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We study numerical methods for porous media equation (PME). There are two important 
characteristics: the finite speed propagation of the free boundary and the potential waiting 
time, which make the problem difficult to handle. Based on different dissipative energy 
laws, we develop two numerical schemes by an energetic variational approach. Firstly, 
based on f log f as the total energy form of the dissipative law, we obtain the trajectory 
equation, and then construct a fully discrete scheme. It is proved that the scheme is 
uniquely solvable on an admissible convex set by taking the advantage of the singularity 
of the total energy. Next, based on 1/(2 f ) as the total energy form of the dissipation 
law, we construct a linear numerical scheme for the corresponding trajectory equation. 
Both schemes preserve the corresponding discrete dissipation law. Meanwhile, under some 
smoothness assumption, both schemes are second-order convergent in space and first-
order convergent in time. Each scheme yields a good approximation for the solution and 
the free boundary. No oscillation is observed for the numerical solution around the free 
boundary. Furthermore, the waiting time problem could be naturally treated, which has 
been a well-known difficult issue for all the existing methods. Due to its linear nature, the 
second scheme is more efficient.

 2019 Elsevier Inc. All rights reserved.

1. Introduction and background

The porous medium equation (PME) can be found in many physical and biological phenomena, such as the flow of 
an isentropic gas through a porous medium [27], the viscous gravity currents [20], nonlinear heat transfer and image 
processing; e.g., see [44]. The aim of this paper is to provide numerical methods for the PME

∂t f = �x( f
m), x ∈ � ⊂ Rd, m > 1,

where f := f (x, t) is a non-negative scalar function of space x ∈ Rd (d ≥ 1) and the time t ∈ R+ , and m is a constant larger 
than 1.

The PME is a nonlinear degenerate parabolic equation since the diffusivity D( f ) = mf m−1 = 0 at points where f = 0. 
In turn, the PME has a special feature: the finite speed of propagation [44]. If the initial data has a compact support, the 
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solution of Cauchy problem of the PME will have a compact support at any given time t > 0. The interface between the 
compact support and zero-value region is called as free boundary. In comparison with a heat equation, which can smooth 
out the initial data, the solution of the PME could become non-smooth even if the initial data is smooth with compact 
support. Moreover, for certain initial data, the solution of the PME can exhibit a waiting time phenomenon where the free 
boundary remains stationary until a finite positive time (called waiting time). After that time instant, the interface begins to 
move with a finite speed.

Many theoretical analyses have been derived in the existing literature, including the earlier works by Oleı̌nik et al. [35], 
Kalašnikov [25], Aronson [1], the recent work by Shmarev [40,41] and the monograph by Vázquez [44], etc. Among them, 
a fundamental example of solution is the Barenblatt solution [3,38,48], which has the explicit formula and a compact 
support at any time t > 0.

Various numerical methods have been studied for the PME. Graveleau & Jamet [19] and DiBenedetto & Hoff [12] solved 
the pressure PME equation, using the finite difference approach and tracking algorithm (containing a numerical viscosity 
term), respectively. Jin et al. [24] established the relaxation scheme which reformulates the PME as a linear hyperbolic sys-
tem with stiff relaxation term. However, most existing numerical solutions may contain oscillations near the free boundary, 
such as PCSFE method (Predictor-Correction Algorithm and Standard Finite element method) [49]. In recent years, a local 
discontinuous Galerkin finite element method by Zhang & Wu [49] and Variational Particle Scheme (VPS) by Westdickenberg 
& Wilkening [47] have been used to solve the PME. These two methods can effectively eliminate non-physical oscillation 
in the computed solution near the free boundary, which in turn lead to a high-order convergence rate within the smooth 
part of the solution support. However, no relevant theoretical justification of the convergence analysis is available for these 
works. More recently, Huang & Ngo [34] studied an adaptive moving mesh finite element method to solve the PME with 
three types of metric tensor: uniform, arclength-based and Hessian-based adaptive meshes. The numerical results indicate 
that a first-order convergence for uniform and arclength-based adaptive meshes, and a second-order convergence for the 
Hessian-based adaptive mesh, while minor oscillations are observed around the free boundary in the computed solutions. 
Again, no theoretical proof has been available for the convergence rate in these works. A similar work to our approach could 
be found in [5,6], which is based on the diffeomorphism. For the initial state with a compact support, the authors solve a 
regularized equation. However, it may change the physical property of the original system. For example, the waiting time 
phenomenon can not be simulated effectively by this method.

There have also been some numerical works for the waiting time phenomenon. For example, Mimura et al. [31], Bertsch 
& Dal Passo [4] and Tomoeda & Mimura [43] estimated the waiting time by a postprocess. However, the numerical in-
terface actually has a velocity from the beginning in their approaches, which may yield an inaccurate solution. Nakaki & 
Tomoeda [32] transformed the PME into another problem whose solution will blow up at a finite time, which is just the 
waiting time of PME, while the solution cannot be obtained after the waiting time.

In this paper, we construct numerical methods for PME by an Energetic Variational Approach (EnVarA) to naturally keep 
the physical laws, such as the conservation of mass, energy dissipation and force balance. Meanwhile, based on different 
dissipative energy laws, we can construct different numerical schemes. We start from the energy dissipation law:

d

dt

∫

�

ω( f )dx = −

∫

�

η( f )|u|2dx, (1.1)

where ω( f ) is the free energy density, η( f ) is a functional of f determined by ω( f ) and u is the velocity. The quantity 
ω( f ) and η( f ) can be taken as follows:

• Case 0. ω( f ) =
1

m − 1
fm, and η( f ) = f .

• Case 1. ω( f ) = f ln f , and η( f ) =
f

mfm−1
.

• Case 2. ω( f ) =
1

2 f
, and η( f ) =

1

mfm
.

Based on these energy dissipation laws, different numerical schemes of the trajectory equation can be derived. The numeri-
cal scheme based on the energy law in Case 0 has been studied by Westdickenberg & Wilkening [47], called as a Variational 
Particle Scheme (VPS).

We focus on the numerical methods based on the energy laws in the next two cases. Note that, with a vanishing f , the 
energy in the first case is regular while the energy in the next two cases is singular. Taking the advantage of the singularity, 
we can prove that the numerical schemes based on last two energy forms have some good properties such as conservation 
of positivity, unique solvability on an admissible convex set, convergence of the corresponding Newton’s iteration.

Theoretically, the discrete energy dissipation law is proved to be valid. In addition, by a higher order expansion technique 
[15,45], an optimal error estimates are presented under the assumption of smooth solutions. For Cases 1 and 2, no numerical 
oscillation is observed near the free boundary in the extensive experiments, and the finite propagation speed of the free 
boundary can be effectively computed. A predictable criterion for computing waiting time is proposed and the numerical 
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convergence to the exact waiting time is reported, which is the first such result for the PME. In the practical computations, 
the numerical scheme of the trajectory equation in Case 2 is linear and hence more efficient.

This paper is organized as follows. The EnVarA and the trajectory equation of the PME are outlined in Section 2. The 
numerical scheme is described in Section 3. Subsequently, the proof of unique solvability, energy stability and optimal rate 
convergence analysis is provided in Section 4. Finally, the numerical results are presented in Section 5, including examples 
with positive initial state, Barenblatt Solution, a waiting time phenomenon, an initial data with two columns.

2. Trajectory equation of the PME

In this section, we derive the trajectory equation of the following initial-boundary problem of PME:

∂t f = �x( f
m), x ∈ � ⊂ Rd, m > 1, t > 0, (2.1)

f (x,0) = f0(x) ≥ 0, x ∈ �, (2.2)

∇x f · n = 0, x ∈ ∂�, t > 0, (2.3)

where f is a non-negative function, � is a bounded domain and n is the external normal direction.

2.1. The energetic variational approach

An Energetic Variational Approach (EnVarA) leads to the trajectory equation (also called constitution relation) based on a 
balance between the maximal dissipation principle (MDP) and the least action principle (LAP). The approach was originated 
from Onsager’s pioneering work [36,37] and improved by J.W. Strutt (Lord Rayleigh) [42]. In recent years, it has been applied 
to model some complex systems, for example Liu & Wu [29], Hyon et al. [22], Du et al. [13], Eisenberg et al. [16] and Koba 
et al. [26]. Its application to the Wright-Fisher model has been studied in [14]. The detailed structures of EnVarA can be 
found in [14,22,29,30].

(A) Mass conservation.
In the Eulerian coordinate, the mass conservation law is

∂t f + ∇ · ( f u) = 0, (2.4)

where f is the density and u is the velocity.
In the Lagrangian coordinate, its solution can be expressed by:

f (x(X, t), t) =
f0(X)

det ∂x(X,t)
∂ X

, (2.5)

where f0(X) is the positive initial data and det ∂x(X,t)
∂ X

is the determinant of deformation gradient.

(B) Energy Dissipation Law (EDL) Step.
The basic energy dissipation law of PME we are going to consider is

d

dt

∫

�

ω( f )dx = −

∫

�

η( f )|u|2dx, (2.6)

where the total energy Etotal :=
∫
�

ω( f )dx with the free energy density ω( f ), and � :=
∫
�

η( f )|u|2dx is the dissipation 
term with the velocity u.

(C) Least Action Principle (LAP) Step.
LAP states that the trajectories of particles from the position x(X, 0) at time t = 0 to x(X, T ∗) at a given time T ∗ in 

Hamiltonian system are those which minimize the action functional defined by

A(x) := −

T ∗∫

0

Fdt = −

T ∗∫

0

∫

�

ω

(
f0(X)

det ∂x
∂X

)
det

∂x

∂X

dXdt,

where F is the Helmholtz free energy.
Taking the variational of A(x) with respect to x, we have the conservation force in Eulerian coordinate, i.e.,

Fcon :=
δA

δx
= −∇( fω′( f ) − ω) = − f ∇ω′( f ),

where δ refers to the variational of the respective quantity.
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(D) Maximum Dissipation Principle (MDP) Step.
MDP, i.e., Onsager’s Principle, can be done by taking the variational of 12� with respect to the velocity u. In turn, we can 

obtain the dissipation force,

Fdis :=
δ 1
2�

δu
= η( f )u.

The factor 12 is needed since that the energy dissipation � is always a quadratic function of certain rates such as the velocity 
within the linear response theory [42].

(E) Force Balance Law Step.
Based on the Newton’s force balance law:

Fcon = Fdis,

we have the constitution relation:

f ∇ω′( f ) = −η( f )u,

which is just

f 2ω′′( f )∇ f

η( f )
= − f u. (2.7)

Comparing PME (2.1) with (2.4), we choose − f u = ∇( f m), then

f 2ω′′( f )

η( f )
=mfm−1.

That means if the free energy ω( f ) is given, then η( f ) will be determined. Theoretically, there are infinite kinds of energy 
dissipation laws of PME. We consider three of them:

• Case 0. If ω( f ) = 1
m−1 fm , then η( f ) = f and the constitution relation becomes

∇x f
m = − f u.

Let P := m
m−1 f m−1 be the pressure. The relation is the Darcy’s Law [44], i.e., u = ∇ P .

• Case 1. If ω( f ) = f ln f , then η( f ) = f

mfm−1 and the constitution relation in another form becomes

∇x f = −
f

mfm−1
u.

• Case 2. If ω( f ) = 1
2 f

, then η( f ) = 1
mfm

and the constitution relation in the third form is

∇x

( 1

f

)
=

u

mf m
.

The free energy density 1
2 f

can lead to a linear numerical scheme for the trajectory equation.

Remark 2.1. The physical background of each energy formation is given by:

• The free energy density w( f ) = 1
m−1 f m is derived from Darcy’s Law [44].

• The porous medium equation owes its name to describe the flow of an ideal gas in a homogeneous porous medium. 
One can consider the free energy density w( f ) = f ln f as the entropy of ideal gas, and η( f ) = f

mfm−1 contains all the 
information of the viscosity of the fluid and the permeability of the medium.

• 1
2 f

can be considered as the free energy density for the inhomogeneous linear elasticity in non-homogeneous media [7]. 

Other information as the entropy production is included in η( f ) = 1
mfm

.

In fact, all the trajectory equations are equivalent. However, corresponding numerical discretization leads to different 
schemes associated with different energy laws.
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2.2. Trajectory equation of PME in 1-Dim

Combining with (2.5), we can write the constitution relation in the Lagrangian coordinate system, called as the trajectory 
equation. In this paper, we consider one dimensional problems. Replacing u with xt(X, t), we have the trajectory equation 
as

• Case 0.

f0(X)∂tx = −∂X

[( f0(X)

∂X x

)m
]

, X ∈ �, (2.8)

and the corresponding energy law in Lagrangian coordinate is

d

dt

∫

�

1

m − 1

( f0(X)

∂Xx

)m ∂x

∂ X
dX = −

∫

�

f0(X)|xt |
2dX .

• Case 1.

f0(X)

m
( f0(X)

∂X x

)m−1
∂tx = −∂X

(
f0(X)

∂X x

)
, X ∈ �, (2.9)

and the corresponding energy law in Lagrangian coordinate is

d

dt

∫

�

f0(X) ln
( f0(X)

∂X x

)
dX = −

∫

�

f0(X)

m
( f0(X)

∂X x

)m−1
|∂tx|

2dX . (2.10)

• Case 2.

(∂X x)
m+1

mf0(X)m
∂tx = ∂X

( ∂X x

f0(X)

)
, X ∈ �, (2.11)

and the corresponding energy law in Lagrangian coordinate is

d

dt

1

2

∫

�

1

f0(X)
|∂X x|

2dX = −

∫

�

∂X x

m
(

f0(X)
∂X x

)m |xt |
2dX . (2.12)

Equations (2.8), (2.9) and (2.11) are the same thing, wrote in different forms with different energy laws. Solving them with 
proper initial and boundary conditions, we get the trajectory x(X, t), which contains all the physics involved in the model. 
Substituting x(X, t) into (2.5), we obtain the solution f (x, t) to (2.1)-(2.3).

The initial and boundary conditions for equations (2.8), (2.9) or (2.11) should be

x|∂� = X |∂�, t > 0. (2.13)

x(X,0) = X, X ∈ �. (2.14)

3. Numerical method of trajectory equation

In this section, we propose some semi-implicit numerical schemes for the trajectory equations.

3.1. Semi-discrete schemes in time

Let τ = T
N
, where N ∈ N+ and T is the final time. The grid point tn = nτ , n = 0, · · · , N . For the temporal discretization 

of the trajectory equation, we have that Given xn , find xn+1 such that

• Case 0.

f0(X)
xn+1 − xn

τ
= −∂X

[( f0(X)

∂X xn+1

)m
]

, n = 0, · · · ,N − 1. (3.1)

• Case 1.

f0(X)

m
(

f0(X)
∂X xn

)m−1

xn+1 − xn

τ
= −∂X

( f0(X)

∂X xn+1

)
, n = 0, · · · ,N − 1. (3.2)
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• Case 2.

(∂X x
n)m+1

mf0(X)m

xn+1 − xn

τ
= ∂X

(∂X x
n+1

f0(X)

)
, n = 0, · · · ,N − 1. (3.3)

In summary, the trajectory equation can be written in gradient flow as

γ (x)xt = −
δW

δx
, (3.4)

where γ (x) is a positive function depending on space x and W is a functional of x. Therefore, the discrete scheme in time 
is given by

γ (xn)
xn+1 − xn

τ
= −

δW(xn+1)

δxn+1
, n = 0, · · · ,N − 1. (3.5)

Assume the exact solution xn is smooth at time tn to make ∂x
∂ X

well-defined, n = 0, · · · , N , then the solution xn+1 to 
scheme (3.5) is the minimizer of the following cost functional:

min
xn+1∈�

⎧
⎨
⎩

∫

�

γ (xn)
|xn+1 − xn|2

2τ
+W(xn+1)dX

⎫
⎬
⎭ , (3.6)

where

• Case 0

γ (xn) = 1, W(xn+1) =
1

m − 1

( f0(X)

∂X x

)m ∂x

∂ X
,

where f0(X) is the initial function. It means that the trajectory equation can be regarded as an energy gradient flow, 
which has been studied by Westdickenberg and Wilkening [47]. In this paper, we focus on the following two cases:

• Case 1

γ (xn) =
f0(X)

m
( f0(X)

∂X xn

)m−1
, W(xn+1) = f0(X) ln

( f0(X)

∂Xxn+1

)
.

• Case 2

γ (xn) =
(∂X x

n)m+1

mf0(X)m
, W(xn+1) =

1

2

1

f0(X)
|∂X x

n+1|2.

Remark 3.1. The time-discrete scheme (3.5) follows the convexity analysis for the gradient flows, originated by D. Eyre’s 
pioneering work [17]. This idea has been successfully applied to various gradient models, such as phase field crystal [23,46], 
Cahn-Hilliard and its coupling with fluid motion [9–11,21], epitaxial thin film growth [8,39,28], etc. The unique solvability 
and energy stability analysis could be established with the help of variational inequality and energy estimate. In this article, 
we notice that the term associated with W(x) is implicitly updated due to its convexity; similar analysis could also be 
found in a more recent work [14] to deal with Wright-Fisher model.

3.2. The fully discrete scheme with a positive initial state

Let X0 be the left point of � and h = |�|

M
be the spatial step, M ∈ N+ . Denote by Xr = X(r) = X0 + rh, where r takes 

on integer or half integer values. Let EM and CM be the spaces of functions whose domains are {Xi | i = 0, ..., M} and 
{Xi− 1

2
| i = 1, ..., M}, respectively. In component form, these functions are identified via li = l(Xi), i = 0, ..., M , for l ∈ EM , 

and φi− 1
2

= φ(Xi− 1
2
), i = 1, ..., M , for φ ∈ CM .

The difference operator Dh : EM → CM , dh : CM → EM , and D̃h : EM → EM can be defined as:

(Dhl)i− 1
2

= (li − li−1)/h, i = 1, ...,M, (3.7)

(dhφ)i = (φi+ 1
2

− φi− 1
2
)/h, i = 1, ...,M − 1, (3.8)

(D̃hl)i =

⎧
⎪⎨
⎪⎩

(li+1 − li−1)/2h, i = 1, ...,M − 1,

(4li+1 − li+2 − 3li)/2h, i = 0,

(li−2 − 4li−1 + 3li)/2h, i = M.

(3.9)
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Denote by the admissible set

Q := {l ∈ EM | li−1 < li, 1 ≤ i ≤ M; l0 = X0, lM = XM}, (3.10)

in which the particles are arranged in the order without twisting or exchanging. Its boundary set is ∂Q := {l ∈ EM | li−1 ≤

li, 1 ≤ i ≤ M, and li = li−1, for some 1 ≤ i ≤ M; l0 = X0, lM = XM}. Then Q̄ :=Q ∪ ∂Q is a closed convex set.
The fully discrete scheme is formulated as follows. Given the positive initial state f0(X) ∈ EM and the particle position 

xn ∈Q, find xn+1 = (xn+1
0 , ..., xn+1

M ) ∈Q such that

• Case 1.

f0(Xi)

m
( f0(X)

D̃hx
n

)m−1
i

·
xn+1
i

− xn
i

τ
= −dh

( f0(X)

Dhx
n+1

)
i
, 1 ≤ i ≤ M − 1, (3.11)

with xn+1
0 = X0 and xn+1

M = XM , n = 0, . . . ,N − 1.

To solve the nonlinear equation (3.11), we use damped Newton’s iteration [33]. The key idea is to adjust the marching 
size to prevent the solution at next iteration escaping from the admissible set Q.

Damped Newton’s iteration. Set xn+1,0 = xn . For k = 0, 1, 2, · · · , update xn+1,k+1 = xn+1,k + ω(λ)δx such that

f0(Xi)

m
( f0(X)

D̃hx
n

)m−1
i

δxi

τ
− dh

(
f0(X)

(Dhx
n+1,k)2

Dhδx

)

i

= −
f0(Xi)

m
( f0(X)

D̃hx
n

)m−1
i

x
n+1,k
i

− xn
i

τ
− dh

(
f0(X)

Dhx
n+1,k

)

i

, 1 ≤ i ≤ M − 1, (3.12)

with δx0 = δxM = 0,

and

ω(λ) =

⎧
⎪⎨
⎪⎩

1
λ
, λ > λ′,

1−λ
λ(3−λ)

, λ′ ≥ λ ≥ λ∗,

1, λ < λ∗,

(3.13)

where λ∗ = 2 − 3
1
2 , λ′ ∈ [λ∗, 1) and

λ2 := λ2( J , xn+1,k) =
1

a
[ J ′(xn+1,k)]T [ J ′′(xn+1,k)]−1 J ′(xn+1,k), (3.14)

where a := h min
0<i<M

{ f0(Xi)}, J is the corresponding energy function defined latter in (4.5), and J ′, J ′′ are the gradient 

vector and Hessian matrix.
• Case 2.

(D̃hx
n)m+1

i

mf0(Xi)
m

·
xn+1
i

− xn
i

τ
= dh

( Dhx
n+1

f0(X)

)
i
, 1 ≤ i ≤ M − 1, (3.15)

with xn+1
0 = X0 and xn+1

M = XM , n = 0, · · · ,N − 1.

Note that (3.15) is a linear scheme.

After solving (3.11) in Case 1 ((3.15) in Case 2), we finally obtain the numerical solution f ni := f (xn, tn) by discretizing 
(2.5) as

f ni =
f0(Xi)

D̃hx
n
i

, 0 ≤ i ≤ M. (3.16)

Remark 3.2. In Section 4, it will be shown that the scheme (3.11) is equivalent to a minimization problem of a convex 
function over the open bounded convex admissible set Q in (3.10). A standard Newton’s iteration may not work since it is 
not guaranteed that each iteration is admissible.
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3.3. The discrete scheme for problems with free boundaries

Next we consider the situation of the initial data with a compact support in �. Due to the degeneration of the PME, the 
left and right interfaces appear and are defined respectively as:

ξ t
1 := inf{x ∈ � : f (x, t) > 0, t ≥ 0},

ξ t
2 := sup{x ∈ � : f (x, t) > 0, t ≥ 0}.

Let 
t := [ξ t
1, ξ

t
2] ⊂ �. For this kind of problems, all the trajectories start from the initial support 
0 � �. We shall solve a 

initial-boundary value problem as:

• Case 1.

f0(X)

m
( f0(X)

∂X x

)m−1
∂tx = −∂X

(
f0(X)

∂X x

)
, X ∈ 
0, t > 0, (3.17)

(∂X x)
m−1∂tx = −

m

m − 1

∂X [ f0(X)m−1]

∂X x
, X ∈ ∂
0, t > 0, (3.18)

x(X,0) = X, X ∈ 
0, (3.19)

• Case 2.

(∂X x)
m+1

mf0(X)m
∂tx = ∂X

( ∂X x

f0(X)

)
, X ∈ 
0, t > 0, (3.20)

(∂X x)
m−1∂tx = −

m

m − 1

∂X [ f0(X)m−1]

∂X x
, X ∈ ∂
0, t > 0, (3.21)

x(X,0) = X, X ∈ 
0. (3.22)

Remark 3.3. Taking into account that f0(X) = 0 at the boundary of its support, the boundary equation (3.18) and (3.21) is 
just the equation (3.17).

Let h := (ξ0
2 − ξ0

1 )/M be the spatial step. Then we partition the interval 
0 into equal subinterval with Xi = ξ0
1 + ih, 

0 ≤ i ≤ M .
The fully discrete schemes read: Given the initial state f0(X) with a compact support 
0 and {xn

i
}M
i=0 , find {xn+1

i
}M
i=0

such that

• Case 1.

f0(Xi)

m
( f0(X)

D̃hx
n

)m−1
i

·
xn+1
i

− xn
i

τ
= −dh

( f0(X)

Dhx
n+1

)
i
, 0 < i < M, (3.23)

(D̄hx
n
i )

m−1 ·
xn+1
i

− xn
i

τ
= −

m

m − 1
·
D̄h[ f0(Xi)

m−1]

D̄hx
n+1
i

, i = 0,M, (3.24)

where

D̄hli :=

{
li+1−li

h
, i = 0,

li−li−1
h

, i = M,
∀l = (l0, · · · , lM). (3.25)

• Case 2.

(D̃hx
n)m+1

i

mf0(Xi)
m

·
xn+1
i

− xn
i

τ
= dh

( Dhx
n+1

f0(X)

)
i
, 1 ≤ i ≤ M − 1, (3.26)

(D̄hx
n
i )

m−1 ·
xn+1
i

− xn
i

τ
= −

m

m − 1
·
D̄h[ f0(Xi)

m−1]

D̄hx
n+1
i

, i = 0,M. (3.27)

Comparing with the schemes (3.11) and (3.15), we have two more nonlinear equations at the boundary. The damped 
Newton’s iteration shall be applied to solve the whole system.
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Remark 3.4. Note that the equation (3.26) is linear but the boundary equation (3.27) is chosen to be nonlinear, the same as 
(3.24). If we choose a linear boundary equation as

(D̄hx
n
i )

m+1 ·
xn+1
i

− xn
i

τ
= −

m

m − 1
· D̄h[ f0(Xi)

m−1] · D̄hx
n+1
i

, i = 0,M,

then the matrix of the whole linear system would not be a M-matrix and the conservation of positivity would be destroyed.

When the right side of equation (3.24) is zero, the waiting phenomenon occurs. During the waiting time, the boundary 
condition in (3.18) or (3.21) should be replaced by xt = 0, X ∈ ∂
0 and the boundary condition in (3.24) or (3.27) should be 
replaced by xn+1

0 = ξ0
1 , xn+1

M = ξ0
2 . The key problem is how to predict when the waiting stops. For the details to treat this 

kind of problem, see the algorithm in Section 5, Example 3.

4. Analysis of the numerical schemes

In this section, we perform detailed analyses for the numerical schemes (3.11) and (3.15), including the unique solvability 
in admissible set, the optimal rate convergence analysis, the convergence of Newton’s iteration and the dissipation analysis 
of the total energy.

A few more notations have to be introduced. Let l, g ∈ EM and φ, ϕ ∈ CM . We define the inner product on space EM and 
CM respectively as:

〈l, g〉 := h

(
1

2
l0g0 +

M−1∑

i=1

li gi +
1

2
lM gM

)
, (4.1)

〈φ,ϕ〉e := h

M−1∑

i=0

φi+ 1
2
ϕi+ 1

2
. (4.2)

The following summation by parts formula is available:

〈l,dhφ〉 = −〈Dhl, φ〉e , with l0 = lM = 0, φ ∈ CM , l ∈ EM . (4.3)

The inverse inequality is available:

‖l‖∞ ≤ Cm
‖l‖2

h1/2
, ∀l ∈ EM , (4.4)

where

‖l‖∞ := max
0≤i≤M

{li} and ‖l‖22 := 〈l, l〉 .

First we prove that there exists a unique solution in admissible set Q.

Theorem 4.1. Suppose f0(X) ∈ EM is the initial state with a positive lower bound for X ∈Q. The numerical scheme (3.11) is uniquely 
solvable in Q, and the solution xn+1 to the linear scheme (3.15) also belongs to Q, for n = 1, · · · , N − 1.

Proof. To prove the existence and uniqueness of solution in Q to the scheme (3.11), we first consider the following opti-
mization problem:

min
y∈Q̄

J (y) :=
1

2τ

〈 f0(X)

m
( f0(X)

D̃hx
n

)m−1
(y − xn), (y − xn)

〉
+

〈
f0(X), ln

( f0(X)

Dh y

)〉
e
, (4.5)

where xn ∈ Q is the position of particles at time tn , n = 0, · · · , N − 1. Since J (y) is a convex function on the closed convex 
set Q̄, there exists a unique minimizer x ∈ Q̄. Moreover, we must have x ∈ Q, since for ∀ y ∈ ∂Q, there exists some i > 0
such that (Dh y)i−1/2 = (yi − yi−1)/h = 0, then J (y) = +∞.

Next we want to prove that x ∈ Q is the minimizer of J (y) if and only if it is a solution to scheme (3.11). Then we can 
claim that the fully discrete scheme (3.11) has a unique solution.

In fact, if x ∈ Q is the minimizer of J (y), then for ∀y ∈ Q̄, there exists a sufficiently small �0 > 0, such that for any 
� ∈ (−�0, �0), x + �(y − x) ∈ Q since Q is a open convex set. Then j(�) := J (x + �(y − x)) achieves its minimal at � = 0. 
So we have j′(0) = 0 and using summation by parts, we obtain

1

τ

〈 f0(X)

m
( f0(X)

D̃hx
n

)m−1
(x− xn), y − x

〉
+

〈
dh

( f0(X)

Dhx
n+1

)
, y − x

〉
= 0,

for any y ∈ Q̄. This implies that x ∈ Q satisfies (3.11).
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Conversely let x ∈Q be the solution to scheme (3.11). We need to prove that x is the minimizer of J (y) on Q̄.
For any y ∈ ∂Q, we always have J (y) ≥ J (x) due to J (y) = +∞. Then for any y ∈ Q, taking the inner product of (3.11)

with y − x and using summation by parts, we have

1

τ

〈 f0(X)

m
( f0(X)

D̃hx
n

)m−1
(x− xn), y − x

〉
−

〈 f0(X)

Dhx
, Dh(y − x)

〉
e
= 0. (4.6)

After the direct calculation, we get for any y ∈ Q such that

J (y) = J (x + (y − x)) = J (x) +
1

2τ

〈 f0(X)

m
( f0(X)

D̃hx
n

)m−1
(y − x), y − x

〉

+
1

τ

〈 f0(X)

m
( f0(X)

D̃hx
n

)m−1
(x − xn), y − x

〉
+

〈
f0(X), ln

( Dhx

Dh y

)〉
e

≥ J (x), (4.7)

where the last inequality is obtained from (4.6) and the fact: ln 1
z

≥ −(z − 1), ∀z ∈R+ , which leads to

〈
f0(X), ln

( Dhx

Dh y

)〉
e
≥ −

〈
f0(X),

Dh(y − x)

Dhx

〉
e
.

Then we prove that the solution to the numerical scheme (3.15) xn+1 ∈Q if given xn ∈Q, n = 0, · · · , N − 1. Without loss 
of generality, let �̄ = [0, 1]. Due to the boundary condition (2.13), we have

xn+1
0 = 0, xn+1

M = 1.

Based on the discrete extremum principle, we obtain that

0 < xn+1
i

< 1, i = 1, · · · ,M − 1, n = 0, · · · ,N − 1. (4.8)

Suppose xn+1 /∈Q, i.e., ∃ k1, k2 ∈ N+ such that k1 < k2 and

0 < xn+1
k1−1 < xn+1

k1
≥ xn+1

k1+1 ≥ · · · ≥ xn+1
k2−1 ≥ xn+1

k2
< xn+1

k2+1 < 1. (4.9)

Checking the equation (3.15) at i = k1 and i = k2 respectively, we have

xn+1
k1

< xnk1 < xnk2 < xn+1
k2

,

which contradicts with (4.9). Due to the initial state X ∈Q, then xn ∈Q, n = 0, · · · , N . The proof is finished. �

Next we prove that the numerical scheme (3.11) and (3.15) satisfy the corresponding discrete energy dissipation laws.

Theorem 4.2. Suppose the initial state f0(X) ∈ EM is positive and bounded for X ∈Q.

• Case 1. Let xn = (xn0, ..., x
n
M) ∈ Q, n = 0, 1, · · · , N − 1, be the solution to scheme (3.11) at time tn . Then the discrete energy 

dissipation law holds, i.e.,

E
(1)
N (xn+1) − E

(1)
N (xn)

τ
≤ −

〈 f0(X)

m
( f0(X)

D̃hx
n

)m−1

xn+1 − xn

τ
,
xn+1 − xn

τ

〉
, (4.10)

where

E
(1)
N (x) :=

〈
f0(X), ln

( f0(X)

Dhx

)〉
e
, with

δE
(1)
N (x)

δx
= dh

( f0(X)

Dhx

)
. (4.11)

• Case 2. Let xn = (xn0, ..., x
n
M) ∈ Q, n = 0, 1, · · · , N − 1, be the solution to scheme (3.15) at time tn . Then the following discrete 

energy dissipation law holds, i.e.,

E
(2)
N (xn+1) − E

(2)
N (xn)

τ
≤ −

〈 (D̃hx
n)m+1

mf0(X)m
·
xn+1 − xn

τ
,
xn+1 − xn

τ

〉
, (4.12)

where

E
(2)
N (x) :=

1

2

〈 Dhx

f0(X)
, Dhx

〉
e
, with

δE
(2)
N (x)

δx
= −dh

( Dhx

f0(X)

)
. (4.13)
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Note that (4.10) and (4.12) are the discrete counterpart of energy laws (2.10) and (2.12).

Proof. In Case 1, thanks to the convexity of E(1)
N (x), we have

E
(1)
N (xn) − E

(1)
N (xn+1)

τ
≥

〈δE(1)
N (xn+1)

δx
,
xn − xn+1

τ

〉
=

〈
dh

( f0(X)

Dhx
n+1

)
,
xn − xn+1

τ

〉

=

〈 f0(X)

m
( f0(X)

D̃hx
n

)m−1

xn − xn+1

τ
,
xn − xn+1

τ

〉
.

That means (4.10) holds. Due to the convexity of E(2)
N (x), we can also prove that the numerical scheme (3.15) satisfies the 

discrete energy dissipation law (4.12) in the similar way. �

The optimal rate convergence result for the schemes (3.11) and (3.15) is stated below.

Theorem 4.3. Assume that the initial function f0(X) is positive and bounded, i.e., 0 < b f ≤ f0(X) ≤ B f . Denote xe ∈ � as the exact 
solution to the original trajectory equation (2.9) or (2.11)with enough regularity and xh ∈Q as the numerical solution to the numerical 
scheme (3.11) in Case 1 or (3.15) in Case 2. The numerical error function is defined at a point-wise level:

eni = xnei − xnhi
, (4.14)

where xnei , x
n
hi

∈Q, 0 ≤ i ≤ N, n = 0, · · · , M. Then

• en = (en0, · · · , enM) satisfies

‖en‖2 := 〈en, en〉 ≤ C(τ + h2).

• D̃he
n = (D̃he

n
0, · · · , ̃Dhe

n
M) satisfies

‖D̃he
n‖2 ≤ C(τ + h2).

Moreover, the error between the numerical solution f n
h
and the exact solution f ne of the problem (2.1)-(2.3) can be estimated by:

‖ f nh − f ne ‖2 ≤ C(τ + h2),

where C is a positive constant, h is the spatial step, τ is the time step and n = 0, · · · , N.

The proof is based on a technique of higher order expansion [15,45]. The technical details are skipped for the sake of 
brevity.

The following result is on the convergence of damped Newton’s iteration (3.12)-(3.13).

Theorem 4.4. Suppose the initial data f0(X) ∈ EM is positive and bounded for X ∈Q, then Newton’s iteration (3.12)-(3.13) is conver-
gent in Q.

In more details, we can first prove that J (y), defined in (4.5), is a self-concordant function [33,14]. Then based on 
Theorem 2.2.3 in [33], damped Newton’s iteration (3.12)-(3.13) is convergent in Q. We omit the details.

5. Numerical results

In this section, we show some numerical results. To demonstrate the accuracy of the numerical schemes, in the first 
example, we solve a problem with a smooth solution. In the second example, we consider a free boundary problem with 
a exact Barenblatt solution. We check the convergence for the solution and the finite speed of propagation. In the third 
example, we focus on numerical simulation for the waiting time. Finally we report some results for problems with two 
support sets at the initial state in Example 4.

The error of a numerical solution is measured in the L2 and L∞ norms defined as:

‖eh‖
2
2 =

1

2

(
e2h0hx0 +

M−1∑

i=1

e2hihxi + e2hM
hxM

)
, (5.1)

and

‖eh‖∞ = max
0≤i≤M

{|ehi |}, (5.2)
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Table 1

Example 1. Convergence rate of solution f and trajectory x in Case 1 at final time T = 0.05.

m = 5
3

M τ L2-error ( f ) Order L∞-error( f ) Order L2-error (x) Order L∞-error (x) Order CPU (s)

100 1/100 1.1304e-02 1.6847e-02 1.5122e-03 2.2356e-03 0.1872
200 1/400 2.6730e-03 2.1144 3.8606e-03 2.1820 3.5665e-04 2.1200 5.2869e-04 2.1143 0.6084
400 1/1600 6.4528e-04 2.0712 9.2707e-04 2.0821 8.6042e-05 2.0725 1.2761e-04 2.0716 2.1840
800 1/6400 1.5246e-04 2.1163 2.1878e-04 2.1187 2.0324e-05 2.1167 3.0145e-05 2.1165 8.7361

m = 2

M τ L2-error ( f ) Order L∞-error( f ) Order L2-error (x) Order L∞-error (x) Order CPU (s)

100 1/100 8.4443e-03 1.2463e-02 1.1269e-03 1.1269e-03 0.1716
200 1/400 1.8021e-03 2.3429 2.5826e-03 2.4129 2.3982e-04 2.3494 2.3982e-04 2.3494 0.5304
400 1/1600 4.1921e-04 2.1495 5.9831e-04 2.1583 5.5749e-05 2.1509 5.5749e-05 2.1509 2.0748
800 1/6400 9.8039e-05 2.1379 1.3980e-04 2.1399 1.3034e-05 2.1386 1.3034e-05 2.1386 8.0185

L2-error and L∞-error is defined by (5.1) and (5.2), respectively.
τ is the time step and h = 1

M
is the space step.

CPU (s) is the CPU time (seconds).

Table 2

Example 1. Convergence rate of solution f and trajectory x in Case 2 at final time T = 0.05.

m = 5
3

M τ L2-error ( f ) Order L∞-error ( f ) Order L2-error (x) Order L∞-error (x) Order CPU(s)

100 1/100 1.0617e-02 1.6396e-02 1.4212e-03 2.0955e-03 0.0000
200 1/400 2.5002e-03 2.1233 3.6535e-03 2.2439 3.3374e-04 2.1291 4.9444e-04 2.1190 0.0000
400 1/1600 6.0295e-04 2.0733 8.7321e-04 2.0920 8.0425e-05 2.0749 1.1922e-04 2.0736 1.5600e-02
800 1/6400 1.4238e-04 2.1174 2.0580e-04 2.1215 1.8987e-05 2.1179 2.8150e-05 2.1176 6.2400e-02

m = 2

M τ L2-error ( f ) Order L∞-error ( f ) Order L2-error (x) Order L∞-error (x) Order CPU(s)

100 1/100 8.0516e-03 1.2168e-02 1.0750e-03 1.5887e-03 0.0000
200 1/400 1.7134e-03 2.3497 2.4675e-03 2.4656 2.2803e-04 2.3572 3.3833e-04 2.3479 0.0000
400 1/1600 3.9861e-04 2.1492 5.7051e-04 2.1625 5.3010e-05 2.1508 7.8690e-05 2.1498 1.5600e-02
800 1/6400 9.3216e-05 2.1381 1.3324e-04 2.1409 1.2392e-05 2.1388 1.8397e-05 2.1386 6.2400e-02

L2-error and L∞-error is defined by (5.1) and (5.2), respectively.
τ is the time step and h = 1

M
is the space step.

CPU (s) is the CPU time (seconds).

where eh = (eh0 , eh1 , · · · , ehM
) and for the error of the density f − fh ,

hxi = xi+1 − xi−1, 1 ≤ i ≤ M − 1; hx0 = x1 − x0; hxM = xM − xM−1,

and for the error of the trajectory x − xh ,

hxi = 2h, 1 ≤ i ≤ M − 1, hx0 = hxM = h,

where h is the spatial step.

Example 1 (Convergence rate for problem with smooth solution). Consider the problem (2.1)-(2.3) in dimension one with a 
smooth positive initial state

f0(x) = sin(πx) + 0.5, x ∈ � = (0,1). (5.3)

We solve the trajectory equation (2.9) in Case 1 ((2.11) in Case 2) with the initial and boundary condition (2.13)-(2.14) by 
the fully discrete scheme (3.11) in Case 1 ((3.15) in Case 2) and approximate the density function f in (2.5) by (3.16). The 
reference ‘exact’ solution is obtained numerically on a much fine mesh with h = 1

100000 , τ = 1
100000 .

Tables 1 and 2 show the convergence rate in Cases 1 and 2, respectively. The rate for density f and trajectory x in the 
L2 and L∞ norm is 2nd order in space and 1st order in time for each scheme. But the linear scheme (3.15) in Case 2 is 
more efficient.

Example 2 (Numerical finite propagation speed for problem with free boundary). Barenblatt solution [3,38,44,48] in dimension 
one can be expressed by

Bm(x, t) = (t + 1)−k
(
1−

k(m − 1)

2m

|x|2

(t + 1)2k

)1/(m−1)

+
, x ∈R, t ≥ 0, (5.4)
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Fig. 1. Example 2. The evolution of f ; fe is the exact solution; f (1)
h

and f (2)
h

are numerical solutions in Case 1 and Case 2, respectively (m = 3, M = 2000, 
τ = 1/1000).

Fig. 2. Example 2. The evolution of particle position for m = 3 over time (M = 2000, τ = 1/1000).

where l+ = max{l, 0} and k = (m + 1)−1 . The solution has a compact support [−ξ B
m(t), ξ B

m(t)] � � with the interface |x| =
ξ B
m(t) moving outward in a finite speed, where

ξ B
m(t) :=

√
2m

k(m − 1)
· (t + 1)k. (5.5)

Let the computing domain be � = (−10, 10). We take Barenblatt profile Bm(x, 0) as the initial data in problem (2.1)-(2.3). 
For a finite time interval, the interface can not reach the boundary of �, so the boundary condition (2.3) is valid. We solve 
the trajectory equation (3.17)-(3.19) in Case 1 ((3.20)-(3.22) in Case 2) by the fully discrete scheme (3.23)-(3.24) in Case 1 
((3.26)-(3.27) in Case 2).

Fig. 1 shows the numerical and exact solutions for m = 3 at time t = 2 and t = 10. The results demonstrate that the 
numerical solutions in Case 1 and Case 2 can approximate to the exact solution without oscillation. The evolution of the 
trajectory in both cases over time for m = 3 is shown in Fig. 2: particles move outward in a finite speed without twisting or 
exchanging. Fig. 3 shows the evolution of the right interface for numerical solutions and the exact solution with different m
(m = 5

3 , m = 3) in Case 1 and Case 2. Table 3 shows the error of the right interface with different m (m = 5
3 , m = 2, m = 3, 

m = 5) at time T = 1. The results mean that the numerical interface in each case is a good approximation to the exact one 
and moves in a finite speed.

Table 4 shows the convergence rate of f in Case 1 and Case 2. We present the error in L2 norm and the error at X = 0
at time T = 1 for m = 5/3 and m = 3. The results show that the convergence rate is deteriorated when m is getting large 
since the regularity of the solution is getting lower and lower. The error of f at X = 0 keeps the rate of 2nd order since 
f is still smooth far away from the interface. Both numerical schemes have the same rate, but the error of f in Case 2 is 
larger. Table 5 shows the error of f in L∞ norm for m = 5

3 . Both schemes are convergent in L∞ norm at 1st order.
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Fig. 3. Example 2. The evolution of the right interface over time for different m (M = 2000 and τ = 1/1000); ξh,1 and ξh,2 denote the numerical interfaces 
in Case 1 and Case 2, respectively (M = 2000, τ = 1/1000).

Table 3

Example 2. The error of right interface ξr at T = 1.

m 5
3 2 3 5

|ξ
h,1
r − ξ exact

r | 6.6911e-04 2.3153e-04 2.9872e-03 5.1647e-03

|ξ
h,2
r − ξ exact

r | 9.6066e-04 3.9205e-03 6.2808e-03 6.8532e-03

ξ exact
r denotes the exact right interface; ξh,1

r and ξh,2
r denote the numerical right interfaces in 

Case 1 and Case 2, respectively.

Table 4

Example 2. The convergence rate of f at the finite time T = 1.

m = 5
3

M τ L2-error
(
f
(1)
h

)
Order L2-error

(
f
(2)
h

)
Order Error at X = 0

(
f
(1)
h

)
Order Error at X = 0

(
f
(2)
h

)
Order

1000 1/250 5.6454e-05 6.1225e-04 2.5417e-05 2.7701e-04
2000 1/1000 1.4133e-05 1.9972 1.5281e-04 2.0033 6.3626e-06 1.9974 6.9154e-05 2.0029
4000 1/4000 3.5351e-06 1.9990 3.8184e-05 2.0009 1.5912e-06 1.9993 1.7282e-05 2.0007
8000 1/16000 8.8404e-07 1.9994 9.5445e-06 2.0003 3.9782e-07 1.9998 4.3202e-06 2.0002

m = 3

M τ L2-error
(
f
(1)
h

)
Order L2-error

(
f
(2)
h

)
Order Error at X = 0

(
f
(1)
h

)
Order Error at X = 0

(
f
(2)
h

)
Order

1000 1/250 1.3480e-03 5.8979e-03 4.1682e-05 1.9361e-04
2000 1/1000 6.7614e-04 0.9969 2.4952e-03 1.1819 1.0821e-05 1.9259 4.9069e-05 1.9728
4000 1/4000 3.4194e-04 0.9887 1.2050e-03 1.0353 2.8617e-06 1.8907 1.2570e-05 1.9519
8000 1/16000 1.7310e-04 0.9877 6.0168e-04 1.0014 7.7215e-07 1.8531 3.2253e-06 1.9306

f
(1)
h

and f (2)
h

are the numerical solutions of the problem (2.1)-(2.3) in Case 1 and Case 2, respectively.
L2-error 

(
f
(i)

h

)
is the error of f (i)

h
in L2 norm defined by (5.1), i = 1, 2.

τ is the time step; h = 1
M

is the space step.

Example 3 (Numerical simulation for the waiting time). The waiting-time phenomenon occurs for a certain type of initial 
states [44]. Without loss of generality we consider the left interface. Similar argument can be obtained for the right interface. 
Recalling the trajectory equation (3.18) or (3.21) at the left interface, we have

∂tx = −
m

m − 1

∂X [ f0(X)m−1]

(∂X x)m
,at X = ξ0

1 , t > 0, (5.6)

where f0(X) is the smooth initial state with compact support [ξ0
1 , ξ0

2 ]. At the initial time, ∂X x ≡ 1, so if ∂X [ f0(X)m−1] = 0
at X = ξ0

1 , then xt(ξ0
1 , 0) = 0 and it is possible to have a positive waiting time.
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Table 5

Example 2. The convergent rate of f in L∞ norm at final time T = 1.

m = 5
3

M τ L∞-error
(
f
(1)
h

)
Order L∞-error

(
f
(2)
h

)
Order

100 1/10 1.00e-03 7.46e-03
250 1/25 2.65e-04 1.45 2.83e-03 1.06
1000 1/100 6.28e-05 1.04 6.93e-04 1.01
2500 1/250 2.51e-05 1.00 2.76e-04 1.00

f
(1)
h

and f (2)
h

are the numerical solutions in Case 1 and Case 2, respectively.
L∞-error ( f i), i = 1, 2 are the error of solution f in L∞ norm defined by (5.2).

If the left interface keeps waiting till time t∗ > 0, then ξ t
1 ≡ ξ0

1 , for t ≤ t∗ . This means that we must have, at X = ξ0
1 , 

∂tx ≡ 0, for t < t∗ and ∂tx < 0, for t = t∗ + ε with any sufficiently small ε > 0. Hence the waiting time can be characterized 
as:

t∗ := inf
{
t > 0 : xt = −

m

m − 1

∂X [ f0(X)m−1]

(∂X x)m
< 0, as X → ξ0

1

}
. (5.7)

Noting that, at X = ξ0
1 , the numerator ∂X [ f0(X)m−1] is fixed and only the denominator (∂X x)

m changes when time evolves. 
If there exists a positive waiting time t∗ > 0, we must have that, at X = ξ0

1 , ∂X [ f0(X)m−1] = 0 and as time evolves, (∂X x)
m

becomes smaller and smaller and comes to the same order infinitesimal as ∂X [ f0(X)m−1] as X → ξ0
1 at time t = t∗ . So we 

have another criterion for the waiting time:

t∗ is the first time instant when B(t) :=
∂X [ f0(X)m−1]

(∂X x)m
� 0, as X → ξ0

1 . (5.8)

Next we focus on finding the criterion for the numerical waiting time t∗
h
. Let

B
n
h :=

D̄h[( f0(X0))
m−1]

(D̄hx
n
h,0)

m
,

where the difference operator D̄h is defined in (3.25) and xn
h

= (xn
h,0, · · · , xn

h,M
) is the numerical trajectory position at time tn , 

n = 0, · · · , N .
The numerical waiting time t∗

h
is determined by the following criterion:

t∗h := min
{
tn :

∣∣∣
Bn
2h

Bn
h

∣∣∣ ≤ 1
}
. (5.9)

To get Bn
2h in the above formula, we need to know the trajectory xn2h . However, we don’t need to solve the trajectory 

problem again by spacial step 2h. We just select it from the given solution xn
h
, i.e., xn2h = (xn

h,0, x
n
h,2, x

n
h,4, · · · , ).

Remark 5.1. The numerical criterion (5.9) is an approximation of the continuous criterion (5.8) in the sense that if B(t) is 
infinitesimal as X → ξ0

1 , then Bh < B2h for any sufficiently small h > 0.

Now we present the algorithm for problems with waiting time.

Algorithm for Waiting time:

• Step 1. For time tn, n = 0, 1, · · · , solve the trajectory equation (3.17)-(3.19) in Case 1 ((3.20)-(3.22) in Case 2) by the 
fully discrete scheme (3.23)-(3.24) in Case 1 ((3.26)-(3.27) in Case 2) but replacing the boundary condition (3.18) in 
Case 1 ((3.21) in Case 2) by ∂tx = 0 and replacing the boundary condition (3.24) in Case 1 ((3.27) in Case 2) by 
xn+1
0 = ξ0

1 , xn+1
M = ξ0

2 .
Check the criterion (5.9) for xn+1 . If it is not valid, goto next time step. If it is valid, then set t∗

h
= tn+1 . n∗ = n + 1 and 

goto Step 2.
• Step 2. For time tn, n = n∗, n∗ + 1, · · · , solve the trajectory equation (3.17)-(3.19) in Case 1 ((3.20)-(3.22) in Case 2) by 

the fully discrete scheme (3.23)-(3.24) in Case 1 ((3.26)-(3.27) in Case 2).

Remark 5.2. In the above algorithm, we introduce a manual switch between a numerical method for fixed support and a 
method with expansion. Notice that the original problem has a universal condition (5.6) at the boundary of the support no 
matter whether the interface is waiting there or moves at a finite speed. Why do we not discretize it directly as we have 
done in Section 3.3? During the waiting period, the right hand side of (5.6) is always zero. If we discretize (5.6) directly by 
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Fig. 4. Example 3. Waiting time: Evolution of solution f in Case 1 (m = 3, M = 1000, τ = 1/2000).

some finite difference methods, it is inevitable to introduce an error, which means that the particles at boundary have an 
artificial speed now, though it may be small. Then it is not expectable to predict a correct waiting time. That is also the main 
reason why most existing works can not yield a right waiting time. Our approach is a reasonable numerical implementation 
of the boundary condition (5.6) when waiting phenomena occurs.

Now we consider the following data set-up:

� = (−5,5), (5.10)

f0(x) =

{ {
m−1
m

[(1− θ) sin2(x) + θ sin4(x)]
}1/(m−1)

, x ∈ [−π ,0],

0, otherwise in �,
(5.11)

where θ ∈ [0, 14 ]. Then the waiting time is positive and the exact one [2] is:

t∗exact =
1

2(m + 1)(1− θ)
. (5.12)

Fig. 4 depicts that the evolution of numerical solution f over grid with spatial step h = π/M (M = 1000) and the 
time step τ = 1/2000 for m = 3 and θ = 1

4 in Case 1. The results show that the waiting time does exist. After the time 
about 0.169, the interface moves outward in a finite speed. In the whole process, we obtain the numerical solution without 
oscillation. Fig. 5 (a) and (b) present the comparison of the numerical and exact waiting time for different θ and m in 
Case 1 and Case 2. The results show that the numerical waiting time is a good approximation to the exact one in each case. 
Furthermore, Table 6 presents the error of waiting time for m = 3 and θ = 1

4 over different grids (M = 500, τ = 1/1000; 
M = 1000, τ = 1/2000; M = 2000, τ = 1/4000; M = 4000, τ = 1/8000) in Case 1 and Case 2. It shows that the numerical 
waiting time is convergent to the exact one in each case.

Example 4 (Numerical simulation for problem with two separate support sets at initial time). We now consider a problem with a 
step function as the initial state. In problem (2.1)-(2.3), let m = 5, � = (−5, 5) and

f0(x) =

⎧
⎪⎨
⎪⎩

1, x ∈ (0.5,3),

1.5, x ∈ (−3,−0.5),

0, otherwise.

(5.13)

The example models the movement and interaction of two supports. Before the two supports meet, we solve two prob-
lems independently. When the two supports meet at time t∗m , we should reconstruct the two parts of solution into a whole 
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Fig. 5. Example 3. Waiting time: the influence of θ and m; t∗e is the exact waiting time given by (5.12); t∗w,1 and t∗w,2 are the numerical waiting time in 
Case 1 and Case 2, respectively (M = 200, τ = 1/200).

Table 6

Example 3. The convergence rate of waiting time (m = 3, θ = 1
4 ).

M τ t∗w,1 |t∗w,1 − t∗w,e | Order C PU1(s) t∗w,2 |t∗w,2 − t∗w,e | Order C PU2(s)

25 1
25 0.24 0.0733 4.6875e-02 0.24 0.0733 1.5625e-02

50 1/50 0.20 0.0333 1.1006 4.6875e-02 0.20 0.0333 1.1006 3.1250e-02
100 1/100 0.19 0.0233 0.7146 7.8125e-02 0.18 0.0133 1.2519 3.1250e-02
200 1/200 0.180 0.0133 0.8759 1.4063e-01 0.175 0.0083 0.8012 4.6875e-02
t∗w,e 0.16667 0.16667

t∗w,e is the exact waiting time by (5.12); t∗w,1 and t∗w,2 are the waiting time in Case 1 and 2, respectively.
C PU1(s) and C PU2(s) denote the CPU time (seconds) in Case 1 and 2, respectively.

with single support over an equidistance mesh and then take it as initial state to solve problem (3.17)-(3.19) in Case 1 
((3.20)-(3.22) in Case 2) starting from t = t∗m .

The spatial step is chosen as h = (3 − 0.5)/M (M = 5000) for each support and the time step is τ = 1/10000. In Case 1, 
Figs. 6 (a)∼(c) show that as time evolves, the two supports expand and meet at time t∗m = 0.1415. At this time, a reconstruc-
tion is taken by monotone piecewise cubic interpolation [18] over an equidistance grid with partition number M2 = 10000, 
shown in Fig. 6(d). Figs. 6(e)∼(g) show the evolution after meeting. Oscillations do not appear around the free boundary 
during the whole process. Fig. 6(h) shows the movement of particles in this process. The numerical solution in Case 2 has 
the similar results and the meeting time is t∗m = 0.1383.

Remark 5.3. The meeting time of two supports is defined as:

t∗m := inf
t>0

{|xlM − xr0| ≤ 10−10}, (5.14)

where xlM is the endpoint of the left support and xr0 the first point of right support.

6. Concluding remarks

In this paper, two numerical methods for PME based on EnVarA has been proposed and analyzed. Based on the total 
energy density f ln f , the proposed numerical scheme is proven to be uniquely solvable on an admissible convex set. Based 
on the total energy density 1

2 f
, the numerical scheme is linear. In turn, the energy dissipation rate of both schemes has 

been an outcome of the variational approach. According to the numerical simulation results for both schemes, no oscillation 
appears around the free boundary, and the finite propagation speed could be numerically calculated. We also give a criterion 
that can compute the waiting time and numerical convergence of the waiting time is reported, which is the first such result 
for this problem.

One obvious limitation of this work is associated with the one-dimensional nature of the problem. In two or higher 
dimension, the determinant of the deformation gradient, i.e., det ∂x

∂ X
, will arise in the trajectory equations, which is a fully 

nonlinear degenerate parabolic system. We have not found an efficient numerical method which can satisfy the discrete 
energy dissipation law. A similar numerical method, based on evolving diffeomorphisms [6], may also encounter the same 
problem. Solving for multi-dimensional PME by this energetic method will be left to our future works.
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Fig. 6. Example 4. The evolution of density f and particle position x in Case 1 for m = 5 over time (M = 5000, τ = 1/10000 and the space grid size of 
reconstruction M2 = 10000).
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