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Abstract—Power grids based on traditional N-1 design
criteria are no longer adequate because these designs do not
withstand extreme weather events or cascading failures.
Microgrid system has the capability of enhancing grid resilience
through defensive or islanded operations in contingency. This
paper presents a probabilistic framework for planning resilient
distribution system via distributed wind and solar integration.
We first define three aspects of resilient distribution system,
namely prevention, survivability and recovery. Then we review
the distributed generation planning models that comprehend
moment estimation, chance constraints and bi-directional power
flow. We strive to achieve two objectives: 1) enhancing the grid
survivability when distribution lines are damaged or
disconnected in the aftermath of disaster attack; and 2)
accelerating the recovery of damaged assets through pro-active
maintenance and repair services. A simple 9-node network is
provided to demonstrate the application of the proposed
resilience planning framework.

Keywords—microgrid;  extreme  weather;  resilience;
distributed generation; central limit theorem

I. NOMENCLATURE

Y, y= Random wind speed, and its realization
fu(y)= Wind speed probability density function
F.(y)= Wind speed cumulative distribution function

¢, d= Weibull scale and shape parameters for ¥

P,= Rated power for wind turbine
P,(Y)= Wind turbine output power at wind speed ¥
Ve, Vi, V= Cut-in, rated, and cut-off speeds, respectively
Nmax=Conversion rate from wind to electric power
p=Air density
A= Area covered by wind turbine blades
7= 0.57max0A
m=Number of DER types in the DG system
n=Number of nodes in the DG system
/= Number of branches in the DG system
Py(S)= PV output power
S, s= Solar irradiance and its realization,
respectively
Beta distribution function for solar irradiance
Beta distribution parameter
Sy= Maximum solar irradiance (W/m?)
1= Photovoltaic conversion efficiency
As= PV panel area (m?)
»= PV operating temperature (°C)
P;*= Power capacity of DER type i at node j
Pij=Instant output power of DER type i at node j,
a random variable

Ji(5)

2166-5478/18/$31.00 ©2018 IEEE
DOI 10.1109/GreenTech.2018.00018

49

D= Total system demand, a random variable
D;= Demand at node j, a random variable
Ri(t)= Reliability function for DER type i
n;, B= Scale and shape parameters in Ri(7)
u(7)= DER maintenance cost per unit time
=" Cost for performing a corrective maintenance
= Cost for performing a planned maintenance
t, t,= Failure and planned downtimes, respectively
t= Annual operating hours for DER units
A(7)= Availability of a single DER unit
Apg(t)= Availability of the DG system group
= Number of branches prone to failure in
extreme weather
R= Number of repair teams
A= Failure rate of branches in extreme weather
L= Repair rate of branches in extreme weather
7= Number of planning years
Cpe= Annualized DG system cost
@r, h)= Formula for computing present annuity
7= Annual compound interest rate
h=Years for paying off the DER capital
aj= Cost per MW of installing DER type i at
node j
= Operation cost per MWh for DER i at node j
c¢i/= Credits or penalty per MWh for putting DER

i at node j
Vo= Nominal voltage of the DG system
U, ., = Mean voltage at node j in year

Voltage standard deviation at nodej in year ¢

Vmin="Low voltage limit
Vimax=Upper voltage limit
o= Loss-of-load probability criterion
o= Confidence level for voltage variation
xi= DER type i at node j in year ¢, binary decision
variable
zy= Cumulative number of DER type i at node j by

t
yeart,andz, =3 x,

t= Maintenance time of DER i, decision variable

II. INTRODUCTION

Electric distribution grid planning has long focused on the
reliability, affordability, and efficiency of power delivery to
end users; however, this focus has primarily been outside the
realm of natural disasters. Enhancing the resilience of electric
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grid against extreme weather events becomes a fundamental
task for all the stakeholders in generation, transmission and
distribution sectors. According to [1], resilience is defined as
the ability of a power system to anticipate, resist, absorb,

respond to, adapt to, and recover from unexpected disruptions.

Panteli and Mancarella [2] state that events considered in
resilience management differs from reliability analysis owing
to two unique features: 1) high impact with low probability of
occurrence; and 2) catastrophic consequence resulted from
cascading failures.

Natural disasters like earthquakes, tsunami, hurricanes,
and tornados have caused tremendous economic losses,
environmental damages and human casualties, rendering the
traditional N-1 reliability criterion ineffective to withstand
these extreme events. For instance, Hurricane Sandy was an
N-90 event with estimated economic losses up to $50 billion.
As a result, power outages throughout the eastern US lasted
up to 30 days [3]. Extreme events are also responsible for the
common cause failures that occur when two or more
infrastructures are affected simultaneously. In fact, most
cascading failures in power system occur largely due to the
common cause failures. Zhou et al. [4] investigate the 2008
Great Ice Storm in Southern China, and find that
interdependency of coal mining, supply lifeline, and harsh
weather created cascading effects on the electric power
supply network. This led to a series of failures in regional
power generation and delivery processes, causing the loss of
power to nearly 15 million homes in Southern China.

Distributed generation (DG) system integrating wind and
solar power is emerging as a new energy supply method to
meet the growing electricity demand and environmental
requirements. Unlike a central power plant, the capacity of
distributed energy resource (DER) is relatively small and less
than 10 MW, while the capacity of a central generating unit
often exceeds 500 MW. Typical DER units include wind
turbines (WT), solar photovoltaic (PV), fuel cells, diesel
generators, micro-turbines, combined heat and power, and
small-size batteries. They can be installed in the distribution
network or at the consumption sites. WT and PV are in
particular appealing because of their zero emissions and no
use of fossil fuels.

In addition to environmental sustainability, DG technology
fosters the energy independence, saves the transmission
expansion cost, and improves grid resilience in extreme
events. A good example of resilience performance is the
Roppongi Hills microgrid in Tokyo. During the Great East
Japan earthquake in 2011, natural gas based Roppongi Hill
microgrids was able to maintain electricity supply even
though the main grid was dysfunctional for several days,
highlighting the grid survivability via microgrid operation in
adverse condition [5]. The world-wide installation of DER
units and microgrid capacity consistently increases in the last
decade. In 2012 alone the new installation of DER reached
142 GW, representing 39% share of the new capacity addition
of that year [6]. The rise of DG systems opens the way for
designing and operating resilient distribution grid via
microgrid integration.

This paper presents a probabilistic framework for
designing resilient distribution system through the integration
of onsite wind and solar generation. We aim to achieve two
objectives: 1) enhancing the grid survivability when the
distribution lines are damaged or disconnected post the
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disaster attack; and 2) accelerating the restoration of damaged
utility assets through pro-active maintenance and repair
services. To these ends, we first define three resilience aspects
pertaining to distribution systems. Then, we review the
moment-based modeling approach to analyzing the power
intermittency, voltage variation and bidirectional power flow.

The remainder of the paper is organized as follows. Section
3 elaborates three key aspects of distribution resilience.
Section 4 characterizes the intermittency of wind and solar
generation and their impacts on power quality. Sections 5
discusses the prevention and recovery aspects via pro-active
maintenance and repair policy. Section 6 formulates a simple
DG planning model to enhance the grid survivability through
defensive microgrid operation. In Section 7, we demonstrate
the proposed planning model on a 9-node distribution
network. Section 8 concludes the paper.

II1. THREE ASPECTS OF DISTRIBUTION RESILIENCE

A. Literature Review

Significant research effort has been focused on optimal
design of the distribution grid, with many approaches
incorporating integrated resilience features. We briefly
survey the literature in this area.

Hardening is an effective approach to attaining the grid
resilience by adding redundant lines, using underground
cables, fortifying poles, elevating substation, and trimming
vegetation [7], [8]. Recently, the development of aerial drone
programs to assess storm damage and tree vegetation can
provide onsite real-time data of electricity infrastructure. In
general, upgrading power infrastructure could be costly in
terms of materials, labor and time. It could also be constrained
by environmental policies and government regulation.

An alternative approach to power resilience is to develop
active distribution networks in which DER units or microgrid
systems serve as backup units or operate in islanded mode in
contingency. Kwasinski et al. [9] assess the availability of
different DER units upon natural disaster onslaught, and find
that WT and PV outperform fuel-based generators because
the fossil fuel supply line could be damaged post the disaster
attack. Liu et al. [10] use Monte Carlo simulation to compare
the resilience between network hardening, topology
reconfiguration and microgrid operations on IEEE 30-bus and
118-bus systems. Shao [11] propose a cogeneration model to
enhance the energy resilience using distribution electricity
and natural gas system. Panteli et al. [12] propose a set of
severity risk index to determine the creation of defensive
island microgrid when current network topology and the
branches are at higher risk of tripping due to severe weather.
Bie et al. [13] present a quantitative framework to evaluate
power grid resilience using metrics like LOLP and EDNS.
These studies agree that topology reconfiguration and
defensive microgrid are effective to strengthen the
distribution resilience.

B. The Three Aspects of Distribution Resilience

According to EPRI [14], grid resiliency is manifested in
three aspects: prevention, survivability, and recovery.

Prevention aims to protect the distribution system from
being damaged by extreme weather, intentional attacks or
other unexpected disasters. To that end, innovations are
required to be developed and included in existing design



standards, construction guidelines, and maintenance and
inspection procedures.

Survivability refers to the ability to maintain the basic level
of power supply to consumers in the event of a complete loss
of electrical service post the disaster event. The key elements
of survivability include the use of defensive microgrid
systems and mobile generators to power critical
infrastructures, including traffic signals, banks, hospitals,
schools, and communication equipment.

Recovery means the resiliency planner ought to provide
quick assessment on damaged grid, promptly deploy crew to
damaged assets and timely replace and repair failed circuits
or components. In recent storms such as Hurricane Harvey,
accessing affected areas was problematic because it is
difficult to route crews through streets that were blocked by
fallen trees and flooded zones [15].

C. The Objective and Contribution of This Paper

Based on the three resilience aspects, this paper aims to
propose a probabilistic framework to integrate these aspects
into the planning and operation of active distribution grid.
The contributions of this paper are summarized as follow:
First, unlike most literature that address one aspect of
distribution resilience, we propose a holistic resilience
planning framework in which prevention, survivability and
recovery are jointly taken into account. Second, we leverage
machine-repairman model to address the recovery process of
damaged lines, which is rarely reported in previous literature.

IV.MOMENTS OF WIND AND SOLAR POWER

In order to design a resilient and robust DG system, the
intermittency of renewable generation shall be analyzed and
appropriately incorporated into the planning model. We adopt
the moment method to characterize the power intermittency
of wind and solar units. A major advantage of the moment
method is that an explicit distribution of the DER power is
not required.

A. Modelling Wind Generation

In this section, we review the moment method for
modelling variable generation which is originally from [16].
Let P.(y) be the instantancous power at wind speed y, the
following cubic power curve has been widely used to estimate
the instantaneous WT power.

0, O<y<v,y>v,
P.(y)=10.57,,p4y", v, Sysy, )
P, v <y<v,

The power curve is segmented by three characteristic wind
speeds: v is the cut-in speed; v, is the rated speed; and v; is
the cut-off speed. Note that P,, is the rated power. p is the air
density, and 4 is the area covered by the blades of WT. 7max
is the energy conversion rate. The theoretical value of 7max is
0.5926, but the actual value usually is lower and within [0.3,
0.5]. Without loss of generality, the Weibull distribution is
used to characterize the annual wind speed profile. The
Weibull probability density function f,.(y) and the cumulative
distribution functions F,(y) are

S = (“’j[yjd_le-w“ ,
C C

(©))
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Fu(n)=1-e 0", 3)
where, ¢ and d are the scale and shape parameters. Based on
equations (1) and (2), the mean, the second moment, and the
variance of the wind power are estimated by

EIP,(V)]= [Py(0)fy(y)dly
0

=y [ £, () + P, (F, (v) = F, (v,)) )

Ve

E[P2(V)] =72 [x° £, (0dx + P2(F,(v,) = F, (), (5)

var(P,(Y)) = E[R}(V)]-(E[P, M), (©)
where 7=0.57,,., PA . In general the mean and the variance

are sufficient to characterize the wind power intermittency.
Although closed-form expressions are unavailable for
equations (4) and (6), numerical methods can be easily used
to compute E[P,(Y)] and var(P,(Y)).

B. Modelling Solar PV Generation

The output power of a PV system depends on multiple
factors, including the panel area, the conversion efficiency,
the operating temperature, the panel orientation, the tilt angle,
the calendar date, the daily hour, the latitude, and the weather
condition [17]. A generic PV power model incorporating all
these factors is given by

P.(s)=1,4,5(1-0.005(T, —25))= , @)

With  &=7,4,(1-0.0057, -25)). (8)

Here, Py(s) is the instantaneous PV power, 7 is the PV
efficiency with 7,=10-15%, A, is the panel area. T, is the PV
operating temperature (°C), and s is the solar irradiance (in
unit of W/m?) incident on the panel surface. Let S be the
random variable representing the solar irradiance, and s is its
realization. Then, the beta distribution for S during the course
of a year can be stated as follows [18].

a-1 b-1
T@rh) fs oS for0ssgs, (9)
s L (@T(D)\ s, S

where, a and b are the shape parameters of the distribution. s,,

is the maximum irradiance in a year. Based on equations (7)
and (9), the mean, and the variance of Py(s) are obtained as

fi(s)=

s
o adks
E[P(S)]= [P (s)f,(s)ds =—"= , (10)
0 a+b
abd’s?
Var(PS(S))zz—'". (11)
(a+b) (a+b+1)
Beta Distribution for Solar Irradiance
0.003 I —a=2,b=2,(D)
0.0025 - —a=4,b=4,(Il)
> = =
Z oo, I a=1.8,b=3,(IIl)
g —a=3,b=1.8,(IV)
z 0.0015 -
Z o001 /1 v
i
& 0.0005 -

400 600

Solar Irradiance (W/m?)
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Fig. 1. Annual Solar Irradiance Distributions



Fig. 1 shows various types of beta probability density
functions to mimic different solar irradiance profile during
the course of a year. Note that all curves are plotted assuming
Sp=800 W/m?.

C. Moments of System Power and Load

We define several notations before presenting the
aggregate system power. Let m be the number of the DER
types that are potentially placed in the distribution network.
Let n be the number of nodes where DER units can be placed.
Let x; be the integer denoting the number of units of DER
type i to be placed at node j. Then x=[x11, X12, ..., Xmn] is the
decision vector corresponding to the DER sizing and siting in
the distribution network. Let P(x) and D be the aggregate
system power and load, respectively. Then,

P(X)=33x,P

=1 =

(12)
(13)

where Pj is a random variable representing the power output
of a single unit of DER type i at node j. Note D; is a also
random variable representing the demand at node j. We can
further estimate the mean and the variance of P(x) and D as

D=YD,,

=

Hr = FLPO)I= 225, EIR ] (14)
o2, = var(P(x)) = 22x2 var(P) (15)
u,)=E[D]=§E[D,], (16)
02 = var(D) = ,Z::Var(D/) : (17

D. Power Quality Criterion

In power industry, LOLP is a fundamental metric used to
monitor and control the service reliability. It is defined as the
probability that the power is less than the demand at any time.
Then LOLP can be defined as

P{Px)<D}< ¢, (18)
where ¢ is the probability of power outage that should be
kept as small as possible.

The central limit theorem (CLT) states that the sum of the
mutually independent random variables having limited mean
and variance tends to be normally distributed. CLT is still
valid when individual variables are weakly correlated. Based
on CLT, it is safe to claim that D is normally distributed
regardless the underlying distribution of D;. Assuming nodal
generation and loads are mutually independent, based on CLT
Equation (18) can be translated into its deterministic
counterpart as follows,

:up(x) ZIUD +ZH1‘ (O-Iz’(x) +O—12))1/2 s (19)

where, Z is the Z-value of the standard normal

1-a,

distribution. The inequality shows that injecting DER units is
able to increase the mean power, yet the overall variance also
increases. Last but not the least, the moment method in
Equations (14)-(17) actually relax the normality assumption
that are often imposed on P; and D; in existing literature.

V. PLANNING FOR PREVENTION AND RECOVERY
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A. Prevention through Scheduled Maintenance

System availability can be improved through preventative
maintenance (PM) by pro-actively inspecting and replacing
aging pats prior to their failure. Age-based PM is perhaps the
most widely used maintenance strategy in power industry
because of its scheduling flexibility and easy management
[19], [20]. When generating units are maintained under age-
based PM policy, the goal is to find the optimum maintenance
interval 7* such that the maintenance cost per unit time,
denoted as u(7), is minimized. Such an optimum interval can
be determined by minimizing the following equation [21].

cDF@) +cPR(7)
[y R(z)dz

where, R(7) is the reliability function of a DER unit and F(7)
is the cumulative distribution function with F(7)=1-R(7).
Parameters ¢ and ¢ represent the cost for performing a
failure replacement and a planned replacement, respectively.
Typically ¢ >> ¢, because the downtime cost of an
unexpected failure is much higher than a planned replacement.

Due to its versatile shapes, the Weibull distribution is
perhaps the most widely used model to estimate the lifetime
of systems. The Weibull reliability function is often
expressed as

minu(7*) = s (20)

B
R(t) = exp[— (;j } with 7, £>0 @1

where 77 and f are the scale and shape parameters,
respectively. By changing £ (i.e. f<1, f=1, or >1), equation
(21) can characterize decreasing, constant, and increasing
failure rates. Distinctions must be made between equation (2)
and equation (21). In the former, the Weibull distribution is
used to model the random behavior of wind speed. Here it is
used to estimate the time-to-failure of DER units.

B. Operational Availability of DG System

High equipment availability is desirable to maximize the
energy throughput given the intermittent wind speed and solar
radiation. Equipment availability is usually defined as the
ratio of the uptime over the sum of the uptime and downtime.
Let 4 be the availability of a DER unit, then

IoT R(z)dz

A(7) (22)

[y R(2)dz +1,R(7) +1 (F(7)
where, ¢, and #rrepresent the downtime duration for a planned
and a failure replacement, respectively. In general #,<t;
because in a planned maintenance, the spare parts and the
labor can be prepared in advance, avoiding unnecessary
delays otherwise occurring in an unexpected failure.

Before deriving the availability model for the entire DG
system group, let i=1, 2, ..., m be the index denoting the
available DER types including the substation. For instance, if
the generator pool consist of 1 MW WT, 1.5 MW WT, and
0.5 MW PV, and 10 MW substation, then i=1, 2, 3, and 4. The
availability of the entire DG group can be expressed as

Ap (D) =TIT1(4,(z))" .
i=l j=I1
Equation (23) is obtained assuming the reliability of the

DG system group is equivalent to a series system. A;( ) is the
availability of DER type i as defined in equation (22), and x;;

(23)



is an integer variable representing whether DER type i is
installed on node j or not. For instance, if x;=1, meaning one
unit of DER type i is installed at node j, or x;=0 otherwise. In
(23), it is also assumed that the DER units of the same type
adopt the same maintenance schedule, regardless of their
physical locations. This assumption, however, can be relaxed
if 7 is location-dependent in the distribution network.

C. Repair and Recovery Model

The recovery or restoration process of distribution branches
can be treated as machine-repairman problem. Let K be the
number of distribution branches that are susceptible to failure
in the extreme weather. Let R be the available teams to repair
and restore the damaged distribution branches. The transition
diagram of the restoration process is given as follows,

KA K-DA  (K-)A (K-RtDA  (K-R)A 21 y
u 2u 3u Ru Ru Ru Ru

Figure 2. Transition Diagram of Repairing Distribution Lines

Note that the time-to-failure of distribution branches is
assumed to be exponentially distributed with rate A (i.e.
failures per unit time) during the extreme weather period.
Similarly the time-to-recovery of damaged branch is also
exponential with the repair rate x4 (i.e. number of lines
repaired per unit time). Here failure means a line is
disconnected, and repair means a disconnected line is
recovered. Now performance metrics such as number of
damaged branches and the mean recovery time can be derived
from the Markov transition diagram in Figure 2. Let L be the
expected damaged branches, and L, be the damaged branches
waiting for being repaired. Then

L=Ykx, (24)
L= ﬁ;(k “Ry, 25)

where 7; is the steady-state probability that the number of
damaged branches is & for for /=0, 1, ..., K. with

T, = IK , for k=0, (26)
1+>¢,
k=1
T, =¢nx,, fork=1,2, .., K 27)
and
K k
¢ :[ j(lj , fork=1,2, ....., R, (28)
k )\ u
KYAY) &
¢, = — —, for i=R+1, R+2, ..., K. (29)
k\u) RR

We are also interested in the duration of recovering a
damaged branch. Let I be the duration from when the branch
is damaged to when it is recovered. According to the Little’s
Law, W can be estimated by

L

We—e— ",
> (K ~k)in,

(30)

where L is given in Equation (24).

VI. PLANNING FOR SURVIVABILITY

A. System Cost

The goal of the DG planner is to determine the siting and
sizing of WT and PV units in the distribution network such
that the annualized system cost is minimized. Since the output
of WT and PV is stochastic, we minimize the expected
annualized cost of the active distribution system. That is

Coo®) =SSN, a P+, 535z, (b +¢)AP], (1)

i=l j=1 1=1 i=l j=l =l
r(l+7)"

In the objective function, ¢r,4) is the capitla recovery

factor used to distribute the capital cost over / year at interest

rate  in year ¢. The value of x is a binary decision variable
representing whether DER type i is installed at node j in year

t for =1, 2, ..

installation of DER type i on node j by ¢. Also a; represents
the capacity cost in $/MW. The capacity of DER type i at
node j is represented by P; . The value b; represents the
operating cost in $/MWh, and c¢; is the cost in $/MWh of the
environmental penalty for conventional energy source from
the substation. For renewable energy, ¢; is a negative value
capturing the government credits or tax rebate. In addition, m
is the number of available DER types, 7 is the number nodes
to place DER units, and 7 is the number of the planning years.

with  @(r,h)= (32)

1 . .
., T. Here z, =%, x, is the cumulative

B. Optimization Model

The goal of the model is to determine the generator
capacity and placement such that the total system cost in
equation (31) is minimized while the LOLP and power
quality are assured. Such a design can be translated into the
following optimization model,

Problem P1

Minimize: f(x)=C,.(X) (33)
Subject to:

Hoxy 2 U, +Zlfa, (O-Iz’(x) +O—[2>)]’2 , for V¢ (34)

Ve =Zia 200 S oy SVt Ziy 200,y » TOT Vjand V¢. (35)

min (lan)/2 max (=) /27 V(%) 2

m

me <1, for Vj and V¢ (36)
=]

z, = ix.,k . for Vi, Vj and V¢ (37)
x5€ {0, 1}, for Vi, Vj, and V¢ (38)

The objective function (33) is to minimize the annualized
system cost. The LOLP is defined by constraint (34). The
power quality is governed by constraint (35), and its detailed
derivation is available in [22]. Note that 4, . is the mean

voltage at node j in year ¢, and o, , is the voltage standard

Vi (x)
deviation at node j in year ¢. Constraint (36) simply states that
no more than one DER unit is placed on a node in year #. This
condition however can be relaxed if there is no space
limitation on the placement of DER units.

Problem P1 belongs to the class of mixed-integer, non-
linear programming problems. This type of problem in
general is difficult to solve due to the combinatorial nature



combined with the non-linearity issue. For instance, given a
9-node network with five types of DER units, the number of
decision variables reaches 135 for a three-year planning. For
a ten-year planning, the total decision variables become 450.
As the number of decision variables increases, more
advanced solution techniques are required. In the next section,
we decompose a 9-node three-year DG planning problem into
a three-phase optimization model, each being solved
sequentially using Microsoft Excel with the Solver Add-in,
and the results are further verified by commercial solver
Cplex.

VIIL NUMERICAL EXPERIMENT

A. Network Topology and Load Profile

In this section, we solve a simple network to demonstrate
the application and performance of Problem P1. Originally
from [23], the network in Figure 3 consists of nine nodes that
distribute power to end consumers through eight branches.
Node 9 is intended for a location of the substation because
substation handles large buck energy, and it shall be placed in
the center of the network. Nodes 1 through 8 are the locations
where wind turbines and PV panels can be paced during the
planning horizon. There are seven types of DER units
available: three wind turbines (1 MW, 2 MW, and 3 MW),
two PV systems (0.25 MW and 0.5 MW); and two substations
(45 MW and 50 MW). Here substations are treated as DER
units just for mathematical convenience. Without loss of
generality, line resistance between two adjacent nodes is
assumed to be 1 Q. We adopt the DC circuit to demonstrate
the proposed DG integration by considering the fact that the
system is planned at the strategic level with less influence of
reactive power.

©) (3) «— node

_ Distribution
~ Branch

Figure 3: A 9-Node Distribution Network [23]

Table 1 lists the demand growth over the 3-year period.
In this study, it is assumed that both the mean and the variance
increase with the time. The LOLP criterion is set with a;=0.01
and the power quality confidence is a,=0.9. The nominal
voltage is Vpg=33 KV, and the upper and lower voltage is
Vinax=1.95Vpg and Viin=1.95Vpg, respectively.

Table 1: Mean and Variance of Load in Three Years (Unit: MW)

D Year 1 Year 2 Year 3

J / E[D] | Var(D) | E[D] | Var(D) | E[D] | Var(D)
1 D, 7.640 0.146 7.869 0.155 8.105 0.164
2 D, | 8720 0.190 8.982 0.201 9.251 0.213
3 D; | 4580 0.052 4.717 0.055 4.859 0.058
4 D, | 4.000 0.040 4.120 0.042 4.244 0.045
5 Ds | 5.140 0.066 5.294 0.070 5.453 0.074
6 D¢ | 6.110 0.093 6.293 0.099 6.482 0.104
7 D; | 7.640 0.146 7.869 0.155 8.105 0.164
8 Dy | 7.270 0.132 7.488 0.140 7.713 0.148
9 Dy | 0.000 0.000 0.000 0.000 0.000 0.000
System 51.10 0.865 52.63 0917 54.21 0.972

Table 2 presents the costs associated with equipment
installation, maintenance and carbon credits. Capacity factor
computes the mean output power of a DER unit relative to its
name-plated capacity. Though the values of capacity factor
vary with the local wind speed and solar radiation, it has less
impact on the justification of the survivability of the
distribution power via defensive microgrid operation.

Table 2: Power Capacity and Costs for DER Units (SS=Substation)

i | DER | P© a; b; i Capacity
Type | (MW) | (/MW) | ($/MWh) | ($/MWh) | factor

1 | WTI1 1 910,000 10 -5 0.4

2 | WT2 2 773,500 9 -5 0.35

3 | WT3 3 637,000 8 -5 0.3

4 | PVI 0.25 2,000,000 3 -10 0.3

5T Pv2 | 05 | 1.750.000 2 10 03

6 | SSI 45 273,000 16 10 1.0

7 SS2 50 227,500 16 10 1.0

B. The Result of Siting and Sizing

Based on the data in Tables 1 and 2, we use Excel solver
to find the sizing and sizing of DER for three years, and the
results are summarized in Table 3. For year 1, nodes 2, 4, and
6 the equipment chosen were 2 MW wind turbines. For nodes
1 and 8 the equipment chosen were 3 MW wind turbines. As
for node 9, it is only intended for a substation. The optimal
solution chosen was SS2 that produces SOMW. For year 2,
the equipment chosen for nodes 2 and 7 were 3 MW wind
turbines. Finally in year 3, the optimal solution of equipment
added to nodes 4 through 7 were PV panels with 0.5 MW. For
node 8 the equipment chosen were 3 MW wind turbines. The
optimal solution resulted in a total cost of $13,706,237 for
total three years.

Table 3: DER Allocation of Years 1, 2 and 3
DER\Node 1 2 3 4 5 6 7 8 9

WT1

WT2 1 1 1

WT3 1 1

PV1

PV2

SS1

SS2 1

Year 1

DER\Node 1 2 3 4 5 6 7 8 9
WT1

Year 2

DER\Node 1 2 3 4 5 6 7 8 9
WT1
WT2
WT3 1
PV1
PV2 1 1 1 1
SS1
SS2

Year 3

C. Prevention

The protection for the power supply in the 9-node
distribution network is achieved by progressively integrating
WT and PV units across nodes 1-8 over the three years. Table
4 summarizes the amount of the power being protected from
years 1 to 3 by computing the maximum available power of
DER power of individual nodes. For instance, in Year 1, WT3
is installed on node 1, this means 39.3% of 7.64 MW load is
protected by the local microgrid because the maximum



capacity of WT3 is 3 MW. In year 3, note 8 have installed
total 6 MW microgrid power, thus 6/7.713=77.8% of the local
demand is protected. At the system level, the annual protected
power is 23.6% in year one, 34.2% in year two and 42.4% in
year three. This simple example clearly shows that distributed
power integration can effectively prevent or protect the power
shortage in contingency when the substation or the
distribution lines are damaged.

Table 4: The Amount of Power Being Protected in Years 1-3

Year 1
Node j| 1 2 3 4 5 6 7 8 9
Mean (MW)| 7.640 8.720 4.580 4.000 5.140 6.110 7.640 7.270 0
Microgrid MW)| 3 2 0 2 0 2 0 3 0
Protection (%) 39.3 229 0.0 50.0 0.0 327 0.0 413 0
Year2
Node j| 1 2 3 4 5 6 7 8 9
Mean (MW)| 7.869 8.982 4.717 4.120 5.294 6.293 7.869 7.488 0
Microgrid MW)| 3 5 0 2 0 2 3 3 0
Protection (%)[ 38.1 557 0.0 485 0.0 31.8 38.1 40.1 0
Year 3
Nodej| 1 2 3 4 5 6 7 8 9
Mean (MW)| 8.105 9.251 4.859 4.244 5.453 6.482 8.105 7.713 0
Microgrid MW)| 3 5 0 25 05 25 35 6 0
Protection (%) 37.0 54.0 0.0 589 9.2 38.6 432 778 0

D. Survivability

A key criterion to measure the survivability is to assess the
robustness of the distribution when it is attacked by extreme
weather events or other natural disasters. Let us consider one
extreme case where the substation power is totally lost while

all the distribution branches are still connected and functional.

Since it is in the contingent mode, we also assume the power
demand of each node is reduced by 50 percent to maintain the
operation of critical loads. We compute the survivability for
years 1 to 3 and the results are summarized in table 5. As
shown in the table, node 4 has the largest survivability with
97.1% of'the critical load being met. Moving into year 2, node
2 has the largest survivability with 111.3% of the critical load
being met. This implies that node 2 has surplus power that
will flow to node 1. Thus the actual power of node 1 increase
from 3 MW to 3.51 MW (i.e. 5+3-4.491). In year 3, there are
three nodes have surplus power, these are nodes 2, 4, and 8.
Obviously the surplus power will enter nodes 1, 3 and 7,
respectively. This indeed increases the survivability of the
neighborhood nodes.

Table 5: Survivability in Years 1-3 with Lost Substation
Year1

Nodej| 1 2 3 4 5 6 7 8 9

Mean (MW)| 3.935 4.491 2.359 2.060 2.647 3.147 3.935 3.744 0.000

Microgrid MW)| 3 2 0 2 0 2 0 3 0
Survivability (%)| 76.2 44,5 0.0 971 0.0 63.6 0.0  80.1 0
Year 2
Nodej| 1 2 3 4 5 6 7 8 9

Mean (MW)| 3.935 4.491 2.359 2.060 2.647 3.147 3.935 3.744 0.000
Microgrid MW)| 3 5 0 2 0 2 3 3 0
Survivability (%)| 76.2 111.3 0.0 971 0.0 63.6 76.2 80.1 0

Year 3

Nodej| 1 2 3 4 5 6 7 8

9

Mean (MW)| 4.053 4.626 2.429 2.122 2.727 3.241 4.053 3.856 0
Microgrid MW)| 3 5 0 25 05 25 35 6 0
Survivability (%)| 74.0 108.1 0.0 1178 183 77.1 86.4 1556 0
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E. Recovery

As discussed in Section V, the recovery and repair
process depends on the failure rate of the distribution lines
and the repair capacity. We compare the recovery time under
different weather severity manifested by A=1line/hour and
A=0.5 line/hour. Obviously higher value of A implies a
harsher weather condition. K=8 because there is eight
distribution branches in Figure 3, and R=2 means two teams
are available performing the recovery job. We compute the
expected number of failed lines L and the expected recovery
time W per line based on Equations (24) and (30), respectively.
Both L and W are calculated as the repair rate ¢ increases from
0.1 to 5 line/hour. Usually the repair rate is proportional to the
size of the repair team. The results are shown in Figures 4 and
5.

A=1 line/hour, K=8, R=2
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Figure 4: Recovery Time and Disconnected Branches with A=1, R=2
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Figure 5: Recovery Time and Disconnected Branches with 4=0.5, R=2
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There are two observations made from Figures 4 and 5.
First, ¢ has a decisive role in terms of the recovery time. For
instance, with ¢#=0.1 line/hour, it takes 39 hours for bringing
a damaged branch back to operation under a severe weather.
However, even if the weather severity is reduced by a half
(from A=1 to A=0.5), the duration of the recovery is still 38
hours per line under #=0.1 line/hour. Finally we examine
whether increasing the number of repair teams can expedite
the recovery time. In Figure 6, we increases R to 3, and re-
compute L and W under A=1. The recovery time is reduced
from 39 hours to 25.7 hours, but the effectiveness is not very
impressive compared with the result if increasing the repair
rate to 0.5 lines/hour. The latter is able to restore a line within
4.3 hours.

VIIL CONCLUSION

This paper presents a probabilistic framework to plan and
analyze the resilience of distribution grid via variable power
integration. We approach the grid resilience from three
aspects: prevention, survivability, and recovery. Prevention is
achieved through pro-active maintenance by inspecting and
replacing aging components prior to failure. Prevention can
also be realized through the integration of variable microgrid
power for increasing the supply robustness. Survivability is
attained through the defensive microgrid operation and
topological reconfiguration in contingency. Recovery is
assessed and planned through the machine-repairman Markov
model. The variations of power, load and voltage are captured
by the first and second moments and the chance constraints.

Three observations are obtained from the numerical
example. First, the 9-node testing network indicates that 100
percent of power protection can be achieved sequentially in
three years by concurrently injecting WT and PV units.
Second, the most influential factor affecting the recovery time
is the repair rate, not necessary the weather severity and the
number of repair teams. Third, wind- and solar-based
microgrid generation is advantageous over fuel-based
generator against cascading failures. This is because the
lifetime of fuel supply is likely to be destroyed post the attack
of extreme weather or earthquake. Since WT and PV
generation relies on the natural resources, there is no need of
fuel supply. For the future effort, we will incorporate the
occurrence rate and the duration of extreme events in the
planning model that will be tested in a setting of large and
complex grid systems.
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