
FlashR: Parallelize and Scale R for Machine Learning
using SSDs

Da Zheng∗
Amazon

Disa Mhembere
Dept. of Computer Science,

Johns Hopkins University

Joshua T. Vogelstein
Institute for Computational Medicine,

Dept. of Biomedical Engineering,

Johns Hopkins University

Carey E. Priebe
Dept. of Applied Math and Statistics,

Johns Hopkins University

Randal Burns
Dept. of Computer Science,

Johns Hopkins University

Abstract

R is one of the most popular programming languages for sta-

tistics andmachine learning, but it is slow and unable to scale

to large datasets. The general approach for having an effi-

cient algorithm in R is to implement it in C or FORTRAN and

provide an R wrapper. FlashR accelerates and scales existing

R code by parallelizing a large number of matrix functions in

the R base package and scaling them beyond memory capac-

ity with solid-state drives (SSDs). FlashR performs memory

hierarchy aware execution to speed up parallelized R code

by (i) evaluating matrix operations lazily, (ii) performing all

operations in a DAG in a single execution and with only one

pass over data to increase the ratio of computation to I/O, (iii)

performing two levels of matrix partitioning and reordering

computation on matrix partitions to reduce data movement

in the memory hierarchy. We evaluate FlashR on various

machine learning and statistics algorithms on inputs of up to

four billion data points. Despite the huge performance gap

between SSDs and RAM, FlashR on SSDs closely tracks the

performance of FlashR in memory for many algorithms. The

R implementations in FlashR outperforms H2O and Spark

MLlib by a factor of 3 − 20.

Keywords R, parallel, machine learning, solid-state drives

∗The work is done when the author was at Johns Hopkins University

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP ’18, February 24–28, 2018, Vienna, Austria

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4982-6/18/02. . . $15.00

https://doi.org/10.1145/3178487.3178501

1 Introduction

The explosion of data and the increasing complexity of data

analysis generate a growing demand for parallel, scalable sta-

tistical analysis and machine learning tools that are simple

and efficient. These tools need to be programmable, interac-

tive, and extensible, allowing scientists to encode and deploy

complex algorithms. Successful examples include R, SciPy,

and Matlab. Efficiency dictates that tools should leverage

modern computer architectures, including scalable paral-

lelism, high-speed networking, and fast I/O from memory

and storage. The current approach for utilizing the full ca-

pacity of modern parallel systems often uses a low-level

programming language such as C and parallelizes computa-

tion with MPI or OpenMP. This approach is time-consuming

and error-prone, and requires machine learning researchers

to develop expertise in parallel programming models.

While conventional wisdom addresses large-scale data

analysis and machine learning with clusters [1, 9, 12, 19,

35, 36], recent works [21, 22, 38, 40] demonstrate a single-

machine solution can process large datasets efficiently in a

multicore machine. The advance of solid-state drives (SSDs)

allows us to tackle data analysis in a single machine effi-

ciently at a larger scale and more economically than possi-

ble before. Previous SSD-based graph analysis frameworks

[17, 38, 40] have demonstrated the comparable efficiency to

state-of-the-art in-memory graph analysis, while scaling to

arbitrarily large datasets. This work extends these findings

to matrix operations for machine learning.

To provide a simple programming framework for efficient

and scalable machine learning, we present FlashR, an inter-

active R programming framework that executes R code in

parallel and out-of-core automatically. For generality and

simplicity, FlashR implements a set of generalized operations

(GenOps) and uses them to override many R functions in the

R base package to perform parallel computation on large ma-

trices stored on SSDs. As such, FlashR parallelizes and scales

existing R code with little/no modification. Our evaluation

shows that we solve billion row, Internet-scale problems on

183

PPoPP ’18, February 24–28, 2018, Vienna, Austria D. Zheng, D. Mhembere, J.T. Vogelstein, C.E. Priebe and R. Burns

a single thick machine, which prevents the complexity, ex-

pense, and power consumption of distributed systems when

they are not strictly necessary [22].

To utilize the full capacity of a large parallel machine,

we overcome many technical challenges to move data from

SSDs to CPU efficiently for matrix computations. Notably,

there exist large performance disparities between CPU and

memory and between memory and SSDs, at least an order

of magnitude between every two layers. The “memory gap”

[34] continues to grow, with the difference between CPU and

DRAM performance increasing exponentially. There are also

performance differences between local and remote memory

in a non-uniform memory architecture (NUMA), which are

prevalent in modern multiprocessor machines.

FlashR implements a new runtime system that executes a

sequence of matrix operations in a memory hierarchy aware

fashion and optimizes data placement and movement in the

memory hierarchy without users’ awareness. To achieve this,

FlashR evaluates expressions lazily and fuses operations ag-

gressively in a single parallel execution job. FlashR builds

a directed acyclic graph (DAG) to represent a sequence of

matrix operations. To increase the ratio of computation to

I/O, FlashR requires only one pass over the input matrices

to perform all operations in a DAG. It assigns the same par-

titions from different matrices to the same NUMA node to

reduce remote memory access, performs two levels of matrix

partitioning and reorders computation on matrix partitions

to reduce data movement in the memory hierarchy. FlashR

by default keeps only the output matrices (leaf nodes) of the

DAG in memory to have a small memory footprint.

We implement multiple machine learning algorithms in

FlashR. We demonstrate that with today’s fast commod-

ity storage technology, the out-of-core execution of FlashR

achieves performance comparable to their in-memory execu-

tion, both on a large parallel machine and in the cloud. Fur-

thermore, FlashR outperforms the same algorithms in H2O

[14] and Spark MLlib [36] by a factor of 3−20 in a large paral-

lel machine with 48 CPU cores. In the Amazon cloud, FlashR

using only one fourth of the resources still matches or even

outperforms H2O and Spark MLlib. We argue that FlashR

is a much more cost-effective solution for large-scale data

analysis in the cloud. FlashR effortlessly scales to datasets

with billions of data points and its out-of-core execution uses

a negligible amount of memory compared with the dataset

size. In addition, FlashR executes the R functions in the R

MASS [20] package with little modification and outperforms

the execution of the same functions in Revolution R Open

[27] by more than an order of magnitude.

Given its high-level array-oriented programming interface

and superior performance, we argue that FlashR significantly

lowers the requirements for writing parallel and scalable im-

plementations of machine learning algorithms. It also offers

new design possibilities for data analysis clusters, replac-

ing memory with larger and cheaper SSDs and processing

bigger problems on fewer nodes. FlashR is released as an

open-source project at http://flashx.io.

Our key contributions include:

• We develop an R programming framework that paral-

lelizes and scales native R code automatically.

• We design multiple techniques in our framework to

move data from I/O storage to the CPU cache effi-

ciently and demonstrate that with today’s I/O tech-

nology, our SSD-based solution delivers performance

approaching that of in-memory solutions for many

machine learning algorithms.

• We demonstrate that with sufficient system-level op-

timizations, R code can easily scale to terabytes of

data in a single machine and significantly outperform

optimized parallel machine learning libraries.

2 Related Work

Recent works on out-of-core linear algebra [26, 32] redesign

algorithms to achieve efficient I/O access and reduce I/O

complexity. These works are orthogonal to our work and can

be adopted. Optimizing I/O alone is insufficient. To achieve

state-of-the-art in-memory performance, it is essential to

move data efficiently throughout the memory hierarchy.

Many distributed frameworks have beeen developed for

large-scale data analysis and machine learning. MapReduce

[9] is used for parallelizing machine learning algorithms [7].

However, MapReduce is inefficient for matrix operations

because its I/O streaming primitives do not match matrix

data access patterns. Spark [36] provides more primitives for

efficient computation and are used for distributed machine

learning (MLlib [23]). SystemML [3, 12] develops an R-like

scripting language for machine learning on MapReduce and

Spark, and deploys optimizations, such as data compression

[10] and hybrid parallelization [4]. These optimizations are

orthogonal with the ones in FlashR and can be adopted.

Distributed machine learning frameworks have been de-

veloped to train machine learning models on large datasets.

For example, GraphLab [19] formulates machine learning al-

gorithms as graph computation; Petuum [35] is designed for

machine learning algorithms with certain properties such as

error tolerance; TensorFlow [1] trains deep neural networks

with stochastic gradient descent and its variants.

There is a large literature for deploying lazy evaluation

and operation fusion in a programming framework to im-

prove performance. There are a few attempts in the APL

literature for deferred operations. For example, Guibas et al.

[13] defers operations for streaming data among operations

and reordering operations; Ching et al. [6] compiles APL

code to fuse operations for better parallelization. Riposte

[30] uses tracing to collect operations for vectorization and

vector fusion with JIT to speed up operations on vectors in R.

184

FlashR: Parallelize and Scale R for Machine Learning using SSDs PPoPP ’18, February 24–28, 2018, Vienna, Austria

Delite [5] is a system designed to parallelize domain-specific

languages (DSL), such as OptiML [29] for machine learning,

in a heterogeneous computation environment in a single ma-

chine. This system defers operation execution to allow both

data and task parallelism. DESOLA [28] is a linear algebra

library that defers matrix operations and deploys runtime

code generation to fuse operations and arry constraction.

All of the works above rely on compilation to achieve opti-

mizations such as operation fusion or operation reordering.

It is difficult to compile a dynamic programming language

such as APL and R. The compilation is inefficent or requires

some constraints in the language, while runtime compila-

tion has large overhead. FlashR adopts and enhances these

techniques with a focus on large-scale data analysis. Unlike

most of these works, FlashR applies lazy evaluation and op-

eration fusion at runtime without compilation and focuses

on reducing data movement in the memory hierarchy.

Sequoia [11] is a programming language designed to fa-

cilitate memory hierarchy aware parallel programming on

large arrays. It exposes memory hierarchy to the program-

ming model and performs static analysis at compile time.

In contrast, FlashR enhances an existing popular program-

ming language and hides memory hierarchy from R users

and optimize data movement at runtime.

TileDB’s [24] designs an efficient strategy to support ar-

ray modification. It manages data moficiation as “fragments”.

This strategy can be adopted by FlashR for large modifica-

tions on matrices.

3 Design

FlashR parallelizes and scales matrix operations in R for

machine learning and statistics in a non-uniform memory

access (NUMA) machine. Figure 1 shows the architecture of

FlashR. FlashR supports a small number of classes of gener-

alized operations (GenOps) and uses GenOps to implement

many matrix operations in the R base package to provide

users a familiar programming interface. The GenOps sim-

plify the implementation and improve expressiveness of the

framework. The optimizer aggressively merges operations

to reduce data movement in the memory hierarchy. FlashR

stores matrices on SSDs through SAFS [37], a user-space

filesystem for SSD arrays, to fully utilize high I/O through-

put of SSDs. FlashR supports both sparse matrices and dense

matrices. For large sparse matrices, FlashR integrates with

the work [39] that performs sparse matrix multiplication in

semi-external memory.

3.1 Programming interface

FlashR provides a matrix-oriented functional programming

interface built on a small set of GenOps (Table 1). GenOps

take matrices and some functions as input and output new

matrices that represent computation results. Input functions

Figure 1. The architecture of FlashR.

Table 1. Generalized operations (GenOps) in FlashR. A, B
and C are matrices, and c is a scalar. f is a user-defined

function that operates on elements of matrices.Ai, j indicates

the element in row i and column j of matrix A.

GenOp Description

C = sapply(A, f) Ci, j = f (Ai, j)

C =mapply(A, B, f) Ci, j = f (Ai, j , Bi, j)

c = aдд(A, f) c = f (Ai, j , c), ∀i, j
C = aдд .row (A, f) Ci = f (Ai, j , Ci), ∀j
C = aдд .col (A, f) Cj = f (Ai, j , Cj), ∀i
C = дroupby(A, f) Ck = f (Ai, j , Ck),

where Ai, j = k , ∀i, j
C = дroupby .row (A, B, f) Ck, j = f (Ai, j , Ck, j),

where Bi = k , ∀i
C = дroupby .col (A, B, f) Ci,k = f (Ai, j , Ci,k),

where Bj = k , ∀j
C = inner .prod (A, B, f 1, f 2) t = f 1(Ai,k , Bk, j),

Ci, j = f 2(t, Ci, j), ∀k
C = cum .row (A, f) Ci, j = f (Ai, j , Ci, j−1)

C = cum .col (A, f) Ci, j = f (Ai, j , Ci−1, j)

define computation on individual elements in matrices, and

all of these functions for GenOps in the current implemen-

tation are predefined. All GenOps are lazily evaluated for

better performance (Section 3.4).

GenOps are classified into four categories that describe

different data access patterns.

Element-wise operations: sapply is an element-wise unary

operation; mapply is an element-wise binary operation.

Aggregation: agg computes aggregation over all elements

in a matrix and outputs a scalar; agg.row/agg.col compute

over all elements in every row/column and outputs a vector.

Groupby: groupby splits the elements of amatrix into groups,

applies agg to each group and outputs a vector; groupby.row

splits rows into groups and applies agg.col to each group;

groupby.col splits columns into groups and applies agg.row

to each group.

Inner product is a generalized matrix multiplication that

replaces multiplication and addition with two functions.

Cumulative operation performs computation cumulatively

on the elements in rows or columns and outputs matrices

with the same shape as the input matrices. Special cases in

R are cumsum and cumprod.

FlashR overrides a large number of matrix functions in the

R base package with GenOps to scale and parallelize existing

R code with little/no modification. Table 2 shows a small

185

PPoPP ’18, February 24–28, 2018, Vienna, Austria D. Zheng, D. Mhembere, J.T. Vogelstein, C.E. Priebe and R. Burns

Table 2. Some of the R matrix functions implemented with

GenOps.

Function Implementation with GenOps

C = A + B C =mapply(A, B, “ + ”)

C = pmin(A, B) C =mapply(A, B, “pmin”)

C = sqr t (A) C = sapply(A, “sqr t ”)

c = sum(A) c = aдд(A, “ + ”)

C = rowSums(A) C = aдд .row (A, “ + ”)

c = any(A) c = aдд(A, “ |”)

C = unique(A) C = дroupby(A, “uniq”)

C = table(A) C = дroupby(A, “count ”)

C = A% ∗ %B integers: C = inner .prod (A, B, “ ∗ ”, “ + ”)

floating-points: BLAS

sparse matrices: SpMM [39]

Table 3. Some of the miscellaneous functions in FlashR for

matrix creation, matrix access and execution tuning.

Function Description

runif .matr ix Create a uniformly random matrix

rnorm .matr ix Create a matrix under a normal distribution

load .dense Read a dense matrix from text files.

dim Get the dimension information of a matrix

lenдth Get the number of elements in a matrix

t Matrix transpose

rbind Concatenate matrices by rows

[] Get rows/columns/elements from a matrix

[] ← Set rows/columns/elements from a matrix

mater ialize Materialize a virtual matrix

set .cache Set to cache materialized data

as .vector Convert to an R vector

as .matr ix Convert to an R matrix

subset of R matrix operations overridden by FlashR and their

implementations with GenOps.

FlashR provides a set of functions for matrix creation, el-

ement access and execution tuning (Table 3). Like GenOps,

FlashR avoids data movement in most of these matrix op-

erations. For example, transpose of a matrix only needs to

change data access from the original matrix in the subse-

quent matrix operations [13]; reading columns from a tall

matrix outputs a new matrix that indicates the columns to

be accessed from the original matrix; writing to a matrix

outputs a virtual matrix (see Section 3.4) that constructs the

modified matrix on the fly. FlashR provides functions for

tuning the execution of lazily evaluated operations. materi-

alize forces FlashR to perform actual computation. set.cache

informs FlashR to save the computation results of a matrix

during computation. as.vector and as.matrix convert FlashR

vectors and matrices to R vectors and matrices, which po-

tentially force FlashR to perform computation.

3.1.1 Examples

We showcase some classic algorithms to illustrate the pro-

gramming interface of FlashR.

`X' is the data matrix, whose rows are data points.

`y' stores the labels of data points.

logistic.regression <- function(X,y) {

grad <- function(X,y,w)
(t(X)%*%(1/(1+exp(-X%*%t(w)))-y))/length(y)

cost <- function(X,y,w)
sum(y*(-X%*%t(w))+log(1+exp(X%*%t(w))))/length(y)

theta <- matrix(rep(0, num.features), nrow=1)

for (i in 1:max.iters) {

g <- grad(X, y, theta)

l <- cost(X, y, theta)

eta <- 1

delta <- 0.5 * (-g) %*% t(g)
Convert it to an R value for the while loop.

l2 <- as.vector(cost(X, y, theta+eta*(-g)))

while (l2 < as.vector(l)+delta*eta)
eta <- eta * 0.2

theta <- theta + (-g) * eta

}

}

Figure 2. A simplified implementation of logistic regression

using gradient descent with line search.

X is the data matrix. C is cluster centers.

kmeans <- function(X,C) {

I <- NULL
num.moves > nrow(X)
while (num.moves > 0) {

D <- inner.prod(X, t(C), "euclidean", "+")

old.I <- I
I <- agg.row(D, "which.min")

Inform FlashR to save data during computation.

I <- set.cache(I, TRUE)
CNT <- groupby.row(rep.int(1, nrow(I)), I, "+")

C <- sweep(groupby.row(X, I, "+"), 2, CNT, "/")

if (!is.null(old.I))
num.moves <- as.vector(sum(old.I != I))

}

}

Figure 3. A simplified implementation of k-means.

Logistic regression is a commonly used classification al-

gorithm. We implement this algorithm for binary-class prob-

lems and use gradient descent with line search to minimize

the cost function. This implementation solely uses the R

base functions overridden by FlashR (Figure 2) and can be

executed in the existing R framework.

Figure 3 implements k-means, a popular clustering algo-

rithm [18], with GenOps. It uses inner.prod to compute the

Euclidean distance between data points and cluster centers

and outputs a matrix whose rows represent the distances to

centers. It uses agg.row to find the closest cluster for each

data point. It then uses groupby.row to count the number of

data points in each cluster and compute cluster centers.

186

FlashR: Parallelize and Scale R for Machine Learning using SSDs PPoPP ’18, February 24–28, 2018, Vienna, Austria

Figure 4. The format of a tall dense matrix.

3.2 Dense matrices

FlashR optimizes for dense matrices that are rectangular—

with a longer and shorter dimension—because of their fre-

quent occurrence in machine learning and statistics. Dense

matrices are optimized for all types of storage, including

NUMA memory and SSDs.

3.2.1 Tall-and-skinny (TAS) matrices

A data matrix may contain a large number of samples with a

few features (tall-and-skinny), or a large number of features

with a few samples (wide-and-short). We use similar strate-

gies to optimize these two types of matrices. FlashR supports

both row-major and column-major layouts (Figure 4(a) and

(b)), which allows FlashR to transpose matrices without a

copy. We store vectors as a one-column TAS matrix.

A TAS matrix is partitioned physically into I/O-partitions

(Figure 4). We refer to the dimension that is partitioned as

the partition dimension. All elements in an I/O-partition are

stored contiguously regardless of the data layout. All I/O-

partitions have the same number of rows regardless of the

number of columns. The number of rows in an I/O-partition

is 2i , where i ∈ N. This produces column-major TASmatrices

whose data are well aligned in memory to encourage CPU

vectorization.

FlashR stores the I/O partitions of an in-memory matrix in

fixed-size memory chunks (e.g., 64MB) across NUMA nodes.

I/O partitions from different matrices may have different

sizes. By storing I/O partitions in fixed-size memory chunks

shared among all in-memory matrices, FlashR can easily

recycle memory and reduce memory allocation overhead.

FlashR stores an SSD-based matrix as a SAFS file [37]. An

I/O partition is accessed asynchronously with direct I/O to

bypass the Linux page cache for better I/O performance. We

rely on SAFS to map the data of a matrix evenly across SSDs.

By default, we use a hash function to map data to fully utilize

the bandwidth of all SSDs even if we access only a subset of

columns from a TAS matrix.

3.2.2 Block matrices

FlashR stores a tall matrix as a block matrix (Figure 4(c))

comprised of TAS blocks with 32 columns each, except the

last block. Each block is stored as a separate TAS matrix.

We decompose a matrix operation on a block matrix into

operations on individual TAS matrices to take advantage of

the optimizations on TAS matrices and reduce data move-

ment. Coupled with the I/O partitioning on TAS matrices,

this strategy enables 2D-partitioning on a dense matrix and

each partition fits in main memory.

3.3 Parallelize matrix operations

When executing matrix operations in parallel, FlashR aims

at achieving good I/O performance and load balancing as

well as reducing remote memory access in a NUMAmachine.

FlashR evaluates a matrix operation with a single pass over

input data.

For good load balancing and I/O performance, FlashR uses

a global task scheduler to dispatch I/O-partitions to threads

sequentially and dynamically. Initially, the scheduler assigns

multiple contiguous I/O-partitions to a thread. The thread

reads them in a single I/O asynchronously. The number of

contiguous I/O-partitions assigned to a thread is determined

by the block size of SAFS. As the computation nears an end,

the scheduler dispatches single I/O-partitions. The scheduler

dispatches I/O-partitions sequentially to increase contiguity

on SSD. When FlashR writes data to SSDs, contiguity makes

it easier for the file system to merge writes from multiple

threads, which helps to sustain write throughput and reduces

write amplification [31].

Parallelization strategies in FlashR are based on the matrix

operations and matrix shape because matrix operations have

various data dependencies (Figure 5).

Operations (a, b, c, d): a partition i of the output matrix

solely depends on partitions i of the input matrices. This

simplifies parallelization. FlashR assigns partitions i of all
matrices to the same thread to avoid remote memory access.

There is no data sharing among threads.

Operations (e, f): a partition i of the output matrix still

solely depends on a partition i of the input matrix A, but
the input matrix B is shared by all threads. Because B is

read-only, computation does not require synchronization. B
is generally small and FlashR keeps it in memory.

Operations (g, h, i): the output matrix contains the aggre-

gation over all partitions of the input matrices. To parallelize

these operations, each thread maintains a local buffer for par-

tial aggregation results. FlashR combines all partial results

at the end of the computation.

Cumulative operations (j): a partition i of the output ma-

trix depends on a partition i of the input matrix as well as a

partition i − 1 of the output matrix. Executing this operation

in parallel typically requires two passes over the input data

187

PPoPP ’18, February 24–28, 2018, Vienna, Austria D. Zheng, D. Mhembere, J.T. Vogelstein, C.E. Priebe and R. Burns

Figure 5. Data flow for the GenOps in Table 1 on tall matrices with 1D partitioning.

[15]. To reduce I/O and fuse this operation with others (Sec-

tion 3.5), FlashR performs this operation with a single scan

over input by taking advantage of sequential task dispatch-

ing and asynchronous I/O. FlashR maintains and shares a

current global accumulated result and a small set of local

accumulated results among all threads. If the data that a par-

tition i depends on is ready, a thread computes this partition.

Otherwise, a thread moves to the next partition i + 1. If the
number of pending partitions reaches a threshold, a thread

sleeps and waits for all dependency data to become available.

3.4 Lazy evaluation

In practice, FlashR almost never evaluates a single matrix

operation alone. Instead, it evaluates matrix operations, such

as GenOps, lazily and constructs directed acyclic graphs

(DAG) to represent computation. Lazy evaluation is essential

to achieve substantial performance for a sequence of matrix

operations in a deep memory hierarchy. FlashR grows each

DAG as large as possible and evaluates all matrix operations

inside a DAG in a single parallel execution to increase the

ratio of computation to I/O.

With lazily evaluation, matrix operations output virtual

matrices that represent the computation result, instead of

storing data physically. In the current implementation, the

only operations that are not lazily evaluated are the ones that

load data from external sources, such as load.dense, and the

ones that output matrices with the size depending on data of

the input matrices, such as unique and table. An operation

on a block matrix may output a block virtual matrix.

Some of the matrix operations output matrices with a

different partition dimension size than the input matrices and,

in general, forms the edge nodes of a DAG. We denote these

matrices as sink matrices. Operations, such as aggregation

and groupby, output sink matrices. Sink matrices tend to be

small and, once materialized, store results in memory.

Figure 6 (a) shows an example of DAG that represents the

k-means computation in a single iteration (Figure 3). A DAG

comprises a set of matrix nodes (rectangles) and computation

nodes (ellipses). The majority of matrix nodes are virtual

matrices (dashed line rectangles). In this example, only the

input matrix X has materialized data. A computation node

references a GenOp and input matrices and may contain

some immutable computation state, such as scalar variables

and small matrices.

FlashR stops constructing a DAG and starts to materialize

the computation in the DAG when encountering the follow-

ing functions: (i) materialize to materialize a virtual matrix;

(ii) as.vector and as.matrix to convert to R objects; (iii) access

to individual elements of a sink matrix; (iv) unique and table,

whose output size depends on input data. The first two cases

give users the opportunity to control DAG materialization

for better speed, while the last two cases are implicit DAG

materialization to simplify programming.

3.5 DAG materialization

When computation is triggered, we evaluate all operations

in a DAG to increase the ratio of computation to I/O. FlashR

fuses all operations in a DAG into a single parallel execution

to reduce data movement in the memory hierarchy. This

data-driven, operation fusion allows out-of-core problems

to approach in-memory speed.

By default, FlashR saves the computation results of all

sink matrices of the DAG in memory and discards the data

of non-sink matrices on the fly. Because sink matrices tend

to be small, this rule leads to small memory consumption.

In exceptional cases, especially for iterative algorithms, it is

helpful to save some non-sink matrices to avoid redundant

computation and I/O across iterations. We allow users to set

a flag on any virtual matrix with set.cache to cache data in

memory or on SSDs during computation, similar to caching

a resilient distributed dataset (RDD) in Spark [36]. Figure 3

shows an example that we cache I , a vector of partition Ids

assigned to each data point, for the next iteration.

3.5.1 Reduce data movement

FlashR performs memory hierarchy aware execution, when

evaluating operations in a DAG, to reduce data movement

188

FlashR: Parallelize and Scale R for Machine Learning using SSDs PPoPP ’18, February 24–28, 2018, Vienna, Austria

Figure 6. (a) Matrix operations are lazily evaluated to form

a directed-acyclic graph (DAG); (b) The data flow in DAG

materialization with two levels of partitioning: matrix X on

SSDs is first partitioned and is read to memory in I/O parti-

tions; an I/O partition is further split into processor cache

(Pcache) partitions; once a Pcache partition is materialized,

it is passed to the next GenOp to reduce CPU cache misses.

between SSDs and RAM, between NUMA nodes as well as

between RAM and CPU cache.

FlashR materializes matrix partitions separately in a DAG

in most cases. This is possible because all matrices in a DAG

except sink matrices share the same partition dimension and

the same I/O partition size. As illustrated in Figure 6 (b), a par-

tition i of a virtual matrix requires data only from partitions

i of the parent matrices. All DAG operations in a partition

are processed by the same thread so that all data required

by the computations are stored and accessed in the memory

close to the processor to increase the memory bandwidth in

a NUMA machine.

FlashR uses two-level partitioning on dense matrices to

reduce data movement between SSDs and CPU (Figure 6

(b)). It reads data on SSDs in I/O partitions and assigns these

partitions to a thread as a parallel task. It further splits I/O-

partitions into processor cache (Pcache) partitions at runtime.

Each thread materializes one Pcache-partition at a time from

a matrix. Regular tall matrices are divided into TAS matrices

andmatrix operations are converted to running on these TAS

matrices instead. As such, a Pcache-partition is sufficiently

small to fit in the CPU L1/L2 cache.

To reduce CPU cache pollution and reduce data movement

between CPU and memory, a thread performs depth-first

traversal in a DAG and evaluates matrix operations in the

order that they are traversed. Each time, a thread performs

a matrix operation on a Pcache partition of a matrix and

passes the Pcache partition to the subsequent matrix opera-

tion, instead of materializing the next Pcache partition. This

ensures that a Pcache partition resides in the CPU cache

when the next matrix operation consumes it. In each thread,

all intermediate matrices have only one Pcache partition

materialized at any time.

To further reduce CPU cache pollution, FlashR recycles

memory buffers used by Pcache partitions in the CPU cache.

FlashR maintains a counter on each Pcache partition. When

the counter indicates the partition has been used by all subse-

quent matrix operations, the memory buffer of the partition

is recycled and used to store the output of the next matrix op-

eration. As such, the next matrix operation writes its output

data in the memory that is already in CPU cache.

4 Experimental evaluation

We evaluate the efficiency of FlashR on statistics and ma-

chine learning algorithms both in memory and on SSDs. We

compare the R implementations of these algorithms with the

ones in two optimized parallel machine learning libraries

H2O [14] and Spark MLlib [23]. We use FlashR to accelerate

existing R functions in the MASS package and compare with

Revolution R Open [27].

We conduct experiments on our local server and Amazon

cloud. The local server has four Intel Xeon E7-4860 2.6 GHz

processors, each of which has 12 cores, and 1TB of DDR3-

1600 memory. It is equipped with 24 OCZ Intrepid 3000 SSDs,

which together are capable of 12 GB/s for read and 10 GB/s

for write. We run FlashR on an EC2 i3.16xlarge instance

with 64 virtual CPUs, 488GB of RAM and 8 NVMe SSDs. The

NVMe SSDs together provide 15.2TB of space and 16GB/s

of sequential I/O throughput. We run Ubuntu 16.04 and use

ATLAS 3.10.2 as the default BLAS library.

4.1 Benchmark algorithms

We benchmark FlashR with some commonly used machine

learning algorithms. These algorithms have various ratios

of computation and I/O complexity (Table 4) to thoroughly

evaluate performance of FlashR. Like the algorithms shown

in Section 3.1.1, we implement these algorithms completely

with the R code and rely on FlashR to execute them in parallel

and out-of-core. We implement these algorithms identically

to our competitors (SparkML and H2O).

Correlation computes pair-wise Pearson’s correlation [25]

and is commonly used in statistics.

Principal Component Analysis (PCA) is commonly used

for dimension reduction in many data analysis tasks. We

implement PCA by computing eigenvalues on the Gramian

matrix ATA of the input matrix A.
Naive Bayes is a classifier that applies Bayes’ theorem with

the “naive” assumption of independence between every pair

of features. Our implementation assumes data follows the

normal distribution.

Logistic regression is a linear regression model for classifi-

cation. We use the LBFGS algorithm [16] for optimization. In

189

PPoPP ’18, February 24–28, 2018, Vienna, Austria D. Zheng, D. Mhembere, J.T. Vogelstein, C.E. Priebe and R. Burns

Table 4. Computation and I/O complexity of the benchmark

algorithms. For iterative algorithms, the complexity is per

iteration. n is the number of data points, p is the number of

the dimensions in a point, and k is the number of clusters.

We assume n > p.

Algorithm Computation I/O

Correlation O (n × p2) O (n × p)

PCA O (n × p2) O (n × p)

Naive Bayes O (n × p) O (n × p)

Logistic regression O (n × p) O (n × p)

K-means O (n × p × k) O (n × p)

GMM O (n × p2 × k) O (n × p + n × k)

mvrnorm O (n × p2) O (n × p)

LDA O (n × p2) O (n × p)

the experiments, it converges when loдlossi−1 − loдlossi <
1e − 6, where loдlossi is the logarithmic loss at iteration i .
K-means is an iterative clustering algorithm that partitions

data points into k clusters. In the experiments, we run k-

means to split a dataset into 10 clusters by default. It con-

verges when no data points move.

Gaussian mixture models (GMM) assumes data follows

a mixture of Gaussian distribution and learns parameters

of Gaussian mixture models from data. It typically uses the

expectation-maximization (EM) algorithm [2] to fit the mod-

els, similar to k-means. In the experiments, it converges

when loдlikei−1 − loдlikei < 1e − 2, where loдlikei is the
mean of log likelihood over all data points at iteration i .
MultivariateNormalDistribution (mvrnorm) generates

samples from a multivariate normal distribution. We use the

implementation in the MASS package.

Linear discriminant analysis (LDA) is a linear classifier

that assumes the normal distribution with a different mean

for each class but sharing the same covariance matrix among

classes. We use the implementation in the MASS package

with some trivial modifications.

4.2 Datasets

We use two real-world datasets with billions of data points

(Table 5) to benchmark the algorithms. The Criteo dataset

has over four billion data points with binary labels (click

vs. no-click), used for advertisement click prediction [8].

PageGraph-32ev are 32 singular vectors that we computed

on the largest connected component of a Page graph, which

has 3.5 billion vertices and 129 billion edges [33]. Because

Spark MLlib and H2O cannot process the entire datasets in a

single machine, we take part of these two datasets to create

smaller ones. PageGraph-32ev-sub is the first 336million data

points of the PageGraph-32ev dataset. Criteo-sub contains

the data points collected on the first two days, which is about

one tenth of the whole dataset.

Table 5. Benchmark datasets.

Data Matrix #rows #cols

PageGraph-32ev [33] 3.5B 32

Criteo [8] 4.3B 40

PageGraph-32ev-sub [33] 336M 32

Criteo-sub [8] 325M 40

 0

 5

 10

 15

 20

 25

Corr PCA NaiveBayes
Logistic

K-means
GMM

N
o
rm

al
iz

ed
 R

u
n
ti

m
e

FlashR-IM
FlashR-EM

H2O
MLlib

(a) In a large parallel machine with 48 CPU cores.

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

Corr PCA NaiveBayes
Logistic

K-means
GMM

N
o
rm

al
iz

ed
 R

u
n
ti

m
e

FlashR-IM
FlashR-EM

H2O
MLlib

(b) In the Amazon cloud. FlashR-IM and FlashR-EM run on one EC2

i3.16xlarge instance (64 CPU cores) and Spark MLlib runs on a cluster

of four EC2 m4.16xlarge instances (256 CPU cores).

Figure 7. The normalized runtime of FlashR in memory

(FlashR-IM) and on SSDs (FlashR-EM) compared with H2O

and Spark MLlib. Correlation and GMM are not available in

H2O. We run k-means and GMM on the PageGraph-32ev-sub

dataset and all other algorithms on the Criteo-sub dataset.

4.3 Comparative performance

We evaluate FlashR against H2O [14], Spark MLlib [23] and

Revolution ROpen [27] in our local server and in the Amazon

cloud. Before running the algorithms in H2O and MLlib, we

ensure that all data are loaded and cached in memory. All

frameworks use 48 threads in the local server. In the cloud,

we run FlashR in one i3.16xlarge instance and MLlib and

H2O in a cluster with four m4.16xlarge instances, which in

total has 256 CPU cores, 1TB RAM and 20Gbps network. All

iterative algorithms take the same number of iterations and

generate similar accuracy1. We also use FlashR to parallelize

functions (mvrnorm and LDA) in the R MASS package and

compare their performance with Revolution R Open. We use

Spark v2.0.1, H2O v3.14.2 and Revolution R Open v3.3.2.

1The only exception is the logistic regression in Spark because we cannot

control its number of iterations

190

FlashR: Parallelize and Scale R for Machine Learning using SSDs PPoPP ’18, February 24–28, 2018, Vienna, Austria

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Crossprod PCA Mvrnorm LDA

N
o
rm

al
iz

ed
 R

u
n
ti

m
e

FlashR-IM FlashR-EM RRO

Figure 8. The normalized runtime of FlashR-IM and FlashR-

EM compared with Revolution R Open on a data matrix with

one million rows and one thousand columns on the 48 CPU

core server.

FlashR on SSDs (FlashR-EM) achieves at least half the

performance of running in memory (FlashR-IM), while out-

performing H2O
2 and Spark MLlib significantly on all algo-

rithms (Figure 7a) in the 48 CPU core server. In the same

hardware, FlashR-IM achieves 4 to 10 times performance

gain compared with MLlib, and 3 to 20 times performance

gain compared with H2O. All implementations rely on BLAS

for matrix multiplication, but H2O andMLlib implement non-

BLAS operations with Java and Scala. Spark materializes op-

erations such as aggregation separately. In contrast, FlashR

fuses matrix operations and performs two-level partitioning

to minimize data movement in the memory hierarchy.

We evaluate the performance of FlashR on Amazon EC2

and compare it with Spark MLlib and H2O on an EC2 cluster

(Figure 7b). H2O recommends allocating a total of four times

the memory of the input data. As such, we use 4 m4.16xlarge

instances that provide sufficient memory and computation

power for Spark MLlib and H2O. Even though Spark MLlib

and H2O have four times as much computation power as

FlashR, FlashR still outperforms both distributed machine

learning libraries in most algorithms. Because the NVMes

in i3.16xlarge provide higher I/O throughput than the SSDs

in our local server, the performance gap between FlashR-IM

and FlashR-EM decreases.

FlashR both in memory and on SSDs outperforms Revolu-

tion R Open by more than an order of magnitude even on a

small dataset (n = 1, 000, 000 and p = 1000) (Figure 8). Revo-

lution R Open uses Intel MKL to parallelize matrix multipli-

cation. As such, we only compare the two frameworks with

computations that use matrix multiplication heavily. Both

FlashR and Revolution R Open run the mvrnorm and LDA

implementations from the MASS package. For simple matrix

operations such as crossprod, FlashR slightly outperforms

2 H2O develops machine learning algorithms individually and adding a new

algorithm in H2O requires writing it from scratch, which is a non-trivial

task. H2O does not provide implementations for correlation and GMM, so

we do not provide results for these two algorithms.

Table 6. The runtime and memory consumption of FlashR

on the billion-scale datasets on the 48 CPU core machine.

We measure the runtime of iterative algorithms when they

converge. We run k-means and GMM on PageGraph-32ev

and the remaining algorithms on Criteo.

Runtime (min) Peak memory (GB)

Correlation 1.5 1.5

PCA 2.3 1.5

NaiveBayes 1.3 3

LDA 38 8

Logistic regression 29.8 26

k-means 18.5 28

GMM 350.6 18

Revolution R Open. For more complex computations, the per-

formance gap between FlashR and Revolution R increases.

Even though matrix multiplication is the most computation-

intensive operation in an algorithm, it is insufficient to only

parallelize matrix multiplication to achieve high efficiency.

4.4 Scalability

We show the scalability of FlashR on the billion-scale datasets

in Table 5. In these experiments, we run the iterative algo-

rithms on the datasets until they converge (see their conver-

gence condition in Section 4.1).

Even though we process the billion-scale datasets in a

single machine, none of the algorithms are prohibitively ex-

pensive. Simple algorithms, such as Naive Bayes and PCA,

require one or two passes over the datasets and take only

one or two minutes to complete. Iterative algorithms in this

experiment take 10 − 20 iterations to converge. Even GMM,

a computation-intensive algorithm, does not take a prohibi-

tively long time to complete.

FlashR scales to datasets with billions of data points easily

when running out-of-core. All of the algorithms have negligi-

ble memory consumption. The scalability of FlashR is mainly

bound by the capacity of SSDs. Two factors contributes to

the small memory consumption: FlashR only saves material-

ized results of sink matrices; FlashR uses direct I/O to access

data from SSDs and does not cache data internally.

4.5 Computation complexity versus I/O complexity

We further compare the performance of FlashR in memory

and in external memory for algorithms with different com-

putation and I/O complexities. We pick three algorithms

from Table 4: (i) Naive Bayes, whose computation and I/O

complexity are the same, (ii) correlation, whose computa-

tion complexity grows quadratically with the number of

dimensions p while its I/O complexity grows linearly with

p, (iii) k-means, whose computation complexity grows lin-

early with the number of clusters k while its I/O complexity

is independent from k . We run the first two algorithms on

datasets with n = 100M and p varying from 8 to 512. We run

191

PPoPP ’18, February 24–28, 2018, Vienna, Austria D. Zheng, D. Mhembere, J.T. Vogelstein, C.E. Priebe and R. Burns

 0

 0.2

 0.4

 0.6

 0.8

 1

8 32 128 512IM
 r

u
n
ti

m
e

/
E

M
 r

u
n
ti

m
e

p

Corr
NaiveBayes

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64

IM
 r

u
n
ti

m
e

/
E

M
 r

u
n
ti

m
e

k

K-means

Figure 9. The relative runtime of FlashR in memory versus

on SSDs on a dataset with n = 100M while varying p (the

number of dimensions) on the left and varying k (the number

of clusters) on the right.

k-means on a dataset with n = 100M and p = 32 and vary

the number of clusters from 2 to 64.

As the number of dimensions or the number of clusters

increases, the performance gap between in-memory and

external-memory execution narrows and the external-memory

performance approaches in-memory performance for cor-

relation and k-means but not Naive Bayes (Figure 9). This

observation conforms with the computation and I/O com-

plexity of the algorithms in Table 4. For correlation and

k-means, increasing p or k causes computation to grow more

quickly than I/O, driving performance toward a computation

bound. The computation bound is realized on few dimen-

sions or clusters for an I/O throughput of 10GB/s. Because

most of the machine learning algorithms in Table 4 have

computation complexities that grow quadratically with p,
we expect FlashR on SSDs to achieve the same performance

as in memory on datasets with a higher dimension size.

4.6 Effectiveness of optimizations

We illustrate the effectiveness of memory hierarchy aware

execution in FlashR. We focus on two main optimizations:

operation fusion in memory to reduce data movement be-

tween SSDs and memory (mem-fuse), and operation fusion

in CPU cache to reduce data movement between memory

and CPU cache (cache-fuse). Due to the limit of space, we

only illustrate their effectiveness when FlashR runs on SSDs.

Both optimizations have significant performance improve-

ment on all algorithms (Figure 10). Mem-fuse achieves sub-

stantial performance improvement in most algorithms, even

in GMM, which has the highest asymptotic computation

complexity. This indicates that materializing every matrix

operation separately causes SSDs to be the main bottleneck

in the system and fusing matrix operations in memory signif-

icantly reduces I/O. Cache-fuse has significant impact on the

algorithms that are more complex and less bottlenecked by

I/O. This demonstrates that memory bandwidth is a limiting

performance factor once I/O is optimized.

 0

 4

 8

 12

 16

 20

 24

Corr
PCA NaiveBayes

Logistic
K-means

GMM

C
u
m

u
la

ti
v
e

sp
ee

d
u
p

Base Mem-fuse Cache-fuse

Figure 10. The relative speedup by applying the optimiza-

tions in FlashR incrementally over the base implementation

running on SSDs. The base implementation does not have

optimizations to fuse matrix operations.

5 Conclusions

We present FlashR, a matrix-oriented programming frame-

work that executes machine learning algorithms in parallel

and out-of-core automatically. FlashR scales to large datasets

by utilizing commodity SSDs.

Although R is considered slow and unable to scale to large

datasets, we demonstrate that with sufficient system-level

optimizations, FlashR achieves high performance and scala-

bility for many machine learning algorithms. R implementa-

tions executed in FlashR outperform H2O and Spark MLlib

on all algorithms by a factor of 3−20. FlashR scales to datasets

with billions of data points easily with negligible amounts of

memory and completes all algorithms within a reasonable

amount of time. With FlashR, machine learning researchers

can prototype algorithms in a familiar programming envi-

ronment, while still getting efficient and scalable implemen-

tations. We believe FlashR provides new opportunities for

developing large-scale machine learning algorithms.

Even though the current I/O technologies, such as solid-

state drives (SSDs), are an order of magnitude slower than

DRAM, the external-memory execution of many algorithms

in FlashR achieves performance approaching their in-memory

execution. As the number of features and other factors, such

as the number of clusters in clustering algorithms, increase,

we expect FlashR on SSDs to achieve the same performance

as in memory. We demonstrate that an I/O throughput of 10

GB/s saturates the CPU for many algorithms, even in a large

parallel NUMA machine.

6 Acknowledgements

We would like to thank the PPoPP reviewers for their in-

sightful comments. This work is supported by NSF Grant #

1649880.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,

192

FlashR: Parallelize and Scale R for Machine Learning using SSDs PPoPP ’18, February 24–28, 2018, Vienna, Austria

Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.

TensorFlow: A System for Large-Scale Machine Learning. In 12th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16).

[2] Jeff Bilmes. 1998. A Gentle Tutorial of the EM Algorithm and its Applica-

tion to Parameter Estimation for Gaussian Mixture and Hidden Markov

Models. Technical Report. International Computer Science Institute.

[3] Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexan-

dre V. Evfimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold

Reinwald, Frederick R. Reiss, Prithviraj Sen, Arvind C. Surve, and

Shirish Tatikonda. 2016. SystemML: Declarative Machine Learning on

Spark. Proc. VLDB Endow. 9, 13 (Sept. 2016), 1425–1436.

[4] Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen,

Yuanyuan Tian, Douglas R. Burdick, and Shivakumar Vaithyanathan.

2014. Hybrid Parallelization Strategies for Large-scale Machine Learn-

ing in SystemML. Proc. VLDB Endow. 7, 7 (March 2014), 553–564.

[5] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee,

Anand R. Atreya, and Kunle Olukotun. 2011. A Domain-Specific

Approach to Heterogeneous Parallelism. In Proceedings of the 16th

Annual Symposium on Principles and Practice of Parallel Programming.

[6] Wai-Mee Ching and Da Zheng. 2012. Automatic Parallelization of

Array-oriented Programs for a Multi-core Machine. International

Journal of Parallel Programming 40, 5 (2012), 514–531.

[7] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Brad-

ski, Andrew Y. Ng, and Kunle Olukotun. 2006. Map-reduce for Machine

Learning on Multicore. In Proceedings of the 19th International Confer-

ence on Neural Information Processing Systems.

[8] criteo Accessed 2/11/2017. Criteo’s 1TB Click Prediction Dataset.

https://blogs.technet.microsoft.com/machinelearning/2015/04/01/

now-available-on-azure-ml-criteos-1tb-click-prediction-dataset/.

(Accessed 2/11/2017).

[9] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data

Processing on Large Clusters. In Proceedings of the 6th Conference on

Symposium on Opearting Systems Design & Implementation - Volume 6

(OSDI’04). USENIX Association, Berkeley, CA, USA.

[10] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss,

and Berthold Reinwald. 2016. Compressed Linear Algebra for Large-

scale Machine Learning. Proc. VLDB Endow. 9, 12 (Aug. 2016), 960–971.

[11] Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez,

Daniel Reiter Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex

Aiken, William J. Dally, and Pat Hanrahan. 2006. Sequoia: Program-

ming the Memory Hierarchy. In Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing.

[12] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold

Reinwald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and

Shivakumar Vaithyanathan. 2011. SystemML: Declarative Machine

Learning on MapReduce. In Proceedings of the 2011 IEEE 27th Interna-

tional Conference on Data Engineering. IEEE Computer Society, Wash-

ington, DC, USA.

[13] Leo J. Guibas and Douglas K. Wyatt. 1978. Compilation and Delayed

Evaluation in APL. In Proceedings of the 5th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages.

[14] H2O Accessed 2/7/2017. H2O machine learning library. http://www.

h2o.ai/. (Accessed 2/7/2017).

[15] Richard E. Ladner and Michael J. Fischer. 1980. Parallel Prefix Compu-

tation. J. ACM 27, 4 (Oct. 1980), 831–838.

[16] D. C. Liu and J. Nocedal. 1989. On the limited memory BFGS method

for large scale optimization. Mathematical Programming: Series A and

B (1989).

[17] Hang Liu and H. Howie Huang. 2017. Graphene: Fine-Grained IO

Management for Graph Computing. In 15th USENIX Conference on File

and Storage Technologies (FAST 17). Santa Clara, CA.

[18] S. Lloyd. 2006. Least Squares Quantization in PCM. IEEE Trans. Inf.

Theor. 28, 2 (Sept. 2006).

[19] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo

Kyrola, and Joseph M. Hellerstein. 2012. Distributed GraphLab: A

Framework for Machine Learning and Data Mining in the Cloud. Proc.

VLDB Endow. 5, 8 (2012).

[20] mass Accessed 2/12/2017. Package MASS. https://cran.r-project.org/

web/packages/MASS/index.html. (Accessed 2/12/2017).

[21] Alexander Matveev, Yaron Meirovitch, Hayk Saribekyan, Wiktor Jaku-

biuk, Tim Kaler, Gergely Odor, David Budden, Aleksandar Zlateski,

and Nir Shavit. 2017. A Multicore Path to Connectomics-on-Demand.

In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming.

[22] FrankMcSherry, Michael Isard, and Derek G. Murray. 2015. Scalability!

But at what COST?. In 15th Workshop on Hot Topics in Operating

Systems (HotOS XV).

[23] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,

Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh,

Matei Zaharia, and Ameet Talwalkar. 2015. MLlib: Machine Learning

in Apache Spark. The Journal of Machine Learning Research 17, 1

(2015).

[24] Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy

Mattson. 2016. The TileDB Array Data Storage Manager. Proc. VLDB

Endow. 10, 4 (Nov. 2016), 349–360.

[25] Karl Pearson. 1895. Notes on regression and inheritance in the case of

two parents. In Proceedings of the Royal Society of London. 240–242.

[26] Gregorio Quintana-Ortí, Francisco D. Igual, Mercedes Marqués, En-

rique S. Quintana-Ortí, and Robert A. van de Geijn. 2012. A Runtime

System for Programming Out-of-Core Matrix Algorithms-by-Tiles on

Multithreaded Architectures. ACM Trans. Math. Softw. 38, 4 (Aug.

2012), 25:1–25:25.

[27] rro Accessed 2/12/2017. Microsoft R Open. https://mran.microsoft.

com/open/. (Accessed 2/12/2017).

[28] Francis P. Russell, Michael R. Mellor, Paul H. J. Kelly, and Olav Beck-

mann. 2011. DESOLA: An Active Linear Algebra Library Using De-

layed Evaluation and Runtime Code Generation. Sci. Comput. Program.

(2011).

[29] Arvind K. Sujeeth, Hyoukjoong Lee, Kevin J. Brown, Hassan Chafi,

Michael Wu, Anand R. Atreya, Kunle Olukotun, Tiark Rompf, and

Martin Odersky. 2011. OptiML: an implicitly parallel domainspecific

language for machine learning. In in Proceedings of the 28th Interna-

tional Conference on Machine Learning.

[30] J. Talbot, Z. DeVito, and P. Hanrahan. 2012. Riposte: A trace-driven

compiler and parallel VM for vector code in R. In 2012 21st Interna-

tional Conference on Parallel Architectures and Compilation Techniques

(PACT).

[31] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li.

2015. RIPQ: Advanced Photo Caching on Flash for Facebook. In 13th

USENIX Conference on File and Storage Technologies (FAST 15). Santa

Clara, CA.

[32] Sivan Toledo. 1999. External Memory Algorithms. Boston, MA, USA,

Chapter A Survey of Out-of-core Algorithms in Numerical Linear

Algebra, 161–179.

[33] webgraph Accessed 4/18/2014. Web graph. http://webdatacommons.

org/hyperlinkgraph/. (Accessed 4/18/2014).

[34] Maurice V. Wilkes. 2001. The Memory Gap and the Future of High

Performance Memories. SIGARCH Comput. Archit. News 29, 1 (March

2001), 2–7.

[35] Eric P. Xing, Qirong Ho, Wei Dai, Jin-Kyu Kim, Jinliang Wei, Seunghak

Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015.

Petuum: A New Platform for Distributed Machine Learning on Big

Data. In Proceedings of the 21th ACM SIGKDD International Conference

193

PPoPP ’18, February 24–28, 2018, Vienna, Austria D. Zheng, D. Mhembere, J.T. Vogelstein, C.E. Priebe and R. Burns

on Knowledge Discovery and Data Mining.

[36] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and

Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Ab-

straction for In-Memory Cluster Computing. In Presented as part of

the 9th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 12). USENIX, San Jose, CA, 15–28.

[37] Da Zheng, Randal Burns, and Alexander S. Szalay. 2013. Toward

Millions of File System IOPS on Low-Cost, Commodity Hardware.

In Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis.

[38] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E.

Priebe, and Alexander S. Szalay. 2015. FlashGraph: Processing Billion-

Node Graphs on an Array of Commodity SSDs. In 13th USENIX Con-

ference on File and Storage Technologies (FAST 15).

[39] Da Zheng, Disa Mhembere, Vince Lyzinski, Joshua Vogelstein, Carey E.

Priebe, and Randal Burns. 2016. Semi-External Memory Sparse Matrix

Multiplication on Billion-node Graphs. IEEE Transactions on Parallel

& Distributed Systems (2016).

[40] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph:

Large-Scale Graph Processing on a Single Machine Using 2-Level

Hierarchical Partitioning. In 2015 USENIX Annual Technical Conference

(USENIX ATC 15).

194

