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Abstract Weconsider the nonlinear dynamics of an avascular tumor at the tissue scale
using a two-fluidflowStokesmodel,where the viscosity of the tumor andhostmicroen-
vironment may be different. The viscosities reflect the combined properties of cell and
extracellular matrix mixtures. We perform a linear morphological stability analysis of
the tumors, and we investigate the role of nonlinearity using boundary-integral simu-
lations in two dimensions. The tumor is non-necrotic, although cell death may occur
through apoptosis. We demonstrate that tumor evolution is regulated by a reduced set
of nondimensional parameters that characterize apoptosis, cell–cell/cell-extracellular
matrix adhesion, vascularization and the ratio of tumor and host viscosities. A novel
reformulation of the equations enables the use of standard boundary integral techniques
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to solve the equations numerically. Nonlinear simulation results are consistent with
linear predictions for nearly circular tumors. As perturbations develop and grow, the
linear and nonlinear results deviate and linear theory tends to underpredict the growth
of perturbations. Simulations reveal two basic types of tumor shapes, depending on
the viscosities of the tumor and microenvironment. When the tumor is more viscous
than its environment, the tumors tend to develop invasive fingers and a branched-
like structure. As the relative ratio of the tumor and host viscosities decreases, the
tumors tend to grow with a more compact shape and develop complex invaginations
of healthy regions that may become encapsulated in the tumor interior. Although our
model utilizes a simplified description of the tumor and host biomechanics, our results
are consistent with experiments in a variety of tumor types that suggest that there is a
positive correlation between tumor stiffness and tumor aggressiveness.

Keywords Solid tumor growth · Stokes flow · Boundary integral method · Moving
boundary problems

Mathematics Subject Classification 76D07 · 92C10 · 35R37 · 46B05

1 Introduction

The metastatic spread of a tumor to distant organs is the major cause of death from
cancer. Tumor metastasis is often preceded by the development of morphological
instability of a growing tumor where fingers, chains and sheets of cancer cells may
form and invade the local microenvironment (Friedl andWolf 2009; Friedl et al. 2012).
Mathematical modeling shows that the parameters that control the tumor shape also
control its invasive ability (Cristini et al. 2003, 2005; Frieboes et al. 2006;Macklin and
Lowengrub 2007; Anderson and Quaranta 2008; Friedman and Hu 2007; Lowengrub
et al. 2010). Therefore, analysis of tumor morphology can aid in tumor prognosis and
in predicting the response to treatment. The transport of oxygen, nutrients and growth
promoting factors, cell-death, cell–cell/cell-extracellular matrix (ECM) adhesion, soft
tissue stress, cell proliferation, motility and death all regulate the shape of a growing
tumor.

Over the past decade, there has been extensive progress in the development ofmath-
ematical and computational models of solid tumors that use a variety of approaches. In
discrete models, tumors are treated as a collection of individual cells that interact with
each other and with elements in their microenvironment such as ECM, blood vessels,
etc. Continuummodels access larger scales and use cell densities, or volume fractions,
to characterize the growing populations. Hybrid models, which combine continuum
and discrete models of solid tumors, have also been developed in an attempt to bridge
the cell and tissue scales. We refer the reader to recent reviews (Lowengrub et al.
2010; Katira et al. 2013; Rodriguez-Brenes et al. 2013; Wang et al. 2015; Altrock
et al. 2015; Tanaka 2015; Te Boekhorst et al. 2016) for references on these differ-
ent approaches. In spite of these efforts, predicting tumor invasiveness and metastatic
potential remains an unsolved problem, primarily because cancer is a complex system
involving nonlinearly interacting processes at multiple scales.
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In previous work (Pham et al. 2010) we studied the morphological stability of
growing tumors using three continuum mathematical models and evaluated the con-
sistency between theoretical model predictions from a linear stability analysis and
experimental data from in vitro 3D multicellular tumor spheroids (Frieboes et al.
2006). In particular, we modeled the tumor as an incompressible fluid using a Darcy
law, Stokes law and a combined Darcy–Stokes law to investigate the effects of viscous
stress on the tumor dynamics. Our analysis suggested that the Stokes model, where
the tumor is treated as a viscous fluid, was the most consistent with the experimental
data and predicted that in vitro tumor spheroid growth is marginally stable. In related
works (e.g., Chatelain et al. 2011; Amar et al. 2011), the authors used a multiphase
Darcy law model (elastic fluid model) and identified conditions for morphological
instabilities of melanoma lesions in the skin through a control parameter that relates
cell proliferation, adhesion and the front propagation speed, finding that slower prop-
agating tumors tend to be more unstable, in agreement with ours and earlier work
(Cristini et al. 2003). See also the work by Lorenzi et al. (2017) where stability anal-
yses of growing tumor spheroids were performed using an elastic fluid model. By
Ciarletta et al. (2011), a general multiphase mixture model was developed that incor-
porated an incompressible hyperelastic solid model for the basal lamina (e.g. ECM)
and a viscoplastic constitutive model for the interaction forces between the cells and
basal lamina. Interestingly, the elastic properties of the basement membrane were not
found to influence the growth patterns. Here, we extend our previous work (Pham
et al. 2010) by using a Stokes fluid model to examine role of the viscosity of the host
microenvironment (two-fluid model) and nonlinearity in the Stokes tumor dynamics
using numerical simulations. Our model is at the tissue scale and thus the tumor and
host represent mixtures of cells and extracellular matrix (ECM). The overall mixture
is treated as two viscous fluids (tumor and host) with different viscosities. While we
do not model the production of ECM explicitly, we account for different amounts
of ECM in the tumor and host through the viscosities of the mixtures (e.g., a large
viscosity is used to mimic a high ECM density). Although recent experiments show
that tumor cells can be softer than normal cells (Cross et al. 2008), the overall tumor
may be stiffer than the host tissue because of relative differences in ECM densities.
While most tumors are found to be stiffer than the surrounding tissue (Butcher et al.
2009), which we model using a ratio of host and tumor viscosities less than one,
we also consider cases in which the tumor is less stiff than the surrounding tissue.
As in experiments, we find that the tumor dynamics is sensitive to these mechan-
ical properties. We focus on 2D but we anticipate that the behavior in 3D should
be similar, as predicted by linear stability analysis and as seen in results from other
tumor models based on Darcy’s law (Butcher et al. 2009; Wise et al. 2008). The out-
line of this paper is as follows. In Sect. 2, we present the two-fluid tumor model, as
well the non-dimensionalization, reformulation, and linear stability analysis. Then we
present the boundary integral formulation in Sect. 3. Nonlinear simulation results, and
comparisons with linear theory, are presented in Sect. 4. In Sect. 5, we summarize
our findings and compare with experiments. Details on the linear stability analy-
sis, boundary integral formulation and the numerical implementation are provided in
Appendicies.
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2 Mathematical model

We introduce a two-fluid flow model to study the dynamics of tumor spheroids. The
tumor cell population is assumed homogeneous. We treat the tumor as an incompress-
ible viscous fluid growing in a fully vascularized environment behaving like another
incompressible viscous fluid. Both fluids are considered to be mixtures of cells and
ECM with the viscosities mimicking the effect of varying densities of ECM. As by
Pham et al. (2010), we employ Stokes flow as the constitutive law to model tissue
stresses although here we consider viscosity of both the tumor and the host. By Pham
et al. (2010), we considered only the limiting case where the viscosity of the host was
negligible. Growth is regulated by an externally supplied cell substrate, e.g. oxygen,
through cell proliferation and apoptosis. As by Cristini et al. (2003) and Pham et al.
(2010), the tumors are assumed to be non-necrotic, cell–cell adhesion ismodeled using
surface tension at the tumor/host interface, and pressure due to cell proliferation acts
as an expansive force.

2.1 Governing equations

Let Ω− = Ω−(t) be the tumor volume and Σ = Σ(t) be the interface separating
the tumor from the host tissue microenvironment Ω+ = Ω+(t). We assume that
growth is regulated by cell substrates (e.g. oxygen, nutrients and growth factors),
whose concentration σ(x, t) satisfies the reaction–diffusion equation:

σt = D∇2σ + Γ, in Ω−, (2.1)

whereD is the diffusion coefficient and Γ is the rate at which cell substrates are added
to Ω−, which accounts for all sources and sinks of substrates in the tumor volume.

These substrates are supplied by a vasculature at a rate ΓB given by

ΓB = CB(σB − σ), (2.2)

where CB is the substrate transfer rate between the tissue and the blood, and σB is
the substrate concentration (uniform) in the blood. The rate Γ is given by

Γ = −Cσ σ + ΓB, (2.3)

whereCσ is the uptake rate.We assume that the tumormicroenvironment environment
is highly vascularized, so that the cell substrate concentration is constant and uniform
in the host tissue Ω+:

σ = σ∞, in Ω+. (2.4)

Here σ∞, the substrate concentration in the host tissue, may be smaller than σb. Thus,
at the tumor-host interface Σ ,

(σ )Σ = σ∞. (2.5)
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Incorporating substrate diffusion throughout the host tissue could be done (Cristini
et al. 2009), but would not qualitatively change the behavior observed here. However,
non-constant diffusivities could influence tumor morphological stability.

We assume constant cell density in the tumor domain, which is a good approxima-
tion away from areas of necrosis. Accordingly, mass changes correspond to volume
changes. Let v− be the tumor cell velocity. Then the local rate of volume change is
given by

∇ · v− = CP , in Ω−, (2.6)

where CP is the net cell-proliferation rate

CP = bσ − CA, (2.7)

where b and CA are the rates of mitosis and apoptosis respectively, which are both
assumed to be uniform. Let v+ to be the velocity field of the host tissue. We assume
that there is no relative mass gain or loss here, so that

∇ · v+ = 0, in Ω+. (2.8)

Note that in this model, we have not explicitly considered different cell compart-
ments (e.g., quiescent, proliferating, necrotic). However, since the proliferation rate
is proportional to the local substrate concentration, the cells in regions with low sub-
strate levels will have low proliferation rates, which mimics quiescence. And, in these
regions, the apoptosis rate may dominate proliferation, which mimics the effects of
necrosis. Further, even though the cells have the same rate of substrate uptake, the
total uptake is proportional to the cell proliferation rate.

2.2 The Stokes model

Modeling the tumor and the host tissue as highly viscous fluids, we assume

∇ · T± = 0, (2.9)

where T± are the tumor (−) and host (+) stress tensors given by

T± = μ±(∇v± + (∇v±)T ) + μ̄±(∇ · v±)I − p±I. (2.10)

The stress tensors take into account the local rate of strain, dilatation, and pressure.
The parametersμ± and μ̄± are the shear and bulk viscosity coefficients and p± are the
pressures. Across the interface, the stress tensors are assumed to satisfy the Laplace–
Young jump boundary condition:

[Tn] = T+n − T−n = τκn, on Σ, (2.11)
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where τ is the surface tension, which is used to model cell–cell adhesion and κ is
the total local curvature. We also assume that velocity field is continuous across the
interface:

[v] = v+ − v− = 0. (2.12)

The tumor interface evolves according to the normal velocity V :

dx
dt

· n = V, (2.13)

where
V = v+ · n = v− · n, on Σ. (2.14)

Non-dimensionalization. We rescale the dimensional variables by their characteristic
values and define the following non-dimensional parameters

x′ = x
L

, t ′ = CMt, v′± = v±
CML

, σ ′ = σ/σ∞ − B

1 − B
, p′± = p±

P̄±
, (2.15)

where

L = D1/2(CB + Cσ )−1/2, CM =(bσ∞)−1 , P̄± =μ±CM , B = σB

σ∞
CB

CB + Cσ

.

(2.16)

Here L is the nutrient penetration length (Cristini et al. 2003), CM is the mitosis rate,
P̄± is the pressure scale, and B is a dimensionless parameter that measures the relative
rates of blood tissue transfer in the tumor and substrate uptake (Cristini et al. 2003)
and the ratio of the substrates concentration in the blood and tissue.

We assume CML2/D � 1, i.e. nutrient diffusion is much faster than mitosis. This
assumption allows an approximation of the dimensional reaction–diffusion equation
(2.1) by a quasi-steady equation given in nondimensional form below in Eq. (2.20)
by dropping the time derivative. Finally, we define the following non-dimensional
parameters,

A = CA

CM
− B, ν− = μ̄−

μ−
, G = τ

μ−CML
, λ = μ+

μ−
, (2.17)

where A is the dimensionless relative rate of cell apoptosis to mitosis in the absence
of tumor vasculature (B = 0), ν− is the ratio between the two interior viscosity coef-
ficients, G is the relative strength of cell–cell adhesion, and λ is the viscosity ratio of
the host microenvironment to the tumor.

Dropping the bars and primes, we obtain the non-dimensional Stokes system is:

∇ · v− = (1 − B)σ − A, in Ω−, (2.18)

∇ · T− = 0, in Ω−, (2.19)

Δσ = σ, in Ω−, (2.20)
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and

∇ · v+ = 0, in Ω+, (2.21)

∇ · T+ = 0, in Ω+, (2.22)

σ = 1, in Ω+, (2.23)

where

T− = ∇v− + (∇v−)T − p−I + ν− ((1 − B)σ − A) I, (2.24)

T+ = λ(∇v+ + (∇v+)T ) − p+I. (2.25)

On the tumor interfaceΣ , we obtain the nutrient and velocity continuity conditions:

σ = 1, on Σ. (2.26)

v+ − v− = 0, on Σ. (2.27)

The Laplace–Young jump boundary condition in Eq. (2.11) becomes

T+n − T−n = Gκn, on Σ. (2.28)

The non-dimensional Stokes system shows that the evolution is governed by the dimen-
sionless parameters ν−, λ, A, G and B.

2.3 Reformulation

We next present a reformulation of the system to a new Stokes model in which the
velocities are divergence free. This is helpful in the design of numerical methods. We
first redefine the tumor cell velocity as

u− = v− − (1 − B)∇σ + Ax
d

, (2.29)

where d = 2 is the spatial dimension. Then Eq. (2.18) reduces to

∇ · u− = 0. (2.30)

Recall the interior Stokes law in Eq. (2.19):

∇ · T− = Δv− − ∇(p− − (1 + ν−)∇ · v−) = 0. (2.31)

Redefining the interior pressure as p̃− = p− − (ν− + 1)∇ · v− − (1 − B)σ and
using the redefined velocity u−, Stokes law reduces to

Δu− = ∇ p̃−, (2.32)

and the stress tensor T− becomes
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Table 1 Summary of the main parameters used in the two-fluid model

Parameter Description Value(s)

A Relative ratio of cell apoptosis to mitosis rate 0, 0.5, 0.7

B Relative effect of vascularization 0

d Spatial dimension 2

δ0 Intial size of the perturbation 0.025, 0.05

Δt Numerical time step 10−2

G Relative strength of cell–cell adhesion 20
3 , 53

GM Marginally stable adhesion parameter 2.33

l Polar wave number 2, 3, 4, 5, 7, 8, 10, 20

λ Viscosity ratio of the host to the tumor 0.05, 0.1, 0.5, 1, 2, 10

N Numerical resolution 512, 1024, 2048

R0 Initial unperturbed tumor radius at t = 0 1.988, 4.5

Rs Unperturbed tumor radius at steady state 1.988, 3.3255

S Scaling factor 1.988 (at t = 0)

T− = Tu− + 2(1 − B)∇∇σ − 2(1 − B)σ I − A
d

(2 − d)I, (2.33)

where Tu− = ∇u− + (∇u−)T − p̃−I.
Plugging the redefined variables back into Eq. (2.28), we obtain a new jump bound-

ary condition for the stress field:

T+n − Tu−n = Gκn + 2(1 − B)∇∇σn − 2(1 − B)σn − A
d

(2 − d)n. (2.34)

The reformulation requires the evaluation of ∇∇σn, which can be expressed in terms
of the normal derivative of σ as

s · (∇∇σ(s)n) = d

ds
(n · ∇σ(s)), (2.35)

n · (∇∇σ(s)n) = 1 − κn · ∇σ(s), (2.36)

where s is the arclength representation of the tumor-host interface. Since the exterior
velocity field is already divergence-free, it is unnecessary to reformulate the exterior
problem. The boundary condition for nutrient remains the same as in Eq. (2.26).
However, in viewofEq. (2.29), the reformulated velocity field becomes discontinuous:

v+(xΣ) = u−(xΣ) + (1 − B)∇σ |Σ − AxΣ

2
, (2.37)

Note that the reformulation removes ν− from the model, showing the evolution is
independent of this parameter. The nondimensional parameters and their values are
given in Table 1.
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2.4 Linear stability analysis

We begin our analysis of the tumor model by considering the behavior in the linear
regime. We perturb a circular (2D) tumor interface Σ of radius R(t) as follows:

r(t, θ) = R(t) + δ(t) cos lθ, (2.38)

where δ is the perturbation size, l and θ are polar wavenumber and angle, respectively.
In Appendix 1, we provide details of the analysis. Here we summarize themain results.
The evolution equation for the unperturbed tumor radius is

dR

dt
= (1 − B)

I1(R)

I0(R)
− AR

2
, (2.39)

where I0(R) and I1(R) are the modified Bessel functions of the first kind with indices
0 and 1 respectively. In the insert of Fig. 1, we plot the stationary radius in terms of
A when dR/dt = 0. This equation is the same for the Darcy model (Cristini et al.
2003), and thus is unaffected by the tumor and host viscosities. The tumor velocity
dR

dt
, with the vascularization parameter B = 0, is shown in Fig. 1 for different choices

ofA. Observe that whenA = 0, the tumor grows without bound (no apoptosis). When
A > 0, the tumor evolves to a steady state with dR/dt = 0. The shape perturbations
evolve according to

(
δ

R

)
d
(

δ
R

)
dt

= 1

λ + 1

(
− Gl
2R

+λA+(1 − B)

(
1 − Il+1(R)

Il(R)
− 2

R
(λ + 1)

)
I1(R)

I0(R)

)
,

(2.40)

which depends on the parametersA,G, B and λ. Observe that the right-hand side of the
equation increases with increasing A (high cell death) and decreases with increasing
G (high cell adhesion), implying that A promotes shape instability while G promotes
stable morphologies, consistent with previous work (Byrne and Chaplain 1996, 1997;
Cristini et al. 2003; Pham et al. 2010). The parameters B and λmay promote or reduce
instability, depending on the values of l and the radius of the tumor R. Thus, the
morphology is determined by the competition between cell death, cell–cell adhesion,
the tumor and host viscosity ratio and vascularization. The ratio δ/R is also known as
the shape factor as its magnitude measures the deviation of the tumor shape from a
circle of varying radius.

A marginally stable (or critical) value of the adhesion parameter GM (l,A, R, λ) is
obtained by setting the time derivative of δ/R in Eq. (2.40) to zero and thus separates
stable (G > GM ) from unstable growth (G < GM ). Recall that G is proportional to
cell–cell adhesion. By plugging Eq. (2.39) into Eq. (2.40), we find

123



680 K. Pham et al.

Fig. 1 The velocity of a circular

(2D) tumor,
dR

dt
from Eq.

(2.39), as a function of tumor
radius R;A as labeled. The
vascularization parameter B = 0
(color figure online)
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I1(R)
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)
, (2.41)

whichmeans that the viscosity ratioλ = μ+/μ− influences the tumor stability through
the rate of tumor growth dR/dt . When dR/dt > 0, GM increases as the host is less
viscous (λ decreases). That is, the growing tumor is less stable (and hence more
invasive) as its viscosity increases (and/or the viscosity of the host decreases). When
dR/dt < 0, GM increases as the host is more viscous (λ increases). This is different
from the classical Saffman–Taylor problem (Saffman and Taylor 1958) where insta-
bility occurs when a less viscous fluid displaces a more viscous fluid but not the other
way around. A detailed comparison with the Saffman–Taylor problem shows that the
difference is exactly due to the presence of a bulk source/sink term in the tumor model
that effectively switches the roles of the low and high viscosity fluids. Interestingly,
however, we find that in our numerical simulations that the largest values of the shape
perturbations of the tumor-host interface (shape factor δ/R) occur at the locations
where the lower viscosity host penetrates the higher viscosity tumor and not at the
fingers of the tumor that penetrate the host, which are much broader (e.g., see the blue
dots in Fig. 6). Finally, observe from Eq. (2.41) that for fixed R, GM tends to zero as l
increases at a rate proportional to 1/ l (the rate depends on R). This indicates that the
high modes are stabilized by a non-zero cell adhesion.

We consider the case with B = 0 (no tumor vasculature) and study the stability of
tumor growth in the avascular stage. When A = 0, the circular tumor grows without
bound. In the limit of large R and fixed l, the marginally stable value is given by

GM (l,A = 0, R, λ) = 2

l
(l + 1 − 2 (λ + 1)) + O(R−1) as R → ∞. (2.42)

Therefore, for each mode l, there is a critical viscosity ratio below which instability
can occur. In particular, all modes with

l < 2λ + 1, (2.43)
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Fig. 2 The marginally stable value of the adhesion parameter GM as a function of unperturbed radius R
with A = 0. The evolution is stable if G > GM (high adhesion) and unstable if G < GM (low adhesion).
In (a), results for a fixed mode l = 3 and different viscosity ratios (as labeled) are shown. In (b, results)
for different modes (as labeled) and fixed viscosity ratio λ = 0.5 are shown. In both cases, the insets show
close-ups (color figure online)

are stable. Decreasing the viscosity ratio λ, which corresponds to increasing the vis-
cosity of the tumor relative to the host, enhances instability. This is in contrast to the
Darcy model where instability requires A > 0 (Cristini et al. 2003). In the Stokes
model, taking l = 3 for example, then instability occurs only if λ < 1. This behavior
is summarized in Fig. 2a, b where in (a) the marginally stable values of GM are shown
with l = 3 for different viscosity ratios λ. In Fig. 2b, GM is shown for the fixed vis-
cosity ratio λ = 0.5 for different modes l. Note the non-monotonic behavior of GM as
a function of R and l for small R and that adhesion stabilizes sufficiently large modes
(e.g., compare modes l = 5, l = 7 and l = 50).
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Fig. 3 Themarginally stable values of the adhesion parameter GM withA = As (R), the steady state value
at each unperturbed radius R (see text), as a function of R for different modes (as labeled). The results are
independent of viscosity ratio λ (see text). The inset shows a close-up of the behavior at small R (color
figure online)

Another interesting case to consider is the behavior of perturbations about a steady-
state tumor radius. Taking A = As = 2 I1(R)

RI0(R)
for each R, we have dR/dt = 0 so

that each R is a steady-state radius. In this case, for fixed l we get

GM (l,As, R, λ) = 2R

l

(
1 − Il+1(R)

Il(R)
− 2

R

I1(R)

I0(R)

)
(2.44)

= 2

(
1 − 1

l

)
+ O(R−1) as R → ∞, (2.45)

which strikingly is independent of the viscosity ratio. Figure 3 shows the corre-
sponding GM as a function of the unperturbed radius for different modes l. Note
the non-monotonic dependence of GM upon the wavenumber l.

For arbitrary A, recall Eq. (2.41), which implies that for fixed l we obtain

GM = −4λ

l

d R

dt
+ 2

(
1 − 1

l

)
+ O(R−1) as R → ∞. (2.46)

Note that
dR

dt
= 1 − AR

2
+ O(R−1) as R → ∞. Assuming dR/dt > 0, so that the

tumor is growing, we observe that instability may only occur if

λ <
1

2
(l − 1)

(
dR

dt

)−1

. (2.47)

Therefore, while the tumor is growing, instability is enhanced if λ is decreased as in
the case A = 0. On the other hand if dR/dt < 0 so that the tumor is shrinking, then
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Fig. 4 a The marginally stable value of the adhesion parameter GM as a function of unperturbed radius R
for different viscosity ratios (as labeled) withA = 0.5 andmode l = 3. bClose-up around the point at which
the curves cross one another, which corresponds to the steady-state radius Rs = 3.3255 where stability
is independent of the viscosity ratio λ. The four points P1(1.988, 0.15), P2(1.988, 0.6), P3(4.5, 0.15),
P4(4.5, 0.6) indicate parameter values at which nonlinear simulations will be performed (see Fig. 7) (color
figure online)

the evolution is always unstable since λ ≥ 0 > −
∣∣∣∣dRdt

∣∣∣∣
−1 1

2
(l − 1) and instability is

enhanced if λ is increased (assuming l > 1). In Fig. 4, we illustrate this behavior by
showing GM with A = 0.5 for mode l = 3 and different viscosity ratios λ. When
A = 0.5, the steady state radius is Rs ≈ 3.3255, which corresponds to the point at
which all the curves intersect that reflects the λ-independent behavior at the steady-
state radius.
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3 Numerical methods

In order to investigate the nonlinear dynamics of the Stokes tumor model we use
highly accurate and efficient numerical methods. We represent the tumor/host inter-
face Σ ≡ ∂Ω(t) as a planar curve parametrized by α: x(α, t) ≡ (x(α, t), y(α, t))
with α ∈ [0, 2π ]. We use boundary integral methods to solve the Stokes and diffu-
sion equations for the cell velocity and nutrient concentration, respectively. In this
approach, these systems are reformulated in terms of single and double layer poten-
tials that are determined only by equations on the tumor/host interface and not in the
full 2D domain. Spectrally accurate spatial discretizations are used to approximate
the boundary integrals and derivatives are evaluated using the Fast Fourier Transform.
The tumor/host interface is updated in time using a non-stiff time integration method
(Hou et al. 1994; Leo et al. 2000). The overall method is similar to that used by Cristini
et al. (2003) with several new features. To improve the accuracy of the algorithm, we
use a spatial rescaling of the system to keep the area enclosed by the tumor constant in
time in the rescaled frame. The boundary integral equations and numerical algorithms
are described in detail in Appendicies 2–4. Here, we present the spatial rescaling and
the rescaled boundary integral equations for Stokes flow as they are new.

3.1 Space rescaling

We introduce the following spatial scaling

x = S(t)x̃(t, α), (3.1)

where x̃(t, α) is the position vector of the scaled tumor/host interface. The scaling
factor S(t) is chosen such that the area enclosed by the scaled interface is constant,
that is

d|Ω̃−|
dt

=
∫

Σ̃

Ṽ ds̃ = 0. (3.2)

The normal velocity in the scaled frame

(
Ṽ = dx̃

dt
· n

)
and the original frame(

V = dx
dt

· n
)
are related by:

Ṽ = dx̃
dt

· n = V

S
− Ṡ

S
x̃ · n, (3.3)

where Ṡ = dS

dt
and n is the normal vector, which is the same in both the scaled and

original domains. The dynamical equation for the scaling factor is
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2Ṡ(t) = 1 − B

S(t)|Ω̃|
∫

Σ̃

∂σ̃

∂ñ
dΣ̃ − AS(t), (3.4)

where σ̃ (x̃) = σ(x(x̃)) is the nutrient concentration in the scaled frame.
Letting ∇ = 1

S ∇̃, p̃±(x̃) = p±(x(x̃)), and defining the velocities in the rescaled
frame as

w̃− = 1

S
v−(x(x̃)) − (1 − B)

1

S2
∇̃σ̃ − A x̃

d
,

w̃+ = v+(x(x̃)),

where d = 2 is the spatial dimension, the rescaled equations for the tumor and host
become:

∇̃ · w̃− = 0, in Ω̃−, (3.5)

Δ̃w̃− = ∇̃ p̃−, in Ω̃−, (3.6)

Δ̃σ̃ = S2σ̃ , in Ω̃−, (3.7)

and

∇̃ · w̃+ = 0, in Ω̃+, (3.8)

Δ̃w̃+ = ∇̃ p̃+, in Ω̃+, (3.9)

σ̃ = 1, in Ω̃+. (3.10)

At the tumor/host interface Σ , we have

σ̃ = 1, on Σ̃, (3.11)

w̃+ − w̃− = (1 − B)
1

S2
∇̃σ̃ |Σ̃ − Ax̃Σ̃

2
, on Σ̃, (3.12)

λT̃w+n − T̃w−n = G κ̃

S
n + 2(1 − B)

1

S2
∇̃∇̃σ̃n − 2(1 − B)σ̃n − A

d
(2 − d)n, on Σ̃,

(3.13)

where T̃w+ = ∇̃w̃+ + ∇̃w̃T+ − p̃+I and T̃w− = ∇̃w̃− + ∇̃w̃T− − p̃−I are rescaled stress
tensors.

The evolution of the interface becomes

dx̃
dt

= w̃+ − Ṡ

S(t)
x̃ = w̃− + (1 − B)

1

S2
∇̃σ̃ − (Ṡ/S + A/d)x̃. (3.14)

In the rescaled frame we obtain a new boundary integral formulation for the tumor
model, which is given below.
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3.2 Rescaled boundary integral equations for Stokes flow

Let G be the Stokeslet and T be the tensor Stresslet (see Appendix 3 for their defini-
tions), then the single layer potential at the interface Σ is

S[f](x̃Σ) = 1

4π

∫
Σ

G(x̃′
Σ − x̃Σ̃ )f(x̃′)ds̃′, (3.15)

where x̃′
Σ = x̃Σ(s̃′)and the double layer potential at Σ̃ is

D̄[u](x̃Σ̃ ) = 1

4π
P.V .

∫
Σ̃

u(x̃′)T(x̃′
Σ − x̃Σ̃ )n(x̃′)ds̃′, (3.16)

where P.V . denotes the principle value integral. The boundary integral equation for
the rescaled Stokes tumor model is

w̃+(x̃Σ̃ ) − 2
λ − 1

λ + 1
D̄[w̃+](x̃Σ̃ ) = 1

λ + 1
F̃, (3.17)

where

F̃ = −2S
[
λT̃w+−T̃w−

]
(xΣ)+2D̄

[
(1 − B)

1

S2
∇̃σ̃ − Ax̃

2

]
(x̃Σ̃ ) + (1 − B)

1

S2
∇̃σ̃

∣∣∣∣
Σ̃

−Ax̃Σ̃

2
. (3.18)

Note that the single layer term on the right hand side of Eq. (3.18) is evaluated using
Eq. (3.13), which requires the calculation of ∇̃∇̃σ̃n. Componentwise, this term can
be expressed as

s · (∇̃∇̃σ̃ · n) = d

ds̃
(n · ∇̃σ̃ ), (3.19)

n · (∇̃∇̃σ̃ · n) = S2 − κ̃n · ∇̃σ̃ . (3.20)

Assuming that σ̃ is given by a double layer potential (see Appendicies 2 and 4 ), the
normal derivative can be written as (Colton and Kress 1992):

n · ∇̃σ̃ (s̃) = d

ds̃
S̃(ν̃s̃/S) − Sn · S̃(nν̃), (3.21)

where S̃ is the rescaled single layer potential for the modified Helmholtz equation and
is given by

S̃(P) ≡ − S

2π

∫
Σ

P(s̃′)K0(Sr̃)ds̃
′, (3.22)

for any vector (or scalar) P, and K0 is the modified Bessel function of the first kind.
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The discretization of the equations, the solution of the integral equations for
the nutrient and cell velocities, and interface evolution algorithms are presented in
Appendix 4.

4 Results

We next investigate the nonlinear dynamics of the early stages of tumor progres-
sion by focusing on the case of avascular tumors B = 0. We elucidate the effect of
the three biophysical parameters G (cell adhesion), A (cell death/apoptosis), and λ

(host tissue viscosity) on tumor evolution. We assess linear predictions of instability
against nonlinear simulations by comparing the corresponding linear and nonlinear
shape factors. The shape factor from linear theory is calculated by solving the system
of differential equations (2.39) and (2.40). The nonlinear shape factor is calculated
using

δ/R = max
j

(
|x j/R|2 − 1

)1/2

j = 1, ..., N , (4.1)

wherex j denote the discrete points that describe the tumor/host interface and R denotes
the effective radius of the tumor, which is the radius of a circle with the same area as
the tumor. Although the simulations are performed in the scaled frame, the results are
presented in the original variables.

4.1 Unbounded growth (A = 0, no cell death/apoptosis)

We consider the evolution of a nearly circular tumor of radius R(0) = 1.988 perturbed
by a cosine function with initial size δ(0) = 0.05, mode l = 3:

(x(α, 0), y(α, 0)) = (1.988 + 0.05 cos(3α))(cosα, sin α). (4.2)

In the numerical scheme, the initial scale factor is taken to be S(0) = 1.988.We fix the
cell–cell adhesion parameter G = 0.15 and consider two viscosity ratios: λ = 0.05
where the tumor is more viscous than the host and λ = 2 where the tumor is less
viscous than the host. As shown earlier, linear stability analysis predicts the l = 3
wavenumber is only unstable when λ < 1. Further, for when λ = 0.05, l = 3 is
the maximally unstable mode at R(0) = 1.988. In Fig. 5a, the morphologies of the
nonlinearly growing tumors are shown with λ = 0.05 demonstrating unstable growth
while the tumor with λ = 2 is growing stably. These results are consistent with linear
theory (Fig. 5b), although when λ = 0.05 linear theory tends to underpredict the shape
instability. This is because nonlinearity generates new modes that are also unstable
according to linear theory (see also Supplementary Materials, which shows how the
maximally unstable mode depends on tumor size).
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Fig. 5 Nonlinear tumor evolution with A = 0 and different viscosity ratios. a Larger tumor viscosity:
λ = 0.05 (top row) and smaller tumor viscosity: λ = 2 (bottom row). b Comparison of the linear (dashed)
and nonlinear results (solid) for the shape factor (δ/R) as a function of time. The inset shows a close-up. The
initial condition is a 3-mode perturbation of a circle given in Eq. (4.2). The adhesion parameter G = 0.15
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4.2 Growth and shrinkage (A = 0.5)

We next consider the dynamics of tumors that may grow or shrink depending upon
their initial radius. We take A = 0.5 and consider two cell–cell adhesion parameters
G = 0.15 and G = 0.6, two initial tumor radii R(0) = 1.988 and R(0) = 4.5, and
we vary the viscosity ratio λ. In particular, we consider evolution from the points
P1(1.988, 0.15), P2(1.988, 0.6), P3(4.5, 0.15), P4(4.5, 0.6) in Fig. 4b where the first
coordinate represents the initial tumor radius R(0) and the second represents the cell–
cell adhesion parameter G. WhenA = 0.5, theory predicts that circular tumors evolve
to the stationary radius Rs ≈ 3.3255, while the stability of the evolution depends
on G. In particular, as seen from Fig. 4b, linear theory predicts that starting from the
point P1(1.988, 0.15), where cell–cell adhesion is low, a 3-mode perturbation will be
unstable as the tumor grows to the stationary radius Rs . Note that mode l = 3 is the
maximally unstable mode at P1 for all the viscosity ratios (see Supplementary Materi-
als). Starting from the point P2(1.988, 0.6), where the cell–cell adhesion is higher, the
growth of the same initially perturbed tumor to Rs is stable. See Supplementary Mate-
rials for an analysis of the maximally unstable mode for the parameters corresponding
to P2.

Viscosity ratio (soft tumor) λ = 2. In Fig. 6a, we present the nonlinear evolution
of a tumor starting from the point P1. The initial tumor/host interface is a 3-mode
perturbation of a circle given by Eq. (4.2). The corresponding nonlinear shape factor
δ/R (solid) and linear shape factor (dashed) are shown in Fig. 6b.As predicted by linear
stability theory, the mode l = 3 perturbation initially decreases (see inset) as the tumor
grows until the effective radius of the tumor crosses the instability threshold radius,
which is the radius at which the horizontal line G = 0.15 and the marginal stability
curve GM cross. After this, the perturbation starts to grow. Three buds initially form
from a central core in directions dictated by the 3-fold initial data. These protrusions
trap the healthy tissue in channels that penetrate the tumor central core, which provide
the tumor center with more exposure to nutrients since the healthy tissue is assumed
to be well vascularized (nutrient is constant in the host healthy tissue). This explains
the larger center at t = 70. In the meantime, each protrusion continues to grow flatter
at the top. At late times, secondary protrusions start to form at the base of the parent
protrusions but are mostly directed inward because the environment is more viscous
and the nutrient is more readily available. These nonlinearly generated secondary
protrusions grow closer to one another leading to encapsulation of host tissue near the
tumor center. The tumor grows well beyond its diffusion-limited size Rs ≈ 3.3255
due to the shape instabilities that develop, which increase the access of the cells to
nutrients and enables the noncircular tumors to continue growing beyond the point at
which their circular counterparts would stop.

Interestingly, the nonlinear shape factor is a non-monotonic function of time and
achieves amaximumshortly before the buds apparently grow into one another.Because
we have assumed that the nutrient is constant in the host, the core and buds continue
to grow as they come into close contact. The point on the tumor/host interface where
the largest shape factor occurs (blue circles) is in the central core, where there is an
invagination of more viscous host tissue into the less viscous tumor. The maximum
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Fig. 6 a Nonlinear evolution for the case λ = 2. The initial tumor surface as in Eq. (4.2). The blue dots
indicate the position on the tumor surface where maximum shape factor is obtained. b Shape factor (δ/R) as
a function of time from nonlinear simulations (solid line) and linear theory (dashed line). The blue dots give
the shape factor at the interface positions in part (a). We consider parameter values areA = 0.5, G = 0.15,
and l = 3 and resolutions N = 512 and Δt = 10−2 (color figure online)

in δ/R occurs because the invaginating finger tends to flatten out as the secondary
protrusions start to form. As seen above, linear theory underpredicts the instabilities
because of the generation of new unstable modes through nonlinear interactions.
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The effect of viscosity ratio and initial tumor radius. In Fig. 7a, b the nonlinear mor-
phologies of tumors starting from points P1 and P2, respectively, are shown. In each
case, the initial tumor/host interface is a 3-mode perturbation of a circle given by Eq.
(4.2). The viscosity ratio is varied from λ = 0.05 to λ = 10 as labeled. The figures
show the nonlinear shape factors as functions of time; insets show the corresponding
tumor morphologies at time t = 20 and at the final time t f of the simulation, which
depends on λ as described below. The colors of the tumor insets and the shape factor
curves correspond. The effective radii of the tumors are plotted (solid curves) in Fig. 7e,
f. When the cell–cell adhesion is small (G = 0.15, evolution from P1), Fig. 7a, e show
that the tumor grows unstably, and the time scale of unstable growth depends strongly
on the viscosity ratio such that tumors with small λ are more unstable than those with
large λ. This is consistent with the predictions of linear stability theory (Fig. 4b). Note
that the curves in (a) stop because higher numerical resolution is needed to resolve
high curvature region. In addition, for λ ≥ 0.1, the tumor shape appears to want to
reconnect, which would represent a mathematical singularity in this sharp interface
model. To go beyond the times shown, more efficient adaptive numerical methods
need to be used together with a physical regularization (e.g., viscosity solution or
phase field type approach) to go beyond reconnection (Macklin and Lowengrub 2007;
Wise et al. 2008). These are the subject of future work.

When λ = 0.05, the tumor morphology evolves similarly to that observed when
A = 0 as three broad buds form and high curvature regions develop in the dimples
between the buds that limits our ability to simulate their evolution further. At slightly
larger viscosity ratios (λ = 0.1 and λ = 0.5), the buds split, creating a more complex
shape. As the viscosity ratio increases, this splitting is suppressed and the tumors
grow more compactly. As in the λ = 2 case shown above, for each λ ≥ 0.1, the
nonlinear shape factor is a non-monotonic function of time and attains a maximum
shortly before the final time t f , which is just before the buds seemingly collide with
one another. Observe that the amount of trapped host tissue inside the tumor decreases
as the viscosity ratio increases, due to the more compact shape of the tumors with
larger λ. Interestingly, themaximumvalues attained by the shape factors are increasing
functions of λ. This is because of the increasingly complex invaginations of host tissue
within the tumor as λ increases.

When the cell–cell adhesion is increased to G = 0.6 (point P2) in Fig. 7b, the l = 3
mode perturbation decreases and the tumor grows stably to its diffusion-limited size
Rs ≈ 3.3255 (Fig. 7f). In this case, the effective radii–solid curves in Fig. 7f—collapse
onto one another as predicted by theory [recall Eq. (2.39)].

Next, we increase the initial tumor radius to R(0) = 4.5 and consider the evolution
from the points P3 (low adhesion, G = 0.15) and P4 (higher adhesion, G = 0.6).
Linear stability theory (Fig. 4b) predicts that when G = 0.15, the 3-mode perturbation
should increase for all viscosity ratios as the tumors shrink to the stationary size
Rs ≈ 3.3255, with the smaller viscosities being more unstable than the larger ones.
When G = 0.6, the l = 3 mode perturbations may grow initially, but as the tumor
shrinks the perturbations eventually become stable as the radius decreases below the
λ-dependent threshold radius. In contrast to the case with small R(0) = 1.988, the
threshold radius is a decreasing function of λ so that tumors with small viscosities
(large λ) must reach a smaller size in order for the 3-mode perturbations to decay. For
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Fig. 7 Nonlinear evolution withA = 0.5 with different viscosity ratios as labeled. The shape factor (δ/R)
is shown as a function of time, with accompanying tumor morphologies shown as insets. aUnstable growth
corresponding to the point P1 from Fig. 4. b Stable growth corresponding to the point P2 from Fig. 4. In
(a, b), the initial interface is given by three-mode perturbation of a circle from Eq. (4.2) where the initial
unperturbed radius R0 = 1.988, and G = 0.15 in (a) and G = 0.6 in (b). Note that the curves in (a) stop
because the tumor shapes experience reconnection, i.e. the lobes touch. Below the same in (c, f). cUnstable
evolution from point P3 from Fig. 4. d Shrinkage from point P4 from Fig. 4. In (c, d), the initial interface
is given by three-mode perturbation of a circle from Eq. (4.2) but with unperturbed radius R0 = 4.5 and
G = 0.15 in (c) and G = 0.6 in (d). e The effective radii of the tumors from the unstable dynamics in
Fig. 7a shown as the solid curves (R0 = 1.988) and in Fig. 7c shown as the dashed curves (R0 = 4.5). f The
effective radii of the tumors from the stable dynamics in Fig. 7b and shown as the solid curves (R0 = 1.988).
The dashed curves correspond to the stable dynamics from Fig. 7d where R0 = 4.5. In (e), G = 0.15 and in
(f), G = 0.6. The colors correspond to those used in Fig. 7a–d. Note that in (f), the dashed and solid curves
lie on top of one another
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Fig. 7 continued

example, when λ = 10, the threshold radius is nearly equal to the stationary radius
Rs . See Supplementary Materials for an analysis of the maximally unstable mode in
this case.

As predicted by linear stability theory, when G = 0.15 (point P3), the nonlinear
tumor evolution is unstable (Fig. 7d). However, in contrast to the predictions of linear
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theory, the tumors are actually growing as the instabilities develop (dashed curves
Fig. 7e). And, strikingly, the shapes are very similar to those obtained when the initial
radius is smaller (evolution from P1: R(0) = 1.988 in Fig. 7a). An examination of
the effective tumor radii in Fig. 7e reveals the mechanism behind this behavior. At
early times, the tumors shrink as predicted by theory. However, as the tumors near the
stationary size, shape perturbations drive nonlinear interactions among themodes. This
causes the tumors to start growing instead of shrinking. Once the tumors start to grow,
their dynamics is very similar to that obtained in Fig. 7a because the perturbations are
still dominated by mode l = 3 and its harmonics.

When G = 0.6 (point P4), the nonlinear behavior is well predicted by linear theory.
The nonlinear evolution shows slight shape instabilities (increasing shape factors) at
early times (Fig. 7d) with larger viscosity ratios being more unstable (mode l = 3 is
maximally unstable at P4). Eventually the perturbations decay to zero. Concomitantly,
the effective radii decrease to the stationary radius at the same rate (dashed curve in
Fig. 7f).

4.3 Evolution near the stationary radius (A = 0.7)

In this section, we increase the value of apoptosis to A = 0.7, which coincides with
a stationary unperturbed tumor spheroid with radius R = 1.988. The ordered pair
(Rs, G) = (1.988, 0.15) lies in the linearly unstable regime for l = 3 independent of
the viscosity ratio (Fig. 3). Mode l = 3 is the maximally unstable mode at this Rs and
G (see Supplementary Material). Here, we investigate the nonlinear evolution using
the viscosity ratios λ = 0.05 and λ = 0.5 and the initial shape given in Eq. (4.2). The
results are shown in Fig. 8.

When λ = 0.05, the three initial protrusions grow and repeatedly split forming a
branched structure that penetrates the host tissue. To extend the simulation beyond
the time shown, higher numerical resolution is needed to resolve the high curvature
region. On the other hand, when λ = 0.5, the three initial protrusions also grow but
in a much more compact manner. Instead of forming a branched structure, increased
host viscosity, and hence resistance to motion, tends to make the initial protrusions to
flatten as the they grow and evolve toward one another leading to the encapsulation
of a complex network of host tissue analogous to what we observed when A = 0.5
(Fig. 7a; e.g., point P1). To go beyond the time shown, a physical regularization is
needed to accommodate the interface reconnection (Macklin and Lowengrub 2007;
Wise et al. 2008).

To investigate the dependence of the results on the symmetry imposed by the initial
tumor morphology, we consider next the evolution of an asymmetric, multimodal
initial tumor interface with λ = 0.5:

(x(α), y(α)) = (1.988 + 0.05 cos(2α) + 0.1 cos(3α) + 0.08 sin(4α)

+ 0.12 cos(5α))(cosα, sin α)/1.988 (4.3)
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The nonlinear evolution (see Fig. 8c) shows that when multiple modes are present
the same basic features are preserved, although the shape is not as compact as the single
mode symmetric case indicating the mixing of branching and encapsulating behavior.
Again, higher numerical resolution is needed to extend the simulation beyond the time
shown.

Fig. 8 Nonlinear evolution of
tumors with A = 0.7, which is
the stationary value for a tumor
with radius R0 = 1.988 i.e.
where dR/dt = 0, and the
adhesion parameter G = 0.15.
The initial tumor is a three-mode
perturbation of a circle with
radius R0 = 1.988 given in Eq.
(4.2). In (a) the viscosity ratio
λ = 0.05 and in (b) λ = 0.5. The
red dots indicate the interface
positions where maximal shape
perturbation δ/R is obtained. c
Nonlinear evolution of a
multimodal initial interface with
A = 0.7, G = 0.15, R0 = 1.988
and λ = 0.5. The initial tumor
surface is from Eq. (4.3). The
red dots indicate the interface
positions where maximal shape
perturbation δ/R is obtained
(color figure online)
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Fig. 8 continued

5 Conclusions

We investigated the dynamics of avascular tumors in two dimensions using a two-
fluid Stokes flow model where the viscosities of the tumor and host environment
may be different. We performed a linear morphological stability analysis and used a
boundary integral method to study the effects of nonlinearity. A novel reformulation
of the equations enabled the use of standard boundary integral solvers. We focused
on the effects of cell–cell adhesion, apoptosis, and the ratios of the host and tumor
viscosities. As in other tumor growth models (e.g., Darcy law by Li et al. 2007)
cell–cell adhesion stabilizes tumor morphologies while apoptosis is destabilizing.
Unlike Darcy flowmodels (Macklin and Lowengrub 2007), however, when the tumors
were more viscous than their environment, we found the development of invasive
fingers that lead to a branch-like structure. As the relative ratio of the host to tumor
viscosities is increased, the tumors tend to grow more slowly and more compactly.
Further, under these conditions, the tumors also developed invaginations of healthy
regions that became encapsulated in the tumor interior. To extend the simulations
beyond these times, higher numerical resolution and physical regularizations of the
sharp interface model are needed. These are the subject of future work.

There is much evidence now in the literature that mechanical forces in the tumor
microenvironment play a key role in tumor progression and response to therapy
(Butcher et al. 2009; Carey et al. 2012; Jain et al. 2014; Wei and Yang 2016). At
a macroscopic scale, tumors are frequently found to be stiffer than normal tissue and
this can increase invasiveness into soft tissues (Butcher et al. 2009). This is consistent
with our findings that branching morphologies tend to develop when the host viscosity
is less than that of the tumor. In addition, numerous in vitro experiments have shown
that stiffer extracellularmatrices lead to slower growth andmore compact tumor shapes
(Helmlinger et al. 1997; Cheng et al. 2009; Montel et al. 2011; Delarue et al. 2014),
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which is also consistent with our results. Although several experiments investigating
the properties of cells with different invasiveness demonstrated that tumor cells are
softer than normal cells (Lekka et al. 1999; Cross et al. 2008), the actual tumor may be
stiffer than normal tissue because of the structure of the environment and surrounding
tissues. For example, the tumor may contain a higher density of extracellular matrix
than normal tissue and may also contain calcified regions. We note that our model
does predict that instability may also occur when the tumor is less viscous that the
surrounding normal tissue.

In experiments, mechanical stresses have been found to influence cell fates and
motilities (Butcher et al. 2009), proliferation rates (Delarue et al. 2014) and apoptosis
rates (Cheng et al. 2009). Here, we have not modeled these effects and we defer such
studies to future work. In addition, because we use a Stokes flow constitutive model
for the tumor and host tissue, elastic and viscoelastic effects are neglected. At long
times, however, cell rearrangements may make a fluid-like treatment of the tissues
appropriate although this needs to be further investigated. Another future research
direction involves investigating the effects of non-constant cell substrate diffusivity
since the diffusivity may depend on the properties of the local tissue (e.g., density,
viscosity). Spatial variability in the delivery cell substrates could in turn influence
tumor morphological stability. Finally, while we presented results in two dimensions,
our results are expected to hold qualitatively in three dimensions as suggested by the
similarity between the two- and three-dimensional stability analyses (Cristini et al.
2005; Pham et al. 2010; Lowengrub et al. 2009).
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Appendix A Linear stability analysis

We perturb a circular tumor interface Σ of radius R(t) as follows:

r(t, θ) = R(t) + δ(t) cos(lθ) (6.1)

where δ is the dimensionless perturbation size, l and θ are polar wavenumber and
angle, respectively. Recall the reformulated interior tumor model:

∇ · u− = 0, in Ω−, (6.2)

Δu− = ∇ p̃−, in Ω−, (6.3)

Δσ = σ, in Ω−. (6.4)

Assuming first that the tumor is circular, solving only the radial part of these equations
in polar coordinates gives the following radially symmetric solutions:
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σ (0)(r) = I0(r)

I0(R)
, (6.5)

p̃(0)
− = Ap̃, (6.6)

u(0)
− (r) = 0, (6.7)

for some constant Ap̃. The function I0(r) is the modified Bessel function of index 0.
On the perturbed interface, we look for linear solutions of the form

σ = σ (0)(r) + δσ (1)(r, θ), (6.8)

p̃− = p̃(0)
− (r) + δ p̃(1)

− (r, θ), (6.9)

u− = u(0)
− (r)r̂ + δu(1)

− (r, θ), (6.10)

where r̂ is the unit vector in the r direction in polar coordinates. Plugging these into
Eqs. (6.2)–(6.4) and linearizing the perturbations satisfy:

∇ · u(1)
− = 0, in Ω−, (6.11)

Δu(1)
− = ∇ p̃(1)

− , in Ω−, (6.12)

Δσ(1) = σ (1), in Ω−. (6.13)

The solutions to the system of partial differential equations above are found to be

σ (1) = B1 Jl(ir)e
ilθ , where B1 = − I1(R)

I0(R)

1

Jl(i R)
, (6.14)

p̃(1)
− = Bp̃r

leilθ , (6.15)

u(1)
− = u(1)

−,r r̂ + u(1)
−,θ θ̂ , (6.16)

where

u(1)
−,r =

(
lCT r

l−1 + l

4(l + 1)
Bp̃r

l+1
)
eilθ , (6.17)

u(1)
−,θ =

(
CT r

l−1 + l + 2

4l(l + 1)
Bp̃r

l+1
)

∂θe
ilθ , (6.18)

for some constants CT and Bp̃. Here ∂θ = ∂/∂θ and r̂ , θ̂ are the unit normal vectors
in the r, θ directions in polar coordinates and l is the wavenumber. The functions
Jl(ir) and Il(R) are the Bessel and the modified Bessel functions of the first kind
respectively, whose relation is given by Jl(i x) = i l Il(x). The constant B1 is obtained
by using the nutrient boundary condition in Eq. (2.26).

Recall the exterior model from Eqs. (2.21)–(2.23):

∇ · v+ = 0, in Ω+, (6.19)

Δv+ = ∇ p+, in Ω+, (6.20)
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σ = 1, in Ω+. (6.21)

The radially symmetric solutions of the exterior equations are

p(0)
+ = Ap, (6.22)

v
(0)
+ (r) = D

r
, (6.23)

for some constants Ap and D. We look for linear solutions of the form

p+ = p(0)
+ (r) + δp(1)

+ (r, θ), (6.24)

v+ = v
(0)
+ (r)r̂ + δv(1)

+ (r, θ), (6.25)

and find that

p(1)
+ = Bpr

−l eilθ , (6.26)

v(1)
+ = v

(1)
−,r r̂ + v

(1)
−,θ θ̂ , (6.27)

where

v
(1)
+,r =

(
− lCHr

−l−1 + l

4(l − 1)
Bpr

−l+1
)
eilθ , (6.28)

v
(1)
+,θ =

(
CHr

−l−1 − l − 2

4l(l − 1)
Bpr

−l+1
)

∂θe
ilθ , (6.29)

for some constants CH and Bp.
Plugging the linear solutions into the boundary conditions in Eqs. (2.26), (2.37),

and (2.34), we obtain:

−(λ + 1)BpR
−l = 2(l − 1)(2λ − 1)

D

R3 + G (l − 1)(l + 1)

R2

+ A(l − 1)

R
− 2(1 − B)

l − 1

R2

I1(R)

I0(R)
, (6.30)

2l(l + 1)(λ + 1)CH R−l−2 = − (2 + (2λ − 1)l)(l + 1)
D

R3 − G l(l − 1)(l + 1)

2R2

− A(l + 1)(l − 2)

2R
+ 2(1 − B)

l + 1

R[(
Il−1(R)

Il(R)
− 3l − 2

2R

)
I1(R)

I0(R)
− 1

]
. (6.31)

Solving the equations for CH and Bp enables us to determine the normal velocity:

V = v+ · n = v
(0)
+ (R) + δ

(
dv

(0)
+

dr
|r=R + v

(1)
+,r (R)

)
cos lθ. (6.32)
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In addition,

V = dR

dt
+ dδ

dt
cos lθ. (6.33)

Using these two formulas for V , we obtain the evolution equation for the unperturbed
tumor radius:

dR

dt
= (1 − B)

I1(R)

I0(R)
− AR

2
. (6.34)

This equation is the same for the single-phase Darcy model (Cristini et al. 2009). The
shape perturbations can be shown to evolve according to

(
δ

R

)−1 d
(

δ
R

)
dt

= − 2

R

dR

dt
− 1

λ + 1

{
− 1

R

dR

dt
+ A

2
+ Gl

2R

+ (1 − B)

[(
Il−1(R)

Il(R)
− 2l − 1

R

)
I1(R)

I0(R)
− 1

]}

= − 1

λ + 1

Gl
2R

+
(
1 − 1

λ + 1

)
A

+ (1 − B)
1

λ + 1

(
1 − Il+1(R)

Il(R)

I1(R)

I0(R)

)
− (1 − B)

2

R

I1(R)

I0(R)
.

(6.35)

Appendix B Boundary integral formulation for the nutrient (modified
Helmholtz) equation

We present the boundary integral formulation for the nutrient equation (2.20) (Cristini
et al. 2003). The substrate concentration σ can be expressed using a double-layer
potential ν:

σ(x) = − 1

2π

∫
Σ

ν′n′ · ∇K0(|x′ − x|)ds′, (7.1)

where the prime indicates quantities evaluated at the position s′ on the interface and the
Green’s function is − 1

2π K0, where K0 is the Bessel function. Taking x → x(s) ∈ Σ ,
the boundary condition (2.26) becomes a second-kind Fredholm integral equation on
the boundary Σ :

ν(α)

2
+

∫ 2π

0
ν(α′)K(α, α′)dα′ = 1, (7.2)

where

K(α, α′) =
(

(x(α′) − x(α))yα′ − (y(α′) − y(α))xα′
)
K1(r)

2πr
(7.3)

with r = ((x(α′) − x(α))2 + (y(α′) − y(α))2)
1
2 . In deriving Eq. (7.2), we have used

d

dr
K0(r) = −K1(r), (7.4)
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where K1 is the modified Bessel function of the second kind of order 1. The kernel K
has a logarithmic singularity at α = α′ (Martensen 1963; Colton and Kress 2012):

K = L1(α, α′) ln
(
4 sin2

α − α′

2

)
+ L2(α, α′), (7.5)

where L1 and L2 are analytic and periodic:

L1(α, α′) =
(

(x(α′) − x(α))yα′ − (y(α′) − y(α))xα′
)
I1(r)

4πr
, (7.6)

L2(α, α′) = K(α, α′) − L1(α, α′) ln
(
4 sin2

α − α′

2

)
, (7.7)

and I1(r) is the modified Bessel function. Note that

L2(α, α′) = 1

4π

yααxα − xαα yα
x2α + y2α

. (7.8)

The Laplace–Young jump boundary condition from Eq. (2.34) requires the evaluation
of n · ∇∇σ , which can be expressed componentwise as:

s · (∇∇σ(s) · n) = d

ds
(n · ∇σ(s)), (7.9)

n · (∇∇σ(s) · n) = 1 − κn · ∇σ(s). (7.10)

The normal derivative of the double layer potential can be written in terms of a single
layer potential S:

n · ∇σ(s) = d

ds
S(νs) − n(s) · S(nν), (7.11)

where

S(P) ≡ − 1

2π

∫
Σ

P(s′)K0(|x(s) − x(s′)|)ds′, (7.12)

for any vector (or scalar) P. The function K0 has a logarithmic singularity at s = s′,
and a decomposition similar to Eq. (7.5) can be performed.

Appendix C Boundary integral formulation for the (unrescaled) Stokes
tumor model

We assume that in the tumor interior Eqs. (6.2)–(6.3) hold, and in the tumor exterior
that Eqs. (6.19)–(6.20) hold. Across the boundary, the velocity field is discontinuous
as given in Eq. (2.37). The jump boundary condition for the normal stress is given in
Eq. (2.34).

Following Pozrikidis (1992) and Power and Wrobel (1995), let G be the Stokeslet
and T be the tensor stresslet (see below for their definitions), then the single layer
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potential at the interface Σ is

S[f](xΣ) = 1

4π

∫
Σ

G(x′ − xΣ)f(x′)ds′, (8.1)

and the double layer potential at Σ is

D̄[u](xΣ) = 1

4π
P.V .

∫
Σ

u(x′)T(x′ − xΣ)n(x′)ds′, (8.2)

where P.V . denotes the principle value integral.
Assuming that the flow vanishes at ∞, the boundary integral representation of the

exterior velocity v+ approaching the interface from the exterior domain Ω+ is

v+(xΣ) = −2S[f+](xΣ) + 2D̄[v+](xΣ) (8.3)

and of the interior velocity u− approaching the interface from the interior domain Ω−
is

u−(xΣ) = 2S[fu−](xΣ) − 2D̄[u−](xΣ), (8.4)

where f± denote the interior and exterior normal stress at the interface (T+n = f+
and Tu−n = fu−). Since we do not know T± individually, we need to write Eqs. (8.3)
and (8.4) in terms of λT+ − Tu− and make use of Eq. (2.34). To do this, multiply Eq.
(8.3) by λ and add it to Eq. (8.4). This gives

λv+(xΣ) + u−(xΣ) − 2D̄[λv+ − u−](xΣ) = −2S[λT+ − Tu−](xΣ), (8.5)

λT+ − Tu− is given in Eq. (2.34). At the interface, the interior and exterior velocities
are related by

v+(xΣ) − u−(xΣ) = (1 − B)∇σ |Σ − AxΣ

2
. (8.6)

Combining Eqs. (8.5) and (8.6), we get

v+(xΣ) − 2
λ − 1

λ + 1
D̄[v+](xΣ) = 1

λ + 1
F, (8.7)

where

F = −2S[λT+ −Tu−](xΣ)+2D̄
[
(1 − B)∇σ − Ax

2

]
(xΣ)+ (1− B)∇σ |Σ − AxΣ

2
.

(8.8)
Write v+ = (v1, v2), n = (n1, n2), and F = (F1, F2). Using the formulas of

the double and single layer potentials (Pozrikidis 1992), Eq. (8.7) can be explicitly
expressed as

v j (xΣ) − 2
λ − 1

λ + 1

1

4π

∫
Σ

vi (x′)Ti jk(x′, xΣ)nk(x′)ds′ = 1

λ + 1
Fj (xΣ), j = 1, 2,

(8.9)
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where

Fj (xΣ) = − 2
1

4π

∫
Σ

fi (x′)Gi j (x′, xΣ)ds′

+ 2
1

4π

∫
Σ

hi (x′)Ti jk(x′, xΣ)nk(x′)ds′ + h j (xΣ). (8.10)

Here h(xΣ) = (1 − B)∇σ(xΣ) − AxΣ

2 , Gi j = ∑d
i (−δi j ln r + x̂i x̂ j

r2
) and Ti jk =∑d

i,k(−4
x̂i x̂ j x̂k
r4

). Moreover, r = |x̂| and x̂ = x′(s) − xΣ(s). So the explicit forms of
the single layer and double layer potentials are

∫
Σ

fi (x′)Gi j (x′, xΣ)ds′ =

⎧⎪⎪⎨
⎪⎪⎩

∫
Σ

(
− f ′

1 log r + f ′
1
x̂21
r2

+ f ′
2
x̂1 x̂2
r2

)
ds′ j = 1,

∫
Σ

(
− f ′

2 log r + f ′
2
x̂22
r2

+ f ′
1
x̂1 x̂2
r2

)
ds′ j = 2,

(8.11)

and

∫
Σ

vi (x′)Ti jk(x′, xΣ)nk(xΣ)ds′

=

⎧⎪⎪⎨
⎪⎪⎩

∫
Σ

−4
r4

(
v′
1 x̂

3
1n1 + v′

1 x̂
2
1 x̂2n2 + v′

2 x̂
2
1 x̂2n1 + v′

2 x̂1 x̂
2
2n2

)
ds′ j = 1,

∫
Σ

−4
r4

(
v′
1 x̂

2
1 x̂2n1 + v′

1 x̂1 x̂
2
2n2 + v′

2 x̂1 x̂
2
2n1 + v′

2 x̂
3
2n2

)
ds′ j = 2,

(8.12)

where x̂1 = x(s(α)) − x(s(α′)), x̂2 = y(s(α)) − y(s(α′)), v′
i = vi (x(s(α′))) and

ni = ni (x(s(α))).
In Eq. (8.11), the only singularity in the integrand comes from the logarithmic

kernel. This can be analyzed as follows.

log |r | = log 2

∣∣∣∣sin
(

α − α′

2

)∣∣∣∣ + log
|r |

2 sin |(α−α′
2 )| , (8.13)

where the second term is smooth. This is because for α ∼ α′, we have

|r | =
√

(x(s(α)) − x(s(α′)))2 + (y(s(α)) − y(s(α′)))2

= sα|α − α′|√1 + O(α − α′)
= sα|α − α′|(1 + O(α − α′)), (8.14)

where O(α −α′) denotes a smooth function that vanishes as α′ −α (Hou et al. 1994).

123



704 K. Pham et al.

Appendix D Numerical solution

We represent the rescaled tumor/host interface Σ̃ ≡ ∂̃Ω(t) as a planar curve
parametrized counterclockwise by x̃(α) ≡ (x̃(α), ỹ(α)) with the parameter α ∈
[0, 2π ]. Define s̃ = s̃(α, t) to be the arclength of the curve from the point x̃(0, t)
to x̃(α, t). Then, s̃α = (x̃2α + ỹ2α)

1
2 , where the subscript indicates differentiation, and

ds̃ = s̃αdα. The tangent vector is s = (x̃α, ỹα)/s̃α and the outward normal vector is
n = (ỹα,−x̃α)/s̃α . Introducing the tangent angle θ̃ = tan−1(ỹα/x̃α), which denotes
the angle between the tangent vector and the x-axis, the tangent and normal vectors
become s = (cos θ, sin θ) and n = (sin θ,− cos θ). Further, the total curvature is
κ = θ̃s̃ = θ̃α/s̃α .

Tumor boundary evolution To evolve the tumor surface Σ̃(t), we follow (Hou et al.
1994; Leo et al. 2000) and use the tangent-angle formulation in a scaled arclength
frame defined by

s̃α = L̃

2π
, (9.1)

where L̃(t) is the length of the tumor surface in the rescaled frame. This implies that
the collocation points are equally spaced in arclength. We evolve the tumor surface
using the normal velocity Ṽ and tangential velocity T̃ given by

Ṽ (α) = w̃+ · n − Ṡ

S(t)
x̃ · n = w̃− · n + (1 − B)

1

S2
∇̃σ̃ · n − (Ṡ/S + A/d)x̃ · n,

(9.2)

T̃ (α) = α

2π

∫ 2π

0
θ̃α′ Ṽ ′dα′ −

∫ α

0
θ̃α′ Ṽ ′dα′. (9.3)

The evolution of the tumor surface is reposed in terms of θ̃ (α, t) and L̃(t), which
satisfy the following evolution equations:

˙̃
θ = −Ṽs̃ + κ̃ T̃ = 2π

L̃
(−Ṽα + θ̃α T̃ ), (9.4)

˙̃Lα =
∫ 2π

0
θ̃α′ Ṽ ′dα′. (9.5)

From L̃ and θ̃ , the interface can be recovered by integrating

x̃α = L̃

2π
cos θ̃ , ỹα = L̃

2π
sin θ̃ . (9.6)
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Rescaled boundary integral equations for nutrient Here, we present the rescaled
boundary integral formulation for the nutrient equation:

ν̃(α)

2
+

∫ 2π

0
ν̃(α′)K̃(α, α′)dα′ = 1, (9.7)

where

K̃(α, α′) = S

(
(x̃(α′) − x̃(α))ỹα′ − (ỹ(α′) − ỹ(α))x̃α′

)
K1(Sr̃)

2π r̃
(9.8)

with r̃ = ((x̃(α′) − x̃(α))2 + (ỹ(α′) − ỹ(α))2)
1
2 . The rescaled kernel K̃ is split into

singular and nonsingular parts:

K̃ = L̃1(α, α′) ln
(
4 sin2

α − α′

2

)
+ L̃2(α, α′), (9.9)

where L1 and L2 are analytic and periodic:

L̃1(α, α′) = S

(
(x̃(α′) − x̃(α))ỹα′ − (ỹ(α′) − ỹ(α))x̃α′

)
I1(Sr̃)

4π r̃
, (9.10)

L̃2(α, α′) = K̃(α, α′) − L̃1(α, α′) ln
(
4 sin2

α − α′

2

)
, (9.11)

and that when α′ = α

L̃2(α, α) = 1

4π

ỹαα x̃α − x̃αα ỹα
x̃2α + ỹ2α

= 1

4πsα

κ̃

S
. (9.12)

In the rescaled frame, we have

s · (∇̃∇̃σ̃ · n) = d

ds̃
(n · ∇̃σ̃ ), (9.13)

n · (∇̃∇̃σ̃ · n) = S2 − κ̃n · ∇̃σ̃ . (9.14)

The normal derivative of the double layer potential becomes

n · ∇̃σ̃ (s̃) = d

ds̃
S(ν̃s̃/S) − Sn · S(nν̃), (9.15)

where

S(P) ≡ − S

2π

∫
Σ

P(s̃′)K0(Sr̃)ds̃
′, (9.16)

for any vector (or scalar) P. The function K0 has a logarithmic singularity at s̃ = s̃′,
and a decomposition similar to Eq. (9.9) can be performed.
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Numerical scheme Following Hou et al. (1994), we use the small scale decomposition
to rewrite Eq. (9.4) as

θ̃t = Gπ

2L̃
∂αL(θ̃α)(α, t) + Ñ1(α, t), (9.17)

where

Ñ1(α, t) = − Ṽα

s̃α
+ κ̃ T̃ (α, t) − Gπ

2L̃
∂αL(θ̃α)(α, t). (9.18)

The integrand operator L is given by

L[g](α) = 1

π

∫ 2π

0
log

(
2

∣∣∣∣ sin
(

α − α′

2

)∣∣∣∣
)
g(α′)dα′, (9.19)

whichhas a smoothkernel. Then L̂[g] = −ĝ/|k|,where k �= 0 is theFourierwavenum-
ber (Jou et al. 1997). Taking the Fourier transform of Eq. (9.17), we get

ˆ̃
θt (k, t) = −Gπ

2L̃
|k| ˆ̃θ(k, t) + ˆ̃N1(k, t). (9.20)

Following Hou et al. (1994), we discretize Eq. (9.20) using an implicit time-stepping
scheme based on an integration factor:

ˆ̃
θn+1(k) = ek(tn, tn+1)

ˆ̃
θn(k) + Δt

2

(
3ek(tn, tn+1)

ˆ̃Nn
1 (k) − ek(tn−1, tn+1)

ˆ̃Nn−1
1 (k)

)
,

(9.21)
where

ek(t1, t2) = exp

(
− Gπ

2
|k|

∫ t2

t1

dt ′

L̃(t ′)

)
(9.22)

is the integrating factor. We use the trapezoidal rule to approximate

∫ tn+1

tn

dt ′

L̃(t ′)
≈ Δt

2

(
1

L̃n
+ 1

L̃n+1

)
, (9.23)

∫ tn+1

tn−1

dt ′

L̃(t ′)
≈ Δt

(
1

2L̃n−1
+ 1

L̃n
+ 1

2L̃n+1

)
. (9.24)

Note that by setting the integrating factors in Eq. (9.21) to 1, we obtain the Adams-
Bashforth explicit time-stepping scheme instead.

The arclength L̃(t) can be calculated using the Adams-Bashforth explicit time-
stepping method:

L̃n+1 = L̃n + Δt

2

(
3M̃n − M̃n−1), (9.25)

where

M̃ =
∫ 2π

0
θ̃α′ Ṽ (α′, t)dα′. (9.26)
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Note that the linear propagator andAdams-Bashforthmethods require two previous
time steps. When computing θ̃1, we replace the second order linear propagator with
a first order linear propagator of a similar form. As for L̃1, we use the explicit Euler
method.

To reconstruct the tumor interface (x̃n+1, ỹn+1) from the updated θ̃n+1(α) and
L̃n+1, we first update a reference point (x̃n+1

0 , ỹn+1
0 ) = (x̃n+1(0), ỹn+1(0)) using a

second-order explicit Adams-Bashforth method.

(
x̃n+1
0 , ỹn+1

0

)
= (

x̃n0 , ỹn0
) + Δt

2

(
3Ṽ n(0)nn(0) − Ṽ n−1(0)nn−1(0)

)
. (9.27)

Once we update the reference point, we obtain the configuration of the interface from
θn+1(α) and L̃n+1 by Hou et al. (1994).

x̃n+1(α) = x̃n+1
0 + L̃n+1

2π

( ∫ α

0
cos(θ̃n+1(α′))dα′ − α

2π

∫ 2π

0
cos(θ̃n+1(α′))dα′

)
,

(9.28)

ỹn+1(α) = ỹn+1
0 + L̃n+1

2π

( ∫ α

0
sin(θ̃n+1(α′))dα′ − α

2π

∫ 2π

0
sin(θ̃n+1(α′))dα′

)
,

(9.29)

where the indefinite integration is performed using the discrete Fourier transform.

Spatial discretization To discretize the integrals with smooth integrands, we use the
trapezoidal rule. To calculate the integrals with a logarithmic integrand, we follow the
approach by Jou et al. (1997). to obtain a spectrally accurate discretization using the
discrete Fourier transform. All derivatives are performed using the discrete Fourier
transform. A high-order (25th order) Fourier smoothing is used to control aliasing
errors (Hou et al. 1994). We solve the discrete Stokes and nutrient boundary integral
equations using the linear iterative solver GMRES (Saad and Schultz 1986).

Numerical algorithm The numerical algorithm can be summarized as follows. Dis-
cretize the initial tumor/host interface using N marker points, with parametrization
α j = jh, h = 2π/N , and N is a power of 2. The scaling factor S(0) is set to be the
initial effective tumor radius making the scaled interface have effective radius equal to
1. The effective radius is defined to be the radius of a circle enclosing the same area.
The following steps are implemented:

1. Given the scaling factor S(tn) and interface Σ(tn) at time t = tn .
2. Solve the discretized form of Eq. (9.7) usingGMRES for the double layer potential

ν̃, which is used to compute n · ∇̃σ̃ from Eq. (9.15).
3. Solve the discretized form of Eq. (3.17) for the rescaled exterior velocity w̃+

using GMRES. The rescaled exterior velocity ṽ+ is calculated using the relation
ṽ+ = w̃+ − (Ṡ/S)x̃.
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4. Update the interface position by
(a) Updating the tangent angle θ̃n+1 and the arclength L̃n+1.
(b) Reconstructing the interface positions (x̃n+1, ỹn+1) from L̃n+1, θ̃n+1 and a

reference point (x̃n+1
0 , ỹn+1

0 ).
5. Compute S(tn+1) from Eq. (3.4) using forward Euler for the first time step t1 and

Adams-Bashforth for tn for n ≥ 2.
6. Repeat.

The resulting algorithm is spectrally accurate in space and second-order accurate
in time.
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