. Besides IV and QV curves, the time course of the move-

ment of arginines and S4, zi,CM(t) and ZS4(t), is important to report here

because recording these movements in experiments is becoming feasible

nowadays by optical methods. Many qualitative models accounting for

the movement of S4 and conformation change of the voltage sensor

have been proposed. Readers are referred to review articles (24,25) for

more details.

Numerical method

Equations 1, 2, 3, and 4 are first discretized in space by high-order multi-

block Chebyshev pseudospectral methods and then integrated in time under

the framework of method of lines. The details of the numerical method are

referred to Supporting Materials and Methods, Section S8.

RESULTS AND DISCUSSION

Here, numerical results based on the mathematical model

described above were calculated and compared with exper-

imental measurements (20). Our 1D continuum model has

advantages and disadvantages. The lack of three-dimen-

sional structural detail means that some details of the gating

current and charge cannot be reproduced. It should be noted,

however, that to reproduce those, one needs more than just

static structural detail. One must also know how the struc-

tures (particularly their permanent and polarization charge)

move and change after a command potential is applied in the

experimental ionic conditions. The 1D model has advan-

tages because it computes the actual experimental results

on the actual experimental timescale in realistic ionic solu-

tions and with far-field boundary conditions actually used in

voltage-clamp experiments. It also conserves total current,

as we will demonstrate later. Conservation of current needs

Gating Currents Model
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to be there and verified in theories and simulations because

it is a universal property of the Maxwell equations (21–23).

QV curve

When the membrane and voltage sensor is held at a large in-

side negative potential (e.g., hyperpolarized to�90 mV), S4

is in a resting potential position, and all arginines stay in the

intracellular vestibule. When the potential is made more

positive (e.g., depolarized to þ10 mV), S4 is in the active

potential position, and all arginines are at the extracellular

vestibule.

The voltage dependence of the charge (arginines) trans-

ferred from intracellular vestibule to extracellular vestibule

is characterized as a QV curve in experimental papers, and

it is sigmoidal in shape (20). Fig. 2 a shows that our

computed QV curve—the dependence of Q3 on V—is in

very good agreement with the experiment (20). This good

agreement comes from the fact that our resultant QV curve

is also a sigmoidal curve, and, most important of all, the

slope of QV curve can be tuned, mainly by the adjustment

of K, KS4, and bS4, to agree with experiment. Not many theo-

retical models can achieve this agreement, especially for the

slope. Models in (15,16) show good agreement with exper-

iments, whereas a mismatch of slope was reported in

(17,18). The voltage dependence of activation has been

considered a crucial property of the sodium conductance

since it was defined (1). Fig. 2 b shows the steady-state

distributions of Naþ, Cl�, and arginines in the inside nega-

tive, hyperpolarized situation (V ¼ �90 mV). As we can

see, all the arginines stay in the intracellular vestibule,

and none of the arginines move to the extracellular vestibule

(Q3 z 0).

Fig. 2 c shows the situation at V ¼ �48 mV, which is the

midpoint of the QV curve. As we can see, each vestibule has

distributions of ci (i ¼ 1, 2, 3, and 4), resulting in half of the

arginines staying in it (Q3 ¼ 2). The center-of-mass position

for each arginine, presented later in Fig. 6, shows that R1

and R2 are in the extracellular vestibule, and R3 and R4

are in the intracellular vestibule. There are almost no argi-

nines in zone 2 (hydrophobic plug) because of the energy

barrier in it. Note that this represents an average because

in a single molecule interpretation, half of the sensors will

be with all R’s inside and the other half with all R’s outside.

The midpoint of �48 mV from (20) requires the resting po-

sition of S4, ZS4,0, to be biased from LR þ 0.5L to ZS4,0 ¼
LR þ 0.5L þ 1.591 nm; otherwise, the midpoint would be

0 mV. Fig. 2 d shows the situation at full depolarization

(V¼�8 mV), at which time all arginines move to the extra-

cellular vestibule (Q3 z 4) in the fully depolarized, acti-

vated state.

Gating current

Fig. 3 shows the time course of gating currents, observed

as flux of charge at the middle of hydrophobic plug

I(LR þ L/2, t) because of the movement of arginines when

the membrane depolarization is large and when the depolar-

ization is small. In the case of large depolarization, V rises

from �90 mV at t ¼ 10 to �8 mV and drops back to

�90 mVat t¼ 150 (Fig. 3 a). The time course of gating cur-

rent and contributions of individual arginines are shown in

Fig. 3 b. As expected, the rising order of each current

component follows the moving order of R1, R2, R3, and

R4 when depolarized and that order is reversed when repo-

larized. The area under the gating current is the amount of

charge moved. Because arginines move forward and back-

ward in this depolarization/repolarization scenario, the areas

under the ON current and the OFF current are same. The

areas are equal for each component of current as well.

The equality of area is an important signature of gating

current that contrasts markedly with the properties of ionic

current (26,27). In the case of small depolarization (V rises

from�90 to�50 mVat t¼ 10 to and drops back to�90 mV

at t¼ 150, Fig. 3 c), the time course of gating current and its

four components contributed by each arginine for this situ-

ation is shown in Fig. 3 d. Under this small depolarization,

not all arginines move past the middle of the hydrophobic
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FIGURE 2 (a) QV curve and comparison

with (20). Steady-state distributions for Naþ, Cl�,

and arginines are shown at (b) V ¼ �90 mV,

(c) V ¼ �48 mV, and (d) V ¼ �8 mV. Note that

the experimental data in (20) were scaled to 4e. To

see this figure in color, go online.
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plug because of the weaker driving force in the small depo-

larization compared with the large depolarization case. This

can be inferred because the areas under each component

current are different (Fig. 3 d).

The gating currents can be better understood by looking

at a sequence of snapshots showing the spatial distribution

of electric potential, species concentration, and electric

current. The distributions at several times are shown in

Fig. 4 a for the case of sudden change in command voltage

to a more positive value and a large depolarization, and the

distributions are shown in Fig. 4 b for the case of a small

depolarization. The electric potential profiles at t ¼ 13

and t ¼ 148 show that the profile of electric potential

changes as arginines move from left to right even though

the voltage is maintained constant across the sensor. Slight

bulges in electric potential profile exist wherever arginines

are dense. This can be easily explained by understanding

the effect of Eq. 1 on a concave spatial distribution of elec-

tric potential.

In Fig. 4, the total current defined in Eq. 11, though

changing with time, is always constant in z at all times, satis-

fying Kirchhoff’s law (i.e., conservation of current). At

t ¼ 13, when gating current is substantial, as seen from

t ¼ 13 in Fig. 3, b and d, we can visualize the z distributions

of flux of charges I(z, t), displacement of current Idisp(z, t),

and total current Itot(z, t) individually in Fig. 4.

Flux of charges at different locations

Flux of charges I(z, t), together with displacement current

Idisp(z, t) and total current Itot(z, t), depicted in Fig. 4, deserve

more discussion here. Though I(z, t), Idisp(z, t), and Itot(z, t) are

well defined inEqs. 8, 9, 10, and 11, the actual computation of

them takes an indirect path because of the assumption of qua-

sisteady state for Naþ and Cl� in Eq. 2. The details are pre-

sented in Supporting Materials and Methods, Section S9.

The computed total current Itot(z, t) does indeed satisfy

Kirchhoff’s law by its uniformity in z. This verification is

shown in Fig. 4 at several times, and we have checked that

this is in fact true at any time.

In the bottom rows of Fig. 4 at t ¼ 13, we observe that

I(z, t) is generally nonuniform in z and is accompanied by

congestion/decongestion of arginines in between. However,

I(z, t) is almost uniform in zone 2 (hydrophobic plug), which

means almost no congestion/decongestion of arginines oc-

curs there, and therefore, there is no contribution to the

displacement current d=dtQnetðz; tÞ from zone 2. This is

because arginines can hardly reside in zone 2 because of

the energy barrier in it.

Several things are worth noting in the time courses of

IðLR þ L=2; tÞ and I(0, t) (equal to uniformly distributed

Itot as depicted by Eq. 11) illustrated in Fig. 5 a under the

case of large depolarization. First, IðLR þ L=2; tÞ is notice-
ably larger than I(0, t) in the ON period. This is because their

difference, exactly the displacement current Idisp, is always

negative at zone 2 when depolarized because arginines

are leaving zone 1 and make d=dtQnet < 0 for zone 2.

It is expected that the area under the time course of

IðLR þ L=2; tÞ would be very close to 4e, as verified

by the time courses of Q3 in Fig. 5 b. We use I(0, t) to esti-

mate the experimentally measured voltage-clamp current,

whereas the counterpart area of experimentally measurable

I(0, t) would be less than 4e because of its smaller magni-

tude compared with IðLR þ L=2; tÞ. This may partly explain
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the experimental observations that at most 13e (25,28,29),

instead of 16e, are moved during full depolarization in

four voltage sensors (for a single ion channel) based on

computing the area under voltage-clamp gating current.

Therefore, flux of charge at any location of zone 2, though

impossible to measure in experiments so far, will give us

the amount of arginines moved during depolarization

more reliably than the measurable I(0, t).

Second, we see in Fig. 5 a with magnification in its inset

plot that, as in experiments, I(0, t), but not IðLR þ L=2;tÞ, has
contaminating leading spikes in ON and OFF parts of the

current. These spikes are capacitive currents from solution

EDL of vestibules caused by the sudden rising and dropping

of command potential. These spikes need to be removed in

voltage-clamp experiments to get rid of the contribution

from vestibule solution EDL (and membrane) to the trans-

port of gating charges (arginines) when computing the

area under gating current. The technical details of removing

these spikes are shown in Supporting Materials and

Methods, Section S10, and more details about spikes can

be found in Supporting Materials and Methods, Section S11.

Third, in Fig. 5 b, as arginines move from one vestibule

to another, the concentrations of Naþ and Cl� also corre-

spondingly change with time at the vestibules. They form

countercharges through EDL and balance arginine charges

at vestibules. However, these EDL changes only maintain

an approximate, not exact, charge balance, as shown in

Fig. 5 b. The violation of electroneutrality causes the

displacement current, which is not negligible. This further

causes the underestimate of arginines that move when the

voltage sensor is depolarized if the estimate is made by

measuring the area under I(0, t).

As in the previous section, we used flux of charges at the

middle of the hydrophobic plug, I(LR þ L/2, t), instead of

experimentally measurable I(0, t) to represent the gating

current in discussions. We may as well name I(LR þ
L/2, t) as the arginine current to avoid the confusion with

the actual gating current I(0, t) here. This arginine current

FIGURE 4 (a) The top row shows dimensionless

species concentration distributions at t ¼ 0, 13

(right after depolarization), and 148 (right before

repolarization) for the case of large depolarization

with V from �90 mVat t ¼ 10 to �8 mVand drop-

ping back to �90 mV at t ¼ 150. The middle

row shows concurrent electric potential profiles.

The bottom row shows concurrent electric current

profiles with the components of flux of charge,

displacement current, and total current. (b) The

same as (a) is shown except with V depolarized

from �90 to �50 mV. To see this figure in color,

go online.
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leaves out its associated displacement current Idisp(LR þ
L/2, t) and serves to represent gating current better for two

reasons:

1) The area under the time course of I(LR þ L/2, t) gives us

the amount of arginines moved during depolarization

more faithfully than I(0, t). The fluxes of charge for

each arginine shown in Fig. 3, b and d carry important

information about how each arginine is moved by the

electric field that will be further illustrated in Fig. 6.

All these will not be easy to display and comprehend if

we use I(0, t) instead.

2) Using I(0, t) as a definition of gating current would

require a decontamination by removing the leading

spikes, which is computationally costly. Removing

spikes would especially pose a heavy numerical burden

when doing parameter fitting in which numerous

repeated computations are done.

Time course of arginine and S4 translocation

Fig. 6 shows the time course of Q (amount of arginines

moved to extracellular vestibule, equal to Q3 here) and cen-

ter-of-mass trajectories of individual arginines (zi,CM, i ¼ 1,

2, 3, and 4) and S4 segment (ZS4). Fig. 6, a and b show the

case of large depolarization, and Fig. 6, c and d show the

case of small depolarization.

In the case of large depolarization (Fig. 6 b), the argi-

nines and S4 z positions quickly reach individual steady

states, with almost all arginines transferred to the extracel-

lular vestibule as previously shown in Fig. 4 a. Therefore,

Q is close to its saturated value 4 as shown in Fig. 6 a. Ar-

ginines and S4 move back to the intracellular vestibule once

the voltage drops back to �90 mV. From Fig. 6 b, the for-

ward-moving order of arginines is R1, R2, R3, and R4, and

the backward-moving order is the opposite R4, R3, R2,

and R1 with agreement with the structure. This agreement

might look trivial in molecular dynamics simulations but

is not a trivial check here because this model describes

arginines not by particles, as in molecular dynamics, but

by concentrations. Note that an incorrect order and pace

of the movement of arginines would cause disagreement

with experiments in the shape of IV curve as well. S4 is

initially farthest to the right but lags behind R1 and R2 dur-

ing movement in depolarization, as shown in Fig. 6 b. This

is certainly because S4 is finally relaxed to an almost

unforced situation close to its resting position ZS4,0 during

a

b

FIGURE 5 (a) The time courses of IðLR þ L=2;tÞ,
I(0, t), and despiked I(0, t) for the case of large depo-

larizationwithV rising from�90 to�8mVat t¼ 10,

holding on till t ¼ 150, and then dropping back

to �90 mV. The inset plot is a magnification

of the ON current to visualize the difference of

I(0, t) and despiked I(0, t) more clearly. (b) The

time courses of Q1; Q3;
R LR
0
ðcNa � cClÞdz, and

R 2LRþL

LRþL
ðcNa � cClÞdz are under the same depolariza-

tion scenario as (a). To see this figure in color,

go online.
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FIGURE 6 (a) and (c) are the time courses of the

amount of arginines moved to the extracellular

vestibule. (b) and (d) are center-of-mass trajec-

tories of individual arginines and S4. (a) and (b)

are the case of large depolarization with V rising

from �90 to �8 mV at t ¼ 10, holding on till

t ¼ 150, and then dropping back to �90 mV.

(c) and (d) are the case of small depolarization

with V rising from�90 to�50 mVat t ¼ 10, hold-

ing on till t ¼ 150, and then dropping back to

�90 mV. To see this figure in color, go online.
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this large depolarization. We can further calculate the

displacements of each arginine and S4 during this full-

saturating depolarization and find Dz1,CM z Dz2,CM z

Dz3,CM z 1.93 nm, Dz4,CM ¼ 1.76 nm, and DZS4 ¼
1.51 nm. Besides almost the same displacements for R1,

R2, and R3, their average moving velocities are also very

close to each other. This seems to suggest a synchronized

movement among R1, R2, and R3 that we have not imposed

on the arginines in our model. Also, we can see the move-

ments of arginines contribute significantly to the movement

of the S4 segment. This can be seen from the steady-state z

position of S4 derived from Eq. 6,

ZS4 ¼
K

KS4 þ 4K

X

4

i¼ 1

ðzi;CM � ziÞ þ
KS4

KS4 þ 4K
ZS4;0

¼
1

5

"

ZS4;0 þ
X

4

i¼ 1

zi;CM

#

: (11)

Experimental estimates of S4 displacement during full de-

polarization range from 2 to 20 Å (24,30), depending on the

model of the voltage sensor and its motion, including the

transporter model, the helical screw, and the paddle model

(24). Our DZS4 ¼ 1.51 nm here is large and seems to agree

better with experimental estimates requiring large displace-

ments, such as the paddle model. In contrast, the helical

screw model, which is supported by most of the recent

data, is known to have shorter displacements. A plausible

explanation for our overestimate ofDZS4 is that our 1Dmodel

uses a straight line perpendicular to the hydrophobic-plug

path for the movement of the arginines. In reality, the S4

segment is significantly tilted with respect to the membrane,

and the arginines follow a spiral along the helix. Therefore, if

the S4 segment rotates and changes its tilt during activation,

the total vertical translation needed to cross the hydrophobic

plug is significantly reduced, as was shown by Vargas et al.

(31). The value obtained in (31) was between 0.7 and 1 nm

when comparing the displacement perpendicular to themem-

brane of the open-relaxed state crystal structure ofKv1.2 (32)

and the closed structure that has been derived by consensus

from experimental measurements (31).

In the case of small depolarization, the driving force is

weaker than in a large-saturating depolarization, so their

z positions do not have a chance to reach steady states as

they do during a full-saturating depolarization. Rather,

in a small depolarization, the motion of the arginines and

S4 are aborted. They return to the intracellular vestibule

because the depolarization drops (i.e., decreases in magni-

tude, and the membrane potential becomes more negative)

before arginines and S4 have a chance to reach their

steady-state positions. This detailed atomic interpretation

likely overreaches the resolution of our model. At the sin-

gle-sensor level, we do not expect partial movements;

instead, some sensors will have moved all the way and

others not at all, but the distribution of sensors in the two

extreme positions should follow what we predict with this

model, which is an ensemble average. We look forward to

measurements of movements of probes that mimic arginine

in its environment that require improvements in the resolu-

tion and structural realism of our model.

Fig. 6 c illustrates these aborted motions. Q reaches 1.57

at most, which should be 2 instead if steady-state was

reached as it is if time is long enough. See the steady-state

behavior shown in the QV curve of Fig. 2 a. Fig. 6 d shows

that the S4 segment is initially farthest to the right, lags

behind R1 during movement, and is almost caught up by

R2. The maximal displacements of arginines and S4 calcu-

lated from Fig. 6 d are Dz1,CM ¼ 1.36 nm, Dz2,CM ¼
0.966 nm, Dz3,CM ¼ 0.459 nm, Dz4,CM ¼ 0.316 nm, and

DZ4,CM ¼ 0.616 nm. The significant difference between

Dz1,CM, Dz2,CM, Dz3,CM, and Dz4,CM may imply that R1

and R2 have jumped across the hydrophobic plug and

entered the extracellular vestibule, whereas R3 and R4

a b

FIGURE 7 (a) The time courses of subtracted

gating current, despiked I(0, t), with the voltage

rising from �90 to V mV at t ¼ 10, holds on till

t ¼ 150, and then drops back to �90 mV, where

V ¼ �62, �50, ., �8 mV. (b) t2 versus V

compared with experiment (20) is shown. To see

this figure in color, go online.
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still stay at the intracellular vestibule during this small

depolarization. This is consistent with the observation

from individual gating-current components of arginines in

Fig. 3 d.

Family of gating currents for a range of voltages

Though we prefer IðLR þ L=2; tÞ to I(0, t) for representing

gating current as explained in the section under heading

Flux of Charges at Different Locations, we here use the

actual gating current, despiked I(0, t), to compare with

experiment (20). Fig. 7 a shows the time courses of a sub-

tracted gating current (despiked I(0, t)) for a range of volt-

ages V ranging from �62 to �8 mV. The area under

gating current, for both ON and OFF parts, increases

with V because more arginines are transferred to the extra-

cellular vestibule as V increases. The shapes of this family

of gating currents agree well with experiment (20) in both

magnitude and time course.

We can characterize the time course by fitting the decay

part of a subtracted gating current by ae�t=t1 þ be�t=t2,

t1 < t2 as generally done in experiments (20) in which t1

is the fast time constant and t2 is the slow time constant.

Usually, the movement of arginines is dominated by t2.

Here, t2 was calculated from simulation and compared

with experiment (20) as shown in Fig. 7 b. Because in our

computation the time is in arbitrary units, we have scaled

the time to have the maximal t2 to fit with its counterpart

in experiment (20). Overall, the trend of t2 versus V in our

result, though not the whole curve, agrees well with exper-

iment (20). To the left of the maximal point in Fig. 7 b,

simulation results fit rather well with the experiment

compared with the values to the right of the maximal point,

at which it overestimates t2 compared with the experiment.

This overestimate is consistent with the observation that the

amount of transferred charges Q saturates slightly faster in

experimental data than in this simulation as V increases

(see QV curve of Fig. 2 a). This phenomenon is related

to the cooperativity of movement among arginines, which

will be further discussed below.

Effect of voltage pulse duration

Fig. 8 shows the effect of voltage pulse duration with Fig. 8 a

for the case of small depolarization and Fig. 8 b for the case of

large depolarization. The magnitude and time span of sub-

tracted gating current (despiked I(0, t)) are changed by pulse

duration in both cases, but the shape will asymptotically

approach the same curve as pulse duration increases, no

matter the size of the depolarization. This behavior occurs

because it takes time for the command pulse to drive the ar-

ginines toward the extracellular vestibule. If the pulse dura-

tion is long enough, the time course of Q will approach its

steady state for large depolarization as in Fig. 6 a. Small de-

polarization takes a longer time to reach its steady state, as

demonstrated in Fig. 6 c. The shapes of gating currents in

Fig. 8 compare favorably with experiment (20) in which

the OFF subtracted gating currents for short pulses have

very fast decays, whereas for long pulses, the OFF subtracted

gating currents have larger rising amplitude and slower decay

because of a larger amount of arginines moved.

CONCLUSIONS

Previous work with molecular and coarse-grained simula-

tions have captured some interactions, but they have not

yet reproduced the time course and voltage dependence of

macroscopic gating currents (10–14), and previous contin-

uum models have captured only the steady-state properties

of charge movement (15–18).

This 1D continuum mechanical model of the voltage

sensor tries to capture the essential structural details of the

movement of mass and charge that are necessary to repro-

duce the basic features of experimentally recorded gating

currents. After finding appropriate parameters, we find

that the general kinetic and steady-state properties are
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FIGURE 8 Subtracted gating currents, despiked

I(0, t), showing the effect of voltage pulse duration.

(a) V increases from �90 to �35 mVat t ¼ 10 and

drops back to �90 mV at various times. (b) V in-

creases from �90 to 0 mV at t ¼ 10 and drops

back to�90 mVat various times. To see this figure

in color, go online.
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well represented by the simulations. The good agreement of

our numerical results with salient features of gating current

measured experimentally would be impossible by simply

tuning of parameters if our model had not captured the

essence of physics for the voltage sensor. The continuum

approach seems to be a good model of voltage sensors, pro-

vided that it 1) takes into account all interactions crucial to

the movement of gating charges and S4; 2) computes their

correlations consistently, so all variables satisfy all equa-

tions under all conditions with one set of parameters;

and 3) satisfies conservation of current. This last point

gave us a new insight: what is measured experimentally

does not correspond to the transfer of the arginines because

the total current, containing a displacement current, is

smaller than the arginine current. It should be noted, how-

ever, that the total energy provided by the voltage clamp

is qV, where q is the time integral of the measured gating

current and V is the applied voltage. This is the total energy

that explains the correspondence of charge per channel with

the charge estimated by the limiting slope method (33–35).

We have simplified the profile of the energy barrier in the

hydrophobic plug because the PMF in that region, and its

variation with potential and conditions, is unknown. There

is plenty of detailed information on the amino acid side

chains in the plug and how each one of them changes the ki-

netics and steady-state properties of gating charge move-

ment (6). Therefore, the next step is to model the details

of interactions of the moving arginines with the wall of

the hydrophobic plug and the contributions from other sur-

rounding charged protein components. Some of the effects

to be included are as follows:

1) Steric and dielectric interactions of the arginines that this

model does not include. These include the interaction of

arginines with negative charges of the S2 and S3 seg-

ments and the negative phospholipids as well as the hy-

drophobic residues in the plug. These interactions may

be responsible for the simultaneous movement of two

to three arginines across the plug, which is an experi-

mental result that this model does not reproduce (36,37).

2) Time dependence of the plug energy barrier Vb. Once the

first arginine enters the hydrophobic plug by carrying

some water with it, this partial wetting of the hydropho-

bic plug will lower Vb, chiefly consisting of solvation en-

ergy, and enable the next arginine to enter the plug with

less difficulty. This might explain the cooperativity of

movement among arginines when they jump through

the plug. The addition of details in the plug may also pro-

duce intermediate states that have been measured exper-

imentally. In this situation, arginines may transiently

dwell within the plug.

3) A very strong electric field might affect the hydration

equilibrium of the hydrophobic plug and would lower

its hydration energy barrier as well (38). This cooper-

ativity of movement may help explain the quick satura-

tion in the upper right branch of the QV curve (and

smaller t2). It may also explain the experimentally

observed translocation of two to three arginines simulta-

neously (36,37).

The power of this mathematical modeling is precisely the

implementation of interactions and the various effects in a

consistent manner. Implementing the various effects listed

above is likely to lead to a better prediction of the currents

and to the design of experiments to further test and extend

the model.

Further work must address the mechanism of coupling

between the voltage sensor movements and the conduction

pore. For example, the spring constant of the two sides of

S4 have been made equal, which does not take into account

the structural reality that one side has a linker to S3,

whereas the other links to the pore opening. It seems likely

that the classical mechanical models of coupling will need

to be extended to include coupling through the electrical

field. The charges involved are large. The distances are

small, so the changes in electric forces that accompany

movements of charged mass (and flows of displacement

current) are likely to be large and important. It is possible

that the voltage sensor modifies the stability of a funda-

mentally stochastically unstable, nearly bistable, conduc-

tion current (of single channels) by triggering sudden

transitions from closed to open state in a controlled

process reminiscent of Coulomb blockade in a noisy

environment (39).

SUPPORTING MATERIAL

Supporting Materials and Methods, one figure, and one data file are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(18)

34501-6.
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