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NUMERICAL COMPLETE SOLUTION FOR RANDOM GENETIC DRIFT BY

ENERGETIC VARIATIONAL APPROACH

Chenghua Duan1, Chun Liu2, Cheng Wang3 and Xingye Yue1,∗

Abstract. In this paper, we focus on numerical solutions for random genetic drift problem, which is
governed by a degenerated convection-dominated parabolic equation. Due to the fixation phenomenon
of genes, Dirac delta singularities will develop at boundary points as time evolves. Based on an energetic
variational approach (EnVarA), a balance between the maximal dissipation principle (MDP) and least
action principle (LAP), we obtain the trajectory equation. In turn, a numerical scheme is proposed
using a convex splitting technique, with the unique solvability (on a convex set) and the energy decay
property (in time) justified at a theoretical level. Numerical examples are presented for cases of pure
drift and drift with semi-selection. The remarkable advantage of this method is its ability to catch the
Dirac delta singularity close to machine precision over any equidistant grid.
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1. Introduction

Random genetic drift is the phenomenon that the frequency of a gene variant (allele) in a population changes
at the next generation due to random sampling. The process of random genetic drift plays an important role in
the molecular evolution [7] and the behavior of genes in a population with a finite size [21]. From the view-point
of population genetics, the most elementary step in the evolution is the change of gene frequencies. The notion
and technique of random genetic drift have been widely applied to medical science [29] and other fields.

We consider a population with a finite size, which can generally cause the random genetic drift. The change
in gene frequencies is treated as a stochastic process, which was first introduced by Fisher [13]. Under the
assumption that generations do not overlap and each copy of gene in the new generation is chosen independently
at random from all copies in the old generation, the mathematical model of genetic drift is labeled as the Wright-
Fisher Model, introduced by Fisher [14] and Wright [34], and developed by Kimura [17]. This mathematical
model is a formulation based on a discrete-time Markov chain. The model involves two alleles: A and a in a
population with a fixed size Ne. The quantities Xt and ft denote the proportion of A in the population and its
probability distribution at generation t, respectively. Assume that the number of gene A is m at generation t,
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then, at the next generation t+ 1, the transition probability for the number of gene A being n is given by

Wn,m ≡ P

(
Xt+1 =

n

2Ne

∣∣∣Xt =
m

2Ne

)
=

(
2Ne

n

)(
m

2Ne

)n(
1 − m

2Ne

)(2Ne−n)

,

under the circumstance that there is no factor such as mutation, migration and selection and the only evolu-
tionary force is genetic drift. We get the distribution of probability at generation t + 1 by the Markov chain:

ft+1,n =
2Ne∑
m=1

Wn,mft,m. At continuous time and space, ft,n is approximate to f(x, t). Kimura [17,20,36] showed

that for pure drift (the only evolutionary force is genetic drift), f(x, t) obeys the diffusion equation:

∂

∂t
f(x, t) =

1

4Ne

∂2

∂x2
(x(1 − x)f(x, t)), x ∈ (0, 1), t > 0, (1.1)

where Ne is the population size. Moreover, if mutation, migration and selection effects are involved, the model
becomes

∂

∂t
f(x, t) =

1

4Ne

∂2

∂x2
(x(1 − x)f(x, t)) − ∂

∂x
(M(x)f(x, t)), x ∈ (0, 1), t > 0, (1.2)

where M(x) represents the deterministic part of gene frequency dynamics and is typically taken as a polynomial
in x, whose coefficients depend on mutation rates, migration rates and selection coefficients.

We take the zero current boundary condition

(
1

4Ne
∂x(x(1 − x)f(x, t)) −M(x)f(x, t)

)
|x=0,1= 0, t > 0,

with M(x) = 0 for pure drift and a initial state

f(x, 0) = f0(x) = δ(x− x0), (1.3)

which means that at initial time, the proportion of gene A is x0 ∈ [0, 1].
A complete solution, i.e., the total probability is equal to unity at any time, develops sharp spikes (Dirac

delta singularities) at the two boundary 0 and 1. When the sharp spikes appear, they signal gene loss or gene
fixation: either all copies of gene A are finally lost, or all individuals carry A (gene a is totally lost). A complete
solution is essential in Wright Fisher model, because the complete solution can include all possible outcomes
whenever fixation and loss are possible, and can be extremely close correspondence with Wright-Fisher model.

For the pure drift case, it has been shown that this system keeps the conservation of the total probability
and expectation, and f(x, t) → (1 − x0)δ(x) + x0δ(x− 1), as t→ ∞ which means that there is a probability of
x0 that the fixation occurs at gene A and a probability of 1 − x0 that the fixation occurs at gene a [6, 23,28].

When considering an unlinked locus with two alleles subjects to the semi-dominant selection with strength s
(| s |� 1), we take M(x) = sx(1 − x) as in [17, 20]. In this case, the probability of ultimate fixation of gene A

from an initial expectation x0 is Pfix(x0) = 1−e−4Nesx0

1−e−4Nes [19, 36].
However, except for a few special cases, we could not get explicit solutions. The numerical approaches are

needed to obtain the approximate solutions for the differential equation. Some attempts have been made by
Kimura [17], Barakat and Wagener [1] and Wang [31], while the total probability is smaller than unity and it
was also a hard work to simulate the general case including natural selection, mutation and migration. Zhao
et al. [36] obtained a complete numerical solution by finite volume method (FVM) for a neutral locus and
semi-selection. In [6], Xu et al. discussed three classical numerical schemes which are stable but lead to different
steady state solutions. Only one of the schemes gives a true complete numerical solution and any scheme
with numerical viscosity should be avoided. Therefore, a very careful analysis for the numerical scheme is
necessary.
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In this paper, we propose a new scheme based on energetic variational approach (EnVarA). Combining the
least action principle (LAP) and maximal dissipation principle (MDP), we first obtain the trajectory equation
for the Wright-Fisher model. In turn, a convex-splitting technique is applied to construct a numerical scheme
that is unique solvable on a convex domain and keeps the property of energy decay in time. The numerical
scheme can assure the conservation of the total probability, i.e., a complete solution is obtained. Numerical
examples demonstrate that we can get a complete solution and true probability of fixation. In comparison with
the FVM schemes in [6, 36], the new method has a significant advantage on the approximation to the delta
singularity. Over an equidistant mesh with step size h, standard finite difference methods or FVMs only present
an approximation of scale O(1/h) to delta singularity, while the scheme here may give an approximation of scale
O(1/ε) with small positive ε close to the machine precision.

The paper is organized as follows. The details of EnVarA for Wright-Fisher model are shown in Section 2. In
Section 3, the numerical scheme is constructed. Then numerical examples are presented in Section 4.

2. Variational approach for the Wright Fisher model

The primary goal of this section is to derive the constitutive relation of the Wright Fisher model. We first
introduce EnVarA briefly. The original work was given by Onsager [25], and then it was improved by Lord
Rayleigh [27]. This method has been applied to many physical and biological problems in recent years, for
instance [8, 10, 35]. In the Wright-Fisher model, x ∈ [0, 1] and f(x, t) ≥ 0 can be viewed as the position of
particles and the density of x at time t, respectively. We first introduce the different coordinate systems.

Definition 2.1. Suppose that ΩX
0 , Ωx

t ⊂ R
m, m ∈ N

+, are domains with smooth boundary and time t > 0,
and u = (u1, . . . , um) is a smooth vector field in R

m. The flow map x(X, t) : ΩX
0 → Ωx

t is defined as a solution
of: 




d

dt
x(X, t) = u(x(X, t), t), t > 0,

x(X, 0) = X,
(2.1)

where X = (X1, . . . , Xm) ∈ ΩX
0 and x = (x1, . . . , xm) ∈ Ωx

t . In turn, the coordinate system X is called the
Lagrangian coordinate and the coordinate system x is called Eulerian coordinate.

EnVarA is obtained by the combination of the statistical physics and nonlinear thermodynamics. First, we
define total energy

Etotal := K + H,
where K is the kinetic energy and

H := U − TS
is the Helmholtz free energy containing the internal energy U , temperature T and entropy S. In an isothermal
system without external force, the total energy dissipation law holds:

d

dt
Etotal = −∆,

where ∆ ≥ 0 is the entropy product.
Subsequently, the least action principle (LAP) is applied: the trajectory of particles X from x(X, 0) at time

t = 0 to x(X, t∗) at a given time t∗ in a Hamiltonian system are those which minimize the action functional
defined by

A(x(X, t)) :=

∫ t∗

0

L(x(X, t), xt(X, t))dt,

where L := K − H is the Lagrangian functional of a conservative system and x(X, t) ∈ Ωx
t , t > 0. Moreover,

in a non-Hamiltonian system here, taking variational of the action functional with respect to x, we get the
conservation force

Fcon =
δA
δx

·
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Next, we treat the dissipation part with maximum dissipation principle (MDP). Taking variational of ∆ with
respect to the velocity u involved in (2.1), we have the dissipative force

Fdis =
δ 1

2∆

δu
,

where the factor 1
2 comes from a linear reponse assumption, i.e., ∆ is quadratic function of u and Fdis is linear

in u [22]. According to the Newton’s force balance law:

Fcon = Fdis,

we obtain constitutive relation. Onsager’s approach [25,26] is the key point for such conclusions.
Now we revisit the Wright-Fisher model with a positive initial state in a context of EnVarA. By rescaling

the time, (1.1) and (1.3) becomes:

∂tf + ∂x(fu) = 0, (2.2)

fu = −∂x (x(1 − x)f) , (2.3)

f(x, 0) = f0(x) > 0, x ∈ [0, 1], (2.4)

∂x(x(1 − x)f) |x=0,1= 0, t > 0. (2.5)

Lemma 2.2. f(x, t) is the solution of (2.2)–(2.5) if and only if f satisfies the corresponding energy dissipation

law
d

dt

∫ 1

0

f ln(x(1 − x)f)dx = −
∫ 1

0

f

x(1 − x)
|u|2dx. (2.6)

Proof. We first prove that the energy dissipation law (2.6) holds if f is the solution of (2.2)–(2.5). Multiplying
by 1 + ln (x(1 − x)f) and integrating on both sides of (2.2), we get

∫ 1

0

(1 + ln (x(1 − x)f)) ∂tfdx =

∫ 1

0

(1 + ln (x(1 − x)f)) ∂xx(x(1 − x)f)dx.

By integration by parts, we have

d

dt

∫ 1

0

f ln (x(1 − x)f) dx = −
∫ 1

0

∂

∂x
(x(1 − x)f)

∂
∂x (x(1 − x)f)

x(1 − x)f
dx

= −
∫ 1

0

f

x(1 − x)
|u|2dx.

Next we can derive (2.3) from the energy dissipation law (2.6) by EnVarA, while (2.2) is the conservation
law which is assumed to be true.

Note that in Lagrangian coordinate, there exists an explicit formula for the solution of the conservation law
(2.2),

f(x(X, t), t) =
f0(X)
∂x(X,t)

∂X

, (2.8)

where f0(X) is the initial function and ∂x(X,t)
∂X is deformation gradient, which is the Jacobian matrix of the

map: X → x(X, t).

• The total energy of the Wright-Fisher model is given by

Etotal = H =

∫ 1

0

f ln(x(1 − x)f)dx. (2.9)
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• LAP step. With (2.8), the action functional in Lagrangian coordinate becomes

A(x) =

∫ t∗

0

(−H)dt = −
∫ t∗

0

∫ 1

0

f0(X) ln

(
x(1 − x)

f0(X)
∂x(X,t)

∂X

)
dXdt,

where t∗ > 0 is a given terminal time. Thus for any test function y(X, t) = ỹ(x(X, t), t) ∈ C∞

0 ((0, 1)× (0, t∗))
and ε ∈ R, taking the variational of A(x) with respect to x, we get

d

dε

∣∣∣∣
ε=0

A(x+ εy) = −
∫ t∗

0

∫ 1

0

(
f0(X)

1 − 2x

x(1 − x)
+

∂

∂X

(
f0(X)

∂x
∂X

))
ydXdt

= −
∫ t∗

0

∫ 1

0

(
f

1 − 2x

x(1 − x)
+
∂f

∂x

)
ỹdxdt.

Then we obtain the conservation force

Fcon =
δA
δx

= −
(
f

1 − 2x

x(1 − x)
+
∂f

∂x

)
= − 1

x(1 − x)

∂

∂x
(x(1 − x)f) ,

in Eulerian coordinate, and

Fcon = −
(
f0(X)

1 − 2x

x(1 − x)
+

∂

∂X

(
f0(X)

∂x
∂X

))
,

in Lagrangian coordinate.
• MDP step. Let the entropy production ∆ =

∫ 1

0
f

x(1−x) |u|2dx. Taking the variational of 1
2∆ with respect to

u, we have the dissipation force

Fdis =
δ 1

2∆

δu
=

f

x(1 − x)
u,

in Eulerian coordinate, and

Fdis =
δ 1

2∆

δxt
=

f0(X)

x(1 − x)
xt,

in Lagrangian coordinate.

• Force balance step. We have, in Lagrangian coordinate, that

f0(X)

x(1 − x)
xt = − ∂

∂X

(
f0(X)

∂x
∂X

)
− f0(X)

1 − 2x

x(1 − x)
, (2.11)

and in Eularian coordinate, we have

f(x, t)

x(1 − x)
u = − 1

x(1 − x)

∂

∂x
(x(1 − x)f(x, t)) , (2.12)

which is exactly (2.3).

�

Remark 2.3. There is an assumption that the initial state is positive in the above lemma. Otherwise, if
f0(X) = 0 for some X ∈ (0, 1), the argument above would be not valid any more. For example, in (2.11), the
velocity xt could be indefinite for points such that f0(X) = 0. Note that in the real model, the initial state (1.3)
is f0 = δ(x− x0), almost zero everywhere. To deal with this case, we consider two models with positive initial
states f0,1, f0,2 such that f0 = f0,1 − f0,2 and correspondingly we have f = f1(x, t) − f2(x, t).
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Remark 2.4. What we really get by EnVarA is (2.11), which contains all the physics involved in this model.
If we can solve (2.11) to get the trajectory x(X, t), substituting it into (2.8), we obtain the solution f(x, t) to
(2.2)–(2.5). So in the following sections, we focus on numerical solution to (2.11).

To this purpose, we should first settle the initial and boundary condition for (2.11). From (2.5) and (2.3), we
have xt(0, t) = xt(1, t) = 0, for t > 0. That means that a Dirichlet boundary condition should be subject to as
x(0, t) = 0, x(1, t) = 1, for t > 0. So the trajectory problem is





f0(X)
x(1−x)∂tx = − ∂

∂X

(
f0(X)

∂x
∂X

)
− f0(X) 1−2x

x(1−x) , X ∈ (0, 1), t > 0,

x(X, 0) = X, X ∈ [0, 1],
x(0, t) = 0, x(1, t) = 1 t > 0.

(2.13)

3. Numerical methods for trajectory equation

In this section, we consider numerical methods for (2.13).

3.1. A semi-discrete scheme in time and optimal transport

System (2.13) can be viewed as a gradient flow associated with the total energy of

Etotal =

∫ 1

0

f0(X) ln

(
f0(X)

∂x
∂X

)
dX +

∫ 1

0

f0(X) ln (x(1 − x)) dX, (3.1)

which is just the counterpart in Lagrangian coordinate of total energy (2.9) of the system (2.2)–(2.5) and can be
split into convex and concave parts, that is Etotal = Ec −Ee, where both Ec and Ee are convex. The canonical

splitting is Ec =
∫ 1

0
f0(X) ln

(
f0(X)

∂x
∂X

)
dX and Ee = −

∫ 1

0
f0(X) ln (x(1 − x)) dX. The convex splitting was first

exploited by D. J. Eyre in [11] to craft energy stable numerical schemes for the Allen-Cahn and Cahn-Hilliard
equations. The basic idea is to treat the convex part implicitly while to treat the concave part explicitly. Then
a semi-discrete scheme for (2.13) is proposed as follows

f0(X)

xn(1 − xn)

xn+1 − xn

τ
= − ∂

∂X

(
f0(X)
∂xn+1

∂X

)
− f0(X)

1 − 2xn

xn(1 − xn)
, (3.2)

where τ is the time step and xn = x(X, tn) is the solution at time tn = nτ , n ∈ N
+.

Remark 3.1. Equation (3.2) is also a Variational Particle Scheme. We explain the fact in the framework of
optimal transport theory. Let Ω = [0, 1]. We denote by P(Ω) the space of L

1 measure on Ω, non-negative
functions with unit integral and finite second moments, where L

1 is the Lebesgue measure. fn ∈ P(Ω) is the
approximation to solution of equation (2.2) and (2.3) at time tn = nτ , n ∈ N. We fix a reference density f0 and
consider a time-dependent family of transport maps x(·, tn) : [0, 1] → [0, 1] such that x(·, tn)#f0 = fn

L
1 for all

n ∈ N
+, where # denotes the push-forward of measures.

Then the map from xn to xn+1 is an optimal transport in the sense that xn+1 is the minimizer of the cost
functional

F (x) :=

∫ 1

0

1

2τ

f0(X)

xn(1 − xn)
|x− xn|2 + f0(X) ln

(
f0(X)

∂x
∂X

)
+ f0(X)

1 − 2xn

xn(1 − xn)
xdX.

Some relevant descriptions on optimal transport can be found in Westdickenberg-Wilkening’s work [33].
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Remark 3.2. There exists another interesting approach based on a diffeomorphism mapping the uniform den-
sity to the unknown density [12], or on the pseudo-inverse of the cumulative distribution. Carrillo et al. [4, 5]
developed some numerical schemes to solve for the diffeomorphism maps, instead of solving for Lagrangian
mapping directly in (3.2). For 1D problems, the diffeomorphism is equivalent to the pseudo-inverse of the cu-
mulative distribution. Based on this inverse, some numerical methods were constructed by Gosse and Toscani
[15, 16] and Blanchet et al. [2]. In these methods, the diffeomorphism or the inverse play a role similar as the
Lagrangian map in some sense.

3.2. The fully discrete scheme

We begin with the definition of inner-product, difference operators and summation-by-parts in one dimension.
Let h = 1

N , N ∈ N
+ be the spatial step. Denote by Xr = X(r) = rh, where r takes on integer and half integer

values. Let EN and CN be the spaces of functions whose domains are {Xi | i = 0, . . . , N} and {Xi− 1
2
| i =

1, . . . , N} respectively. In component form, these functions are identified via li = l(Xi), i = 0, . . . , N , for
l ∈ EN , and φi− 1

2
= φ(Xi− 1

2
), i = 1, . . . , N , for φ ∈ CN .

Let l, g ∈ EN and φ, ψ ∈ CN . We define the “inner-product” on space EN and CN respectively as

[l
∣∣g] = h

N−1∑

i=1

ligi, (3.3)

(φ
∣∣ψ) = h

N∑

i=1

φi− 1
2
ψi− 1

2
. (3.4)

The difference operator Dh : EN → CN and dh : CN → EN , and the average operator A : EN → CN can be
defined as respectively as

(Dhl)i− 1
2

= (li − li−1)/h, i = 1, . . . , N, (3.5)

(dhφ)i = (φi+ 1
2
− φi− 1

2
)/h, i = 1, . . . , N − 1, (3.6)

(Al)i− 1
2

= (li + li−1)/2, i = 1, . . . , N. (3.7)

Then we have the following result of summation-by-parts.

Lemma 3.3. Let φ ∈ CN and l ∈ EN . Then (Dhl
∣∣φ) = −[l

∣∣dhφ] + lNφN−
1
2
− l0φ 1

2
.

Let Q := {l ∈ EN | li−1 < li, 1 ≤ i ≤ N ; l0 = 0, lN = 1} and its boundary set ∂Q := {l ∈ EN | li−1 ≤
li, 1 ≤ i ≤ N, and li = li−1, for some 1 ≤ i ≤ N ; l0 = 0, lN = 1}. Then Q̄ := Q ∪ ∂Q is a closed convex set.

The fully discrete scheme is formulated as follows: Given xn ∈ Q, find xn+1 = (xn+1
0 , . . . , xn+1

N ) ∈ Q such
that

f0(Xi)

xn
i (1 − xn

i )

xn+1
i − xn

i

τ
= −dh

(
Af0(X)

Dhxn+1

)

i

− f0(Xi)
1 − 2xn

i

xn
i (1 − xn

i )
, 1 ≤ i ≤ N − 1. (3.8)

Equation (3.8) is still a nonlinear system. Newton’s iteration method can be applied to solve it. To make sure
the convergence, we choose the damped Newton’s iteration method [3].
Damped Newton’s iteration. Set xn+1,0 = xn. For k = 0, 1, 2, . . . , xn+1,k+1 = xn+1,k + ω(λ)δx such that

f0(Xi)

xn
i (1 − xn

i )

δxi

τ
− dh

(
Af0(X)

(Dhxn+1,k)2
Dhδxi

)

i

= − f0(Xi)

xn
i (1 − xn

i )

xn+1,k
i − xn

i

τ

− dh

(
Af0(X)

Dhxn+1,k

)

i

− f0(Xi)
1 − 2xn

i

xn
i (1 − xn

i )
, 1 ≤ i ≤ N − 1. (3.9)
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and

ω(λ) =





1
λ λ > λ̃

1−λ
λ(3−λ) λ̃ ≥ λ ≥ λ∗

1 λ < λ∗,

(3.10)

where λ(J, xn+1,k) =
(

1
a (DJ(xn+1,k))T [D2J(xn+1,k)]−1DJ(xn+1,k)

) 1
2 with J(x) defined in (3.21), a =

hmin
i
f0(Xi), λ

∗ = 2 −
√

3, and λ̃ ∈ [λ∗, 1).

After solving (3.8), we finally get the numerical distribution f(xn+1, tn+1) from (2.8) as

fn+1
i =

f0(Xi)

(xn+1
i+1 − xn+1

i−1 )/(2h)
, 1 ≤ i ≤ N − 1, and (3.11)

fn+1
0 =

f0(X0)

(xn+1
1 − xn+1

0 )/h
, fn+1

N =
f0(XN )

(xn+1
N − xn+1

N−1)/h
· (3.12)

Lemma 3.4. The density function fn+1 obtained from (3.11) and (3.12) keeps the conservation law of mass.

In fact, if we define the initial mass carried by each particle x0
i = Xi as

m0
i = hf0(Xi), 1 < i < N ; m0

0 =
h

2
f0(X0); m0

N =
h

2
f0(XN ), (3.13)

and define the mass carried by particle xn
i as

mn
i =

xn
i+1 − xn

i−1

2
fn

i , 1 < i < N ; mn
0 =

xn
1 − xn

0

2
fn
0 ; mn

N =
xn

N − xn
N−1

2
fn

N , (3.14)

then we readily have from (3.11) and (3.12) that

mn
i ≡ m0

i , 0 ≤ i ≤ N, n = 1, 2, . . . .

Remark 3.5. xi(t) = x(Xi, t), 0 < i < N are the trajectories starting from the particles Xi at time t = 0.
From the governing equation (2.13) or (3.8), the motion of these particles is primarily determined by the second
term on the right hand side since this term tends to infinity when the particle approaches to the end points
x = 0, 1. In particular, this term tends to negative infinity around the left end x = 0, while the limit becomes
positive infinity around the right end x = 1. Therefore, x1(t) and xN−1(t) will be closer and closer to x0(t) ≡ 0
and xN (t) ≡ 1, respectively.

Governed by the continuous model (2.13), the particles may touch the end points, which means that the
Dirac delta singularity occurs for f(x, t) from (2.8). For the discrete model (3.8), we find solution xn+1 ∈ Q,
where xi < xi+1 for 0 ≤ i < N . As a result, theoretically x1 and xN−1 would never touch the ends. However, in
the practical computations, when xn

1 and xn
0 = 0 are too close to distinguish from each other under the machine

precision, they are bundled up and will be regarded as one particle which carries the mass from the original two
and will be fixed at the boundary. This is the signal that the numerical Dirac delta (i.e., the fixation) happens.
In comparison with the FVMs in [6], we can now approximate the delta singularity to the scale of 1/ε, with ε
close to the machine precision, while by the standard FVMs on equidistance mesh, one can only approximate
the delta singularity to the scale of 1/h (with the spatial mesh size h).

Criteria for particles meet the boundary. Though we can choose the machine precision as a criterion to judge
whether two particles touch each other, it is not practical. For example, in (3.12), when xn+1

1 − xn+1
0 is close to

machine precision, we will lose all the accuracy of fn+1
0 . So we will choose a criterion with ε0 = 10−10 in double

precision system as:

Criteria:

{
If xn+1

i ∈ Bl = [0, ε0], it will be fixed at left boundary for ever,
If xn+1

i ∈ Br = [1 − ε0, 1], it will be fixed at right boundary for ever.
(3.15)
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Equivalently, we have a rearrangement on the position of the particles as

xn+1
i =





0, if xn+1
i ∈ Bl,

1, if xn+1
i ∈ Br,

xn+1
i , otherwise.

(3.16)

At the next time step, we only need to determine the position of particles from (ε0, 1 − ε0).
With the above rearrangement, the formulas (3.12) for the density function at the boundary points don’t

work any more. To define the revised formulas, we need to count the total number of particles accumulated at
the boundary points. Let

{
starting point in+1

s = max{ i |xn+1
i ∈ Bl, 0 ≤ i < N},

ending point in+1
e = min{ i |xn+1

i ∈ Br, 0 < i ≤ N}. (3.17)

If in+1
s > 0 or in+1

e < N , there must be some particles which touched the boundary points at time tn+1. Then
the revised formula for the density function fn+1 = (fn+1

in+1
s

, fn+1

in+1
s +1

, . . . , fn+1

in+1
e

) become

fn+1
i =

f0(Xi)

(xn+1
i+1 − xn+1

i−1 )/(2h)
=

m0
i

(xn+1
i+1 − xn+1

i−1 )/2
, in+1

s < i < in+1
e , (3.18)

fn+1
i =

2

ε0

i−1∑

k=0

m0
k +

m0
i

(xi+1 − xi)/2
, for i = in+1

s , and (3.19)

fn+1
i =

2

ε0

N∑

k=i+1

m0
k +

m0
i

(xi − xi−1)/2
, for i = in+1

e . (3.20)

Remark 3.6. The treatment in (3.18)–(3.20) keeps the conservation law of total mass naturally and means
that only the last fixed particle can feel the free nearest particle inside and the effect of all former fixed particles
is confined to the ε0 neighbor of boundary points.

Combining all the discussions above together, we can now present the final algorithm as follows.

Algorithm 3.7.

• Initialization.
For 0 ≤ i ≤ N , we get the initial particle position x0

i = Xi, the initial density distribution f0
i = f0(Xi), and

the initial mass m0
i by (3.13).

Set starting point is = 0 and ending point ie = N .
• Time Stepping.

For n = 0, 1, 2, . . ., find the density distribution at next time step fn+1 = (fn+1
is

, fn+1
is+1, . . . , f

n+1
ie

) by the
following procedures.
(1) Obtain the position of particles xn+1

i , is ≤ i ≤ ie, via solving the fully discrete system (3.8) by Newton’s
iteration (3.9), with xn+1

is
= 0, xn+1

ie
= 1.

(2) Check whether a particle meets the boundary by the criteria (3.15), re-arrange the position by (3.16)
and update the starting point is and the ending point ie by (3.17) if necessary.

(3) Obtain the density distribution fn+1 by (3.18)–(3.20).

3.3. Unique solvability and energy decay of fully discrete scheme

In this subsection, we provide some analyses on the unique solvability and energy decay of the fully discrete
scheme (3.8), and the convergence of the Newton method (3.9) with (3.10).
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Theorem 3.8. The numerical scheme (3.8) is unique solvable in Q.

Proof. We first consider the following optimization problem:

min
y∈Q̄

J(y) :=
1

2τ

[
f0(X)

xn(1 − xn)
(y − xn)

∣∣∣(y − xn)

]
(3.21)

+

(
Af0(X)

∣∣∣ ln
(
Af0(X)

Dhy

))
+

[
f0(X)

1 − 2xn

xn(1 − xn)

∣∣∣y
]
,

where f0(X) ∈ EN is the initial distribution and xn ∈ Q is the known position of particles at time tn. It
is easy to verify that J(y) is a convex function on the closed convex set Q̄. Hence there exists a unique
minimizer x ∈ Q̄. We must have the minimizer x ∈ Q since if y ∈ ∂Q, then there exists some i > 0 such that
(Dhy)i−1/2 = (yi − yi−1)/h = 0, and J(y) = +∞.

We first claim that x ∈ Q is the minimizer of J(y) if and only if it is a solution of scheme (3.8). Hence the
fully discrete scheme (3.8) has a unique solution.

In fact, if x ∈ Q is the minimizer of J(y), then for ∀y ∈ Q̄, there exists a sufficiently small ε0 > 0, such that
for any ε ∈ (−ε0, ε0), x+ ε(y − x) ∈ Q since Q is a open set. Then j(ε) = J(x+ ε(y − x)) achieves its minimal
at ε = 0. So we have j′(0) = 0 and using summation by parts, we obtain

1

τ

[
f0(X)

xn(1 − xn)
(x− xn)

∣∣∣y − x

]
+

[
dh

(
Af0(X)

Dhx

) ∣∣∣y − x

]
+

[
f0(X)

1 − 2xn

xn(1 − xn)

∣∣∣y − x

]
= 0,

for any y ∈ Q̄. This implies that x ∈ Q satisfies (3.8).
Conversely, let x ∈ Q be the solution to scheme (3.8). We need to prove that x is the minimizer of J(y) on Q̄.

For any y ∈ ∂Q, J(y) = +∞. We always have J(y) ≥ J(x). Then for any y ∈ Q, taking the inner product of
(3.8) with y − x and using summation by parts, we get

1

τ

[
f0(X)

xn(1 − xn)
(x− xn)

∣∣∣y − x

]
−
(
Af0(X)

Dhx

∣∣∣Dh(y − x)

)
+

[
f0(X)

1 − 2xn

xn(1 − xn)

∣∣∣y − x

]
= 0. (3.22)

After direct calculation, we see that, for any y ∈ Q

J(y) = J(x+ (y − x))

= J(x) +
1

2τ

[
f0(X)

xn(1 − xn)
(y − x)

∣∣∣(y − x)

]
+

1

τ

[
f0(X)

xn(1 − xn)
(x− xn)

∣∣∣y − x

]

+

(
Af0(X)

∣∣∣ ln
(
Dhx

Dhy

))
+

[
f0(X)

1 − 2xn

xn(1 − xn)

∣∣∣y − x

]

≥ J(x), (3.23)

where the last inequality is obtained from (3.22) and the fact ln(p) ≥ 1 − 1
p , for p > 0, which leads to

(
Af0(X)

∣∣∣ ln
(
Dhx

Dhy

))
≥
(
Af0(X)

∣∣∣1 − Dhy

Dhx

)
= −

(
Af0(X)

Dhx

∣∣∣Dh(y − x)

)
.

The proof is finished. �

We define the discrete total energy EN : Q → R of (2.9) as

EN (x) :=

(
Af0(X)

∣∣∣ ln
(
Af0(X)

Dhx

))
+
[
f0(X)

∣∣∣ ln(x(1 − x))
]
≡ EN,c(x) − EN,e(x),
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where EN,c(x) and EN,e(x) are both convex and their first order variations are

δxEN,c(x) = dh

(
Af0(X)

Dhx

)
, δxEN,e(x) = −f0(X)

1 − 2x

x(1 − x)
· (3.24)

Theorem 3.9. Suppose xn = (xn
0 , . . . , x

n
N ) ∈ Q be the solution to scheme (3.8) at time tn. Then the discrete

energy dissipation law holds, i.e.,

EN (xn+1) − EN (xn)

∆t
≤ −

[
f0(X)

xn(1 − xn)

xn+1 − xn

∆t

∣∣∣
xn+1 − xn

∆t

]
, n = 0, 1, . . . .

This is the discrete counterpart of the dissipation law in Lemma 2.2.

Proof. Thanks to the convexity of En
N,c and En

N,e, we have

EN,c(x
n) − EN,c(x

n+1) ≥
[
δxEN,c(x

n+1)
∣∣∣xn − xn+1

]
,

EN,e(x
n+1) − EN,e(x

n) ≥
[
δxEN,e(x

n)
∣∣∣xn+1 − xn

]
.

Then from (3.24) and (3.8),

EN (xn+1) − EN (xn) = (EN,c(x
n+1) − EN,e(x

n+1)) − (EN,c(x
n) − EN,e(x

n))

≤
[
δxEN,c(x

n+1) − δxEN,e(x
n)
∣∣∣xn+1 − xn

]

= −
[

f0(X)

xn(1 − xn)

xn+1 − xn

∆t

∣∣∣xn+1 − xn

]
≤ 0.

Then the proof is completed. �

Hence the numerical scheme (3.8) for x ∈ Q is uniquely solvable. And regardless of time step, the energy
decays in time: EN (xn+1) ≤ EN (xn).

Before we analyse the convergence of damped Newton’s iteration (3.9), the definition of self-concordant should
be involved.

Definition 3.10 ([24]). Let G be a finite-dimensional real vector space, Q be an open nonempty convex subset
of G, Λ : Q → R be a function, a > 0. Λ is called self-concordant on Q with the parameter value a, if Λ ∈ C3 is
a convex function on Q, and, for all x ∈ Q and all u ∈ G, the following inequality holds:

|D3Λ(x)[u, u, u]| ≤ 2a−1/2(D2Λ(x)[u, u])3/2

(DkΛ(x)[u1, . . . , uk] henceforth denotes the kth directional derivative of Λ taken at x along the collection of
directions u1, . . . , uk ∈ G).

Theorem 3.11. Suppose f0(X) ∈ EN is the initial distribution with a positive lower bound for X ∈ Q, then

J(y), defined in (3.21), is a self-concordant function and the damped Newton’s iteration (3.9) and (3.10) is

convergent in Q.

Proof. Let C0 := min
X∈Q

f0(X) > 0 and J(y) := J1(y) + J2(y) + J3(y) with

J1(y) :=
1

2τ

[
f0(X)

xn(1 − xn)
(y − xn)

∣∣∣(y − xn)

]
,

J2(y) :=

(
Af0(X)

∣∣∣ ln
(
Af0(X)

Dhy

))
,

J3(y) :=

[
f0(X)

1 − 2xn

xn(1 − xn)

∣∣∣y
]
.
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Since linear and quadratic functions have zero third derivative, J1(y) and J3(y) are self-concordant for all
y ∈ Q. We just need to prove J2(y) is a self-concordant function in Q.

Based on the Definition (3.10), a function J2 : Q → R is self-concordant if it is self concordant along every
line in its domain, i.e., J̃2(ξ) = J2(y + ξu) is a self-concordant function of ξ ∈ R for all y ∈ Q and for all u ∈ Q
[3].

Combining with the definition of “inner-product” (3.4), we have

J̃2(ξ) = J2(y + ξu) = h

N∑

i=1

bi ln

(
hbi

yi + ξui − yi−1 − ξui−1

)
, (3.26)

and

J̃ ′′

2 (ξ) = h

N∑

i=1

bi(ui − ui−1)
2

(yi + ξui − yi−1 − ξui−1)2
, (3.27)

and

J̃ ′′′

3 (ξ) = −2h
N∑

i=1

bi(ui − ui−1)
3

(yi + ξui − yi−1 − ξui−1)3
, (3.28)

where bi = (Af0(X))i− 1
2
, i = 1, . . . , N . By Cauchy inequality, we have for any wi ∈ R,

∣∣∣∣∣

N∑

i=1

w3
i

∣∣∣∣∣ ≤
(

N∑

i=1

w2
i

) 1
2
(

N∑

i=1

w4
i

) 1
2

≤
(

N∑

i=1

w2
i

) 3
2

.

Then, we have

∣∣∣∣∣

N∑

i=1

hbi(ui − ui−1)
3

(yi + ξui − yi−1 − ξui−1)3

∣∣∣∣∣ ≤
(

N∑

i=1

(hbi)
2
3 (ui − ui−1)

2

(yi + ξui − yi−1 − ξui−1)2

) 3
2

≤ 1√
a

(
N∑

i=1

hbi(ui − ui−1)
2

(yi + ξui − yi−1 − ξui−1)2

) 3
2

(3.29)

where a = hC0. So J(y) is self-concordant for y ∈ Q.
Based on Theorem 2.2.3 in [24], the self-concordant property is sufficient for the convergence of the damped

Newton’s iteration (3.9) and (3.10). �

4. Numerical results

4.1. Numerical results for positive initial functions

In this subsection, we present some numerical results for equation (2.2)–(2.5) with positive initial functions
by Algorithm 3.7. We take f1

0 (x) = 1, f2
0 (x) = 1

5 (2 + 6x+ π
2 sin(2πx)) as examples and choose the space mesh

size h = 1/1000, time step size τ = 1/1000 under a criterion ε0 = 10−10. Also note that, although the total mass
of the system is equal to unity, it is not the total probability since the initial function is not in the probability
measure. At the same time, the first moment (the mean) stands for barycenter instead of expectation.

Figure 1 shows that the total mass is unity all the time and the mean value keeps the conservation for
both the positive initial functions. Figure 2 shows the total energy of the two systems decay as time evolves.
The solutions of the two initial functions at time t = 0.002, t = 0.01 and the steady state t = 10 are shown
in Figures 3 and 4, respectively: singularities develop at two boundaries and the heights are dependent on the
mean of initial state. Figure 5 shows the motion of particles which is influenced by the initial state. After certain
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Figure 1. Total Mass (Masstotal) and Barycenter of positive initial functions over time with
h = 1/1000, τ = 1/1000.
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Figure 2. Energy of positive initial functions over time with h = 1/1000, τ = 1/1000.

time, almost all particles stay at the two boundaries, which causes fixation phenomenon. This result means
that we obtain the numerical complete solution, with the numerical scheme (3.8) satisfying energy decay over
time. Moreover, we can approximate the delta singularity to the scale of 1e+ 10.

Table 1 presents the total mass (M total), barycenter (Barycenter), the density and the mass at the two
boundary points (fl, fr, Ml, Mr) of the two initial functions with different grid size (h = 1/100, τ = 1/100;
h = 1/1000, τ = 1/1000; h = 1/10 000, τ = 1/10 000) at time t = 10. It shows that the total mass keeps unity
regardless of the grid size, and the barycenter approximates to its own initial mean at the level of the grid size.
It also shows that delta singularities at boundaries can be simulated at the level of 1e+10 regardless of the grid
size and the values are influenced by the initial expectation. Moreover, the sum of Ml and Mr is approximate
to unity, which verifies the development of Dirac delta functions.
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Figure 3. Density over time for f1
0 (x) with h = 1/1000, τ = 1/1000.

Figure 4. Density over time for f2
0 (x) with h = 1/1000, τ = 1/1000.
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Figure 5. Particle position, x, over time for f1
0 (x) and f2

0 (x) with h = 1/1000, τ = 1/1000.

4.2. Numerical results for pure drift

In this section, we focus on f0(x) = δ(x− x0) (0 < x0 < 1) and use normal distribution N(x0, σ
2) (σ = 0.01)

to approximate δ(x− x0). Based on Remark 2.3, we split the problem (2.2)–(2.5) into two positive initial value
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Table 1. Results for positive initial functions f1
0 , f2

0 at time t = 10 with different grid sizes.

f1

0 = 1

h τ M total Barycenter fl fr Ml Mr

1/100 1/100 1.0000 0.5000 8.2235e+09 8.2235e+09 0.4150 0.4150
1/1000 1/1000 1.0000 0.5000 9.9105e+09 9.9105e+09 0.4965 0.4965
1/10 000 1/10 000 1.0000 0.5000 9.9930e+09 9.9930e+09 0.4998 0.4998

f2

0 = 1

5
(2 + 6x + π

2
sin(2πx))

1/100 1/100 1.0000 0.5316 7.4881e+09 8.9220e+09 0.3834 0.4489
1/1000 1/1000 1.0000 0.5483 8.9477e+09 1.0879e+10 0.4475 0.5445
1/10 000 1/10 000 1.0000 0.5498 8.9952e+09 1.0989e+10 0.4499 0.5496

Notes. M total denote by Total Mass. Ml and Mr are the mass at left and right boundaries, respectively.

problems: 


gt = ∂xx(x(1 − x)g), x ∈ (0, 1), t > 0,
g(x, 0) = 10, x ∈ [0, 1],
∂x(x(1 − x)g) |x=0= 0, ∂x(x(1 − x)g) |x=1= 0, t > 0,

(4.1)





wt = ∂xx(x(1 − x)w), x ∈ (0, 1), t > 0,
w(x, 0) = 10 +N(x0, σ

2), x ∈ [0, 1],
∂x(x(1 − x)w) |x=0= 0, ∂x(x(1 − x)w) |x=1= 0, t > 0.

(4.2)

Then we have the solution f = w − g. Because of this fact, we first obtain the numerical solutions G(xn, tn)
and W (yn, tn) of two problems (4.1) and (4.2) by Algorithm 3.7, respectively, where xn and yn are the particle
positions at time tn. We cannot take the difference between G(xn, tn) and W (yn, tn) directly since xn and yn

may be different. We need to get the value of G at yn by the mass-conserved interpolation.
The details of the mass-conserved interpolation are shown as follows:

Algorithm 4.1 (Mass-conserved interpolation).

• Input: the particle positions x = (x0, x1, . . . , xN ) and y = (y0, y1, . . . , yN ); Starting point is and ending
point ie of free particles in x; Starting point js and ending point je of free particles in y; Mass mx =
(mx0

,mx1
, . . . ,mxN

) for each particle of x.
Output: my = (my0

,my1
, . . . ,myN

), the re-assigned mass carried by particles y; G(y) = (Gjs
, . . . , Gje

), the
value of G at y.

• Re-assign the mass from particles x to y.
(1) Define the mean mass density function m̄(s), s ∈ [0, 1]. Let ∆xi = xi+1 − xi.

m̄(s) =
mxi

(xi+1−xi−1)/2 , for s ∈
(
xi − ∆xi−1

2 , xi + ∆xi

2

)
, is < i < ie;

m̄(s) =
mxi

(xi+1−xi)/2 , for s ∈
(
xi, xi + ∆xi

2

)
, i = is;

m̄(s) =
mxi

(xi−xi−1)/2 , for s ∈
(
xi − ∆xi−1

2 , xi

)
, i = ie.

Note that xis
= 0 and xie

= 1.
(2) Collect mass for particles at y = (y0, y1, . . . , yN ). Let ∆yj = yj+1 − yj .

For free particles,

myj
=
∫ yj+

∆yj
2

yj−
∆yj−1

2

m̄(s)ds, js < j < je;

myj
=
∫ yj+

∆yj
2

yj
m̄(s)ds, j = js;

myj
=
∫ yj

yj−
∆yj−1

2

m̄(s)ds, j = je.
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Table 2. The comparision of numerical results with FVM in grid size h = 1/10 000, τ =
1/10 000 for x0 = 0.4 at t = 10.

FVM Varitional Particle Scheme (3.8)

Time fl fr fl fr

t = 1.0000 1.0039e+04 6.0629e+03 9.2680e+09 5.9800e+09
t = 2.0000 1.1736e+04 7.7362e+03 1.1680e+10 7.7400e+09
t = 3.0000 1.1964e+04 7.9643e+03 1.1930e+10 7.7983e+09
t = 4.0000 1.1995e+04 7.9952e+03 1.1980e+10 8.0200e+09
t = 5.0000 1.1999e+04 7.9993e+03 1.1980e+10 8.0238e+09

For particles accumulated at left end,

my0
= . . . = myjs−1

=

is−1∑

i=1

mxi
/(is − 1).

For particles accumulated at right end,

myje+1
= . . . = myN

=

N∑

i=ie+1

mxi
/(N − ie).

• Recover G(y) = (Gjs
, . . . , Gje

) from my0
, . . . ,myN

by the same rules as in (3.18)–(3.20).

Remark 4.2. When the initial state has a compact support, the particle may have an infinite speed. To avoid
this difficulty, here we make use of the linearity to split the original problem into two problems with positive
initial data. There exist some other approach to handle this issue. For a method based on the diffeomorphism [5],
the authors suggested to regularize the initial state. Similar idea may be used to our problem: just add a small
positive term to the initial state. However, the velocity is almost singular and not easy to handle numerically.

On the other hand, when we consider some nonlinear problems, such as porous media equation [9],
where the interface of the initial support has a finite propagation speed and even badly, the waiting time
phenomenon may occur, the regularization of the initial state may destroy the waiting time phenomenon.
Our method can treat this kind of problem naturally: just solve for the trajectories start from the initial
support [9].

Then we simulate pure drift (2.2)–(2.5) for x0 = 0.4 and x0 = 0.7 with ε0 = 10−10 and the step size
h = 1/10 000, τ = 1/10 000. Figure 6 shows the evolution of distribution of probability: the density almost
vanishes in (0, 1), and singularities develop at the boundary points. Moreover, the values of singularities depend
on their initial states. As shown in Figure 7, their total probabilities are equal to unity and expectations keep
the conservation based on their own initial expectations. This means that the numerical solution is a complete
solution. Figure 8 also shows the behavior of probabilities at two boundaries as time evolves: the value increases
to a state where the sum of both is close to unity. That causes the development of Dirac delta singularities.

Table 2 presents the comparison of the density at two boundary points (fl, fr) with scheme (3) in [6], which
is a FVM scheme with central difference method. For x0 = 0.4 and a fixed grid size h = 1/10 000, τ = 1/10 000
with ε0 = 10−10, it shows that fl, fr obtained by scheme (3) is at the level of 1e+ 04, while that scale becomes
1e+10 by scheme (3.8) in the present paper. This fact indicates that, the numerical solution obtained by scheme
(3.8) is an approximation of scale O(1/ε0) to the delta singularity, with a small positive ε0 > 0 close to the
machine precision.
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Figure 6. Distribution of probability for pure drift over time with h = 1/10 000, τ = 1/10 000.

Figure 7. Total probability (TP) and expectation (Exp) for the pure drift as time evolves
with h = 1/10 000, τ = 1/10 000.

Figure 8. Probability at two boundaries as time evolves with h = 1/10 000, τ = 1/10 000 (Pl

and Pr denote the fixation probability at left boundary and right boundary, respectively).
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Figure 9. Distribution of probability influenced by s for x0 = 0.4 at t = 10 with h = 1/10 000
and τ = 1/10 000.

4.3. Numerical results for semi-selection case

In this part, we consider the semi-selection case with M(x) = sx(1 − x) (s is the strength of semi-dominant
selection) in a population with the fixed size Ne = 10 000. By rescaling the time, we have the following initial-
boundary value problem:




∂tf(x, t) = ∂2

∂x2 (x(1 − x)f(x, t)) − ∂
∂x (4NeM(x)f(x, t)), x ∈ (0, 1), t > 0,

f(x, 0) = f0(x), x ∈ [0, 1],
{∂x(x(1 − x)f(x, t)) − 4NeM(x)f(x, t)} |x=0,1= 0, t > 0,

(4.3)

and the corresponding energy dissipation law is given by

d

dt

(∫ 1

0

f ln (x(1 − x)f) − 4Nesxfdx

)
= −

∫ 1

0

f

x(1 − x)
|u|2dx,

where u := −∂x(x(1−x)f)
f +4Nesx(1−x). Based on Energetic Variational Approach, Problem (4.3) is transformed

into 



f0(X)
x(1−x)xt = 4sNef0(X) −

(
∂

∂X

(
f0(X)

∂x
∂X

)
+ f0(X) 1−2x

x(1−x)

)
, X ∈ (0, 1), t > 0,

x(X, 0) = X, X ∈ [0, 1],
x(0, t) = 0, x(1, t) = 1 t > 0,

(4.4)

in the Lagrangian coordinate. Furthermore, the distribution of probability {f(xn
i , t

n)}N
i=0 (n > 0) can be also

calculated by (3.18)–(3.20).
Figure 9 shows the probability distribution of the steady state at t = 10 with s = −0.0001, s = 0.0000,

and s = 0.0001 for initial state f0 = δ(x − x0) and x0 = 0.4. It shows that semi-selection with s = −0.0001
prefers alleles a, while it is more willing to favor alleles A if s = 0.0001. Figure 10 implies that the total
probabilities always keep unity whatever the value of s is, while the expectation does not keep conservative any
more. Figure 11 shows how the expectations are associated with the values of s when x0 = 0.4 at time t = 10. It
also shows that the expectation is a good approximation of the true probability of ultimate fixation Pfix given
by

Pfix(x0) =
1 − e−4x0sNe

1 − e−4sNe
· (4.5)

This means that we also get a complete solution for the semi-selection case.

5. Conclusion

In this paper, we simulate the Wright-Fisher model for pure drift and semi-selection. We first obtain the
trajectory equation of the model based on EnVarA and then get the numerical scheme by the convex splitting
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Figure 10. Total probability (TP) and expectation (Exp) over time for x0 = 0.4 under s =
0.0001 and s = −0.0001 with h = 1/10 000 and τ = 1/10 000.
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Figure 11. Expectation at time t = 10 under different s for x0 = 0.4 at t = 10 with h =
1/10 000 and τ = 1/10 000; Pfix is given by (4.5).

technique. The scheme is uniquely solvable and satisfies energy decay on a convex set where the position of
particles is strictly increasing. Then we obtain the numerical complete solutions and true probability of fixation.
Moreover, at any equidistant grid, Dirac delta singularities can be measured of scale close to machine precision.
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