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ARTICLE INFO ABSTRACT

This paper aims to address two critical questions pertaining to sustainable manufacturing operations. First, how
to model and design a multi-facility, production-logistics system under product demand and energy supply
uncertainty? Second, is it economically viable to achieve net-zero energy operations through renewable mi-
crogrid integration? To answer both questions, we present a joint production scheduling and microgrid sizing
model to decarbonize the manufacturing, transportation and warehousing operations by harnessing onsite wind
and solar energy. The integrated planning model is solved as a two-stage optimization program: first, scheduling
the production to meet the uncertain demand; second, sizing and siting the microgrid systems to meet the
electric load of multiple facilities. The preliminary results show that net-zero energy operation is feasible and
affordable in locations where the capacity factor of wind and solar generation exceeds 0.25 and 0.45, respec-
tively. Sensitivity analysis shows that battery system combined with solar photovoltaics is cost-effective despite
the high capital cost of storage devices. Two managerial insights are also derived. First, integrating onsite re-
newable power is the ultimate key to realizing net-zero energy industrial operations. Second, grid-connected
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microgrid generation with net metering results in lower capacity investment than island operation.

1. Introduction

The manufacturing industry is currently undergoing a major tran-
sition, with increasing levels of renewable resources being integrated
through onsite generation. A net-zero energy production-logistics
system is defined as an organization that produces as much renewable
energy through onsite generation as it consumes from the utility grid
over a year (Pless and Torcellini, 2010). This paper proposes to energize
the production, warehousing and transportation facilities with 100
percent of renewable power supplied from distributed energy resources
(DER). Typical renewable DER units include wind turbines (WT), solar
photovoltaics (PV) and bio-gas fuel cells. Recently, many organizations
are striving to attain low carbon industrial operations through DER
integration. Anheuser-Busch's Budweiser factory in Fairfield, California
installed 3.1 MW wind capacity and 1.2 MW PV arrays on site, pro-
viding 40 percent of the green electricity to the factory (Hickey, 2014).
OPEX has achieved net-zero use of grid power by installing 2.77 MW
roof-top PV in its production-distribution facility (McMahon, 2011).
These examples show the manufacturing sector is gearing up for en-
vironmental sustainability by directly harnessing onsite renewable en-
ergy.
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By leveraging microgrid generation, this paper proposes a net-zero
energy solution for powering a multi-site, production-logistics system
through direct integration of wind- and solar-based DER units. Subject
to product demand and energy supply uncertainty, the goal is to jointly
optimize the production, inventory, backorders, and the sizing and
siting of DER units such that the annualized production-logistics cost
including the one from energy is minimized. Sizing and siting are also
referred to as DER capacity and location, respectively. Production-in-
ventory models considering various types of uncertainties have been
extensively studied in literature. Early studies focus on designing pro-
duction systems to mitigate the variations in demand, yield, lead time
and capacity (Yano and Lee, 1995; Sox and Muckstadt, 1996; Mula
et al., 2006). New effort is also made to incorporate emission cap-and-
trade and tax policy into the production planning to meet the en-
vironmental goal (Gong and Zhou, 2013). Our model also considers the
product demand uncertainty, but the main objective is to integrate a
wind- and solar-based microgrid system to achieve net-zero energy
operation across the entire production-logistics system.

We highlight the contributions of this paper in three aspects. First,
our model represents an early attempt to jointly optimize the produc-
tion planning and the sizing and siting of renewable DER units in a
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multi-site manufacturing and warehouse system with electrified logis-
tics. In existing literature, the decisions on the production planning and
the microgrid sizing are often made separately, which may result in
under- or over-capacity allocation of generation capacity. Second, our
study expands the supply chain dimensionality by treating energy flow
as an endogenous decision variable, along with material, cash and in-
formation. This new dimension enables manufacturers to create new
values in the production-logistics chain in terms of not only consuming,
but also producing energy, i.e. the so-called “energy prosumer”. Third,
we develop a climate data analytics model to forecast the wind and
solar generation based on 64,000 meteorological records across eleven
years. This climate analytics approach enables us to transform the
stochastic production-logistic planning problem into a two-stage linear
optimization model: first, optimizing the production and inventory to
satisfy the customer demands; second, sizing and siting the microgrid in
each facility to attain the net-zero energy performance goal.

The remainder of the paper is organized as follows. Section 2 re-
views existing production-inventory models subject to operational un-
certainties and emission criteria. Section 3 describes the working
principle of the net-zero energy production-logistics system, and a two-
stage planning model is formulated. In Section 4, solution methods
based on renewable generation analytics of 11-year meteorological data
are elaborated. In Sections 5 and 6, we test the proposed model in eight
cities with various climate conditions, and further derive managerial
insights. Section 7 concludes the paper.

2. Literature review

Stochastic production-inventory planning models can be broadly
classified into two categories according to the aspects they tackle: op-
erational uncertainty and environmental constraint. Studies con-
sidering the operational uncertainty aim to address the variations or
randomness associated with customer demand, process yield, lead time,
production capacity and material supply. Federgruen and Zipkin (1984)
design a scholastic production system for a central plant that fulfills the
random demands from several locations by minimizing the expected
backorders and holding cost. Lee and Yano (1988) propose a back-track
dynamic programing method to determine the optimality of a serial
production system with the goal to minimize operating, holding, and
backorder costs subject to random yield. Higle and Kempf (2010) de-
velop a stochastic production planning model under both material
supply and demand uncertainty using Markov decision process. Zhang
et al. (2012) investigate a multi-echelon uncapacitated lot-sizing pro-
blem where the intermediate echelons face uncertain demands of both
internal and external customers. More recently, Megahed and
Goetschalckx (2018) optimize a multi-echelon wind turbine supply
chain where supplier's random yield, stochastic lead times and back-
orders are all considered. In general, these models aim to lower the
production cost or to satisfy the customer demand by handling a variety
of uncertainties arising from material suppliers, in-house processes and
downstream customers. Our paper also considers demand uncertainty,
but the main objective is to integrate intermittent renewable power into
a multi-facility, production-logistics system for attaining net-zero en-
ergy operations.

Recently a number of researchers start to model and design low-
carbon production-inventory systems based on one of the following
strategies: 1) energy conservation or power efficiency; 2) carbon cap-
and-trade, and tax programs; and 3) onsite or microgrid generation. The
main idea of energy conservation is to increase the machine usage or
reduce its idle time so that less power is wasted during the production
time. For instance, Choi and Xirouchakis (2014) formulate a linear
programing model in an aggregate production environment to mini-
mize a weighted objective function that comprises energy, inventory,
and backorders. Similarly, Masmoudi et al. (2017) optimize the lot-
sizing problem in each production period for minimizing the cost
comprised of electrical, inventory, and set-up expense. Very recently,
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Zhang et al. (2018) investigate a sizing problem for a fuel-based dis-
tributed generator in a flow shop manufacturing process under critical
peak pricing contract. A mixed-integer non-linear programming model
is formulated to jointly optimize the generation capacity and the ma-
chine on-off strategy such that the sum of the utility and generation cost
is minimized.

Emissions cap-and-trade and tax programs are a market-based me-
chanism designed to control and curb carbon and pollutant generation.
For instance, Hua et al. (2011) derive the optimal EOQ order quantity
to investigate the impacts of carbon emission trading mechanism on
order decisions and total cost. Bouchery et al. (2012) study how firms
manage carbon footprints in transportation and warehousing facilities
under emission cap-and-trade scheme. Gong and Zhou (2013) in-
vestigate a two-technology, production-inventory problem using emis-
sions trade and allowance scheme. Later, Zhang et al. (2016) further
extend the model to multi-technology systems.

In a renewable microgrid operation, wind- and solar-based DER
units are installed in proximity to the industrial facility for the direct
supply of renewable energy. Golpira et al. (2018) and Zhang et al.
(2017) redesign the flow shop scheduling models to lower the energy
cost and the carbon emissions using grid-connected wind- or solar-
based microgrid technology. Pechmann et al. (2016) investigate a vir-
tual power plant comprised of wind, solar, biomass, and energy storage
to satisfy the demand of a single manufacturing firm. Jin et al. (2017)
propose a linear optimization model to integrate onsite wind and solar
power for a multi-site supply chain comprised of three factories, two
warehouses and four retailers. The model is developed at the strategic
level to identify the sizing and siting of WT and PV units with minimum
cost. Golari et al. (2017) integrate distributed wind and solar power
along with main grid hydro energy into a multi-site, multi-stage pro-
duction system to meet the green energy coefficient criterion. Assuming
product demand is deterministic, their model jointly schedules the
production and renewable energy supply such that the cost of the entire
planning horizon is minimized.

This paper aims to size and site renewable microgrids in a multi-site,
production-logistics system for attaining the net-zero energy perfor-
mance goal. Our approach differs from energy conservation and carbon
cap-and-trade and tax in that wind- and solar-based microgrid tech-
nologies transform the traditional manufacturers from an energy user to
an energy prosumer who not only consumes the electricity, but also
produces green energy. Along this line, this paper extends the work of
Jin et al. (2017) and Golari et al. (2017) in two aspects. First, we relax
the deterministic demand assumption and the product demand is
treated as a random quantity, which is more realistic. Second, a climate
data analytics method is developed to characterize the intermittency of
wind and solar generation. This enables the original stochastic mixed-
integer programming model to be converted into a two-stage determi-
nistic optimization, significantly reducing the computational load.

3. Model Setting
3.1. A production-logistics system with microgrid generation

Fig. 1 depicts a production-logistics system comprised of K factories
and one central warehouse. Finished goods are shipped from factories
to the warehouse using electric trucks (e-trucks). The energy required
to perform all necessary operations are jointly supplied by wind- and
solar-based microgrid systems installed adjacent to the local facilities.
Renewable energy is also used to charge the batteries of e-trucks before
departing from the facilities. Charging stations are available on route to
recharge the batteries if the travel distance is larger than the battery
range. Our goal is to create a net-zero energy zone across manu-
facturing, transportation, and warehouse facilities.

Since the wind speed and the weather conditions are stochastic, the
output of the microgrid system at a random point in time may be higher
or lower than the facility's load. If power shortage occurs, electricity is
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Fig. 1. A multi-site, production-logistics system with microgrid generation.

imported from the main grid to meet the load. To achieve the net-zero
energy performance, this “borrowed” electricity must be “returned”
later on. This can be realized in the days when wind blows hard or the
sun radiation is strong. The surplus energy from the microgrid is re-
turned to the main grid under feed-in tariff or net metering policies (Hu
et al., 2015). This paper also considers an island microgrid system that
is physically disconnected from the main grid. The model notation is
listed in Table 1 .

3.2. A stochastic planning model for net-zero energy operation

We investigate a multi-site, production-logistics system comprised
of K factories and N warehouses. As shown in Fig. 1, each factory is able
to produce I product types, and finished goods are shipped to the
warehouses via e-trucks. The goal is to optimize the production, in-
ventory, and backorders in each period to meet the uncertain demands.
To achieve net-zero energy operation, we further allocate renewable
DER units at each site to meet the power demand of the entire system.
The model objective function is to minimize the total cost comprised of
production, logistics and energy generation. Denoted as Model P1, this
integrated production and microgrid planning model is formulated as

Model P1:

Minimize:
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Model P1 is a mixed-integer stochastic programming problem be-
cause it involves uncertain product demand D; and variable power
Pg({). Note that x, y, z and P° are the decision variables. Particularly x,
y, and z represent the production, inventory, and backorders in each
period. P€ represents the capacity or sizing of WT and PV in each fa-
cility. Objective function (1) ) calculates the total system cost com-
prised of manufacturing, transportation, warehousing and energy con-
sumption. The fourth term is the annualized microgrid equipment cost.
Note that ¢y = (i.(1 + i.)")/((1 + i)% — 1) is the capital recovery
factor of generating technology g, where n, is the number of years of
paying off the loan, and i, is the annual discount rate. The last term is
the expected cost associated with maintenance & operations, and
carbon credits that depend on the output power Pjg({) in period j.

Model P1 involves ten types of constraints. Constraints (2) to (4) are
the production-demand balance equations represented by chance con-
straints, and y is the probability of meeting the demand. No backorders
are allowed in the initial and last periods, hence 2;0, = 0, and z;;,, = 0.
Constraint (5) indicates that the resource r used to make product i in
period j at factory k is confined to the availability. Constraint(6) is the
renewable energy balance equation, stating that the annual electricity
consumed by factory k and the forward logistics is fully offset by onsite
renewable energy, hence attaining the net-zero energy performance.
Similarly, constraint (7) defines the energy balance of the warehouse,
stating that the total warehousing energy including the reverse
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Table 1
Notation and decision variables.
Notation Definition
1 number of product types,i=1, 2, .., I
J number of production period, j =1, 2, .., J
K number of factories, k =1, 2, .., K
N number of warehouses, n =1, 2, .., N
G number of renewable generation technologies, g =1, 2, ..,
G
R number of resources required in the production,r =1, 2, ..,
R
Dijk cost of making one unit of product i in period j in factory k
($/item)
hijn unit holding cost of product i in period j in warehouse n
($/item/period)
byjn unit backorder cost of product i in period j in warehouse n
($/item)
Tikn cost of shipping one unit of product i from factory k to
warehouse n ($/item)
Vikr resource r consumed for making one unit of product i in
factory k
Wikr available amount of resource r in period j in factory k
qy electric vehicle energy intensity rate (MWh/kg/km)
wy, vehicle self-weight (kg)
din distance between factory k and warehouse n (km)
m; unit weight of product type i (kg/item)
Dyjn random demand for product i in period j from warehouse n
Hijn mean demand of Dy,
Ojjn standard deviation of Dy,
TNkn number of yearly trips between factory k and warehouse n
ty number of operating hours of the warehouse (hours)
Tgke number of generation hours of technology g per period in
factory k
Ten number of generation hours of technology g per period in
warehouse n
ag capacity cost for generation technology g ($/MW)
a capacity cost for battery storage system ($/MWh)
b, operation and maintenance cost for generation technology g
($/MWh)
[ carbon credits for generation technology g ($/MWh)
ek energy consumed for producing one unit of product i in
factory k (MWh/item)
L, electricity demand (load) in warehouse n (MW)
Y probability of meeting the product demand
g capital recovery factor of renewable generation technology
4
bp capital recovery factor of battery storage system b
Ves Vry Vs cut-in, rated and cut-off wind speed, respectively

¢ random wind profile and weather conditions in a period

Pig(0) random power output of generation technology g in factory
k and period j

Pin(O) random power output of generation technology g in
warehouse n and period j

Agk() capacity factor of generation technology g in factory k

Agn(O) capacity factor of generation technology g in warehouse n

E. expectation operator with respect to ¢

Bk energy stored in the battery in period j at factory k

B, energy stored in the battery in period j at warehouse n

Decision Variables Definition

Xijkn quantity of product i produced in period j in factory k
shippedto warehouse n

Yijn inventory of product i in period j in warehouse n

Zijn backorder of product i in period j in warehouse n

Py power capacity of generator g in factory k (unit: MW)

P, power capacity of generator g in warehouse n (unit: MW)

By’ battery storage capacity in factory k (unit: MWh)

B, battery storage capacity in warehouse n (unit: MWh)

transportation is fully offset by the onsite renewable generation in a
year. It is worth mentioning that net-zero energy does not mean that the
output of WT and PV always equals the instantaneous electricity load;
rather it means the aggregate renewable generation during the course
of a year equals the total energy use of a facility including e-trucks.
Constraints (6) and (7) are also applicable to the situations where the e-
truck recharges its battery from external charge stations when the trip is
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beyond its drive range. Constraint (8) states that there is no initial in-
ventory at the beginning of production. Constraints (9)-(11) simply
define the non-negativity of the decision variables.

3.3. A two-stage optimization model

Further analysis shows that Model P1 can be decomposed and
solved in two stages. In stage 1, we optimize the production, inventory
and the backorders in each period to minimize the total non-energy
costs f1(X, y, z). In stage 2, we further allocate the capacity of WT and
PV at each site to meet the electricity needs of factories and warehouses
and minimize the total cost f2(P¢; X, y, z) subject to net-zero energy
requirement. Now P1 is transformed into a two-stage optimization
model, denoted as P2, as follows

Model P2-1:

K N I J N
Z Z Dy + Ten)Xijen + Z Z Z RijnYin

J
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I J-1 N
DIDIPI
i=1 j=1 n=1 12)
Subject to:
z Xitkn + Yion = Yan + Zitn 2 Hpy, + Zy0py,; forj =1,V iand Vn
k=1
(13)
K
Z Xijkn + Vj—1n = Vyjn ~ Zij—1n + Zyjn 2 Mpy, + ZoDUnV; Jj=23.,J-1,¥Vi ¥Vn
k=1
as
K
Z Xigkn + Yy_1n — Yuyn — Zu—1n 2 Hpy, + ZyOpyj =7,V i,V n
k=1 (15)
I N
Z zvl kr Xijkn Swjkr,vf vr Vk
i=1 n=1 (16)
Yon =03V i, Vn a7
Xijkn> Vjn> Zijn 20, integer (18)

Model P2-2
G K .
fz (P XY z) = Zg:l Zkzl ¢gagP§k
J G vk
+ B Zj:l Zg:l g Tek Ak () Py (bg — )
G N
+ Zg:l zn:l ¢gangn

+ E{ Z;Zl Z;;:l ZnNzl Tgn/ljgn ({)chyz (bg - Cg) + fi (X) Yy, Z)

(19)
Subject to:
I J N N
Z Z z (eik + quknmi)xijkn + Z qvnkndknwv
i=1 j=1 n=1 n=1
J G
2 Z gk’ljgk (;’)P; vk
=1 g=1 (20)
K J G
twLy + Z g, Min Wy = E¢ Z Z TgnAjgn (g)Pngn
k=1 j=1g=1 21
g =0:Vg Vi (22)
Py 20;Vg Vn (23)

Since P2-1 is a linear integer program, it can be solved using off-the-
shelf optimization software. To make the original stochastic optimiza-
tion model tractable, we convert the chance constraints (2)-(4) into
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their deterministic counterparts as shown in constraints (13)-(15)
where Dy, is assumed to be normally distributed with N (i, 05,). In
addition, Z, is the Z-value of the standard normal distribution with
probability v.

Model P2-2 is a linear stochastic optimization model featured with
the random capacity factor A;g({) which is the power generated by
generation technology g at a factory k in period j divided by the DER
capacity. For instance, if a WT capacity is 2 MW, and the actual output
in a particular day is only 0.8 MW due to small wind, the capacity factor
is 0.8/2 = 0.4. In other words, Pju({) relates to Py by Pigi(0) = Ajg(0)
Pg for 0<A;g($) <1. Similar connection can be made for Pg, ({) with
Pign(D) = Ajn(DPg, for 0=<A;()<1. We propose a Renewable
Integration Analytics (RIA) method to characterize A;i(¢) and A;gn({) by
taking into account stochastic climate conditions in each facility.
Specifically, RIA leverages large amounts of meteorological data, such
as multi-year wind speed and weather information in a region, to pre-
dict the future renewable generation. The estimated capacity factors are
then fed into P2-2 so that the stochastic optimization model is trans-
formed into a deterministic counterpart. Fig. 2 shows how RIA is per-
formed on WT and solar PV systems at each site, and the resulting data
are merged with P2-1 to size and site WT and PV units in the second
stage.

4. Renewable Integration Analytics
4.1. Pooling climate data

We use 11-year climate data to investigate the feasibility of at-
taining net-zero energy production-logistics operations through re-
newable microgrid generation. Eight cities in different areas of the
world are selected to test Model P2. The latitude (degree), average wind
speed and weather conditions of each city are summarized in Table 2.

International Journal of Production Economics 218 (2019) 260-274

Note that Wellington and Christchurch are located in the Southern
Hemisphere, and the other cities are in the Northern Hemisphere. The
daily wind speed and the weather conditions of these cities are re-
trieved from the Weather Underground portal (WU, 2017). The weather
conditions are classified into nine states, namely, clear day, scattered
cloud (SC), partially cloudy (PC), mostly cloudy (MC), overcast, rain,
fog, storm (including T-storm) and snow.

For each city, daily wind speed and weather conditions over eleven
years from 2006 to 2016 are collected to obtain accurate estimations of
climate conditions. A total of 4015 daily wind speed measurements are
collected for each city, and a total of 32,120 wind speed samples are
used to estimate the WT capacity factors for eight cities. Similarly, the
daily weather conditions (i.e. sunshine) for each city are also obtained
from UW portal with 4015 data points for eleven years. A total of
4015 x 8 = 32,120 records are collected for eight cities over eleven
years. By aggregating the wind and weather information, the size of the
dataset for RIA reaches 32,120 X 2 = 64,240. As shown in Table 2,
Wellington has a strong wind profile with AWS of 6.71 m/s, but only six
clear days per annum. Luxor has an extremely strong sunshine with 337
clear days, but the AWS is only 1.44 m/s. San Francisco has a medium
wind profile of 4.05m/s, and the number of days with sunshine and
scattered cloud reaches 123 per annum. The climate conditions of these
cities are relatively diverse, representing the areas where the human
beings choose to live. Below the RIA method is applied to the 11-year
data pool to analyze the wind and solar generation.

4.2. Estimating wind capacity factor

Wind speed data shown in Table 3 is usually recorded by the Au-
tomated Surface Observing Systems (ASOS) of the local airport. These
ASOS wind sensors are typically installed 8-10m above the ground
(WU, 2017). Due to “no-slip” boundary condition, the frictional drag of
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Table 2

Average wind speed and weather conditions between 2006 and 2016.
Country New Zealand Egypt USA
City Wellington Christchurch Aswan Luxor Yuma San Francisco El Paso Phoenix
Latitude (deg) 41.3 43.5 24.1 25.7 32.7 37.8 31.8 33.5
Ground AWS 6.71 3.84 7.93 1.44 2.97 4.05 3.76 2.80
Ground SWS 2.91 1.77 2.29 0.67 1.40 1.83 1.78 1.05
Clear days 6 20 356 337 165 28 64 65
SC 68 41 5 11 109 95 111 115
PC 109 98 3 14 65 136 108 133
MC 5 11 0 0 0 13 5 4
Overcast 1 3 0 1 0 2 1 1
Rain 170 131 0 1 13 65 31 25
Fog 2 56 0 0 1 24 2 0
Storm 3 3 0 0 11 3 41 22
Snow 0 3 0 0 0 0 0 0

Note: AWS = average wind speed (m/s), SWS = standard deviation of wind speed (m/s).

the ground surface causes the wind speed to be zero, while the air
pressure gradient causes the wind speed to increase with the height
(Letchford and Zachry, 2009). Let v, (m/s) be the wind speed measured
near the ground at height he. According to Heier (2005), the wind speed
at the height h can be estimated by

vy = vg(:) ;forh > hy

g 24)

@,

where parameter “x” is the Hellman exponent that depends on the
coastal location, the shape of the terrain, and the stability of the air. A
value between 0.27 and 0.34 is often assumed for « in the human in-
habited areas (Blackadar and Tennekes, 1968; Heier, 2005). For in-
stance, if x = 0.34, the wind speed at h = 80 m would be v, = v, (80/
10)%%* = 2.03v,, twice of the wind speed near the ground.

Capacity factor (CF) is defined as the average power generated di-
vided by the rated power capacity. It is an important index to measure
the energy throughput of intermittent generators like WT and PV.
Without loss of generality, we use the wind speed data of the first week
in Wellington to illustrate the procedure of calculating the CF of WT.
Rows 2-7 in Table 3 are the daily ground wind speed in Week 1 be-
tween 2006 and 2016. Assuming k = 0.27, the corresponding wind
speed at 80-m height is obtained using Equation (Li et al., 2017), and
the results are given in table as well. A height of h = 80 m is assumed
because this is the typical tower height for commercial WT with ca-
pacity of 1.5-3 MW.

The two-parameter Weibull distribution is perhaps the most popular
wind distribution model because it is capable of fitting wind profiles in
most areas of the world (Vallee et al., 2007; Weekes and Tomlin, 2014).
The probability density function is shown in Equation (A2). The wind
speed data at 80-m tower in Table 3 fits the Weibull distribution with

¢ = 15.31 m/s and k = 3.33 at 95% confidence level, where ¢ and k are
the Weibull scale and shape parameters, respectively. Finally, we esti-
mate the wind CF for Week 1 using Equation (A4), resulting in
Aw = 0.80. The CF is obtained based on v. = 3m/s, v, = 12m/s and
vs = 25m/s. These are the typical characteristic wind speeds of com-
mercial WT systems (Karki et al., 2006). Fig. 3 plots the weekly CF
values that are derived from 32,120 meteorological data of eight cities.
The average wind CF in Wellington exceeds 0.6, yet the average CF in
Luxor is only 0.05.

4.3. Estimating PV capacity factor

The daily weather conditions retrieved from the WU web portal are
classified into nine states as shown in Table A2 in Appendix A. For
illustration purposes, Table 4 lists the daily weather state of Week 1 in
Wellington from 2006 to 2016. The number of days for a particular
state is counted, and the results are summarized in Table 5. For in-
stance, the cumulative number of “Clear” days for Week 1 is three over
eleven years, and the cumulative number of “Rain” days is 25. For a
given day in that week, the probability of a particular weather state can
be estimated. For instance, the probability of a “Clear” day is 3/
77 = 0.04, and the probability of “Rain” is 25/77 = 0.32. These values
can be used to simulate the PV output for Week 1 in Wellington.

The solar radiation incident on a PV surface at time t, denoted as I,
(W/m?), can be precisely predicted if the sky has no cloud. Detailed
procedures to estimate I, under the clear sky are available in Appendix
A. The randomness of PV generation is caused by the uncertain weather
conditions. To address the random cloud movement, the weather
coefficient W, is used to adjust the actual I.. For instance, if it is “Clear”,
W, = 1, meaning the PV receives 100 percent of I,. If it is “PC,” then
only 50 percent of I, reaches the PV surface. In a snowy day, W, = 0

Table 3
Wind Speed of Week 1 in Wellington (unit: m/s, and « = 0.27).
Day 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006
10-m above ground 1 2.68 5.81 8.49 8.94 7.60 5.36 9.39 8.49 2.68 11.62 3.58
2 4.02 5.81 8.49 12.52 6.71 8.94 11.62 8.49 7.15 11.62 10.73
3 7.60 6.26 12.52 9.83 5.36 8.94 8.05 9.83 11.18 8.94 9.83
4 11.62 6.26 9.39 4.02 6.26 8.05 9.39 4.47 6.26 3.58 10.28
5 2.68 10.28 8.94 3.58 11.18 5.81 5.36 7.60 4.47 8.94 5.36
6 4.02 6.71 7.60 5.81 8.05 5.81 10.73 10.73 8.49 12.52 4.47
7 8.94 4.92 10.28 7.60 6.26 10.73 12.07 11.18 8.94 5.36 7.60
80-m tower height 1 4.70 10.19 14.89 15.68 13.32 9.41 16.46 14.89 4.70 20.38 6.27
2 7.05 10.19 14.89 21.95 11.76 15.68 20.38 14.89 12.54 20.38 18.81
3 13.32 10.97 21.95 17.24 9.41 15.68 14.11 17.24 19.59 15.68 17.24
4 20.38 10.97 16.46 7.05 10.97 14.11 16.46 7.84 10.97 6.27 18.03
5 4.70 18.03 15.68 6.27 19.59 10.19 9.41 13.32 7.84 15.68 9.41
6 7.05 11.76 13.32 10.19 14.11 10.19 18.81 18.81 14.89 21.95 7.84
7 15.68 8.62 18.03 13.32 10.97 18.81 21.16 19.59 15.68 9.41 13.32
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Fig. 3. Weekly wind capacity factor at 80-m tower height.

because the PV surface is likely to be covered by snow. The values of W,
under different weather states are listed in Table A2.

Based on the 3-step PV generation model in Appendix A, we develop
a Matlab program to simulate the daily weather state for each city. The
PV generation is averaged over a week, and then divided by the PV
capacity to obtain the CF in that week. The simulation is repeated over
52 weeks to cover one year. To reduce the simulation variability, the
52-week simulation is repeated over eleven years to obtain the average
weekly CF. Fig. 4 plots the weekly CF of PV generation for eight cities.
The CF in Aswan and Luxor is above 0.4 on average, while the lowest
CF occurs in Wellington and Christchurch with the average CF below
0.15.

4.4. Electric vehicle energy intensity rate

For battery-powered vehicles, the electricity required to move an
object from one location to another depends on the weight of the object,
the travel distance, and the speed. For example, the battery capacity of
a Condor e-truck is 0.05 MWh (or 50 KWh), and the driving range of a
fully charged Condor can reach up to 160 km at 100 km/h (EV-Fleet,
2017). The electric vehicle energy intensity rate, denoted as q,, is de-
fined as the amount of battery energy consumed in order to move 1 kg
object across 1km at a specific speed (e.g. 100 km/h). That is

Egv

Q=" ">
Y m X dpax

(25)
where Egy is the battery capacity in MWh, d,,.x is the driving range at
speed v measured in km and m is the vehicle gross weight including the
payload. For instance, the gross weight of a Condor is approximately
2630kg. At v = 100 km/h, we obtain gq;¢¢ as follows

Table 5
The probabilities of weather states for week 1 in wellington.
Day Clear SC PC MC ocC Rain  Fog Storm  Snow
1 1 4 3 0 0 3 0 0 0
2 0 3 3 0 0 5 0 0 0
3 0 2 3 0 0 6 0 0 0
4 0 4 3 0 0 4 0 0 0
5 2 3 3 0 0 2 1 0 0
6 0 0 7 1 0 3 0 0 0
7 0 0 9 0 0 2 0 0 0
Total 3 16 31 1 0 25 1 0 0
Probability  0.04 0.21 040 0.01 0.00 0.32 0.01 0.00 0.00
0.05
Qoo = —————— = 1.19 X 1077 MWh/kg/km
1997 2630 x 160 (26)

Given g,, we can estimate the energy required to move different
weights over an arbitrary distance at a given speed. For instance, to
move a 4000-kg object (including vehicle weight) over 100km at a
speed of 100 km/h, the amount of electricity consumed would be
G100 X 4000 x 100 = 0.04762 MWh. Charging stations along the route
are required to “refill” the batteries of e-trucks if the travel distance is
larger than the driving range, which is typically 120-160km for a
current e-truck (Daclison-Dickey, 2013).

5. Numerical experiments
5.1. Single factory and warehouse system
We first implement Model P2 in a production-logistics system

comprised of one factory and one warehouse. Production data used for
this experiment is associated with an electricity-intensive industry that

Table 4

Daily weather condition of week 1 from 2006 to 2016 in wellington.
Day 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006
1 Clear PC Rain SC Rain PC SC SC SC Rain PC
2 Rain SC PC PC Rain sC PC Rain SC Rain Rain
3 Rain Rain Rain SC PC SC Rain Rain PC PC Rain
4 Rain PC Rain SC SC PC Rain SC PC SC Rain
5 Clear PC Rain Clear PC Fog SC SC SC PC Rain
6 PC MC PC PC PC Rain PC PC Rain PC Rain
7 PC Rain PC PC PC PC PC PC Rain PC PC

266
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Fig. 4. Weekly solar PV capacity factor of eight cities.
Table 6
Parameters for the production-logistics system (exd. = excluding).
Comments Notation Product A (i=1) Product B (i = 2) Unit
Mean demand Wi 1000 600 item/period
Standard deviation 0y 120 50 item/period
Production cost (exd. energy) Di 400 600 $/item
Holding cost h; 20 30 $/item/period
Backorder cost b; 150 250 $/item/period
Shipping cost (no battery recharge) i 10 15 $/item
Shipping cost (battery recharge) L 14 19 $/item
Labor hours Vi 16 24 hours/item
Machine hours Vio 100 200 hours/item
Product weight with package m; 3 4 kg/item
Energy consumed e 0.9 1.2 MWh/item

operates 24h and 7 days a week, such as wafer manufacturing, air
separation process, and aluminum refinery. Assume the facility pro-
duces two product types, namely A and B. The product demands in each
period are uncertain, but follow the normal distribution with known
mean and variance. In this experiment, each period corresponds to one
week or 168 h, and the planning horizon is 52 weeks. Data associated
with product demand, inventory, backorders and transportation are
shown in Table 6.

E-trucks are used to ship finished goods from the factory to the
warehouse. The weight of the vehicle by itself is w,, = 5000 kg, and the
electric vehicle energy intensity rate is g, = 1.19 x 107 MWh/kg/km
at the speed of 100 km/h. The electric load of the warehouse is rela-
tively stable with L = 7 MW and the yearly operating time t,, = 8760 h.
Round trip frequency between the factory and the warehouse is
Mg, = 182 trips/year. Assume the driving range of an e-truck is
dmax = 150km. Two scenarios are considered for estimating the
transportation cost:

o If an e-truck can travel from the factory to the warehouse without
battery recharge (i.e. dx, < dnqey), then t; = $10/item and 1, = $15/
item for Products A and B, respectively.

o If an e-truck requires the battery recharge because of di, > dinax
then m; = $14/item and , = $19/item. The higher cost is caused
by paying electricity bills and driver's waiting time in the charge
stations.

Two critical resources for the production are the labor and machine
hours. It is quite difficult to obtain actual availability of labor and
machine resources from a real manufacturing industry as these data are

considered as confidential information. To closely mimic the reality, we
extrapolate the labor and machine hours from a local semiconductor
manufacturer in Austin, TX, USA based on their hourly electricity
usage. Table B1 presents the available resources over 52 weeks in the
factory.

Costs of equipment and operation of WT and PV systems are listed in
Table 7. These values are adopted from the works of Freris and Infield
(2008) and NREL report (2013). The efficiency of commercial PV varies
between 15% and 20% and a conservative n = 15% is used in this
paper. T, = 45°C is the PV operating temperature. To maximize the
throughput, PV tilt angle equals the local latitude (i.e. § = ¢), and it is
oriented toward the South (i.e. @ = 0) in the Northern Hemisphere
(opposite in the Southern Hemisphere). Lifetime n, = 20 years are as-
sumed for WT and PV with i, = 5% interest rate, thus ¢, = 0.08024.
Since wind power technology is quite mature now, carbon credits are

Table 7

Cost and Operation Parameters of WT and PV systems.
WT PV
Symbol Value Unit Symbol Value Unit
a, 1.5 x 10° $/MW a, 3 x 10° $/MW
b, 10 $/MWh b, 8 $/MWh
c 0 $/MWh c 35 $MWh
g 168 hour/period 7y 84 hour/period
Ve 3 m/s n 0.15 N/A
Vr 12 m/s T, 45 °C
Vs 25 m/s a 0 rad
ne 20 year n, 20 years
i 0.05 n/a i 0.05 n/a
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Fig. 5. Production decisions on product A in model P2-1.

only given to PV for offsetting the higher installation cost. For detailed
PV generation parameters, please refer to Table Al in Appendix A.

5.2. Results analysis and comparison

Model P2 is coded using AMPL optimization software containing the
CPLEX solver running on an AMD Radeon R6 processor, which runs at
1.8 GHz and contains 4 cores, and 12 GB DRAM. The current model has
a total of 316 mixed integer decision variables and more than 210
constraints. Figs. 5 and 6 present the outcome of P2-1 that includes
production, inventory, and backorders for Products A and B across
52 weeks at y = 90% service level.

Variations are observed on weekly production, inventory and
backorders for both Products A and B. Take Product A in Fig. 5 as the
example. The production is relatively stable in the first 20 weeks, and
the variation thereafter is caused by the fluctuation of labor and ma-
chine hours. If we compare Fig. 5 with Table B1, from Week 20 the
lowest value for the labor hours available reaches 28,867 in Week 23

and 28,497 in Week 38. Similar observations can be found for machine
hours. Since the system must meet the demand across 52 weeks, more
production will be scheduled when both the labor and the machine
hours are abundant like in Weeks 22 and 49. Similarly, backorders are
to be higher if the labor and machine hours are lower. In Week 48 the
amount of available machine hours is only 226,419, far below the
average value of 253,239 h/week.

Next, we solve P2-2 to optimize the sizing and siting of the micro-
grid considering the production-logistics decisions of P2-1. As shown in
Table 8, we investigate three cases by taking into account different
climate conditions, namely Wellington and Christchurch (Case 1),
Aswan and Luxor (Case 2), and Yuma and San Francisco (Case 3).

Case 1 represents a large wind profile at the factory and the ware-
house. We solve P2-2 and the minimum annualized system cost is
$53,797,354 including production, transportation, warehousing and
energy generation. Given the carbon credit of $35/MWh for PV, the
model still chooses WT due to the strong wind profile in Wellington and
Christchurch. The resulting installed WT capacity is 17.44 MW in the
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Fig. 6. Production decisions on product B in model P2-1.
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Table 8

Results of three production-logistics systems.
Case No. Case 1 Case 2 Case 3
City Wellington Aswan Yuma
Facility Factory Factory Factory
Wind profile strong wind Low wind Medium wind
Weather condition Weak sun Strong sun Strong sun
Generation type WT PV WT
Capacity (MW) 17.44 46.39 75.31
City Christchurch Luxor San Francisco
Facility Warehouse Warehouse Warehouse
Wind profile Strong wind Low wind Strong wind
Weather condition Weak sun Strong sun Medium sun
Generation type WT PV WT
Capacity (MW) 30.07 30.96 18.21
Driving distance (km) 439 238 1051
System cost $53,797,354 $61,139,123 $59,658,121

factory and 30.07 MW in the warehouse.

In Case 2, Aswan and Luxor have strong sunshine conditions with
low wind speed, which is opposite to Case 1. The model chooses to
install PV even if its capacity cost is twice of the WT. The installed
capacity of PV in the factory is 46.39 MW and the warehouse is
30.96 MW. The annualized system cost is $61,139,123.

In Case 3, we assume the factory is located in Yuma, AZ with strong
sunshine and medium wind, and the warehouse is in San Francisco, CA
with strong wind and medium sunshine. Despite the strong sunshine
and PV carbon credit, the model chooses WT for Yuma as a more cost-
effective solution. The installed WT capacity in the factory is 75.31 MW
and in the warehouse is 18.21 MW. The annualized system cost is
$59,658,121.

5.3. Island microgrid operation

Under island operation, the microgrid system is responsible for
supplying all the energy to the local facility because of the disconnec-
tion from the main grid. Battery storage systems (BSS) can mitigate the
power intermittency through energy discharging and charging during
peak and off-peak periods. Below we expand Model P2-2 by in-
corporating BSS into factories and warehouses to realize island micro-
grid operation. Denoted as P2-2B, the model is given as,

Model P2-2B

Minimize:

G K K
fp(PS, B X, y, 2) = Zg:l i1 ¢, ayPg. + P e Be
J G K
+ E¢ Zj:l ng Ekzl 1’gk/ljgk (g)ng (bg - Cg)
G N N
+ Zg:] zn=1 ¢gagP§n + ¢bab ZY,:] Brf

+ E¢ Z§=1 E:=1 Elry:l Tonign (§)Pgy (by — ¢5)

+ /&y, 2)
@7
Subject to:
I N N
2 (e + G, dinmi)Xyjn + Z 4, ikn dinWy + Bjje — Bi_y
i=1 n=1 n=1
G
< Er D) tadi QPG Y j LV k
g=1 (28)

K G
fwLn + D @AkndinWy + By — By = Bz D Tndjgn ()Pgy 5V j,V n
k=1 g=1
(29)
0< By <Bf;Vj,Vk (30)
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0<B,<B;;Vj,Vn 3D
By =By =0;Vk (32)
By =Bj=0;Vn (33

In Model P2-2B, B, and B, are the new decision variables re-
presenting the BSS capacity in the factory and warehouse, respectively.
Objective function (27) minimizes the annualized system cost including
the BSS cost. Note that ¢, = 0.1295 is assumed because the lifetime of
BSS is typically ten years, and the current cost for a commercial BSS is
around $0.5M/MWh (Hart and Sarkissian, 2016). Constraints (28) and
(29) make sure that the energy consumed per period in each facility is
fully supplied by the microgrid under island operation. Since these
constraints are stated in a period, thus f,, = 168 h/period and 7, = 3.5
trips/period. Constraints (30) and (31) state that the energy stored per
period should not exceed the BSS capacity. Constraints (32) and (33)
indicate that the BSS energy in the initial and end production period is
zero. In Case 4 we use the same input data from Case 1 to solve P2-2B
by varying the BSS capacity cost from $0.5M/MWh to $0.01M/MWHh.
Similarly, Case 5 is obtained by using the input data of Case 2. The
results of both cases are shown in Figs. 7 and 8.

Two observations can be made from Cases 4 and 5. First, island
microgrid operation requires more generation capacity than grid-con-
nected microgrid in order to meet the same facility load. Case 4 shows
that the WT capacity in Wellington reaches 21.9 MW, and 64.7 MW in
Christchurch without BSS, while under grid-connected operation in
Case 1, these capacities are only 17.44 MW and 30.07 MW, respectively.
Similar observation can be made in Case 5 as opposed to Case 2 in
Aswan and Luxor. Second, BSS with price at $0.1-0.5M/MWh is not
competitive in cities with strong wind. In these locations, the facilities
opt to install more WT capacity instead of using BSS to balance the
power shortage. However, Case 5 shows that BSS is more attractive to
PV systems, and the main reason is because PV installation cost is much
higher than WT.

6. Multi-factory and warehouse system
6.1. System settings

Now we implement Model P2 in a two-factory and one-warehouse
system with grid-connected microgrid generation. In Case 6, Yuma and
El Paso are selected as the factory sites, and Phoenix is the warehouse
site. In Case 7, San Francisco and Dallas are the sites for the factory, and
Austin is the site of the warehouse. The travel distance between fac-
tories and the warehouse is shown in Table 9. The travel frequency
between the two factories and the warehouse is ng, = 186 trips/year.
We adopt the same aggregate demand data in Table 6 to solve Cases 6
and 7. Parameters of WT and PV are given in Table 7. Labor and
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Fig. 7. Microgrid capacity for Case 4 under island operation.
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Case 5 for Island Operationin Aswan and Luxor
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Fig. 8. Microgrid capacity for Case 5 under island operation.

machine hours available for each factory are listed in Table B2 of
Appendix B. The average electricity load of each warehouse is
L, =7 MW.

6.2. Results analysis and comparison

For Case 6, we first solve model P2-1 at y = 90% service level, and
the results of the production-inventory decisions are used as the input
data for P2-2 to optimize the microgrid capacity in Yuma, El Paso and
Phoenix. For Case 7, based on the result of P2-1, we solve model P2-2 in
which San Francisco and Dallas are factories, and Austin is the ware-
house location. The sizing and siting of microgrid for Cases 6 and 7 are
summarized in Table 10. These results are obtained assuming that the
installation cost for WT is $1.5M/MW for PV is $3M/MW, and the
carbon credit for PV is $35/MWh. The results of both cases indicate
that, despite the strong sunshine in Phoenix and San Francisco and the
favorable PV carbon credit, WT is a preferred onsite power source. Si-
milar observations can be made in other locations where WT is more
cost-effective than PV regardless of strong sunshine in these sites.

6.3. Sensitivity analysis on levelized cost of energy

Finally we compute the levelized cost of energy (LCOE) of a mi-
crogrid system to determine which location is cost-effective in either
grid-connected or island operation mode. LCOE is the net present value
of the unit-cost of electricity over the lifetime of a particular generating
asset. Bolinger et al. (2015) studied the contractual price of renewable
power purchase programs between 2008 and 2015 and found that price
varies between $50/MWh and $120/MWh. Hence $120/MWh is taken
as the reference cost for comparing the LCOE of microgrid.

Table 11 summarizes the LCOE for the studied cases. In grid-con-
nected mode, except Phoenix, all other locations are cost-effective in
harnessing microgrid power because their LCOE is below $120/MWh.
In fact, wind generation is particularly appealing if the capacity factor is
above 0.23, making the LCOE as low as $68.8/MWh (see Christchurch
in Case 1). In island operation, Wellington and Aswan realize cost-ef-
fective operation because their LCOE is below $120/MWh. Note the
LCOE in island operation is estimated assuming BSS cost is $0.01M/
MWh. If BSS is $0.5M/MWh, only Wellington's LCOE is still below
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Table 10
Results for multi-factory, one-warehouse systems for Cases 6 and 7.
Case 6 Case 7
Factory 1 (Yuma) WT 43.8MW  Factory 1 (San WT 11.9MW
Francisco)
Factory 2 (El Paso) WT 18.56 MW Factory 2 (Dallas) WT 16.67 MW

Warehouse WT 72.41 MW
(Phoenix)

Annualized cost

Warehouse (Austin) WT 21.32MW

$61,243,500 Annualized cost $58,342,352

Table 11
Levelized Cost of Microgrid Systems (Note: CF reported is the average value,
and GC=Grid Connected).

Case City LCOE Generation WT CF PV CF Operation
($/MWh)  Type Mode
1 Wellington 30.5 WT 0.66 0.16 GC
Christchurch  68.8 WT 0.23 0.14 GC
2 Aswan 90.1 PV 0.15 0.47 GC
Luxor 92.4 PV 0.04 0.45 GC
3 Yuma 104.2 WT 0.15 0.35 GC
San Francisco 46.1 WT 0.39 0.22 GC
4 Wellington 40.2 WT 0.66 0.16 Island
Christchurch ~ 126.3 WT 0.23 0.14 Island
5 Aswan 108.8 PV 0.15 0.47 Island
Luxor 181.2 PV 0.04 0.45 Island
6 Yuma 105.2 WT 0.15 0.35 GC
El Paso 66.4 WT 0.25 0.25 GC
Phoenix 152.1 WT 0.10 0.27 GC
7 San Francisco 46.1 WT 0.39 0.22 GC
Dallas 56.7 WT 0.34 0.25 GC
Austin 65.2 WT 0.27 0.31 GC
$120/MWh.

7. Conclusions

In this paper a joint production and microgrid planning model is
proposed to decarbonize the manufacturing, transportation and ware-
housing operations under product demand and energy supply un-
certainty. Renewables integration analytics is shown to be an effective
approach to characterize the intermittent wind and solar generation.
The model is solved as a two-stage decision-making process. First, we
schedule the production to meet the uncertain demands. Then we size
and site the wind, solar and battery units to satisfy the electricity loads.
The planning model is tested in a variety of areas with diverse climate
conditions, and the results are also compared in terms of levelized cost
of energy. The numerical experiments show that net-zero energy op-
eration is cost-effective in areas where the WT capacity factor is above
0.25 or the PV capacity factor reaches 0.45. Sensitivity analyses show
that, if the battery cost is $0.1-0.5M/MWh, this technology is not
competitive in high wind profile area, yet PV coupled with battery
system is always preferred despite the current high battery cost. Results
also show that a grid-connected microgrid with net metering yields
lower levelized cost of energy than an island microgrid.

The paper contributes to the modeling and application of microgrid
integration in industrial systems for attaining eco-friendly operations.
In modeling, we develop a climate analytics method to characterize

Table 9
Transpiration distance and cost of factory and warehouse.
Factory ID. Factory Location Warehouse
Phoenix (km) Austin (km)
1 Yuma 298 1808
2 El Paso 693 923
1 San Francisco 1204 2814
2 Dallas 1710 312

Product A Product B

Phoenix ($/item) Austin ($/item) Phoenix ($/item) Austin ($/item)
14 85 19 115

33 43 44 59

57 132 77 179

80 15 109 20
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wind and solar capacity factors based on 11-year, 64,240 meteor-
ological records. For applications, the proposed two-stage planning
model potentially accelerates the organizations to transition toward an
“energy prosumer” who can actively participate in energy market as a
consumer and a supplier. As the future effort, the model will be ex-
panded to accommodate more stakeholders including retailers. The
current numerical experiment is built upon a wafer fabrication process.
Other manufacturing sectors, such as automobiles, oil refinery, and air-
separation, will be considered for further examining and comparing the

Appendix A. Estimating WT and PV Capacity Factor

A.1. Wind Turbine Capacity Factor
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model performance.
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A WT system possesses four operating phases depending on the wind speed v. Let P,,(v) be the instantaneous power output of a turbine at speed v.

Then the cubic power curve is given as (Thiringer and Linders, 1993).

0 V<V, V>
Pw(v) = Pm(v/vr)3 V<V
B, v <v Ly

(A1)

where v,, v, and v; stand for the cut-in, rated, and cut-off wind speed, respectively. Note P,, is the rated power capacity. For wind speed fitting to a
Weibull distribution, the probability density function and the cumulative distribution function are given below

fu@) = E(K)"‘le‘("/c)k, for v> 0
cc

E,(W) = e for v>0

(A2)

(A3)

where ¢ and k are the scale and shape parameter, respectively. Then the WT capacity factor, denoted as A,, is

P % - % f VF, )y + (By () — Ey(0)),

(A4)

where T is the number of hours in a period. The value of A,, falls in the range of [0, 1].

A.2. . PV Capacity Factor in the Northern Hemisphere

The output power of a PV system depends on multiple factors that are summarized in Table Al. Unless specified, the unit of all angles is radian

(rad).

Table Al

Key parameters in PV power generation.
No. Factor Symbol Explanation
1 weather coefficient (A between 0 and 1
2 PV size (m?) A PV surface area
3 PV efficiency n 15-20% for commercial PV
4 calendar date d dedl, 2, ..., 365}
5 solar hour (rad) 3] related to the local hour
6 PV temperature (°C) T, operating temperature
7 latitude (rad) (%) depends on location
8 PV azimuth angle (rad) a if facing the south, a = 0
9 PV tilt angle (rad) B between PV and the ground
10 Solar zenith angle (rad) @ between the zenith and Sun's ray
11 solar incident angle (rad) 2] Between the norm to PV and Sun's ray
12 local hours t t=1,2,...,24

We present a three-step procedure to calculate the output power of a PV system based on the study of Cai et al. (2010). These steps are

summarized as follows

Step 1. For PV facing the south, the sunrise and sunset times in day de{1, 2, ..., 365} are given by

cos (—wyise) = cos (wg;) = —tan (@ — B)tan 6,
With

277 (d + 284)

d = 0.40928 sin(
365

)s

(A5)

(A6)

where, w,;;. and s, are, respectively, the sunrise and the sunset angles in day d perceived by the PV panel, and § is the declination angle. PV has no

power output before sunrise and after sunset.
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Step 2. Estimating the solar irradiance incident on the PV at time t on date d under clear sky condition,

I, = 1370(.0. 7<C°S®>’°‘67S)(1 + 0.034 cos (M))( cos 6 + 0.1(1 - ﬁ))
T

365 (A7)
where
cos @ = cos § €os & cos w + sin & sin @, (A8)
cos 6 = sind sin@ cos B — sin § cos@ sin B cos a + cos § cos @ cos B cos w

+ cos d sin @ sin § cos w cos a + cos § sin B sin w sin « (A9)

In (A7) I, is the solar irradiance (W/m?) received by the PV at time t of day d. The solar zenith angle ¢ is estimated by Equation (A8). The solar hour
angle w is determined by the local time t. Starting from w = -t/2 at 6am, It increases 15° every hour until reaching o = /2 at 6pm. To maximize
the energy yield, the PV panel faces the South and its tilt angle shall equal the local latitude, namely if @ = 0 and 3 = ¢, then equation (A9) can be
simplified as

cos 6 = cos § cos w (A10)

Step 3. The actual output of a PV system with the uncertain weather condition now can be estimated as
B = WnAL[1 — 0.005(T;, — 25)], (A11)

where P, is the actual output power (in Watt) of the PV system. W, is a weather coefficient that varies from 1 to 0 to mimic the nine states of the
weather condition (Lave and Kleissl, 2011). The values of W, are summarized in Table A2. The capacity factor of a PV system can be estimated by

T
1
Apy = —p—— B
PR T ; t (A12)

where Ppi* is the rated capacity of a PV system, and T is the number of generation hours. For PV in the Southern Hemisphere, simply set a = 5t and

change ¢ into a native angle.

Table A2

Weather Coefficients under Different States
No. 1 2 3 4 5 6 7 8 9
State Clear Sky SC PC MC Overcast Rain Fog Storm Snow
W, 1 0.7 0.5 0.3 0.2 0.1 0.1 0.1 0

Appendix B. Labor and Machine Resources Available

Table B1
Labor and Machine Hours for Cases 1-5
Week Labor (hour) Machine (hour) Week Labor (hour) Machine (hour)
1 38,516 278,847 27 37,860 279,542
2 34,429 244,299 28 39,153 281,016
3 33,472 239,044 29 32,345 237,514
4 34,210 248,699 30 34,562 249,292
5 36,680 261,478 31 36,814 263,851
6 36,660 269,935 32 35,001 251,627
7 34,063 249,447 33 32,159 239,152
8 35,786 261,961 34 37,138 269,049
9 36,243 261,441 35 36,784 267,032
10 36,989 268,359 36 30,487 223,362
11 33,739 240,138 37 31,639 226,421
12 35,560 263,343 38 28,497 208,141
13 36,920 262,138 39 33,601 241,714
14 37,695 268,946 40 33,727 249,509
15 33,051 240,437 41 35,735 259,884
16 38,113 276,789 42 32,750 237,912
17 33,914 241,252 43 35,657 257,745
18 33,569 243,591 44 32,635 240,033
19 38,010 274,606 45 34,452 249,525
20 37,688 270,170 46 33,684 244,778
21 40,853 291,900 47 37,094 267,545
22 38,946 283,740 48 30,751 226,419
23 28,867 215,059 49 38,739 270,781
24 34,891 248,255 50 34,252 250,829
25 31,466 230,446 51 40,363 292,169
26 30,652 219,114 52 32,078 230,129
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Table B2
Labor and Machine Hours for Cases 6 and 7
Labor Machine Week Labor Machine

Week Factory 1 Factory 2 Factory 1 Factory 2 Factory 1 Factory 2 Factory 1 Factory 2
1 22,339 16,177 153,366 125,481 27 21,959 15,901 153,748 125,794
2 19,969 14,460 134,365 109,935 28 22,709 16,444 154,559 126,457
3 19,414 14,058 131,474 107,570 29 18,760 13,585 130,633 106,881
4 19,842 14,368 136,784 111,915 30 20,046 14,516 137,111 112,182
5 21,275 15,406 143,813 117,665 31 21,352 15,462 145,118 118,733
6 21,263 15,397 148,464 121,471 32 20,301 14,701 138,395 113,232
7 19,757 14,306 137,196 112,251 33 18,652 13,507 131,533 107,618
8 20,756 15,030 144,078 117,882 34 21,540 15,598 147,977 121,072
9 21,021 15,222 143,793 117,648 35 21,335 15,449 146,868 120,165
10 21,453 15,535 147,598 120,762 36 17,682 12,804 122,849 100,513
11 19,568 14,170 132,076 108,062 37 18,351 13,288 124,532 101,890
12 20,625 14,935 144,839 118,504 38 16,528 11,969 114,477 93,663
13 21,413 15,506 144,176 117,962 39 19,488 14,112 132,943 108,771
14 21,863 15,832 147,920 121,026 40 19,562 14,165 137,230 112,279
15 19,170 13,881 132,241 108,197 41 20,726 15,009 142,936 116,948
16 22,106 16,008 152,234 124,555 42 18,995 13,755 130,852 107,060
17 19,670 14,244 132,688 108,563 43 20,681 14,976 141,760 115,985
18 19,470 14,099 133,975 109,616 44 18,928 13,707 132,018 108,015
19 22,046 13,303 151,033 123,573 45 19,982 14,470 137,239 112,286
20 21,859 15,829 148,593 121,576 46 19,536 14,147 134,628 110,150
21 23,695 17,158 160,545 131,355 47 21,515 15,580 147,150 120,395
22 22,589 16,357 156,057 127,683 48 17,836 12,915 124,530 101,889
23 16,743 12,124 118,283 96,777 49 22,469 16,270 148,930 121,852
24 20,237 14,654 136,540 111,715 50 19,866 14,386 137,956 112,873
25 18,250 13,216 126,745 103,701 51 23,410 14,127 160,693 131,476
26 17,778 12,874 120,513 98,601 52 18,605 13,473 126,571 103,558
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