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ABSTRACT The action potential of nerve and muscle is produced by voltage-sensitive channels that include a specialized
device to sense voltage. The voltage sensor depends on the movement of charges in the changing electric field as sug-
gested by Hodgkin and Huxley. Gating currents of the voltage sensor are now known to depend on the movements of posi-
tively charged arginines through the hydrophobic plug of a voltage sensor domain. Transient movements of these
permanently charged arginines, caused by the change of transmembrane potential V, further drag the S4 segment and
induce opening/closing of the ion conduction pore by moving the S4-S5 linker. This moving permanent charge induces
capacitive current flow everywhere. Everything interacts with everything else in the voltage sensor and protein, and so it
must also happen in its mathematical model. A Poisson-Nernst-Planck (PNP)-steric model of arginines and a mechanical
model for the S4 segment are combined using energy variational methods in which all densities and movements of charge
satisfy conservation laws, which are expressed as partial differential equations in space and time. The model computes
gating current flowing in the baths produced by arginines moving in the voltage sensor. The model also captures the capac-
itive pile up of ions in the vestibules that link the bulk solution to the hydrophobic plug. Our model reproduces the signature
properties of gating current: 1) equality of ON and OFF charge Q in integrals of gating current, 2) saturating voltage depen-
dence in the Q(charge)-voltage curve, and 3) many (but not all) details of the shape of gating current as a function of
voltage. Our results agree qualitatively with experiments and can be improved by adding more details of the structure
and its correlated movements. The proposed continuum model is a promising tool to explore the dynamics and mechanism
of the voltage sensor.

INTRODUCTION

Much of biology depends on the voltage across cell mem-
branes. The voltage across the membrane must be sensed
before it can be used by proteins. Permanent charges
move in the strong electric fields within membranes, so car-
riers of sensing charge were proposed as voltage sensors
even before membrane proteins were known to span lipid
membranes (1). The movement of permanent charges of
the voltage sensor is gating current, and the movement is
the voltage-sensing mechanism. Permanent charge is our
name for a charge or charge density independent of the
local electric field (for example, the charge and charge dis-
tribution of Na™ but not the charge in a highly polarizable
anion like Br~ or the nonuniform charge distribution of
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H,O in the liquid state with its complex time dependent
(and perhaps nonlinear) polarization response to the local
electric field).

Knowledge of membrane protein structure has allowed
us to identify and look at the atoms that make up the voltage
sensor. Protein structures do not include the membrane
potentials and macroscopic concentrations that power gating
currents, and therefore, simulations are needed. Atomic-level
simulations like molecular dynamics (MD) do not provide an
easy extension from the atomic timescale ~10~"> s to the bio-
logical timescale of gating currents that starts at ~107° s
and reaches ~10~2 s. Calculations of gating currents from
simulations must average the trajectories (lasting ~10~" s
sampled every 10~ "% s) of ~10° atoms, all of which interact
through the electric field to conserve charge and current
while conserving mass. It is difficult to enforce continuity
of current flow in simulations of atomic dynamics because
simulations compute only local behavior, whereas continuity
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of current is global, involving current flow far from the atoms
that control the local behavior. It is impossible to enforce con-
tinuity of current flow in calculations that assume equilib-
rium (zero net flow) under all conditions.

A hybrid approach is needed, starting with the essential
knowledge of structure but computing only those parts of
the structure used by biology to sense voltage. In close-
packed (“condensed”) systems like the voltage sensor
or ionic solutions, “everything interacts with everything
else” because electric fields are long ranged as well as
exceedingly strong (2). In ionic solutions, ion channels,
even enzyme active sites, steric interactions that prevent
the overfilling of space in well-defined protein structures
are also of great importance because they produce short-
range correlations (3).

Closely packed charged systems are well handled math-
ematically by energy variational methods. Energy varia-
tional methods guarantee that all variables satisfy all
equations (and boundary conditions) at all times and under
all conditions and are thus always consistent. We use the
energy variational approach developed in (4) and (5) to
derive a consistent model of gating charge movement,
based on the basic features of the structure of crystallized
voltage-sensitive channels. A schematic of the model is
shown below. The continuum model we use simulates the
mechanical dynamics in a single voltage sensor, although
the experimental data is from many independent voltage
sensors. Ensemble averages of recordings of individual in-
dependent voltage sensors are equivalent to macroscopic
continuum modeling in a single voltage sensor if correla-
tions are captured correctly in the model of the single
voltage sensor.

MATERIALS AND METHODS
Theory: Mathematical model

The reduced mechanical model for a voltage sensor is shown in Fig. 1 a
with four arginines (R;, i = 1, 2, 3, 4), each attached to the S4 helix by iden-
tical springs with the same spring constant K. The electric field will drag
these four arginines because each arginine carries +1 charge. The charged
arginines can also move as a group. S4 connects to S3 and S5 at its two ends
by identical springs with spring constant Kgy/2.

Once the membrane is depolarized from, for example, —90 mV inside
negative to +10 mV inside positive, arginines together with S4 will
be driven toward the extracellular side. A repolarization from +10 to
—90 mV moves the arginines back to the intracellular side. This movement
is the basic voltage-sensing mechanism. The movement of S4 triggers the
opening or closing of the lower gate—consisting mainly of S6 forming
the ion permeation channel—by a mechanism widely assumed to be me-
chanical, although electrical aspects of the linker motion are likely to be
involved as well.

When arginines are driven by an electric field, they are forced to move
through a hydrophobic plug composed of several nonpolar amino acids
from S1, S2, to S3 (6). Arginines reside initially in the hydrated lumen of
the intracellular vestibule. They then move though the hydrophobic plug
and wind up in the vestibule on the extracellular side. This movement in-
volves dehydration when the arginines move through the hydrophobic
plug, in which the arginines encounter a barrier in the potential of mean
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force (PMF), mainly dominated by the difference of the solvation energy
in bulk situation and in the hydrophobic plug (7). Note that Na* and CI~
(which are the only ions in the bulk solution in this article for simplicity)
are found only in vestibules and are not allowed into the hydrophobic
plug in our model. The ends of the two vestibules on each side of the hy-
drophobic plug act as impermeable walls for Na™ and C1~ in our model.
When the voltage is turned on and off, these two walls store/release charge
(carried by ions) in their electric double layers (EDL) that have many of the
properties of capacitors.

In this continuum model, the four arginines (R;, i = 1, 2, 3, 4) are
described by their individual density distributions (concentrations) (c;,
i =1, 2,3, 4), allowing the arginines to interact with Na' and CI” in
vestibules. The density (i.e., concentration) distributions represent prob-
ability density functions as shown explicitly in the theory of stochastic
processes used to derive such equations in (8) using the general methods
of (9). The important issue here is how well the correlations are captured
in the continuum model. Some are more likely to be faithfully captured
in molecular or coarse-grained dynamics simulations (e.g., more or less
local hard sphere interactions) (10—14) and others in continuum models
(e.g., correlations induced by far-field boundary conditions like the
potentials imposed by bath electrodes to maintain a voltage clamp)
(15-18).

Here, we treat the S4 itself as a rigid body, so we can capture the basic
mechanism of a voltage sensor without considering the full details of struc-
ture, which might lead to a three-dimensional model difficult to compute in
reasonable time. We construct an axisymmetric one-dimensional (1D)
model with a three-zone geometric configuration illustrated in Fig. 1 b,
following Fig. 1 a. Zone 1 with z € [0, Lg] is the intracellular vestibule;
zone 2 with z € [Lg, Lg + L] is the hydrophobic plug; zone 3 with z €
[Lg + L, 2Lg + L] is the extracellular vestibule. Arginines, Na*, and Cl~
can all reside in zone 1 and 3. Zone 2 only allows the residence of arginines,
albeit with a severe hydrophobic penalty because of their permanent charge,
in a region of low dielectric coefficient, hence called hydrophobic.

Based on Fig. 1 b, the governing 1D dimensionless Poisson-Nernst-
Planck (PNP)-steric equations are expressed below with the detailed nondi-
mensionalization process shown in Supporting Materials and Methods,
Section S1. The first one is a Poisson equation that shows how charge cre-
ates potential:

1d do N
— —|TA— ) = g ici, I =Na,Cl1,2,3,4, (1
! dZ( dz) i:1q1617 l a7C7 b 737 b ( )

where ¢ is electric potential; ¢; is concentration of species i with valence
ve = 1, gar = =1, @i = qarg = 1, i = 1,2, 3, 4 ' =23 /R* with
Ap = /&re0kpT [coe? being the Debye length, and the characteristic length
(radius of vestibule) R = 1 nm here. A(z) is the channel cross-sectional area
at position z. For zones 1 and 3, I' = 1 by setting NaCl bulk concentration
co = 184 mM and ¢, = 80. For zone 2, we assume a hydrophobic environ-
ment with &, = 8 and therefore I' = 0.1. The value of the dielectric constant
inside the hydrophobic plug (zone 2) is not experimentally available; how-
ever, the computational result is not sensitive to this value based on our
sensitivity analysis.

The second equation is the species transport equation based on conserva-
tion laws:

aC,' 14

5 T a3, @) =0,

i = Na,Cl,1,2,3,4, (2

with the content of flux J; expressed below based on the Nernst-Planck
equation for Na™ and C1:

dc; d .
Ji = =D; —C—i—c,~q,4—q5 , 1 = Na,Cl, zin zone 1 and 3,
0z 0z
(3)
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and for four arginines ¢;, i = 1, 2, 3 and 4 based on the Nernst-Planck equa-
tion with steric effect and some imposed potentials:

aC; 0 av, aV,
Ji:_Di a +qargct ¢+Cl( +_b>

6] 0z 0z
“)

+gc,2 3 | z in all zones,

JFIi

where D; is the diffusion coefficient for species i.

The first and second terms in Eqs. 3 and 4 describe diffusion and electro-
migration, respectively. The third terms in Eq. 4 are external potential terms
with V;, i =1, 2, 3, and 4 being the constraint potential for the four arginines
c; to S4, represented here by a spring connecting each arginine c; to S4, as
shown in Fig. 1 a. Governing equations Eqs. 1, 2, 3, and 4 were derived by
energy variational methods, which is further shown in Supporting Materials
and Methods, Section S3.

The elastic system is described by

Vi(z,t) = K(z — (z: + Zss(1)))*, 5)

where K is the spring constant, z; is the fixed anchoring position of the
spring for each arginine ¢; on S4, and Zg,(¢) is the center-of-mass z position
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of S4 by treating S4 as a rigid body. Here, we set z; = 0.6, z, = 0.2,
z3 = —0.2, and z4 = —0.6 using structural information that gives the argi-
nine anchoring interval on S4 as 0.4 nm. Zg,(f) follows the motion of equa-
tion based on the spring-mass system:

d*Zs, dZg,
b
ac T

4
= ZK(Zi,CM — (zi +Zw)), (6)

i=1

Mgg——— + K54 (Zss — Zsa)

where mgy, bgy, and K, are the mass, damping coefficient, and restraining
spring constants for S4. Zg, o is the resting position of Zg(f). Here, z; car is
the center of mass for the set of arginines c;, which can be calculated by

fOL 2R A(2)zeidz

Jo TN 1,2, 3, 4. 0
fOL R A(2)cidz

Zicm =

We assume that the spring-mass system for S4 is overdamped, which
means the inertia term in Eq. 6 can be neglected.

The energy barrier V,, in Eq. 4 is nonzero only in zone 2, which mainly
represents the difference in solvation energy, chiefly characterized by the



difference of dielectric constants, in the hydrophobic plug and bulk solu-
tion. The structure of the energy barrier is actually very complicated.
Here, we simply assume a hump shape for PMF (see more in Supporting
Materials and Methods, Section S2), although we will seek greater realism
in later work.

The last term in Eq. 4 is the steric term that accounts for steric interaction
among arginines (5,19). Here, we set g = 0.5, a reasonable value. Though
there is actually no experimental measurement available for g, the compu-
tation results have been verified to be insensitive to its value.

Here, we assume quasisteady state for Na' and CI™, which means
dc;/dt =0, i = Na, Cl, in Eq. 2, and the reasons are elaborated in Support-
ing Materials and Methods, Section S4. The formulation of boundary and
interface conditions is also shown in Supporting Materials and Methods,
Section S5.

Besides the main input parameter V, which is the applied voltage bias
(corresponding to the command potential in voltage-clamp experiments),
other parameters like D; (i = 1, 2, 3, 4), K, Kg4, and bg, are also required.
Results are especially sensitive to the values of K, Kgy, and bg,. We
have tried and found D; = 50; i =1, 2, 3, and 4; K = 3; K¢y = 3;
and bgy = 1.5 provide the best fit to the experimental Q(charge)-voltage
(QV) curve reported in (20). Some additional explanation on fitting these
parameter values is described in Supporting Materials and Methods,
Section S6.

Usually, the electric current in the ion channel is treated simply as the
flux of charge and is uniform in the z direction when steady in time. This
is not so in this nonsteady dynamic situation because the storing and
releasing of charge in vestibules is involved. Here, the flux of charge
at the middle of hydrophobic plug, z = Lg + L/2, was computed to es-
timate the experimentally observed gating current. However, it is actu-
ally impossible (so far) to experimentally measure the current at the
middle of the hydrophobic plug. In experiments, the voltage-clamp tech-
nique is used, and on/off gating current through the membrane is
measured, which should be equal to the flux of charge at z = 0 in this
framework, as shown in Fig. 1 b. The flux of charges at any z position
I(z, t) can be related to the flux of charges at z = 0, I(0, t), simply by
charge conservation:

D0l ) = 10,0~ (2, ®

where

Qnet(z7t> = /A(E)quczdga (9)

0 all i

and flux of charges at any z position I(z, 7) is defined by

1(z,1) = A(2))_qili(z.1). (10)

all i

We identify 0/01Qne(z,t) as the displacement current and denote it as
Laisp (z, 1) because Eq. 8 is equivalent to Ampere’s law in Maxwell’s equa-
tions, and 9/0¢(Qne(z, 1)) is exactly the displacement current in Ampere’s
law. The proof is elaborated on in Supporting Materials and Methods, Sec-
tion S7. A general discussion about displacement current can be found in
(21-23), which does not involve assumptions concerning the dielectric co-
efficient €, or polarization properties of matter at all. Hence, Eq. 8 can be
simply rewritten as

Lot(z,t) = I(z,8) + Lygp(z, 1) = 1(0,1), (11

where we define the sum of displacement current and flux of charges as
the total current [,,, (z, f). The z distribution of the total current should be
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uniform by Kirchhoff’s law, and we verify this by computations shown
in the section under heading Flux of Charges at Different Locations.
Note the ionic current /(z, f) changes a great deal with location. The
displacement current ;;,(z, t) varies a great deal with location. The total
current, the sum /,(z, t), does not vary at all with location, although of
course it varies a great deal with time. For example, calculations of cur-
rent in the baths (which are not reported here) would show only ionic
current in the time range considered here, but it would equal the total
current that flows anywhere in our 1D model of the voltage sensor
domain.

We are also interested in observing the net charge at vestibules. Consider,
for example, the net charge at the intracellular vestibule, Q,,.(Lg, t). The net
charge consists of arginine charges and their countercharges formed by the
EDL of ionic solution in that location. Electroneutrality is approximate but
will not be exact there. Flux of charge, displacement current, and net charge
at vestibules will be discussed further in the section under heading Flux of
Charges at Different Locations.

To evaluate the current theoretical model, it is important to compare
our computational results with experimental measurements (20) in
the curves of gating current and amount of gating charge moved
versus applied voltage (I(current)-voltage [IV] and QV curves).

To construct the QV curve, we calculate Q; = OLR A(Z)Z?:lc,-dz, O =

LL:JFLA(Z)Z?:]c,-dZ, 03 = LzlfﬁzLA(z)Z?:]c,-dz, which are the amounts
of arginine found in zone 1, 2, and 3, respectively. Usually O, = 0 is due
to the energy barrier V;, in zone 2. Arginines tend to jump across zone 2
when driven from zone 1 to zone 3 as the voltage V is turned on. The
number of arginines that move and settle at zone 3 depends on the
magnitude of V. Besides IV and QV curves, the time course of the move-
ment of arginines and S4, z; cy(?) and Zgy(?), is important to report here
because recording these movements in experiments is becoming feasible
nowadays by optical methods. Many qualitative models accounting for
the movement of S4 and conformation change of the voltage sensor
have been proposed. Readers are referred to review articles (24,25) for
more details.

Numerical method

Equations 1, 2, 3, and 4 are first discretized in space by high-order multi-
block Chebyshev pseudospectral methods and then integrated in time under
the framework of method of lines. The details of the numerical method are
referred to Supporting Materials and Methods, Section S8.

RESULTS AND DISCUSSION

Here, numerical results based on the mathematical model
described above were calculated and compared with exper-
imental measurements (20). Our 1D continuum model has
advantages and disadvantages. The lack of three-dimen-
sional structural detail means that some details of the gating
current and charge cannot be reproduced. It should be noted,
however, that to reproduce those, one needs more than just
static structural detail. One must also know how the struc-
tures (particularly their permanent and polarization charge)
move and change after a command potential is applied in the
experimental ionic conditions. The 1D model has advan-
tages because it computes the actual experimental results
on the actual experimental timescale in realistic ionic solu-
tions and with far-field boundary conditions actually used in
voltage-clamp experiments. It also conserves total current,
as we will demonstrate later. Conservation of current needs
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to be there and verified in theories and simulations because
it is a universal property of the Maxwell equations (21-23).

QV curve

When the membrane and voltage sensor is held at a large in-
side negative potential (e.g., hyperpolarized to —90 mV), S4
is in a resting potential position, and all arginines stay in the
intracellular vestibule. When the potential is made more
positive (e.g., depolarized to +10 mV), S4 is in the active
potential position, and all arginines are at the extracellular
vestibule.

The voltage dependence of the charge (arginines) trans-
ferred from intracellular vestibule to extracellular vestibule
is characterized as a QV curve in experimental papers, and
it is sigmoidal in shape (20). Fig. 2 a shows that our
computed QV curve—the dependence of Q3 on V—is in
very good agreement with the experiment (20). This good
agreement comes from the fact that our resultant QV curve
is also a sigmoidal curve, and, most important of all, the
slope of QV curve can be tuned, mainly by the adjustment
of K, K4, and bgy, to agree with experiment. Not many theo-
retical models can achieve this agreement, especially for the
slope. Models in (15,16) show good agreement with exper-
iments, whereas a mismatch of slope was reported in
(17,18). The voltage dependence of activation has been
considered a crucial property of the sodium conductance
since it was defined (1). Fig. 2 b shows the steady-state
distributions of Na™*, C1~, and arginines in the inside nega-
tive, hyperpolarized situation (V = —90 mV). As we can
see, all the arginines stay in the intracellular vestibule,
and none of the arginines move to the extracellular vestibule
(@5 = 0).

Fig. 2 ¢ shows the situation at V = —48 mV, which is the
midpoint of the QV curve. As we can see, each vestibule has
distributions of ¢; (i = 1, 2, 3, and 4), resulting in half of the
arginines staying in it (Q; = 2). The center-of-mass position
for each arginine, presented later in Fig. 6, shows that R1
and R2 are in the extracellular vestibule, and R3 and R4

are in the intracellular vestibule. There are almost no argi-
nines in zone 2 (hydrophobic plug) because of the energy
barrier in it. Note that this represents an average because
in a single molecule interpretation, half of the sensors will
be with all R’s inside and the other half with all R’s outside.
The midpoint of —48 mV from (20) requires the resting po-
sition of S4, Zg, o, to be biased from Lg + 0.5L to Zgy g =
Lg + 0.5L + 1.591 nm; otherwise, the midpoint would be
0 mV. Fig. 2 d shows the situation at full depolarization
(V= -8 mV), at which time all arginines move to the extra-
cellular vestibule (Q3 = 4) in the fully depolarized, acti-
vated state.

Gating current

Fig. 3 shows the time course of gating currents, observed
as flux of charge at the middle of hydrophobic plug
I(Lg + L/2, t) because of the movement of arginines when
the membrane depolarization is large and when the depolar-
ization is small. In the case of large depolarization, V rises
from —90 mV at + = 10 to —8 mV and drops back to
—90 mVat t = 150 (Fig. 3 a). The time course of gating cur-
rent and contributions of individual arginines are shown in
Fig. 3 b. As expected, the rising order of each current
component follows the moving order of R1, R2, R3, and
R4 when depolarized and that order is reversed when repo-
larized. The area under the gating current is the amount of
charge moved. Because arginines move forward and back-
ward in this depolarization/repolarization scenario, the areas
under the ON current and the OFF current are same. The
areas are equal for each component of current as well.
The equality of area is an important signature of gating
current that contrasts markedly with the properties of ionic
current (26,27). In the case of small depolarization (V rises
from —90 to —50 mV at r = 10 to and drops back to —90 mV
att =150, Fig. 3 ¢), the time course of gating current and its
four components contributed by each arginine for this situ-
ation is shown in Fig. 3 d. Under this small depolarization,
not all arginines move past the middle of the hydrophobic
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o2 * Zo0s
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0 . maBel® 0 ﬂ FIGURE 2 (a) QV curve and comparison
-150 -100 -50 0 50 0 1 2 3 with (20). Steady-state distributions for Na*, Cl~,
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1 o | I (¢) V= —-48 mV, and (d) V = —8 mV. Note that
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FIGURE 3 (a) The time course of V rising from —90 to —8 mV at # = 10 holds on until # = 150 and then drops back to —90 mV. (b) The time course of
gating current, I(Lg + L/2, t), and its components corresponding to (a) are shown. (c) The time course of V rising from —90 to —50 mV at ¢ = 10 holds on until
t = 150 and then drops back to —90 mV. (d) The time course of gating current, /(Lg + L/2, t), and its components corresponding to (c) are shown. To see this

figure in color, go online.

plug because of the weaker driving force in the small depo-
larization compared with the large depolarization case. This
can be inferred because the areas under each component
current are different (Fig. 3 d).

The gating currents can be better understood by looking
at a sequence of snapshots showing the spatial distribution
of electric potential, species concentration, and electric
current. The distributions at several times are shown in
Fig. 4 a for the case of sudden change in command voltage
to a more positive value and a large depolarization, and the
distributions are shown in Fig. 4 b for the case of a small
depolarization. The electric potential profiles at r = 13
and ¢+ = 148 show that the profile of electric potential
changes as arginines move from left to right even though
the voltage is maintained constant across the sensor. Slight
bulges in electric potential profile exist wherever arginines
are dense. This can be easily explained by understanding
the effect of Eq. 1 on a concave spatial distribution of elec-
tric potential.

In Fig. 4, the total current defined in Eq. 11, though
changing with time, is always constant in z at all times, satis-
fying Kirchhoff’s law (i.e., conservation of current). At
t = 13, when gating current is substantial, as seen from
t =13 in Fig. 3, b and d, we can visualize the z distributions
of flux of charges I(z, ?), displacement of current /,(z, ?),
and total current /,,(z, ¢) individually in Fig. 4.

Flux of charges at different locations

Flux of charges I(z, t), together with displacement current
1L4i5p(z, 1) and total current /,,(z, t), depicted in Fig. 4, deserve
more discussion here. Though 1(z, 1), 145,(2, 1), and I;,(z, 1) are

well defined in Egs. 8,9, 10, and 11, the actual computation of
them takes an indirect path because of the assumption of qua-
sisteady state for Na* and C1~ in Eq. 2. The details are pre-
sented in Supporting Materials and Methods, Section S9.
The computed total current I,,(z, f) does indeed satisfy
Kirchhoff’s law by its uniformity in z. This verification is
shown in Fig. 4 at several times, and we have checked that
this is in fact true at any time.

In the bottom rows of Fig. 4 at t = 13, we observe that
I(z, t) is generally nonuniform in z and is accompanied by
congestion/decongestion of arginines in between. However,
1(z, t) is almost uniform in zone 2 (hydrophobic plug), which
means almost no congestion/decongestion of arginines oc-
curs there, and therefore, there is no contribution to the
displacement current d/dtQ,.(z,t) from zone 2. This is
because arginines can hardly reside in zone 2 because of
the energy barrier in it.

Several things are worth noting in the time courses of
I(Lg +L/2,t) and (0, t) (equal to uniformly distributed
I, as depicted by Eq. 11) illustrated in Fig. 5 a under the
case of large depolarization. First, I(Lg + L/2,t) is notice-
ably larger than (0, ) in the ON period. This is because their
difference, exactly the displacement current I, is always
negative at zone 2 when depolarized because arginines
are leaving zone 1 and make d/dtQ,., < O for zone 2.
It is expected that the area under the time course of
I(Lg +L/2,t) would be very close to 4e, as verified
by the time courses of Q5 in Fig. 5 b. We use 1(0, ) to esti-
mate the experimentally measured voltage-clamp current,
whereas the counterpart area of experimentally measurable
1(0, 1) would be less than 4e because of its smaller magni-
tude compared with I(Lg 4+ L/2,t). This may partly explain
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the experimental observations that at most 13e (25,28,29),
instead of 16e, are moved during full depolarization in
four voltage sensors (for a single ion channel) based on
computing the area under voltage-clamp gating current.
Therefore, flux of charge at any location of zone 2, though
impossible to measure in experiments so far, will give us
the amount of arginines moved during depolarization
more reliably than the measurable (0, ?).

Second, we see in Fig. 5 a with magnification in its inset
plot that, as in experiments, (0, 1), but not I (Lg + L/2,t), has
contaminating leading spikes in ON and OFF parts of the
current. These spikes are capacitive currents from solution
EDL of vestibules caused by the sudden rising and dropping
of command potential. These spikes need to be removed in
voltage-clamp experiments to get rid of the contribution
from vestibule solution EDL (and membrane) to the trans-
port of gating charges (arginines) when computing the
area under gating current. The technical details of removing
these spikes are shown in Supporting Materials and
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Methods, Section S10, and more details about spikes can
be found in Supporting Materials and Methods, Section S11.

Third, in Fig. 5 b, as arginines move from one vestibule
to another, the concentrations of Na' and CI™ also corre-
spondingly change with time at the vestibules. They form
countercharges through EDL and balance arginine charges
at vestibules. However, these EDL changes only maintain
an approximate, not exact, charge balance, as shown in
Fig. 5 b. The violation of electroneutrality causes the
displacement current, which is not negligible. This further
causes the underestimate of arginines that move when the
voltage sensor is depolarized if the estimate is made by
measuring the area under (0, ?).

As in the previous section, we used flux of charges at the
middle of the hydrophobic plug, I(Lg + L/2, t), instead of
experimentally measurable /(0, f) to represent the gating
current in discussions. We may as well name I(Lgz +
L/2, t) as the arginine current to avoid the confusion with
the actual gating current /(0, 7) here. This arginine current
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FIGURE 5 (a) The time courses of /(Lg + L/2,t),
1(0, 1), and despiked 1(0, ¢) for the case of large depo-

larization with Vrising from —90to —8 mVat = 10,

100

holding on till # = 150, and then dropping back

to —90 mV. The inset plot is a magnification
of the ON current to visualize the difference of
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leaves out its associated displacement current I;,(Lg +
L/2, t) and serves to represent gating current better for two
reasons:

1) The area under the time course of I(Lg + L/2, t) gives us
the amount of arginines moved during depolarization
more faithfully than (0, 7). The fluxes of charge for
each arginine shown in Fig. 3, b and d carry important
information about how each arginine is moved by the
electric field that will be further illustrated in Fig. 6.
All these will not be easy to display and comprehend if
we use 1(0, t) instead.

2) Using 1(0, ) as a definition of gating current would
require a decontamination by removing the leading
spikes, which is computationally costly. Removing
spikes would especially pose a heavy numerical burden
when doing parameter fitting in which numerous
repeated computations are done.

Time course of arginine and S4 translocation

Fig. 6 shows the time course of O (amount of arginines
moved to extracellular vestibule, equal to Q3 here) and cen-

ter-of-mass trajectories of individual arginines (z; cp, i = 1,
2, 3, and 4) and S4 segment (Zg,). Fig. 6, a and b show the
case of large depolarization, and Fig. 6, ¢ and d show the
case of small depolarization.

In the case of large depolarization (Fig. 6 b), the argi-
nines and S4 z positions quickly reach individual steady
states, with almost all arginines transferred to the extracel-
lular vestibule as previously shown in Fig. 4 a. Therefore,
Q is close to its saturated value 4 as shown in Fig. 6 a. Ar-
ginines and S4 move back to the intracellular vestibule once
the voltage drops back to —90 mV. From Fig. 6 b, the for-
ward-moving order of arginines is R1, R2, R3, and R4, and
the backward-moving order is the opposite R4, R3, R2,
and R1 with agreement with the structure. This agreement
might look trivial in molecular dynamics simulations but
is not a trivial check here because this model describes
arginines not by particles, as in molecular dynamics, but
by concentrations. Note that an incorrect order and pace
of the movement of arginines would cause disagreement
with experiments in the shape of IV curve as well. S4 is
initially farthest to the right but lags behind R1 and R2 dur-
ing movement in depolarization, as shown in Fig. 6 b. This
is certainly because S4 is finally relaxed to an almost
unforced situation close to its resting position Zg, o during

FIGURE 6 (a) and (c) are the time courses of the
amount of arginines moved to the extracellular

vestibule. (b) and (d) are center-of-mass trajec-
tories of individual arginines and S4. (a) and (b)
—Z30m are the case of large depolarization with V rising

—Zy0m from —90 to —8 mV at r = 10, holding on till

Zom t = 150, and then dropping back to —90 mV.
—Zg, (c) and (d) are the case of small depolarization
with Vrising from —90 to —50 mV at ¢ = 10, hold-

ing on till + = 150, and then dropping back to

a 4 c 2
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b t(a.u.) 2, d t(a.u.) —Z0m
—Zcm 3
=3 8 Zom| E 251
£ z £ —
35 oM TS 2f —
N —z N
S4 L
3 515 h
O (&}
N —— N 1f \ ]
0.5 | | | |
0 50 100 150 200 0 50 100 150 200

—90 mV. To see this figure in color, go online.

t (a.u.)

Biophysical Journal 116, 270-282, January 22, 2019 277



Horng et al.

this large depolarization. We can further calculate the
displacements of each arginine and S4 during this full-
saturating depolarization and find 4dz; cy = dzocm =
AZ3,CM =~ 1.93 nm, AZ4,CM = 1.76 nm, and AZS4 =
1.51 nm. Besides almost the same displacements for R1,
R2, and R3, their average moving velocities are also very
close to each other. This seems to suggest a synchronized
movement among R1, R2, and R3 that we have not imposed
on the arginines in our model. Also, we can see the move-
ments of arginines contribute significantly to the movement
of the S4 segment. This can be seen from the steady-state z
position of S4 derived from Eq. 6,

4

K K4
Zog = S iew —70) F 7
'S4 Kss + 4K ;(ZCM z;) +Ks4 T a0
1 4
=3 Zsap + ;Zi,CM . (11)

Experimental estimates of S4 displacement during full de-
polarization range from 2 to 20 A (24.30), depending on the
model of the voltage sensor and its motion, including the
transporter model, the helical screw, and the paddle model
(24). Our 4Zg4 = 1.51 nm here is large and seems to agree
better with experimental estimates requiring large displace-
ments, such as the paddle model. In contrast, the helical
screw model, which is supported by most of the recent
data, is known to have shorter displacements. A plausible
explanation for our overestimate of 4Zg, is that our 1D model
uses a straight line perpendicular to the hydrophobic-plug
path for the movement of the arginines. In reality, the S4
segment is significantly tilted with respect to the membrane,
and the arginines follow a spiral along the helix. Therefore, if
the S4 segment rotates and changes its tilt during activation,
the total vertical translation needed to cross the hydrophobic
plug is significantly reduced, as was shown by Vargas et al.

— 62 x10*

(31). The value obtained in (31) was between 0.7 and 1 nm
when comparing the displacement perpendicular to the mem-
brane of the open-relaxed state crystal structure of Kv1.2 (32)
and the closed structure that has been derived by consensus
from experimental measurements (31).

In the case of small depolarization, the driving force is
weaker than in a large-saturating depolarization, so their
z positions do not have a chance to reach steady states as
they do during a full-saturating depolarization. Rather,
in a small depolarization, the motion of the arginines and
S4 are aborted. They return to the intracellular vestibule
because the depolarization drops (i.e., decreases in magni-
tude, and the membrane potential becomes more negative)
before arginines and S4 have a chance to reach their
steady-state positions. This detailed atomic interpretation
likely overreaches the resolution of our model. At the sin-
gle-sensor level, we do not expect partial movements;
instead, some sensors will have moved all the way and
others not at all, but the distribution of sensors in the two
extreme positions should follow what we predict with this
model, which is an ensemble average. We look forward to
measurements of movements of probes that mimic arginine
in its environment that require improvements in the resolu-
tion and structural realism of our model.

Fig. 6 c illustrates these aborted motions. Q reaches 1.57
at most, which should be 2 instead if steady-state was
reached as it is if time is long enough. See the steady-state
behavior shown in the QV curve of Fig. 2 a. Fig. 6 d shows
that the S4 segment is initially farthest to the right, lags
behind R1 during movement, and is almost caught up by
R2. The maximal displacements of arginines and S4 calcu-
lated from Fig. 6 d are Az;cpy = 1.36 nm, Azp o =
0.966 nm, Azz ey = 0.459 nm, Az4cp = 0.316 nm, and
AZycp = 0.616 nm. The significant difference between
A4zy.cm Aza.cmr A23.0cm, and Az oy may imply that Rl
and R2 have jumped across the hydrophobic plug and
entered the extracellular vestibule, whereas R3 and R4
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FIGURE 7 (a) The time courses of subtracted
gating current, despiked (0, ¢), with the voltage
rising from —90 to V mV at ¢+ = 10, holds on till
t = 150, and then drops back to —90 mV, where
V = -62, =50, ..., —8 mV. (b) 7, versus V
compared with experiment (20) is shown. To see
this figure in color, go online.
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still stay at the intracellular vestibule during this small
depolarization. This is consistent with the observation
from individual gating-current components of arginines in
Fig. 3 d.

Family of gating currents for a range of voltages

Though we prefer I(Lg + L/2,1) to I(0, t) for representing
gating current as explained in the section under heading
Flux of Charges at Different Locations, we here use the
actual gating current, despiked (0, f), to compare with
experiment (20). Fig. 7 a shows the time courses of a sub-
tracted gating current (despiked (0, )) for a range of volt-
ages V ranging from —62 to —8 mV. The area under
gating current, for both ON and OFF parts, increases
with V because more arginines are transferred to the extra-
cellular vestibule as V increases. The shapes of this family
of gating currents agree well with experiment (20) in both
magnitude and time course.

We can characterize the time course by fitting the decay
part of a subtracted gating current by ae /™ 4+ be"/™,
T, < 7, as generally done in experiments (20) in which 7,
is the fast time constant and 7, is the slow time constant.
Usually, the movement of arginines is dominated by 7,.
Here, 7, was calculated from simulation and compared
with experiment (20) as shown in Fig. 7 b. Because in our
computation the time is in arbitrary units, we have scaled
the time to have the maximal 7, to fit with its counterpart
in experiment (20). Overall, the trend of 7, versus V in our
result, though not the whole curve, agrees well with exper-
iment (20). To the left of the maximal point in Fig. 7 b,
simulation results fit rather well with the experiment
compared with the values to the right of the maximal point,
at which it overestimates 7, compared with the experiment.
This overestimate is consistent with the observation that the
amount of transferred charges Q saturates slightly faster in
experimental data than in this simulation as V increases
(see QV curve of Fig. 2 a). This phenomenon is related

Gating Currents Model

to the cooperativity of movement among arginines, which
will be further discussed below.

Effect of voltage pulse duration

Fig. 8 shows the effect of voltage pulse duration with Fig. 8 a
for the case of small depolarization and Fig. 8 b for the case of
large depolarization. The magnitude and time span of sub-
tracted gating current (despiked /(0, £)) are changed by pulse
duration in both cases, but the shape will asymptotically
approach the same curve as pulse duration increases, no
matter the size of the depolarization. This behavior occurs
because it takes time for the command pulse to drive the ar-
ginines toward the extracellular vestibule. If the pulse dura-
tion is long enough, the time course of Q will approach its
steady state for large depolarization as in Fig. 6 a. Small de-
polarization takes a longer time to reach its steady state, as
demonstrated in Fig. 6 ¢. The shapes of gating currents in
Fig. 8 compare favorably with experiment (20) in which
the OFF subtracted gating currents for short pulses have
very fast decays, whereas for long pulses, the OFF subtracted
gating currents have larger rising amplitude and slower decay
because of a larger amount of arginines moved.

CONCLUSIONS

Previous work with molecular and coarse-grained simula-
tions have captured some interactions, but they have not
yet reproduced the time course and voltage dependence of
macroscopic gating currents (10-14), and previous contin-
uum models have captured only the steady-state properties
of charge movement (15-18).

This 1D continuum mechanical model of the voltage
sensor tries to capture the essential structural details of the
movement of mass and charge that are necessary to repro-
duce the basic features of experimentally recorded gating
currents. After finding appropriate parameters, we find
that the general kinetic and steady-state properties are

FIGURE 8 Subtracted gating currents, despiked

1(0, 1), showing the effect of voltage pulse duration.
(a) Vincreases from —90 to —35 mVat r = 10 and

drops back to —90 mV at various times. (b) V in-
creases from —90 to 0 mV at + = 10 and drops
back to —90 mV at various times. To see this figure
in color, go online.
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well represented by the simulations. The good agreement of
our numerical results with salient features of gating current
measured experimentally would be impossible by simply
tuning of parameters if our model had not captured the
essence of physics for the voltage sensor. The continuum
approach seems to be a good model of voltage sensors, pro-
vided that it 1) takes into account all interactions crucial to
the movement of gating charges and S4; 2) computes their
correlations consistently, so all variables satisfy all equa-
tions under all conditions with one set of parameters;
and 3) satisfies conservation of current. This last point
gave us a new insight: what is measured experimentally
does not correspond to the transfer of the arginines because
the total current, containing a displacement current, is
smaller than the arginine current. It should be noted, how-
ever, that the total energy provided by the voltage clamp
is gV, where ¢ is the time integral of the measured gating
current and Vis the applied voltage. This is the total energy
that explains the correspondence of charge per channel with
the charge estimated by the limiting slope method (33-35).

We have simplified the profile of the energy barrier in the
hydrophobic plug because the PMF in that region, and its
variation with potential and conditions, is unknown. There
is plenty of detailed information on the amino acid side
chains in the plug and how each one of them changes the ki-
netics and steady-state properties of gating charge move-
ment (6). Therefore, the next step is to model the details
of interactions of the moving arginines with the wall of
the hydrophobic plug and the contributions from other sur-
rounding charged protein components. Some of the effects
to be included are as follows:

1) Steric and dielectric interactions of the arginines that this
model does not include. These include the interaction of
arginines with negative charges of the S2 and S3 seg-
ments and the negative phospholipids as well as the hy-
drophobic residues in the plug. These interactions may
be responsible for the simultaneous movement of two
to three arginines across the plug, which is an experi-
mental result that this model does not reproduce (36,37).

2) Time dependence of the plug energy barrier V,,. Once the
first arginine enters the hydrophobic plug by carrying
some water with it, this partial wetting of the hydropho-
bic plug will lower V,,, chiefly consisting of solvation en-
ergy, and enable the next arginine to enter the plug with
less difficulty. This might explain the cooperativity of
movement among arginines when they jump through
the plug. The addition of details in the plug may also pro-
duce intermediate states that have been measured exper-
imentally. In this situation, arginines may transiently
dwell within the plug.

3) A very strong electric field might affect the hydration
equilibrium of the hydrophobic plug and would lower
its hydration energy barrier as well (38). This cooper-
ativity of movement may help explain the quick satura-

280 Biophysical Journal 116, 270-282, January 22, 2019

tion in the upper right branch of the QV curve (and
smaller 7). It may also explain the experimentally
observed translocation of two to three arginines simulta-
neously (36,37).

The power of this mathematical modeling is precisely the
implementation of interactions and the various effects in a
consistent manner. Implementing the various effects listed
above is likely to lead to a better prediction of the currents
and to the design of experiments to further test and extend
the model.

Further work must address the mechanism of coupling
between the voltage sensor movements and the conduction
pore. For example, the spring constant of the two sides of
S4 have been made equal, which does not take into account
the structural reality that one side has a linker to S3,
whereas the other links to the pore opening. It seems likely
that the classical mechanical models of coupling will need
to be extended to include coupling through the electrical
field. The charges involved are large. The distances are
small, so the changes in electric forces that accompany
movements of charged mass (and flows of displacement
current) are likely to be large and important. It is possible
that the voltage sensor modifies the stability of a funda-
mentally stochastically unstable, nearly bistable, conduc-
tion current (of single channels) by triggering sudden
transitions from closed to open state in a controlled
process reminiscent of Coulomb blockade in a noisy
environment (39).

SUPPORTING MATERIAL
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