FlashR: Parallelize and Scale R for Machine Learning
using SSDs

Da Zheng’

Amazon

Carey E. Priebe
Dept. of Applied Math and Statistics,
Johns Hopkins University

Abstract

R is one of the most popular programming languages for sta-
tistics and machine learning, but it is slow and unable to scale
to large datasets. The general approach for having an effi-
cient algorithm in R is to implement it in C or FORTRAN and
provide an R wrapper. FlashR accelerates and scales existing
R code by parallelizing a large number of matrix functions in
the R base package and scaling them beyond memory capac-
ity with solid-state drives (SSDs). FlashR performs memory
hierarchy aware execution to speed up parallelized R code
by (i) evaluating matrix operations lazily, (ii) performing all
operations in a DAG in a single execution and with only one
pass over data to increase the ratio of computation to I/O, (iii)
performing two levels of matrix partitioning and reordering
computation on matrix partitions to reduce data movement
in the memory hierarchy. We evaluate FlashR on various
machine learning and statistics algorithms on inputs of up to
four billion data points. Despite the huge performance gap
between SSDs and RAM, FlashR on SSDs closely tracks the
performance of FlashR in memory for many algorithms. The
R implementations in FlashR outperforms H,O and Spark
MLIib by a factor of 3 — 20.

Keywords R, parallel, machine learning, solid-state drives

“The work is done when the author was at Johns Hopkins University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PPoPP ’18, February 24-28, 2018, Vienna, Austria

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4982-6/18/02...$15.00
https://doi.org/10.1145/3178487.3178501

Disa Mhembere

Dept. of Computer Science,
Johns Hopkins University

183

Joshua T. Vogelstein
Institute for Computational Medicine,
Dept. of Biomedical Engineering,
Johns Hopkins University

Randal Burns
Dept. of Computer Science,
Johns Hopkins University

1 Introduction

The explosion of data and the increasing complexity of data
analysis generate a growing demand for parallel, scalable sta-
tistical analysis and machine learning tools that are simple
and efficient. These tools need to be programmable, interac-
tive, and extensible, allowing scientists to encode and deploy
complex algorithms. Successful examples include R, SciPy,
and Matlab. Efficiency dictates that tools should leverage
modern computer architectures, including scalable paral-
lelism, high-speed networking, and fast I/O from memory
and storage. The current approach for utilizing the full ca-
pacity of modern parallel systems often uses a low-level
programming language such as C and parallelizes computa-
tion with MPI or OpenMP. This approach is time-consuming
and error-prone, and requires machine learning researchers
to develop expertise in parallel programming models.

While conventional wisdom addresses large-scale data
analysis and machine learning with clusters [1, 9, 12, 19,
35, 36], recent works [21, 22, 38, 40] demonstrate a single-
machine solution can process large datasets efficiently in a
multicore machine. The advance of solid-state drives (SSDs)
allows us to tackle data analysis in a single machine effi-
ciently at a larger scale and more economically than possi-
ble before. Previous SSD-based graph analysis frameworks
[17, 38, 40] have demonstrated the comparable efficiency to
state-of-the-art in-memory graph analysis, while scaling to
arbitrarily large datasets. This work extends these findings
to matrix operations for machine learning.

To provide a simple programming framework for efficient
and scalable machine learning, we present FlashR, an inter-
active R programming framework that executes R code in
parallel and out-of-core automatically. For generality and
simplicity, FlashR implements a set of generalized operations
(GenOps) and uses them to override many R functions in the
R base package to perform parallel computation on large ma-
trices stored on SSDs. As such, FlashR parallelizes and scales
existing R code with little/no modification. Our evaluation
shows that we solve billion row, Internet-scale problems on

PPoPP 18, February 24-28, 2018, Vienna, Austria

a single thick machine, which prevents the complexity, ex-
pense, and power consumption of distributed systems when
they are not strictly necessary [22].

To utilize the full capacity of a large parallel machine,
we overcome many technical challenges to move data from
SSDs to CPU efficiently for matrix computations. Notably,
there exist large performance disparities between CPU and
memory and between memory and SSDs, at least an order
of magnitude between every two layers. The “memory gap”
[34] continues to grow, with the difference between CPU and
DRAM performance increasing exponentially. There are also
performance differences between local and remote memory
in a non-uniform memory architecture (NUMA), which are
prevalent in modern multiprocessor machines.

FlashR implements a new runtime system that executes a
sequence of matrix operations in a memory hierarchy aware
fashion and optimizes data placement and movement in the
memory hierarchy without users’ awareness. To achieve this,
FlashR evaluates expressions lazily and fuses operations ag-
gressively in a single parallel execution job. FlashR builds
a directed acyclic graph (DAG) to represent a sequence of
matrix operations. To increase the ratio of computation to
I/O, FlashR requires only one pass over the input matrices
to perform all operations in a DAG. It assigns the same par-
titions from different matrices to the same NUMA node to
reduce remote memory access, performs two levels of matrix
partitioning and reorders computation on matrix partitions
to reduce data movement in the memory hierarchy. FlashR
by default keeps only the output matrices (leaf nodes) of the
DAG in memory to have a small memory footprint.

We implement multiple machine learning algorithms in
FlashR. We demonstrate that with today’s fast commod-
ity storage technology, the out-of-core execution of FlashR
achieves performance comparable to their in-memory execu-
tion, both on a large parallel machine and in the cloud. Fur-
thermore, FlashR outperforms the same algorithms in H,O
[14] and Spark MLIib [36] by a factor of 3—20 in a large paral-
lel machine with 48 CPU cores. In the Amazon cloud, FlashR
using only one fourth of the resources still matches or even
outperforms H,O and Spark MLIib. We argue that FlashR
is a much more cost-effective solution for large-scale data
analysis in the cloud. FlashR effortlessly scales to datasets
with billions of data points and its out-of-core execution uses
a negligible amount of memory compared with the dataset
size. In addition, FlashR executes the R functions in the R
MASS [20] package with little modification and outperforms
the execution of the same functions in Revolution R Open
[27] by more than an order of magnitude.

Given its high-level array-oriented programming interface
and superior performance, we argue that FlashR significantly
lowers the requirements for writing parallel and scalable im-
plementations of machine learning algorithms. It also offers

184

D. Zheng, D. Mhembere,).T. Vogelstein, C.E. Priebe and R. Burns

new design possibilities for data analysis clusters, replac-
ing memory with larger and cheaper SSDs and processing
bigger problems on fewer nodes. FlashR is released as an
open-source project at http://flashx.io.

Our key contributions include:

e We develop an R programming framework that paral-
lelizes and scales native R code automatically.

e We design multiple techniques in our framework to
move data from I/O storage to the CPU cache effi-
ciently and demonstrate that with today’s I/O tech-
nology, our SSD-based solution delivers performance
approaching that of in-memory solutions for many
machine learning algorithms.

e We demonstrate that with sufficient system-level op-
timizations, R code can easily scale to terabytes of
data in a single machine and significantly outperform
optimized parallel machine learning libraries.

2 Related Work

Recent works on out-of-core linear algebra [26, 32] redesign
algorithms to achieve efficient I/O access and reduce 1/O
complexity. These works are orthogonal to our work and can
be adopted. Optimizing I/O alone is insufficient. To achieve
state-of-the-art in-memory performance, it is essential to
move data efficiently throughout the memory hierarchy.

Many distributed frameworks have beeen developed for
large-scale data analysis and machine learning. MapReduce
[9] is used for parallelizing machine learning algorithms [7].
However, MapReduce is inefficient for matrix operations
because its I/O streaming primitives do not match matrix
data access patterns. Spark [36] provides more primitives for
efficient computation and are used for distributed machine
learning (MLIib [23]). SystemML [3, 12] develops an R-like
scripting language for machine learning on MapReduce and
Spark, and deploys optimizations, such as data compression
[10] and hybrid parallelization [4]. These optimizations are
orthogonal with the ones in FlashR and can be adopted.

Distributed machine learning frameworks have been de-
veloped to train machine learning models on large datasets.
For example, GraphLab [19] formulates machine learning al-
gorithms as graph computation; Petuum [35] is designed for
machine learning algorithms with certain properties such as
error tolerance; TensorFlow [1] trains deep neural networks
with stochastic gradient descent and its variants.

There is a large literature for deploying lazy evaluation
and operation fusion in a programming framework to im-
prove performance. There are a few attempts in the APL
literature for deferred operations. For example, Guibas et al.
[13] defers operations for streaming data among operations
and reordering operations; Ching et al. [6] compiles APL
code to fuse operations for better parallelization. Riposte
[30] uses tracing to collect operations for vectorization and
vector fusion with JIT to speed up operations on vectors in R.

FlashR: Parallelize and Scale R for Machine Learning using SSDs

Delite [5] is a system designed to parallelize domain-specific
languages (DSL), such as OptiML [29] for machine learning,
in a heterogeneous computation environment in a single ma-
chine. This system defers operation execution to allow both
data and task parallelism. DESOLA [28] is a linear algebra
library that defers matrix operations and deploys runtime
code generation to fuse operations and arry constraction.
All of the works above rely on compilation to achieve opti-
mizations such as operation fusion or operation reordering.
It is difficult to compile a dynamic programming language
such as APL and R. The compilation is inefficent or requires
some constraints in the language, while runtime compila-
tion has large overhead. FlashR adopts and enhances these
techniques with a focus on large-scale data analysis. Unlike
most of these works, FlashR applies lazy evaluation and op-
eration fusion at runtime without compilation and focuses
on reducing data movement in the memory hierarchy.

Sequoia [11] is a programming language designed to fa-
cilitate memory hierarchy aware parallel programming on
large arrays. It exposes memory hierarchy to the program-
ming model and performs static analysis at compile time.
In contrast, FlashR enhances an existing popular program-
ming language and hides memory hierarchy from R users
and optimize data movement at runtime.

TileDB’s [24] designs an efficient strategy to support ar-
ray modification. It manages data moficiation as “fragments”.
This strategy can be adopted by FlashR for large modifica-
tions on matrices.

3 Design

FlashR parallelizes and scales matrix operations in R for
machine learning and statistics in a non-uniform memory
access (NUMA) machine. Figure 1 shows the architecture of
FlashR. FlashR supports a small number of classes of gener-
alized operations (GenOps) and uses GenOps to implement
many matrix operations in the R base package to provide
users a familiar programming interface. The GenOps sim-
plify the implementation and improve expressiveness of the
framework. The optimizer aggressively merges operations
to reduce data movement in the memory hierarchy. FlashR
stores matrices on SSDs through SAFS [37], a user-space
filesystem for SSD arrays, to fully utilize high I/O through-
put of SSDs. FlashR supports both sparse matrices and dense
matrices. For large sparse matrices, FlashR integrates with
the work [39] that performs sparse matrix multiplication in
semi-external memory.

3.1 Programming interface

FlashR provides a matrix-oriented functional programming
interface built on a small set of GenOps (Table 1). GenOps
take matrices and some functions as input and output new
matrices that represent computation results. Input functions

185

PPoPP 18, February 24-28, 2018, Vienna, Austria

| R base AP

GenOps (inner product, apply, aggregate, groupby, cum-op)

Optimizer

Sparse matrix | Dense matrix | Vector

SAFS

Figure 1. The architecture of FlashR.

Table 1. Generalized operations (GenOps) in FlashR. A, B
and C are matrices, and c is a scalar. f is a user-defined
function that operates on elements of matrices. A; ; indicates
the element in row i and column j of matrix A.

GenOp

C = sapply(A.)

C = mapply(A, B, f)
¢ =agy(A f)

C =agg.row(A, f)
C = agg.col(A, f)

C = groupby(A, f)

Description

Cij = f(Asj)

Cij = f(Aij, Bij)

c :f(Ai,j’ C)’ Vl,]
Ci = f(Aij, Ci), Vj
Cj =f(Ai,), Cj), Vi
Cr = f(Asj, Cr),
where Ai,j = k, Vi, _]
Cr,j = f(Aij, Cr j),
where B; = k, Vi
Cik =f(Aij, Cik)s
where B; = k, Vj

t = f1(Aj k> Bk j),
Ci,j = fz([, Ci,j): Yk
Cij = f(Aij, Cij-1)
Cij=f(Aij, Ci-1j)

C = groupby.row(A, B, f)

C = groupby.col(A, B, f)

C =inner.prod(A, B, f1, f2)

C =cum.row(A, f)
C = cum.col(A, f)

define computation on individual elements in matrices, and
all of these functions for GenOps in the current implemen-
tation are predefined. All GenOps are lazily evaluated for
better performance (Section 3.4).

GenOps are classified into four categories that describe
different data access patterns.
Element-wise operations: sapply is an element-wise unary
operation; mapply is an element-wise binary operation.
Aggregation: agg computes aggregation over all elements
in a matrix and outputs a scalar; agg.row/agg.col compute
over all elements in every row/column and outputs a vector.
Groupby: groupby splits the elements of a matrix into groups,
applies agg to each group and outputs a vector; groupby.row
splits rows into groups and applies agg.col to each group;
groupby.col splits columns into groups and applies agg.row
to each group.
Inner product is a generalized matrix multiplication that
replaces multiplication and addition with two functions.
Cumulative operation performs computation cumulatively
on the elements in rows or columns and outputs matrices
with the same shape as the input matrices. Special cases in
R are cumsum and cumprod.

FlashR overrides a large number of matrix functions in the
R base package with GenOps to scale and parallelize existing
R code with little/no modification. Table 2 shows a small

PPoPP 18, February 24-28, 2018, Vienna, Austria

Table 2. Some of the R matrix functions implemented with
GenOps.

Function Implementation with GenOps
C=A+B C = mapply(A, B,“+"7)
C = pmin(A, B) C = mapply(A, B, “pmin”)
C =sqrt(A) C = sapply(A, “sqrt”)
¢ =sum(A) c=agg(A “+7)
C =rowSums(A) | C =agg.row(A, “+”)
¢ = any(4) ¢ = agg(A. ")
C =unique(A) C = groupby(A, “uniq”)
C = table(A) C = groupby(A, “count”)
C =A% * %B integers: C = inner.prod(A, B, “ =7, “+7)
floating-points: BLAS
sparse matrices: SpMM [39]

Table 3. Some of the miscellaneous functions in FlashR for
matrix creation, matrix access and execution tuning.

Function Description

runif.matrix | Create a uniformly random matrix
rnorm.matrix | Create a matrix under a normal distribution
load.dense Read a dense matrix from text files.

dim Get the dimension information of a matrix
length Get the number of elements in a matrix

t Matrix transpose

rbind Concatenate matrices by rows

[] Get rows/columns/elements from a matrix
[] < Set rows/columns/elements from a matrix
materialize Materialize a virtual matrix

set.cache Set to cache materialized data

as.vector Convert to an R vector

as.matrix Convert to an R matrix

subset of R matrix operations overridden by FlashR and their
implementations with GenOps.

FlashR provides a set of functions for matrix creation, el-
ement access and execution tuning (Table 3). Like GenOps,
FlashR avoids data movement in most of these matrix op-
erations. For example, transpose of a matrix only needs to
change data access from the original matrix in the subse-
quent matrix operations [13]; reading columns from a tall
matrix outputs a new matrix that indicates the columns to
be accessed from the original matrix; writing to a matrix
outputs a virtual matrix (see Section 3.4) that constructs the
modified matrix on the fly. FlashR provides functions for
tuning the execution of lazily evaluated operations. materi-
alize forces FlashR to perform actual computation. set.cache
informs FlashR to save the computation results of a matrix
during computation. as.vector and as.matrix convert FlashR
vectors and matrices to R vectors and matrices, which po-
tentially force FlashR to perform computation.

3.1.1 Examples

We showcase some classic algorithms to illustrate the pro-
gramming interface of FlashR.

186

D. Zheng, D. Mhembere,).T. Vogelstein, C.E. Priebe and R. Burns

X' is the data matrix, whose rows are data points.
‘y' stores the labels of data points.
logistic.regression <- function(X,y) {
grad <- function(X,y,w)
(EX)%*% 1/ (1 +exp(-X%*%t(w)))-y))/length(y)
cost <- function(X,y,w)
sum(y* (-X%*%t (w))+log(1+exp(X%*%t(w))))/length(y)
theta <- matrix(rep(@, num.features), nrow=1)
for (i in 1:max.iters) {
g <- grad(X, y, theta)
1 <- cost(X, y, theta)
eta <- 1
delta <- 0.5 * (-g) %*% t(g)
Convert it to an R value for the while loop.
12 <- as.vector(cost(X, y, thetateta*(-g)))
while (12 < as.vector(l)+delta*eta)
eta <- eta * 0.2
theta <- theta + (-g) * eta
3

3

Figure 2. A simplified implementation of logistic regression
using gradient descent with line search.

X is the data matrix. C is cluster centers.
kmeans <- function(X,C) {
I <- NULL
num.moves > nrow(X)
while (num.moves > 0) {
D <- inner.prod(X, t(C), "euclidean", "+")
0old.I <- I
I <- agg.row(D, "which.min")
Inform FlashR to save data during computation.
I <- set.cache(I, TRUE)
CNT <- groupby.row(rep.int(1, nrow(I)), I, "+")
C <- sweep(groupby.row(X, I, "+"), 2, CNT, "/")
if (!is.null(old.I))
num.moves <- as.vector(sum(old.I != I))

Figure 3. A simplified implementation of k-means.

Logistic regression is a commonly used classification al-
gorithm. We implement this algorithm for binary-class prob-
lems and use gradient descent with line search to minimize
the cost function. This implementation solely uses the R
base functions overridden by FlashR (Figure 2) and can be
executed in the existing R framework.

Figure 3 implements k-means, a popular clustering algo-
rithm [18], with GenOps. It uses inner.prod to compute the
Euclidean distance between data points and cluster centers
and outputs a matrix whose rows represent the distances to
centers. It uses agg.row to find the closest cluster for each
data point. It then uses groupby.row to count the number of
data points in each cluster and compute cluster centers.

FlashR: Parallelize and Scale R for Machine Learning using SSDs

Block

110
part

uolsuswWIp uoniued

(c) Row-major
block matrix

(a) Row-major
TAS matrix

(b) Column-major
TAS matrix

Figure 4. The format of a tall dense matrix.

3.2 Dense matrices

FlashR optimizes for dense matrices that are rectangular—
with a longer and shorter dimension—because of their fre-
quent occurrence in machine learning and statistics. Dense
matrices are optimized for all types of storage, including
NUMA memory and SSDs.

3.2.1 Tall-and-skinny (TAS) matrices

A data matrix may contain a large number of samples with a
few features (tall-and-skinny), or a large number of features
with a few samples (wide-and-short). We use similar strate-
gies to optimize these two types of matrices. FlashR supports
both row-major and column-major layouts (Figure 4(a) and
(b)), which allows FlashR to transpose matrices without a
copy. We store vectors as a one-column TAS matrix.

A TAS matrix is partitioned physically into I/O-partitions
(Figure 4). We refer to the dimension that is partitioned as
the partition dimension. All elements in an I/O-partition are
stored contiguously regardless of the data layout. All I/O-
partitions have the same number of rows regardless of the
number of columns. The number of rows in an I/O-partition
is 2!, where i € N. This produces column-major TAS matrices
whose data are well aligned in memory to encourage CPU
vectorization.

FlashR stores the I/O partitions of an in-memory matrix in
fixed-size memory chunks (e.g., 64MB) across NUMA nodes.
I/O partitions from different matrices may have different
sizes. By storing I/O partitions in fixed-size memory chunks
shared among all in-memory matrices, FlashR can easily
recycle memory and reduce memory allocation overhead.

FlashR stores an SSD-based matrix as a SAFS file [37]. An
I/O partition is accessed asynchronously with direct I/O to
bypass the Linux page cache for better I/O performance. We
rely on SAFS to map the data of a matrix evenly across SSDs.
By default, we use a hash function to map data to fully utilize
the bandwidth of all SSDs even if we access only a subset of
columns from a TAS matrix.

187

PPoPP 18, February 24-28, 2018, Vienna, Austria

3.2.2 Block matrices

FlashR stores a tall matrix as a block matrix (Figure 4(c))
comprised of TAS blocks with 32 columns each, except the
last block. Each block is stored as a separate TAS matrix.
We decompose a matrix operation on a block matrix into
operations on individual TAS matrices to take advantage of
the optimizations on TAS matrices and reduce data move-
ment. Coupled with the I/O partitioning on TAS matrices,
this strategy enables 2D-partitioning on a dense matrix and
each partition fits in main memory.

3.3 Parallelize matrix operations

When executing matrix operations in parallel, FlashR aims
at achieving good I/O performance and load balancing as
well as reducing remote memory access in a NUMA machine.
FlashR evaluates a matrix operation with a single pass over
input data.

For good load balancing and I/O performance, FlashR uses
a global task scheduler to dispatch I/O-partitions to threads
sequentially and dynamically. Initially, the scheduler assigns
multiple contiguous I/O-partitions to a thread. The thread
reads them in a single I/O asynchronously. The number of
contiguous I/O-partitions assigned to a thread is determined
by the block size of SAFS. As the computation nears an end,
the scheduler dispatches single I/O-partitions. The scheduler
dispatches I/O-partitions sequentially to increase contiguity
on SSD. When FlashR writes data to SSDs, contiguity makes
it easier for the file system to merge writes from multiple
threads, which helps to sustain write throughput and reduces
write amplification [31].

Parallelization strategies in FlashR are based on the matrix
operations and matrix shape because matrix operations have
various data dependencies (Figure 5).

Operations (a, b, ¢, d): a partition i of the output matrix
solely depends on partitions i of the input matrices. This
simplifies parallelization. FlashR assigns partitions i of all
matrices to the same thread to avoid remote memory access.
There is no data sharing among threads.

Operations (e, f): a partition i of the output matrix still
solely depends on a partition i of the input matrix A, but
the input matrix B is shared by all threads. Because B is
read-only, computation does not require synchronization. B
is generally small and FlashR keeps it in memory.
Operations (g, h, i): the output matrix contains the aggre-
gation over all partitions of the input matrices. To parallelize
these operations, each thread maintains a local buffer for par-
tial aggregation results. FlashR combines all partial results
at the end of the computation.

Cumulative operations (j): a partition i of the output ma-
trix depends on a partition i of the input matrix as well as a
partition i — 1 of the output matrix. Executing this operation
in parallel typically requires two passes over the input data

PPoPP 18, February 24-28, 2018, Vienna, Austria

= sapply(A, “abs”)

(c)C agg.row(A, “+”)

TIHEME

(b)C mapply(A, B, “+7) .()C cum.row(A, "+")

(e) C = multiply(A

(f)C groupby col(A, B, “+7) 1

i §

D. Zheng, D. Mhembere,).T. Vogelstein, C.E. Priebe and R. Burns

(i) C = multiply(A, B)

(g)C agg.col(A, “+")

(h) C= groupby.row(A, B, “+”) (j) C = cum.col(A,"+")

Figure 5. Data flow for the GenOps in Table 1 on tall matrices with 1D partitioning.

[15]. To reduce I/O and fuse this operation with others (Sec-
tion 3.5), FlashR performs this operation with a single scan
over input by taking advantage of sequential task dispatch-
ing and asynchronous I/O. FlashR maintains and shares a
current global accumulated result and a small set of local
accumulated results among all threads. If the data that a par-
tition i depends on is ready, a thread computes this partition.
Otherwise, a thread moves to the next partition i + 1. If the
number of pending partitions reaches a threshold, a thread
sleeps and waits for all dependency data to become available.

3.4 Lazy evaluation

In practice, FlashR almost never evaluates a single matrix
operation alone. Instead, it evaluates matrix operations, such
as GenOps, lazily and constructs directed acyclic graphs
(DAG) to represent computation. Lazy evaluation is essential
to achieve substantial performance for a sequence of matrix
operations in a deep memory hierarchy. FlashR grows each
DAG as large as possible and evaluates all matrix operations
inside a DAG in a single parallel execution to increase the
ratio of computation to I/O.

With lazily evaluation, matrix operations output virtual
matrices that represent the computation result, instead of
storing data physically. In the current implementation, the
only operations that are not lazily evaluated are the ones that
load data from external sources, such as load.dense, and the
ones that output matrices with the size depending on data of
the input matrices, such as unique and table. An operation
on a block matrix may output a block virtual matrix.

Some of the matrix operations output matrices with a
different partition dimension size than the input matrices and,
in general, forms the edge nodes of a DAG. We denote these
matrices as sink matrices. Operations, such as aggregation
and groupby, output sink matrices. Sink matrices tend to be
small and, once materialized, store results in memory.

Figure 6 (a) shows an example of DAG that represents the
k-means computation in a single iteration (Figure 3). A DAG
comprises a set of matrix nodes (rectangles) and computation
nodes (ellipses). The majority of matrix nodes are virtual

188

matrices (dashed line rectangles). In this example, only the
input matrix X has materialized data. A computation node
references a GenOp and input matrices and may contain
some immutable computation state, such as scalar variables
and small matrices.

FlashR stops constructing a DAG and starts to materialize
the computation in the DAG when encountering the follow-
ing functions: (i) materialize to materialize a virtual matrix;
(ii) as.vector and as.matrix to convert to R objects; (iii) access
to individual elements of a sink matrix; (iv) unique and table,
whose output size depends on input data. The first two cases
give users the opportunity to control DAG materialization
for better speed, while the last two cases are implicit DAG
materialization to simplify programming.

3.5 DAG materialization

When computation is triggered, we evaluate all operations
in a DAG to increase the ratio of computation to I/O. FlashR
fuses all operations in a DAG into a single parallel execution
to reduce data movement in the memory hierarchy. This
data-driven, operation fusion allows out-of-core problems
to approach in-memory speed.

By default, FlashR saves the computation results of all
sink matrices of the DAG in memory and discards the data
of non-sink matrices on the fly. Because sink matrices tend
to be small, this rule leads to small memory consumption.
In exceptional cases, especially for iterative algorithms, it is
helpful to save some non-sink matrices to avoid redundant
computation and I/O across iterations. We allow users to set
a flag on any virtual matrix with set.cache to cache data in
memory or on SSDs during computation, similar to caching
a resilient distributed dataset (RDD) in Spark [36]. Figure 3
shows an example that we cache I, a vector of partition Ids
assigned to each data point, for the next iteration.

3.5.1 Reduce data movement

FlashR performs memory hierarchy aware execution, when
evaluating operations in a DAG, to reduce data movement

FlashR: Parallelize and Scale R for Machine Learning using SSDs

X SsSD
1/0 partition II Vo [I
innerprod | N — = ——
euclidean, +)

Pcache
partition

CNT C

Data flow in DAG materialization

(b)

Figure 6. (a) Matrix operations are lazily evaluated to form
a directed-acyclic graph (DAG); (b) The data flow in DAG
materialization with two levels of partitioning: matrix X on
SSDs is first partitioned and is read to memory in I/O parti-
tions; an I/O partition is further split into processor cache
(Pcache) partitions; once a Pcache partition is materialized,
it is passed to the next GenOp to reduce CPU cache misses.

between SSDs and RAM, between NUMA nodes as well as
between RAM and CPU cache.

FlashR materializes matrix partitions separately in a DAG
in most cases. This is possible because all matrices in a DAG
except sink matrices share the same partition dimension and
the same I/O partition size. As illustrated in Figure 6 (b), a par-
tition i of a virtual matrix requires data only from partitions
i of the parent matrices. All DAG operations in a partition
are processed by the same thread so that all data required
by the computations are stored and accessed in the memory
close to the processor to increase the memory bandwidth in
a NUMA machine.

FlashR uses two-level partitioning on dense matrices to
reduce data movement between SSDs and CPU (Figure 6
(b)). It reads data on SSDs in I/O partitions and assigns these
partitions to a thread as a parallel task. It further splits I/O-
partitions into processor cache (Pcache) partitions at runtime.
Each thread materializes one Pcache-partition at a time from
a matrix. Regular tall matrices are divided into TAS matrices
and matrix operations are converted to running on these TAS
matrices instead. As such, a Pcache-partition is sufficiently
small to fit in the CPU L1/L2 cache.

To reduce CPU cache pollution and reduce data movement
between CPU and memory, a thread performs depth-first
traversal in a DAG and evaluates matrix operations in the
order that they are traversed. Each time, a thread performs
a matrix operation on a Pcache partition of a matrix and
passes the Pcache partition to the subsequent matrix opera-
tion, instead of materializing the next Pcache partition. This
ensures that a Pcache partition resides in the CPU cache

189

PPoPP 18, February 24-28, 2018, Vienna, Austria

when the next matrix operation consumes it. In each thread,
all intermediate matrices have only one Pcache partition
materialized at any time.

To further reduce CPU cache pollution, FlashR recycles
memory buffers used by Pcache partitions in the CPU cache.
FlashR maintains a counter on each Pcache partition. When
the counter indicates the partition has been used by all subse-
quent matrix operations, the memory buffer of the partition
is recycled and used to store the output of the next matrix op-
eration. As such, the next matrix operation writes its output
data in the memory that is already in CPU cache.

4 Experimental evaluation

We evaluate the efficiency of FlashR on statistics and ma-
chine learning algorithms both in memory and on SSDs. We
compare the R implementations of these algorithms with the
ones in two optimized parallel machine learning libraries
H,0 [14] and Spark MLIib [23]. We use FlashR to accelerate
existing R functions in the MASS package and compare with
Revolution R Open [27].

We conduct experiments on our local server and Amazon
cloud. The local server has four Intel Xeon E7-4860 2.6 GHz
processors, each of which has 12 cores, and 1TB of DDR3-
1600 memory. It is equipped with 24 OCZ Intrepid 3000 SSDs,
which together are capable of 12 GB/s for read and 10 GB/s
for write. We run FlashR on an EC2 i3.16xlarge instance
with 64 virtual CPUs, 488GB of RAM and 8 NVMe SSDs. The
NVMe SSDs together provide 15.2TB of space and 16GB/s
of sequential I/O throughput. We run Ubuntu 16.04 and use
ATLAS 3.10.2 as the default BLAS library.

4.1 Benchmark algorithms

We benchmark FlashR with some commonly used machine
learning algorithms. These algorithms have various ratios
of computation and I/O complexity (Table 4) to thoroughly
evaluate performance of FlashR. Like the algorithms shown
in Section 3.1.1, we implement these algorithms completely
with the R code and rely on FlashR to execute them in parallel
and out-of-core. We implement these algorithms identically
to our competitors (SparkML and H20).

Correlation computes pair-wise Pearson’s correlation [25]
and is commonly used in statistics.

Principal Component Analysis (PCA) is commonly used
for dimension reduction in many data analysis tasks. We
implement PCA by computing eigenvalues on the Gramian
matrix AT A of the input matrix A.

Naive Bayes is a classifier that applies Bayes’ theorem with
the “naive” assumption of independence between every pair
of features. Our implementation assumes data follows the
normal distribution.

Logistic regression is a linear regression model for classifi-
cation. We use the LBFGS algorithm [16] for optimization. In

PPoPP 18, February 24-28, 2018, Vienna, Austria

Table 4. Computation and I/O complexity of the benchmark
algorithms. For iterative algorithms, the complexity is per
iteration. n is the number of data points, p is the number of
the dimensions in a point, and k is the number of clusters.
We assume n > p.

Algorithm Computation /0
Correlation O(n x p?) O(nxp)
PCA O(nx p?) O(nx p)
Naive Bayes O(n x p) O(n xp)
Logistic regression O(n x p) O(n X p)
K-means O(nxpxk) O(nxp)
GMM O(nxp?’xk) | Onxp+nxk)
mvrnorm O(n x p?) O(nxp)
LDA O(nx p?) O(n x p)

the experiments, it converges when logloss;_1 — logloss; <
le — 6, where logloss; is the logarithmic loss at iteration i.
K-means is an iterative clustering algorithm that partitions
data points into k clusters. In the experiments, we run k-
means to split a dataset into 10 clusters by default. It con-
verges when no data points move.

Gaussian mixture models (GMM) assumes data follows
a mixture of Gaussian distribution and learns parameters
of Gaussian mixture models from data. It typically uses the
expectation-maximization (EM) algorithm [2] to fit the mod-
els, similar to k-means. In the experiments, it converges
when loglike;_y — loglike; < le — 2, where loglike; is the
mean of log likelihood over all data points at iteration i.
Multivariate Normal Distribution (mvrnorm) generates
samples from a multivariate normal distribution. We use the
implementation in the MASS package.

Linear discriminant analysis (LDA) is a linear classifier
that assumes the normal distribution with a different mean
for each class but sharing the same covariance matrix among
classes. We use the implementation in the MASS package
with some trivial modifications.

4.2 Datasets

We use two real-world datasets with billions of data points
(Table 5) to benchmark the algorithms. The Criteo dataset
has over four billion data points with binary labels (click
vs. no-click), used for advertisement click prediction [8].
PageGraph-32ev are 32 singular vectors that we computed
on the largest connected component of a Page graph, which
has 3.5 billion vertices and 129 billion edges [33]. Because
Spark MLIib and H;O cannot process the entire datasets in a
single machine, we take part of these two datasets to create
smaller ones. PageGraph-32ev-sub is the first 336 million data
points of the PageGraph-32ev dataset. Criteo-sub contains
the data points collected on the first two days, which is about
one tenth of the whole dataset.

190

D. Zheng, D. Mhembere,).T. Vogelstein, C.E. Priebe and R. Burns

Table 5. Benchmark datasets.

Data Matrix #rows | #cols
PageGraph-32ev [33] 3.5B 32
Criteo [8] 4.3B 40
PageGraph-32ev-sub [33] | 336M 32
Criteo-sub [8] 325M 40

FlashR-IM] HyO meesss

FlashR-EM 55 MLIib ==

25 T T T T T T
Q
g 2 E
=]
=
& 15 | N
=
o
S 10 .
<
]
| aﬁg hJ |

0 1 H O H

Cor PCA Naivepy Logistic K-meang GMM
(a) In a large parallel machine with 48 CPU cores.
FlashR-IM H)O reeoom
FlashR-EM &= MLIib t==

9 T T T T
o 8 I .
é 7 - —
=1 6 |
~
5 S5 b
Eat i
= 3| i
£

I mrm [RA

Corr PCa NﬂiveBayé;"giStic K-megpy GMM

(b) In the Amazon cloud. FlashR-IM and FlashR-EM run on one EC2
i3.16xlarge instance (64 CPU cores) and Spark MLIib runs on a cluster

of four EC2 m4.16xlarge instances (256 CPU cores).

Figure 7. The normalized runtime of FlashR in memory
(FlashR-IM) and on SSDs (FlashR-EM) compared with H,O
and Spark MLIib. Correlation and GMM are not available in
H,0. We run k-means and GMM on the PageGraph-32ev-sub
dataset and all other algorithms on the Criteo-sub dataset.

4.3 Comparative performance

We evaluate FlashR against H,O [14], Spark MLIib [23] and
Revolution R Open [27] in our local server and in the Amazon
cloud. Before running the algorithms in H,O and MLIib, we
ensure that all data are loaded and cached in memory. All
frameworks use 48 threads in the local server. In the cloud,
we run FlashR in one i3.16xlarge instance and MLIib and
H,0 in a cluster with four m4.16xlarge instances, which in
total has 256 CPU cores, 1TB RAM and 20Gbps network. All
iterative algorithms take the same number of iterations and
generate similar accuracy’. We also use FlashR to parallelize
functions (mvrnorm and LDA) in the R MASS package and
compare their performance with Revolution R Open. We use
Spark v2.0.1, H,O v3.14.2 and Revolution R Open v3.3.2.

The only exception is the logistic regression in Spark because we cannot
control its number of iterations

FlashR: Parallelize and Scale R for Machine Learning using SSDs

FlashR-IM 1 FlashR-EM X% RRO
45 T T T T
o 40 -
£ 35} e
5 30 | i
S o2t -
8 20 8
g 15| g
s 10 - i
z 5l |
0 = —na! —ei =
Crossprod PCA Mvrnorm LDA

Figure 8. The normalized runtime of FlashR-IM and FlashR-
EM compared with Revolution R Open on a data matrix with
one million rows and one thousand columns on the 48 CPU
core server.

FlashR on SSDs (FlashR-EM) achieves at least half the
performance of running in memory (FlashR-IM), while out-
performing H,0? and Spark MLIib significantly on all algo-
rithms (Figure 7a) in the 48 CPU core server. In the same
hardware, FlashR-IM achieves 4 to 10 times performance
gain compared with MLIib, and 3 to 20 times performance
gain compared with H,O. All implementations rely on BLAS
for matrix multiplication, but H,O and MLIib implement non-
BLAS operations with Java and Scala. Spark materializes op-
erations such as aggregation separately. In contrast, FlashR
fuses matrix operations and performs two-level partitioning
to minimize data movement in the memory hierarchy.

We evaluate the performance of FlashR on Amazon EC2
and compare it with Spark MLIlib and H,O on an EC2 cluster
(Figure 7b). H,O recommends allocating a total of four times
the memory of the input data. As such, we use 4 m4.16xlarge
instances that provide sufficient memory and computation
power for Spark MLIib and H;O. Even though Spark MLIlib
and H,O have four times as much computation power as
FlashR, FlashR still outperforms both distributed machine
learning libraries in most algorithms. Because the NVMes
in i3.16xlarge provide higher I/O throughput than the SSDs
in our local server, the performance gap between FlashR-IM
and FlashR-EM decreases.

FlashR both in memory and on SSDs outperforms Revolu-
tion R Open by more than an order of magnitude even on a
small dataset (n = 1,000, 000 and p = 1000) (Figure 8). Revo-
lution R Open uses Intel MKL to parallelize matrix multipli-
cation. As such, we only compare the two frameworks with
computations that use matrix multiplication heavily. Both
FlashR and Revolution R Open run the mvrnorm and LDA
implementations from the MASS package. For simple matrix
operations such as crossprod, FlashR slightly outperforms

2 H,0 develops machine learning algorithms individually and adding a new
algorithm in H,O requires writing it from scratch, which is a non-trivial
task. H,O does not provide implementations for correlation and GMM, so
we do not provide results for these two algorithms.

191

PPoPP 18, February 24-28, 2018, Vienna, Austria

Table 6. The runtime and memory consumption of FlashR
on the billion-scale datasets on the 48 CPU core machine.
We measure the runtime of iterative algorithms when they
converge. We run k-means and GMM on PageGraph-32ev
and the remaining algorithms on Criteo.

Runtime (min) | Peak memory (GB)

Correlation 1.5 1.5

PCA 2.3 1.5
NaiveBayes 1.3 3
LDA 38 8
Logistic regression 29.8 26
k-means 18.5 28
GMM 350.6 18

Revolution R Open. For more complex computations, the per-
formance gap between FlashR and Revolution R increases.
Even though matrix multiplication is the most computation-
intensive operation in an algorithm, it is insufficient to only
parallelize matrix multiplication to achieve high efficiency.

4.4 Scalability

We show the scalability of FlashR on the billion-scale datasets
in Table 5. In these experiments, we run the iterative algo-
rithms on the datasets until they converge (see their conver-
gence condition in Section 4.1).

Even though we process the billion-scale datasets in a
single machine, none of the algorithms are prohibitively ex-
pensive. Simple algorithms, such as Naive Bayes and PCA,
require one or two passes over the datasets and take only
one or two minutes to complete. Iterative algorithms in this
experiment take 10 — 20 iterations to converge. Even GMM,
a computation-intensive algorithm, does not take a prohibi-
tively long time to complete.

FlashR scales to datasets with billions of data points easily
when running out-of-core. All of the algorithms have negligi-
ble memory consumption. The scalability of FlashR is mainly
bound by the capacity of SSDs. Two factors contributes to
the small memory consumption: FlashR only saves material-
ized results of sink matrices; FlashR uses direct I/O to access
data from SSDs and does not cache data internally.

4.5 Computation complexity versus I/O complexity

We further compare the performance of FlashR in memory
and in external memory for algorithms with different com-
putation and I/O complexities. We pick three algorithms
from Table 4: (i) Naive Bayes, whose computation and I/O
complexity are the same, (ii) correlation, whose computa-
tion complexity grows quadratically with the number of
dimensions p while its I/O complexity grows linearly with
p, (iii) k-means, whose computation complexity grows lin-
early with the number of clusters k while its /O complexity
is independent from k. We run the first two algorithms on
datasets with n = 100M and p varying from 8 to 512. We run

PPoPP 18, February 24-28, 2018, Vienna, Austria

Corr —+—
NaiveBayes -~

128
p

512

1

8

] T T T T
. E
£ 1 ; — S osf —
5 0.8] '2-
‘2" : //// & 0.6 | B
0.6 B N
& (o)
3 Ry AV X~ g 04 N
2 0.4 E £
g 0.2] £ 0.2 - N
£ 0 | | E 0 | | | |
= 2 4 16 32 64

k

Figure 9. The relative runtime of FlashR in memory versus
on SSDs on a dataset with n = 100M while varying p (the
number of dimensions) on the left and varying k (the number
of clusters) on the right.

k-means on a dataset with n = 100M and p = 32 and vary
the number of clusters from 2 to 64.

As the number of dimensions or the number of clusters
increases, the performance gap between in-memory and
external-memory execution narrows and the external-memory
performance approaches in-memory performance for cor-
relation and k-means but not Naive Bayes (Figure 9). This
observation conforms with the computation and I/O com-
plexity of the algorithms in Table 4. For correlation and
k-means, increasing p or k causes computation to grow more
quickly than I/O, driving performance toward a computation
bound. The computation bound is realized on few dimen-
sions or clusters for an I/O throughput of 10GB/s. Because
most of the machine learning algorithms in Table 4 have
computation complexities that grow quadratically with p,
we expect FlashR on SSDs to achieve the same performance
as in memory on datasets with a higher dimension size.

4.6 Effectiveness of optimizations

We illustrate the effectiveness of memory hierarchy aware
execution in FlashR. We focus on two main optimizations:
operation fusion in memory to reduce data movement be-
tween SSDs and memory (mem-fuse), and operation fusion
in CPU cache to reduce data movement between memory
and CPU cache (cache-fuse). Due to the limit of space, we
only illustrate their effectiveness when FlashR runs on SSDs.

Both optimizations have significant performance improve-
ment on all algorithms (Figure 10). Mem-fuse achieves sub-
stantial performance improvement in most algorithms, even
in GMM, which has the highest asymptotic computation
complexity. This indicates that materializing every matrix
operation separately causes SSDs to be the main bottleneck
in the system and fusing matrix operations in memory signif-
icantly reduces I/O. Cache-fuse has significant impact on the
algorithms that are more complex and less bottlenecked by
I/O. This demonstrates that memory bandwidth is a limiting
performance factor once I/O is optimized.

D. Zheng, D.

192

Mhembere, J.T. Vogelstein, C.E. Priebe and R. Burns

Base 1 Mem-fuse K3 Cache-fuse 5556

¥}
=

3%
[=}
T
XRKK
0’:
o]

A
7
b
o0ae%s
B

[=)}
T
-

%
o
o
%%
1

Iy
T
05005
RS
1 1

]
"<
K

Cumulative speedup

%
QOO

Figure 10. The relative speedup by applying the optimiza-
tions in FlashR incrementally over the base implementation
running on SSDs. The base implementation does not have
optimizations to fuse matrix operations.

5 Conclusions

We present FlashR, a matrix-oriented programming frame-
work that executes machine learning algorithms in parallel
and out-of-core automatically. FlashR scales to large datasets
by utilizing commodity SSDs.

Although R is considered slow and unable to scale to large
datasets, we demonstrate that with sufficient system-level
optimizations, FlashR achieves high performance and scala-
bility for many machine learning algorithms. R implementa-
tions executed in FlashR outperform H,O and Spark MLIib
on all algorithms by a factor of 3—20. FlashR scales to datasets
with billions of data points easily with negligible amounts of
memory and completes all algorithms within a reasonable
amount of time. With FlashR, machine learning researchers
can prototype algorithms in a familiar programming envi-
ronment, while still getting efficient and scalable implemen-
tations. We believe FlashR provides new opportunities for
developing large-scale machine learning algorithms.

Even though the current I/O technologies, such as solid-
state drives (SSDs), are an order of magnitude slower than
DRAM, the external-memory execution of many algorithms
in FlashR achieves performance approaching their in-memory
execution. As the number of features and other factors, such
as the number of clusters in clustering algorithms, increase,
we expect FlashR on SSDs to achieve the same performance
as in memory. We demonstrate that an I/O throughput of 10
GB/s saturates the CPU for many algorithms, even in a large
parallel NUMA machine.

6 Acknowledgements

We would like to thank the PPoPP reviewers for their in-
sightful comments. This work is supported by NSF Grant #
1649880.

References
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,

FlashR: Parallelize and Scale R for Machine Learning using SSDs

(2]

(3]

(9]

(10]

(11]

(12]

(13]

(14]

[15

—

(16]

[17]

Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A System for Large-Scale Machine Learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16).

Jeff Bilmes. 1998. A Gentle Tutorial of the EM Algorithm and its Applica-
tion to Parameter Estimation for Gaussian Mixture and Hidden Markov
Models. Technical Report. International Computer Science Institute.
Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexan-
dre V. Evfimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold
Reinwald, Frederick R. Reiss, Prithviraj Sen, Arvind C. Surve, and
Shirish Tatikonda. 2016. SystemML: Declarative Machine Learning on
Spark. Proc. VLDB Endow. 9, 13 (Sept. 2016), 1425-1436.

Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen,
Yuanyuan Tian, Douglas R. Burdick, and Shivakumar Vaithyanathan.
2014. Hybrid Parallelization Strategies for Large-scale Machine Learn-
ing in SystemML. Proc. VLDB Endow. 7, 7 (March 2014), 553-564.
Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee,
Anand R. Atreya, and Kunle Olukotun. 2011. A Domain-Specific
Approach to Heterogeneous Parallelism. In Proceedings of the 16th
Annual Symposium on Principles and Practice of Parallel Programming.
Wai-Mee Ching and Da Zheng. 2012. Automatic Parallelization of
Array-oriented Programs for a Multi-core Machine. International
Journal of Parallel Programming 40, 5 (2012), 514-531.

Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Brad-
ski, Andrew Y. Ng, and Kunle Olukotun. 2006. Map-reduce for Machine
Learning on Multicore. In Proceedings of the 19th International Confer-
ence on Neural Information Processing Systems.

criteo Accessed 2/11/2017. Criteo’s 1TB Click Prediction Dataset.
https://blogs.technet.microsoft.com/machinelearning/2015/04/01/
now-available-on-azure-ml-criteos- 1tb-click-prediction-dataset/.
(Accessed 2/11/2017).

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation - Volume 6
(OSDI’04). USENIX Association, Berkeley, CA, USA.

Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss,
and Berthold Reinwald. 2016. Compressed Linear Algebra for Large-
scale Machine Learning. Proc. VLDB Endow. 9, 12 (Aug. 2016), 960-971.
Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez,
Daniel Reiter Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex
Aiken, William J. Dally, and Pat Hanrahan. 2006. Sequoia: Program-
ming the Memory Hierarchy. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing.

Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold
Reinwald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and
Shivakumar Vaithyanathan. 2011. SystemML: Declarative Machine
Learning on MapReduce. In Proceedings of the 2011 IEEE 27th Interna-
tional Conference on Data Engineering. IEEE Computer Society, Wash-
ington, DC, USA.

Leo J. Guibas and Douglas K. Wyatt. 1978. Compilation and Delayed
Evaluation in APL. In Proceedings of the 5th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages.

H20 Accessed 2/7/2017. H20 machine learning library. http://www.
h2o.ai/. (Accessed 2/7/2017).

Richard E. Ladner and Michael J. Fischer. 1980. Parallel Prefix Compu-
tation. 7. ACM 27, 4 (Oct. 1980), 831-838.

D. C. Liu and J. Nocedal. 1989. On the limited memory BFGS method
for large scale optimization. Mathematical Programming: Series A and
B (1989).

Hang Liu and H. Howie Huang. 2017. Graphene: Fine-Grained IO
Management for Graph Computing. In 15th USENIX Conference on File
and Storage Technologies (FAST 17). Santa Clara, CA.

193

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

PPoPP 18, February 24-28, 2018, Vienna, Austria

S. Lloyd. 2006. Least Squares Quantization in PCM. IEEE Trans. Inf.
Theor. 28, 2 (Sept. 2006).

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo
Kyrola, and Joseph M. Hellerstein. 2012. Distributed GraphLab: A
Framework for Machine Learning and Data Mining in the Cloud. Proc.
VLDB Endow. 5, 8 (2012).

mass Accessed 2/12/2017. Package MASS. https://cran.r-project.org/
web/packages/MASS/index.html. (Accessed 2/12/2017).

Alexander Matveev, Yaron Meirovitch, Hayk Saribekyan, Wiktor Jaku-
biuk, Tim Kaler, Gergely Odor, David Budden, Aleksandar Zlateski,
and Nir Shavit. 2017. A Multicore Path to Connectomics-on-Demand.
In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming.

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability!
But at what COST?. In 15th Workshop on Hot Topics in Operating
Systems (HotOS XV).

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, Doris Xin, Reynold Xin, Michael]. Franklin, Reza Zadeh,
Matei Zaharia, and Ameet Talwalkar. 2015. MLIib: Machine Learning
in Apache Spark. The Journal of Machine Learning Research 17, 1
(2015).

Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy
Mattson. 2016. The TileDB Array Data Storage Manager. Proc. VLDB
Endow. 10, 4 (Nov. 2016), 349-360.

Karl Pearson. 1895. Notes on regression and inheritance in the case of
two parents. In Proceedings of the Royal Society of London. 240-242.
Gregorio Quintana-Orti, Francisco D. Igual, Mercedes Marqués, En-
rique S. Quintana-Orti, and Robert A. van de Geijn. 2012. A Runtime
System for Programming Out-of-Core Matrix Algorithms-by-Tiles on
Multithreaded Architectures. ACM Trans. Math. Softw. 38, 4 (Aug.
2012), 25:1-25:25.

rro Accessed 2/12/2017. Microsoft R Open. https://mran.microsoft.
com/open/. (Accessed 2/12/2017).

Francis P. Russell, Michael R. Mellor, Paul H. J. Kelly, and Olav Beck-
mann. 2011. DESOLA: An Active Linear Algebra Library Using De-
layed Evaluation and Runtime Code Generation. Sci. Comput. Program.
(2011).

Arvind K. Sujeeth, Hyoukjoong Lee, Kevin J. Brown, Hassan Chafi,
Michael Wu, Anand R. Atreya, Kunle Olukotun, Tiark Rompf, and
Martin Odersky. 2011. OptiML: an implicitly parallel domainspecific
language for machine learning. In in Proceedings of the 28th Interna-
tional Conference on Machine Learning.

J. Talbot, Z. DeVito, and P. Hanrahan. 2012. Riposte: A trace-driven
compiler and parallel VM for vector code in R. In 2012 21st Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT).

Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li.
2015. RIPQ: Advanced Photo Caching on Flash for Facebook. In 13th
USENIX Conference on File and Storage Technologies (FAST 15). Santa
Clara, CA.

Sivan Toledo. 1999. External Memory Algorithms. Boston, MA, USA,
Chapter A Survey of Out-of-core Algorithms in Numerical Linear
Algebra, 161-179.

webgraph Accessed 4/18/2014. Web graph. http://webdatacommons.
org/hyperlinkgraph/. (Accessed 4/18/2014).

Maurice V. Wilkes. 2001. The Memory Gap and the Future of High
Performance Memories. SIGARCH Comput. Archit. News 29, 1 (March
2001), 2-7.

Eric P. Xing, Qirong Ho, Wei Dai, Jin-Kyu Kim, Jinliang Wei, Seunghak
Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015.
Petuum: A New Platform for Distributed Machine Learning on Big
Data. In Proceedings of the 21th ACM SIGKDD International Conference

PPoPP 18, February 24-28, 2018, Vienna, Austria D. Zheng, D. Mhembere,).T. Vogelstein, C.E. Priebe and R. Burns

on Knowledge Discovery and Data Mining.
[36] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing. In Presented as part of
the 9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12). USENIX, San Jose, CA, 15-28.
[37] Da Zheng, Randal Burns, and Alexander S. Szalay. 2013. Toward
Millions of File System IOPS on Low-Cost, Commodity Hardware.
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis.
Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E.
Priebe, and Alexander S. Szalay. 2015. FlashGraph: Processing Billion-
Node Graphs on an Array of Commodity SSDs. In 13th USENIX Con-
ference on File and Storage Technologies (FAST 15).
Da Zheng, Disa Mhembere, Vince Lyzinski, Joshua Vogelstein, Carey E.
Priebe, and Randal Burns. 2016. Semi-External Memory Sparse Matrix
Multiplication on Billion-node Graphs. IEEE Transactions on Parallel
& Distributed Systems (2016).
Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph:
Large-Scale Graph Processing on a Single Machine Using 2-Level
Hierarchical Partitioning. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15).

[38

—

[39

—

[40

[t

194

