
Planning for Distribution Resilience under Variable 
Generation: Prevention, Surviving and Recovery  

Tongdan Jin1, Nhi Mai1, Yi Ding2, Long Vo1, Rana Dawud1 
1 Ingram School of Engineering 

Texas State University, San Marco, TX 7866, USA 
{tj17@, nm1178@, lv1098@, rd1156@txstate.edu} 

2School of Electrical Engineering 
Zhejiang University, Hangzhou, Zhejiang, 310000, China  

{yiding@zju.edu.cn} 

 
Abstract—Power grids based on traditional N-1 design 

criteria are no longer adequate because these designs do not 
withstand extreme weather events or cascading failures. 
Microgrid system has the capability of enhancing grid resilience 
through defensive or islanded operations in contingency. This 
paper presents a probabilistic framework for planning resilient 
distribution system via distributed wind and solar integration. 
We first define three aspects of resilient distribution system, 
namely prevention, survivability and recovery. Then we review 
the distributed generation planning models that comprehend 
moment estimation, chance constraints and bi-directional power 
flow. We strive to achieve two objectives: 1) enhancing the grid 
survivability when distribution lines are damaged or 
disconnected in the aftermath of disaster attack; and 2) 
accelerating the recovery of damaged assets through pro-active 
maintenance and repair services. A simple 9-node network is 
provided to demonstrate the application of the proposed 
resilience planning framework. 

Keywords—microgrid; extreme weather; resilience; 
distributed generation; central limit theorem 

I. NOMENCLATURE 
Y, y= Random wind speed, and its realization 

fw(y)= Wind speed probability density function 
Fw(y)= Wind speed cumulative distribution function 

c, d= Weibull scale and shape parameters for Y 
Pm= Rated power for wind turbine 

Pw(Y)= Wind turbine output power at wind speed Y 
vc, vr, vs= Cut-in, rated, and cut-off speeds, respectively 

ηmax= Conversion rate from wind to electric power 
�= Air density  
A= Area covered by wind turbine blades 
γ= 0.5ηmaxρA 

m= Number of DER types in the DG system 
n= Number of nodes in the DG system 
l= Number of branches in the DG system 

Ps(S)= PV output power 
S, s= Solar irradiance and its realization, 

respectively 
fs(s)= Beta distribution function for solar irradiance 
a, b= Beta distribution parameter 

sm= Maximum solar irradiance (W/m2) 
 ηs= Photovoltaic conversion efficiency 
As= PV panel area (m2) 
To= PV operating temperature (oC) 

Pij
c= Power capacity of DER type i at node j 

Pij= Instant output power of DER type i at node j, 
a random variable 

D= Total system demand, a random variable 
Dj= Demand at node  j, a random variable 

Ri(t)= Reliability function for DER type i 
ηi, βi= Scale and shape parameters in Ri(t) 
u(τ)= DER maintenance cost per unit time 

c(f)= Cost for performing a corrective maintenance 
c(p)= Cost for performing a planned maintenance 

tf, tp= Failure and planned downtimes, respectively 
ta= Annual operating hours for DER units 

A(τ)= Availability of a single DER unit 
ADG(τ)= Availability of the DG system group 

K= Number of branches prone to failure in 
extreme weather  

R= Number of repair teams 
λ= Failure rate of branches in extreme weather 
μ= Repair rate of branches in extreme weather 
T= Number of planning years 

CDG= Annualized DG system cost 
φ(r, h)= Formula for computing present annuity 

r= Annual compound interest rate 
h= Years for paying off the DER capital 

aij= Cost per MW of installing DER type i at 
node j 

bij= Operation cost per MWh for DER i at node j 
cij= Credits or penalty per MWh for putting DER 

i at node j 
VDG= Nominal voltage of the DG system 

)(xjtVμ = Mean voltage at node j in year t 

)(xjtVσ = Voltage standard deviation at node j in year t 

Vmin= Low voltage limit 
Vmax= Upper voltage limit 

α1= Loss-of-load probability criterion 
α2= Confidence level for voltage variation  
xijt= DER type i at node j in year t, binary decision 

variable 
zijt= Cumulative number of DER type i at node j by 

year t, and 1
t

ijt ijtkz x==�  
ti= Maintenance time of DER i, decision variable 

 

II. INTRODUCTION 
Electric distribution grid planning has long focused on the 

reliability, affordability, and efficiency of power delivery to 
end users; however, this focus has primarily been outside the 
realm of natural disasters. Enhancing the resilience of electric 
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grid against extreme weather events becomes a fundamental 
task for all the stakeholders in generation, transmission and 
distribution sectors. According to [1], resilience is defined as 
the ability of a power system to anticipate, resist, absorb, 
respond to, adapt to, and recover from unexpected disruptions. 
Panteli and Mancarella [2] state that events considered in 
resilience management differs from reliability analysis owing 
to two unique features: 1) high impact with low probability of 
occurrence; and 2) catastrophic consequence resulted from 
cascading failures.  

Natural disasters like earthquakes, tsunami, hurricanes, 
and tornados have caused tremendous economic losses, 
environmental damages and human casualties, rendering the 
traditional N-1 reliability criterion ineffective to withstand 
these extreme events. For instance, Hurricane Sandy was an 
N-90 event with estimated economic losses up to $50 billion.  
As a result, power outages throughout the eastern US lasted 
up to 30 days [3]. Extreme events are also responsible for the 
common cause failures that occur when two or more 
infrastructures are affected simultaneously. In fact, most 
cascading failures in power system occur largely due to the 
common cause failures. Zhou et al. [4] investigate the 2008 
Great Ice Storm in Southern China, and find that 
interdependency of coal mining, supply lifeline, and harsh 
weather created cascading effects on the electric power 
supply network. This led to a series of failures in regional 
power generation and delivery processes, causing the loss of 
power to nearly 15 million homes in Southern China. 

Distributed generation (DG) system integrating wind and 
solar power is emerging as a new energy supply method to 
meet the growing electricity demand and environmental 
requirements. Unlike a central power plant, the capacity of 
distributed energy resource (DER) is relatively small and less 
than 10 MW, while the capacity of a central generating unit 
often exceeds 500 MW. Typical DER units include wind 
turbines (WT), solar photovoltaic (PV), fuel cells, diesel 
generators, micro-turbines, combined heat and power, and 
small-size batteries. They can be installed in the distribution 
network or at the consumption sites. WT and PV are in 
particular appealing because of their zero emissions and no 
use of fossil fuels.  

In addition to environmental sustainability, DG technology 
fosters the energy independence, saves the transmission 
expansion cost, and improves grid resilience in extreme 
events. A good example of resilience performance is the 
Roppongi Hills microgrid in Tokyo. During the Great East 
Japan earthquake in 2011, natural gas based Roppongi Hill 
microgrids was able to maintain electricity supply even 
though the main grid was dysfunctional for several days, 
highlighting the grid survivability via microgrid operation in 
adverse condition [5]. The world-wide installation of DER 
units and microgrid capacity consistently increases in the last 
decade. In 2012 alone the new installation of DER reached 
142 GW, representing 39% share of the new capacity addition 
of that year [6]. The rise of DG systems opens the way for 
designing and operating resilient distribution grid via 
microgrid integration. 

This paper presents a probabilistic framework for 
designing resilient distribution system through the integration 
of onsite wind and solar generation. We aim to achieve two 
objectives: 1) enhancing the grid survivability when the 
distribution lines are damaged or disconnected post the 

disaster attack; and 2) accelerating the restoration of damaged 
utility assets through pro-active maintenance and repair 
services. To these ends, we first define three resilience aspects 
pertaining to distribution systems. Then, we review the 
moment-based modeling approach to analyzing the power 
intermittency, voltage variation and bidirectional power flow. 

The remainder of the paper is organized as follows. Section 
3 elaborates three key aspects of distribution resilience. 
Section 4 characterizes the intermittency of wind and solar 
generation and their impacts on power quality. Sections 5 
discusses the prevention and recovery aspects via pro-active 
maintenance and repair policy. Section 6 formulates a simple 
DG planning model to enhance the grid survivability through 
defensive microgrid operation. In Section 7, we demonstrate 
the proposed planning model on a 9-node distribution 
network. Section 8 concludes the paper. 

III. THREE ASPECTS OF DISTRIBUTION RESILIENCE 

A. Literature Review 
Significant research effort has been focused on optimal 

design of the distribution grid, with many approaches 
incorporating integrated resilience features. We briefly 
survey the literature in this area. 

Hardening is an effective approach to attaining the grid 
resilience by adding redundant lines, using underground 
cables, fortifying poles, elevating substation,  and trimming 
vegetation [7], [8]. Recently, the development of aerial drone 
programs to assess storm damage and tree vegetation can 
provide onsite real-time data of electricity infrastructure. In 
general, upgrading power infrastructure could be costly in 
terms of materials, labor and time. It could also be constrained 
by environmental policies and government regulation.  

An alternative approach to power resilience is to develop 
active distribution networks in which DER units or microgrid 
systems serve as backup units or operate in islanded mode in 
contingency. Kwasinski et al. [9] assess the availability of 
different DER units upon natural disaster onslaught, and find 
that WT and PV outperform fuel-based generators because 
the fossil fuel supply line could be damaged post the disaster 
attack. Liu et al. [10] use Monte Carlo simulation to compare 
the resilience between network hardening, topology 
reconfiguration and microgrid operations on IEEE 30-bus and 
118-bus systems. Shao [11] propose a cogeneration model to 
enhance the energy resilience using distribution electricity 
and natural gas system. Panteli et al. [12] propose a set of 
severity risk index to determine the creation of defensive 
island microgrid when current network topology and the 
branches are at higher risk of tripping due to severe weather. 
Bie et al. [13] present a quantitative framework to evaluate 
power grid resilience using metrics like LOLP and EDNS. 
These studies agree that topology reconfiguration and 
defensive microgrid are effective to strengthen the 
distribution resilience.  

B. The Three Aspects of Distribution Resilience 
According to EPRI [14], grid resiliency is manifested in 

three aspects: prevention, survivability, and recovery.  
Prevention aims to protect the distribution system from 

being damaged by extreme weather, intentional attacks or 
other unexpected disasters. To that end, innovations are 
required to be developed and included in existing design 
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standards, construction guidelines, and maintenance and 
inspection procedures.  

Survivability refers to the ability to maintain the basic level 
of power supply to consumers in the event of a complete loss 
of electrical service post the disaster event. The key elements 
of survivability include the use of defensive microgrid 
systems and mobile generators to power critical 
infrastructures, including traffic signals, banks, hospitals, 
schools, and communication equipment.  

Recovery means the resiliency planner ought to provide 
quick assessment on damaged grid, promptly deploy crew to 
damaged assets and timely replace and repair failed circuits 
or components. In recent storms such as Hurricane Harvey, 
accessing affected areas was problematic because it is 
difficult to route crews through streets that were blocked by 
fallen trees and flooded zones [15]. 

C. The Objective and Contribution of This Paper 
Based on the three resilience aspects, this paper aims to 

propose a probabilistic framework to integrate these aspects 
into the planning and operation of active distribution grid. 
The contributions of this paper are summarized as follow: 
First, unlike most literature that address one aspect of 
distribution resilience, we propose a holistic resilience 
planning framework in which prevention, survivability and 
recovery are jointly taken into account. Second, we leverage 
machine-repairman model to address the recovery process of 
damaged lines, which is rarely reported in previous literature.   

IV. MOMENTS  OF WIND AND SOLAR POWER 
In order to design a resilient and robust DG system, the 

intermittency of renewable generation shall be analyzed and 
appropriately incorporated into the planning model. We adopt 
the moment method to characterize the power intermittency 
of wind and solar units. A major advantage of the moment 
method is that an explicit distribution of the DER power is 
not required. 

A. Modelling Wind Generation 

In this section, we review the moment method for 
modelling variable generation which is originally from [16]. 
Let Pw(y) be the instantaneous power at wind speed y, the 
following cubic power curve has been widely used to estimate 
the instantaneous WT power.   
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The power curve is segmented by three characteristic wind 
speeds: vc is the cut-in speed; vr is the rated speed; and vs is 
the cut-off speed. Note that Pm is the rated power. � is the air 
density, and A is the area covered by the blades of WT. ηmax 
is the energy conversion rate. The theoretical value of ηmax is 
0.5926, but the actual value usually is lower and within [0.3, 
0.5]. Without loss of generality, the Weibull distribution is 
used to characterize the annual wind speed profile. The 
Weibull probability density function fw(y) and the cumulative 
distribution functions Fw(y) are   
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where, c and d are the scale and shape parameters. Based on 
equations (1) and (2), the mean, the second moment, and the 
variance of the wind power are estimated by 



+∞

=
0

)()()]([ dyyfyPYPE www                            

( ))()()(3
rwswm

v

v
w vFvFPdxyfx

r

c

−+= 
γ ,               (4) 

( ))()()()]([ 2622
rwswm

v

v
ww vFvFPdxyfxYPE

r

c

−+= 
γ ,      (5) 

         ( )22 )]([)]([))(var( YPEYPEYP www −= ,       (6) 
where γ= Aρηmax5.0 . In general the mean and the variance 
are sufficient to characterize the wind power intermittency. 
Although closed-form expressions are unavailable for 
equations (4) and (6), numerical methods can be easily used 
to compute E[Pw(Y)] and var(Pw(Y)). 

B. Modelling Solar PV Generation 

The output power of a PV system depends on multiple 
factors, including the panel area, the conversion efficiency, 
the operating temperature, the panel orientation, the tilt angle, 
the calendar date, the daily hour, the latitude, and the weather 
condition [17]. A generic PV power model incorporating all 
these factors is given by  

( ) sTsAsP osss δη =−−= )25(005.01)( ,           (7) 
With        ( ))25(005.01 −−= oss TAηδ .                     (8) 
Here, Ps(s) is the instantaneous PV power, ηs is the PV 

efficiency with  ηs=10-15%, As is the panel area. To is the PV 
operating temperature (oC), and s is the solar irradiance (in 
unit of W/m2) incident on the panel surface. Let S be the 
random variable representing the solar irradiance, and s is its 
realization. Then, the beta distribution for S during the course 
of a year can be stated as follows [18]. 
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where, a and b are the shape parameters of the distribution. sm 
is the maximum irradiance in a year. Based on equations (7) 
and (9), the mean, and the variance of Ps(s) are obtained as 
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Fig. 1. Annual Solar Irradiance Distributions 
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Fig. 1 shows various types of beta probability density 
functions to mimic different solar irradiance profile during 
the course of a year. Note that all curves are plotted assuming 
sm=800 W/m2. 

C. Moments of System Power and Load 

We define several notations before presenting the 
aggregate system power. Let m be the number of the DER 
types that are potentially placed in the distribution network. 
Let n be the number of nodes where DER units can be placed. 
Let xij be the integer denoting the number of units of DER 
type i to be placed at node j. Then x=[x11, x12, …, xmn] is the 
decision vector corresponding to the DER sizing and siting in 
the distribution network. Let P(x) and D be the aggregate 
system power and load, respectively. Then,  
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where Pij is a random variable representing the power output 
of a single unit of DER type i at node j. Note Dj is a also 
random variable representing the demand at node j. We can 
further estimate the mean and the variance of P(x) and D as 
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D. Power Quality Criterion 
In power industry, LOLP is a fundamental metric used to 

monitor and control the service reliability. It is defined as the 
probability that the power is less than the demand at any time. 
Then LOLP can be defined as 
  1})({ α≤< DPP x ,       (18) 
where α1 is the probability of power outage that should be 
kept as small as possible.  

The central limit theorem (CLT) states that the sum of the 
mutually independent random variables having limited mean 
and variance tends to be normally distributed. CLT is still 
valid when individual variables are weakly correlated. Based 
on CLT, it is safe to claim that D is normally distributed 
regardless the underlying distribution of Dj. Assuming nodal 
generation and loads are mutually independent, based on CLT 
Equation (18) can be translated into its deterministic 
counterpart as follows, 
  2/122

)(1)( )(
1 DPDP Z σσμμ α ++≥ − xx ,      (19) 

where, 
11 α−Z  is the Z-value of the standard normal 

distribution. The inequality shows that injecting DER units is 
able to increase the mean power, yet the overall variance also 
increases. Last but not the least, the moment method in 
Equations (14)-(17) actually relax the normality assumption 
that are often imposed on Pij and Dj in existing literature. 

V. PLANNING FOR PREVENTION AND RECOVERY  

A. Prevention through Scheduled Maintenance 
System availability can be improved through preventative 

maintenance (PM) by pro-actively inspecting and replacing 
aging pats prior to their failure. Age-based PM is perhaps the 
most widely used maintenance strategy in power industry 
because of its scheduling flexibility and easy management 
[19], [20]. When generating units are maintained under age-
based PM policy, the goal is to find the optimum maintenance 
interval τ* such that the maintenance cost per unit time, 
denoted as u(τ), is minimized. Such an optimum interval can 
be determined by minimizing the following equation [21]. 
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where, R(τ) is the reliability function of a DER unit and F(τ) 
is the cumulative distribution function with F(τ)=1-R(τ). 
Parameters c(f)  and c(p) represent the cost for performing a 
failure replacement and a planned replacement, respectively. 
Typically c(f) >> c(p), because the downtime cost of an 
unexpected failure is much higher than a planned replacement.  

Due to its versatile shapes, the Weibull distribution is 
perhaps the most widely used model to estimate the lifetime 
of systems. The Weibull reliability function is often 
expressed as 
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where  η and β are the scale and shape parameters, 
respectively. By changing β (i.e. β<1, β=1, or β>1), equation 
(21) can characterize decreasing, constant, and increasing 
failure rates.  Distinctions must be made between equation (2) 
and equation (21). In the former, the Weibull distribution is 
used to model the random behavior of wind speed. Here it is 
used to estimate the time-to-failure of DER units. 

B. Operational Availability of DG System 
High equipment availability is desirable to maximize the 

energy throughput given the intermittent wind speed and solar 
radiation. Equipment availability is usually defined as the 
ratio of the uptime over the sum of the uptime and downtime. 
Let A be the availability of a DER unit, then 
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where, tp and tf represent the downtime duration for a planned 
and a failure replacement, respectively. In general tp<tf, 
because in a planned maintenance, the spare parts and the 
labor can be prepared in advance, avoiding unnecessary 
delays otherwise occurring in an unexpected failure.  

Before deriving the availability model for the entire DG 
system group, let i=1, 2, …, m be the index denoting the 
available DER types including the substation. For instance, if 
the generator pool consist of 1 MW WT, 1.5 MW WT, and 
0.5 MW PV, and 10 MW substation, then i=1, 2, 3, and 4. The 
availability of the entire DG group can be expressed as 

( )∏∏
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=
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ijAA
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)()( τ� .    (23) 

Equation (23) is obtained assuming the reliability of the 
DG system group is equivalent to a series system. Ai(τi) is the 
availability of DER type i as defined in equation (22), and xij 
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is an integer variable representing whether DER type i is 
installed on node j or not. For instance, if xij=1, meaning one 
unit of DER type i is installed at node j, or xij=0 otherwise. In 
(23), it is also assumed that the DER units of the same type 
adopt the same maintenance schedule, regardless of their 
physical locations. This assumption, however, can be relaxed 
if τi is location-dependent in the distribution network. 

C. Repair and Recovery Model 
The recovery or restoration process of distribution branches 
can be treated as machine-repairman problem. Let K be the 
number of distribution branches that are susceptible to failure 
in the extreme weather. Let R be the available teams to repair 
and restore the damaged distribution branches. The transition 
diagram of the restoration process is given as follows, 
 

 
Figure 2. Transition Diagram of Repairing Distribution Lines 

 
Note that the time-to-failure of distribution branches is 

assumed to be exponentially distributed with rate λ (i.e. 
failures per unit time) during the extreme weather period. 
Similarly the time-to-recovery of damaged branch is also 
exponential with the repair rate � (i.e. number of lines 
repaired per unit time). Here failure means a line is 
disconnected, and repair means a disconnected line is 
recovered. Now performance metrics such as number of 
damaged branches and the mean recovery time can be derived 
from the Markov transition diagram in Figure 2. Let L be the 
expected damaged branches, and Lq be the damaged branches 
waiting for being repaired. Then 
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We are also interested in the duration of recovering a 
damaged branch. Let W be the duration from when the branch 
is damaged to when it is recovered. According to the Little’s 
Law, W can be estimated by  
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where L is given in Equation (24).  

VI. PLANNING FOR SURVIVABILITY 

A. System Cost 
The goal of the DG planner is to determine the siting and 

sizing of WT and PV units in the distribution network such 
that the annualized system cost is minimized. Since the output 
of WT and PV is stochastic, we minimize the expected 
annualized cost of the active distribution system. That is 
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In the objective function,  φ(r,h) is the capitla recovery 
factor used to distribute the capital cost over h year at interest 
rate r in year t. The value of xijt is a binary decision variable 
representing whether DER type i is installed at node j in year 
t for t=1, 2, …, T. Here 1

t
ijt ijtkz x==� is the cumulative 

installation of DER type i on node j by t. Also ai represents 
the capacity cost in $/MW. The capacity of DER type i at 
node j is represented by Pijt

c. The value bi represents the 
operating cost in $/MWh, and ci is the cost in $/MWh of the 
environmental penalty for conventional energy source from 
the substation. For renewable energy, ci is a negative value 
capturing the government credits or tax rebate. In addition, m 
is the number of available DER types, n is the number nodes 
to place DER units, and T is the number of the planning years. 
 
B. Optimization Model 

The goal of the model is to determine the generator 
capacity and placement such that the total system cost in 
equation (31) is minimized while the LOLP and power 
quality are assured.  Such a design can be translated into the 
following optimization model, 
 
Problem P1 
Minimize:  )()( xx DGCf =                (33) 
Subject to: 
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xijt∈{0, 1}, for ∀i, ∀j, and ∀t       (38) 
 

The objective function (33) is to minimize the annualized 
system cost. The LOLP is defined by constraint (34). The 
power quality is governed by constraint (35), and its detailed 
derivation is available in [22]. Note that )(xjtVμ  is the mean 

voltage at node j in year t, and )(xjtVσ is the voltage standard 
deviation at node j in year t. Constraint (36) simply states that 
no more than one DER unit is placed on a node in year t. This 
condition however can be relaxed if there is no space 
limitation on the placement of DER units.  

Problem P1 belongs to the class of mixed-integer, non-
linear programming problems. This type of problem in 
general is difficult to solve due to the combinatorial nature 
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combined with the non-linearity issue.  For instance, given a 
9-node network with five types of DER units, the number of 
decision variables reaches 135 for a three-year planning. For 
a ten-year planning, the total decision variables become 450. 
As the number of decision variables increases, more 
advanced solution techniques are required. In the next section, 
we decompose a 9-node three-year DG planning problem into 
a three-phase optimization model, each being solved 
sequentially using Microsoft Excel with the Solver Add-in, 
and the results are further verified by commercial solver 
Cplex.  

VII. NUMERICAL EXPERIMENT 
A. Network Topology and Load Profile 

In this section, we solve a simple network to demonstrate 
the application and performance of Problem P1. Originally 
from [23], the network in Figure 3 consists of nine nodes that 
distribute power to end consumers through eight branches. 
Node 9 is intended for a location of the substation because 
substation handles large buck energy, and it shall be placed in 
the center of the network. Nodes 1 through 8 are the locations 
where wind turbines and PV panels can be paced during the 
planning horizon. There are seven types of DER units 
available: three wind turbines (1 MW, 2 MW, and 3 MW); 
two PV systems (0.25 MW and 0.5 MW); and two substations 
(45 MW and 50 MW). Here substations are treated as DER 
units just for mathematical convenience. Without loss of 
generality, line resistance between two adjacent nodes is 
assumed to be 1 Ω. We adopt the DC circuit to demonstrate 
the proposed DG integration by considering the fact that the 
system is planned at the strategic level with less influence of 
reactive power.   

 
Figure 3: A 9-Node Distribution Network [23] 

Table 1 lists the demand growth over the 3-year period. 
In this study, it is assumed that both the mean and the variance 
increase with the time. The LOLP criterion is set with �1=0.01 
and the power quality confidence is �2=0.9. The nominal 
voltage is VDG=33 KV, and the upper and lower voltage is 
Vmax=1.95VDG and Vmin=1.95VDG, respectively. 

Table 1: Mean and Variance of Load in Three Years (Unit: MW) 
 

j Dj 
Year 1 Year 2 Year 3 

E[Dj] Var(Dj) E[Dj] Var(Dj) E[Dj] Var(Dj) 
1 D1 7.640 0.146 7.869 0.155 8.105 0.164 
2 D2 8.720 0.190 8.982 0.201 9.251 0.213 
3 D3 4.580 0.052 4.717 0.055 4.859 0.058 
4 D4 4.000 0.040 4.120 0.042 4.244 0.045 
5 D5 5.140 0.066 5.294 0.070 5.453 0.074 
6 D6 6.110 0.093 6.293 0.099 6.482 0.104 
7 D7 7.640 0.146 7.869 0.155 8.105 0.164 
8 D8 7.270 0.132 7.488 0.140 7.713 0.148 
9 D9 0.000 0.000 0.000 0.000 0.000 0.000 
System 51.10 0.865 52.63 0.917 54.21 0.972 

Table 2 presents the costs associated with equipment 
installation, maintenance and carbon credits. Capacity factor 
computes the mean output power of a DER unit relative to its 
name-plated capacity. Though the values of capacity factor 
vary with the local wind speed and solar radiation, it has less 
impact on the justification of the survivability of the 
distribution power via defensive microgrid operation.  

Table 2: Power Capacity and Costs for DER Units (SS=Substation) 
i DER 

Type 
Pi

(c) 
(MW) 

ai 
($/MW) 

bi 
($/MWh) 

ci 
($/MWh) 

Capacity 
factor 

1 WT1 1 910,000 10 -5 0.4 
2 WT2 2 773,500 9 -5 0.35 
3 WT3 3 637,000 8 -5 0.3 
4 PV1 0.25 2,000,000 3 -10 0.3 
5 PV2 0.5 1,750,000 2 -10 0.3 
6 SS1 45 273,000 16 10 1.0 
7 SS2 50 227,500 16 10 1.0 

B. The Result of Siting and Sizing 
Based on the data in Tables 1 and 2, we use Excel solver 

to find the sizing and sizing of DER for three years, and the 
results are summarized in Table 3. For year 1, nodes 2, 4, and 
6 the equipment chosen were 2 MW wind turbines. For nodes 
1 and 8 the equipment chosen were 3 MW wind turbines. As 
for node 9, it is only intended for a substation. The optimal 
solution chosen was SS2 that produces 50MW. For year 2, 
the equipment chosen for nodes 2 and 7 were 3 MW wind 
turbines. Finally in year 3, the optimal solution of equipment 
added to nodes 4 through 7 were PV panels with 0.5 MW. For 
node 8 the equipment chosen were 3 MW wind turbines. The 
optimal solution resulted in a total cost of $13,706,237 for 
total three years.  

Table 3:  DER Allocation of Years 1, 2 and 3 

 
C. Prevention 

The protection for the power supply in the 9-node 
distribution network is achieved by progressively integrating 
WT and PV units across nodes 1-8 over the three years. Table 
4 summarizes the amount of the power being protected from 
years 1 to 3 by computing the maximum available power of 
DER power of individual nodes. For instance, in Year 1, WT3 
is installed on node 1, this means 39.3% of 7.64 MW load is 
protected by the local microgrid because the maximum 
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capacity of WT3 is 3 MW. In year 3, note 8 have installed 
total 6 MW microgrid power, thus 6/7.713=77.8% of the local 
demand is protected. At the system level, the annual protected 
power is 23.6% in year one, 34.2% in year two and 42.4% in 
year three. This simple example clearly shows that distributed 
power integration can effectively prevent or protect the power 
shortage in contingency when the substation or the 
distribution lines are damaged. 

Table 4: The Amount of Power Being Protected in Years 1-3 

 
D. Survivability 

A key criterion to measure the survivability is to assess the 
robustness of the distribution when it is attacked by extreme 
weather events or other natural disasters. Let us consider one 
extreme case where the substation power is totally lost while 
all the distribution branches are still connected and functional. 
Since it is in the contingent mode, we also assume the power 
demand of each node is reduced by 50 percent to maintain the 
operation of critical loads. We compute the survivability for 
years 1 to 3 and the results are summarized in table 5. As 
shown in the table, node 4 has the largest survivability with 
97.1% of the critical load being met. Moving into year 2, node 
2 has the largest survivability with 111.3% of the critical load 
being met. This implies that node 2 has surplus power that 
will flow to node 1. Thus the actual power of node 1 increase 
from 3 MW to 3.51 MW (i.e. 5+3-4.491). In year 3, there are 
three nodes have surplus power, these are nodes 2, 4, and 8. 
Obviously the surplus power will enter nodes 1, 3 and 7, 
respectively. This indeed increases the survivability of the 
neighborhood nodes. 

Table 5: Survivability in Years 1-3 with Lost Substation 

 
 

E. Recovery 
 As discussed in Section V, the recovery and repair 

process depends on the failure rate of the distribution lines 
and the repair capacity. We compare the recovery time under 
different weather severity manifested by λ=1line/hour and 
λ=0.5 line/hour. Obviously higher value of λ implies a 
harsher weather condition. K=8 because there is eight 
distribution branches in Figure 3, and R=2 means two teams 
are available performing the recovery job. We compute the 
expected number of failed lines L and the expected recovery 
time W per line based on Equations (24) and (30), respectively. 
Both L and W are calculated as the repair rate μ increases from 
0.1 to 5 line/hour. Usually the repair rate is proportional to the 
size of the repair team. The results are shown in Figures 4 and 
5. 

 
Figure 4: Recovery Time and Disconnected Branches with λ=1, R=2 

 

 
Figure 5: Recovery Time and Disconnected Branches with λ=0.5, R=2 

 

 
Figure 6: Recovery Time and Disconnected Branches with λ=1, R=3 

 

Year 1
Node j 1 2 3 4 5 6 7 8 9

Mean (MW) 7.640 8.720 4.580 4.000 5.140 6.110 7.640 7.270 0
Microgrid (MW) 3 2 0 2 0 2 0 3 0

Protection (%) 39.3 22.9 0.0 50.0 0.0 32.7 0.0 41.3 0
Year 2

Node j 1 2 3 4 5 6 7 8 9
Mean (MW) 7.869 8.982 4.717 4.120 5.294 6.293 7.869 7.488 0

Microgrid (MW) 3 5 0 2 0 2 3 3 0
Protection (%) 38.1 55.7 0.0 48.5 0.0 31.8 38.1 40.1 0

Year 3
Node j 1 2 3 4 5 6 7 8 9

Mean (MW) 8.105 9.251 4.859 4.244 5.453 6.482 8.105 7.713 0
Microgrid (MW) 3 5 0 2.5 0.5 2.5 3.5 6 0

Protection (%) 37.0 54.0 0.0 58.9 9.2 38.6 43.2 77.8 0

Year 1
Node j 1 2 3 4 5 6 7 8 9

Mean (MW) 3.935 4.491 2.359 2.060 2.647 3.147 3.935 3.744 0.000
Microgrid (MW) 3 2 0 2 0 2 0 3 0
Survivability (%) 76.2 44.5 0.0 97.1 0.0 63.6 0.0 80.1 0

Year 2
Node j 1 2 3 4 5 6 7 8 9

Mean (MW) 3.935 4.491 2.359 2.060 2.647 3.147 3.935 3.744 0.000
Microgrid (MW) 3 5 0 2 0 2 3 3 0
Survivability (%) 76.2 111.3 0.0 97.1 0.0 63.6 76.2 80.1 0

Year 3
Node j 1 2 3 4 5 6 7 8 9

Mean (MW) 4.053 4.626 2.429 2.122 2.727 3.241 4.053 3.856 0
Microgrid (MW) 3 5 0 2.5 0.5 2.5 3.5 6 0
Survivability (%) 74.0 108.1 0.0 117.8 18.3 77.1 86.4 155.6 0
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There are two observations made from Figures 4 and 5. 
First, μ has a decisive role in terms of the recovery time. For 
instance, with μ=0.1 line/hour, it takes 39 hours for bringing 
a damaged branch back to operation under a severe weather. 
However, even if the weather severity is reduced by a half 
(from λ=1 to λ=0.5), the duration of the recovery is still 38 
hours per line under μ=0.1 line/hour. Finally we examine 
whether increasing the number of repair teams can expedite 
the recovery time. In Figure 6, we increases R to 3, and re-
compute L and W under λ=1. The recovery time is reduced 
from 39 hours to 25.7 hours, but the effectiveness is not very 
impressive compared with the result if increasing the repair 
rate to 0.5 lines/hour. The latter is able to restore a line within 
4.3 hours. 

VIII. CONCLUSION 
This paper presents a probabilistic framework to plan and 

analyze the resilience of distribution grid via variable power 
integration. We approach the grid resilience from three 
aspects: prevention, survivability, and recovery. Prevention is 
achieved through pro-active maintenance by inspecting and 
replacing aging components prior to failure. Prevention can 
also be realized through the integration of variable microgrid 
power for increasing the supply robustness. Survivability is 
attained through the defensive microgrid operation and 
topological reconfiguration in contingency. Recovery is 
assessed and planned through the machine-repairman Markov 
model. The variations of power, load and voltage are captured 
by the first and second moments and the chance constraints.   

Three observations are obtained from the numerical 
example. First, the 9-node testing network indicates that 100 
percent of power protection can be achieved sequentially in 
three years by concurrently injecting WT and PV units. 
Second, the most influential factor affecting the recovery time 
is the repair rate, not necessary the weather severity and the 
number of repair teams. Third, wind- and solar-based 
microgrid generation is advantageous over fuel-based 
generator against cascading failures. This is because the 
lifetime of fuel supply is likely to be destroyed post the attack 
of extreme weather or earthquake. Since WT and PV 
generation relies on the natural resources, there is no need of 
fuel supply. For the future effort, we will incorporate the 
occurrence rate and the duration of extreme events in the 
planning model that will be tested in a setting of large and 
complex grid systems. 
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