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We propose a new self stabilizing algorithm to compute two mutually disjoint minimal 
dominating sets in an arbitrary graph G with no isolates (this is always possible due 
to famous Ore’s theorem in [1] that says “In a graph having no isolated nodes, the 
complement of any minimal dominating set is a dominating set”). We use an unfair central 
daemon and unique ids of the nodes. The time complexity of our algorithm is O (n3), an 
improvement by a factor of n from that of [2], that uses same assumptions to design an 
O (n4) algorithm, where n is the number of nodes in G . The algorithm uses the concept of 
running two copies of an algorithm in an interleaving manner such that the state spaces 
of the two copies are always kept mutually disjoint. We expect our approach will prove 
useful in designing algorithms for other mutually disjoint predicates in a network graph.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

The paradigm of self stabilization, as a tool for de-
signing fault tolerant localized distributed algorithms for 
networks, was first proposed by Dijkstra in 1974 [3]. It is 
an optimistic way of looking at system fault tolerance and 
scalable coordination, because it provides a built-in safe-
guard against transient failures that might corrupt the data 
in a distributed system. An algorithm is self-stabilizing iff 
it reaches some legitimate state starting from an arbitrary 
state. The promise of self-stabilization, as opposed to fault 
masking, is to recover from failure in a reasonable amount 
of time and without intervention by any external agency. 
Since the faults are transient (eventual repair is assumed), 
it is no longer necessary to assume a bound on the num-
ber of failures. The participating nodes communicate only 
with their immediate neighbors and require minimal stor-
age to keep the local knowledge and yet a desired global 
objective is achieved. Since no communication is needed 
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beyond a node’s immediate neighborhood, communication 
overhead scales well with increase or decrease in the net-
work size.

Self-stabilization: In a self-stabilizing algorithm, each 
node maintains a set of local variables; the set of these 
variables constitutes the local state of the node. The union 
of the local states of all nodes constitutes the global system 
state. A self-stabilizing algorithm is usually specified as a 
set of rules at each node; each rule consists of a condition
and an action and is written as “if condition then action”. 
A condition is a boolean predicate involving the local states 
of the node and those of its immediate neighbors. A node, 
at any step of execution, is called privileged iff at least one 
condition is true. The daemon (runtime scheduler) selects 
node(s) from among the privileged nodes to take an ac-
tion (also called move) at each step. The central daemon 
selects exactly one privileged node to move at each step; 
the distributed daemon selects a non-empty subset of the 
privileged nodes to move at each step; the synchronous
daemon selects all the privileged nodes to move at each 
step. The daemon is called fair if it prevents a node being 
continuously privileged without performing local actions. 
Otherwise, the daemon is called unfair.
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Distributed systems and graph algorithms: Many es-
sential services in large scale networked distributed sys-
tems (ad hoc, wireless or sensor) involve maintaining a 
global predicate over the entire network. Each participating 
node has limited resources (computing, storage, energy) 
while the networked system needs to achieve a global task. 
The global task is usually specified by some invariance re-
lation on the global state of the network comprised of 
the local states of all participating nodes. In addition, in-
dividual nodes cannot keep track of the global network 
state due to limited communication capability and stor-
age. Graph algorithms play important roles in networked 
and distributed systems. Self stabilizing algorithms for var-
ious graph domination problems and their variations like 
connected dominating sets and weakly connected domi-
nating sets have been widely used for clustering in mobile 
ad hoc networks [4,5]. Most of the self-stabilizing dis-
tributed algorithms for graph predicates related to domi-
nance and independence have considered computation of 
a single subset of the graph with the desired global prop-
erty [6]. A big majority of them have assumed an unfair 
serial (central) daemon (scheduler). The concept of domi-
nating set has been used in clustering networks by choos-
ing the dominating set members of the graph to be the 
cluster heads for the other nodes it dominates. Such sets 
have also been used for resource placement centers in net-
work graphs in a similar way [5]. Another important issue 
in computer network design is effective utilization of avail-
able edge bandwidths in the network over all edges of the 
network graph. Consider placement of resource allocation 
centers where there are multiple types of resources that 
cannot be transmitted in parallel along the same network 
edge. If a single dominating set is used, some of the net-
work edges will be overburdened while many others will 
be idle; two disjoint dominating sets would more evenly 
distribute the bandwidth requirement over a larger num-
ber of edges; two dominating sets are used for two dif-
ferent resources. Two disjoint dominating sets would be 
very useful when it is inconvenient to place resources of 
multiple types at the same node. There are already much 
theoretical research on existence of multiple disjoint pred-
icates in graphs [7–9] including disjoint dominating sets, 
disjoint dominating and paired-dominating sets and oth-
ers. No fault tolerant algorithms exist to compute such sets 
efficiently in arbitrary network graphs; such algorithms are 
required especially in mobile networks that allow nodes to 
enter and exit networks at times. Very recently, authors [2]
have provided a self-stabilizing algorithm to compute two 
mutually disjoint minimal dominating sets of an arbitrary 
graph, provided the graph does not have any isolate. The 
correctness of the algorithm in [2] is based on the famous 
Ore’s theorem in [1] that says “In a graph having no iso-
lated nodes, the complement of any minimal dominating 
set is a dominating set”. The algorithm in [2] has a com-
plexity of O (n4) using state sharing model and the usual 
assumption that nodes have unique IDs and that each node 
stores complete information about its adjacent nodes.

Our contribution: In this brief paper, we propose a new 
self stabilizing algorithm to compute two mutually dis-
joint minimal dominating sets in an arbitrary graph with 
no isolates. We employ the concept of running two copies 
Fig. 1. A graph with 6 nodes.

of an algorithm in an interleaving fashion such that mu-
tual disjointness of the two minimal sets is maintained 
throughout the convergence process. We use the same as-
sumptions as in [2], i.e., we use unfair central daemon and 
unique ids of the nodes. The time complexity of our algo-
rithm is O (n3), an improvement by a factor of n from that 
of [2]. We expect the idea of running two copies of an al-
gorithm concurrently to compute two disjoint subsets of 
interest in a graph will be useful to design self-stabilizing 
algorithms for other applications in a network graph.

2. Model and terminology

A network or a distributed system is modeled by an 
undirected graph G = (V , E), where V is the set of nodes, 
and E is the set of edges. For a node i, N(i), its open 
neighborhood, denotes the set of nodes adjacent to node i; 
N[i] = N(i) ∪ i denotes its closed neighborhood. For a node i, 
N2(i) = ∪ j∈N[i]N( j) − {i}, its 2-hop open neighborhood, de-
notes the set of nodes that are at most distance of 2 from 
node i. Each node j ∈ N(i) is called a neighbor of node i
and each node j ∈ N2(i) is called a 2-neighbor of node i. 
We assume G to be connected and n > 1.

Consider any connected graph G = (V , E), where |V | =
n and |E| =m. A set S ⊆ V is a dominating set (DS) if each 
node i ∈ {V −S} is adjacent to at least one node in S , i.e., 
N(i) ∩ S �= ∅. A node i is dominated if it has neighbor(s) 
in S , and undominated otherwise. A dominating set S is 
called a minimal dominating set (MDS) iff there does not 
exist a node i ∈ S such that S − {i} is a dominating set.

An example graph is shown in Fig. 1, where n = 6, 
m = 8. {1, 6} is a minimal dominating set; so are {3, 4} and 
{2, 5}. Consider any arbitrary MDS, say {2, 5}; the nodes 
V − {2, 5} = {1, 3, 4, 6} contains at least one MDS of the 
graph G , e.g., {1, 4, 3}.

The execution of the protocol at each node is managed 
by a central scheduler (daemon), that selects one privi-
leged node in a system state to move in each step. A node 
is privileged in a given system state iff it is enabled to 
move by at least one rule of the protocol. The protocol 
terminates in a system state when no node is privileged 
(legitimate global system state). The protocol assumes a 
shared-memory model and each node knows only its own 
state and the local states of its immediate neighbors as is 
customary in self-stabilizing algorithms. The proposed al-
gorithm does not need to know the size of the network 
graph.

3. Minimal dominating set

In order to design the algorithm for 2 disjoint MDS for 
an arbitrary graph G of n nodes n > 1, we use an earlier 
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M1: if (xi = 0) ∧ (∀ j ∈ N(i) : x j = 0) then set xi = 1 and px
i = null

M2: if (xi = 1) ∧ (� j ∈ N(i) : px
j = i) ∧ (∃k ∈ N(i) : xk = 1)

then 
{

xi = 0;
if ∃! j ∈ N(i) : x j = 1 then px

i = j else px
i = null;

P1: if (xi = 1 ∧ px
i �= null) then px

i = null;
P2: if (xi = 0) ∧ (∃! j ∈ N(i) : x j = 1) ∧ (px

i �= j) then px
i = j else px

i = null

Fig. 2. The Algorithm MDS at Node i, 1 ≤ i ≤ n.
self-stabilizing algorithm to design a single MDS of a graph 
[10]. We briefly describe the algorithm below in a slightly 
different form to facilitate the development of our new al-
gorithm in the next section.

Data structure: Consider an undirected graph G =
(V , E) with n nodes. Each node i ∈ V has a binary flag xi ; 
a node i with xi = 1 is called an MDS node while a node 
with xi = 0 is a non MDS node. In any system configura-
tion (global system state), the current candidate minimal 
dominating set (MDS) is given by S = {i ∈ V : xi = 1}. Each 
node i also has a pointer variable px

i that can point to any 
of its neighbors ( j ∈ N(i)) or can be null.

We call a node i ∈ S an essential iff ∃ j ∈ N[i] such that 
N( j) ∩ S = {i} (node j is dominated only by node i); note 
that each node i ∈ S is essential when S is an MDS (legit-
imate system state); the node j is called private neighbor
of node i in [10]. The algorithm starts in an arbitrary ini-
tial state and we assume a central (serial) daemon. The 
pseudocode of the protocol is shown in Fig. 2. We reiterate 
a few observations in Remark 1 and 2 that illustrate the 
approach underlying the algorithm and state a few lem-
mas and a theorem; we sketch the proofs (adjusting for 
our modified notations) from [10]) for ready reference.

Remark 1.

1. At termination of the algorithm, we call the system 
state legitimate (stable) since no node is privileged by 
any of the rules of the algorithm.

2. Steps M1 and M2 are called Membership Moves (a 
node changes its membership in the set S in only ei-
ther of these moves) and steps P1 and P2 are called
Pointer Moves (a node changes its pointer variable 
and does not change its membership in the set S in 
either of these moves).

3. When a node i /∈ S executes rule M1, it enters into S
and sets its pointer px(i) to null.

4. When a node i ∈ S executes rule M2, it exits from S
and sets its pointer px

i to its neighbor j ∈ S if j is 
its only such neighbor or to null, otherwise; note that 
node i has at least one neighbor j ∈ S by the predicate 
of the rule.

5. A node i ∈ S , enabled by rule P1 sets its pointer px(i)
to null; note that node i can be enabled by rule P1
iff it has not been enabled by any other rule before 
during the execution.

6. A node i /∈ S , enabled by rule P2, sets its pointer px(i)
to j if j is its only S-neighbor and null, otherwise.
Lemma 1. When the algorithm terminates, we have (a) a node 
i ∈ S has px(i) = null; (b) a node i /∈ S , has either px(i) = j, iff 
node i has exactly one neighbor j ∈ S or null, otherwise.

Proof. (a) If a node i ∈ S (i.e., xi = 1) has px(i) �= null, then 
node i is privileged by rule P1, a contradiction. (b) If a 
node i /∈ S and px(i) is neither null or j where j is its 
only S-neighbor of i, then node i is privileged by rule P2, 
a contradiction. �
Lemma 2. (a) During execution, if a node ever makes a M1
move, it will not make another membership move; (b) starting 
from an arbitrary initial state, a node can make at most 2 mem-
bership moves until termination.

Proof. (a) If a node i makes a M1 move at time t , then 
none of its neighbors are in S at time t . For i to later use 
M2 there must be a neighbor k for which x(k) = 1. But no 
k will be able to use M1 because x(i) = 1. (b) If a node’s 
first membership move is M1, it will not make a member-
ship move again. f its first membership move is M2 then 
any next membership move must be M1; it cannot make 
another membership move afterwards. �
Lemma 3. There can be at most n consecutive pointer moves.

Proof. Any pointer move by node i leaves i unprivileged. 
No pointer moves made by other nodes can make i priv-
ileged. Therefore, in a sequence of consecutive pointer 
moves, each node can move at most once. �
Theorem 1. (a) The algorithm MDS, starting from an arbitrary 
initial state, can make at most (2n +1)n or O (n2) moves before 
termination; (b) at termination, the set S is a minimal dominat-
ing set of the graph G.

Proof. By Lemma 2, there are at most 2n membership 
moves. Before and after each membership move there can 
be, by Lemma 3, at most n consecutive pointer moves. �
Remark 2 ([10]). The algorithm MDS can stabilize with any 
arbitrary minimal dominating set of the given graph de-
pending on the arbitrary initial state and the behavior of 
the daemon during the convergence process.

3.1. Restricted minimal dominating set

Again, consider an arbitrary given graph G = (V , E) and 
a subset X ⊂ G . X is given to be a dominating (not neces-
sarily a minimal dominating) set of G . Our goal is to design 
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RM1: if (x ∈ X) ∧
(
(xi = 0) ∧ (∀ j ∈ N(i) : x j = 0)

)
then set xi = 1 and px

i = null

RM2: if (x /∈ X) ∨
(
(i ∈ X) ∧ (xi = 1) ∧ (� j ∈ N(i) : px

j = i) ∧ (∃k ∈ N(i) ∩ X : xk = 1)
)

then 
{

xi = 0;
if ∃! j ∈ N(i) ∩ X : x j = 1 then px

i = j else px
i = null;

RP1: if (xi = 1 ∧ px
i �= null) then px

i = null;
RP2: if (xi = 0) ∧ (∃! j ∈ N(i) : x j = 1) ∧ (px

i �= j) then px
i = j else px

i = null

Fig. 3. The Algorithm RMDS at Node i, 1 ≤ i ≤ n.
an algorithm that will generate an MDS that is contained 
in X , i.e., S ⊆ X ; note that this is always possible since 
X is known to be a dominating set (Lemma 2). We mod-
ify the algorithm MDS to get an MDS S of G such that 
S ⊆ X . We design the Restricted Minimal Dominating Set 
algorithm RMDS, by adding two simple clauses in the two 
membership moves in MDS: we force each node i /∈ X to 
unconditionally set xi = 0 and a node i is allowed to con-
ditionally set xi = 1, iff i ∈ X (identical to step M1 of algo-
rithm MDS). Note that the pointer moves remain the same 
as in algorithm MDS. Nodes have the same data structure 
as in algorithm MDS. Fig. 3 shows the complete algorithm
RMDS.

Remark 3. The previous Lemmas 1, 2 and 3 equally apply 
to the algorithm RMDS; the proofs are identical to proofs 
of those three lemmas.

Theorem 2. The algorithm RMDS, starting from an arbitrary 
initial state, can make at most (2n + 1)n or O (n2) moves be-
fore termination.

Proof. Proof of Theorem 1(a) applies here just like for Al-
gorithm MDS). �
Theorem 3. At termination, the set S is a minimal dominating 
set of the graph G.

Proof. To see this, we simply need to show that at termi-
nation S is a dominating set (the rest is the same as the 
proof of Theorem 1(b)). Assume there is a node j ∈ V that 
is not dominated by any S-node. If j ∈ V − X , j has at 
least one neighbor in X , since X is a given dominating set; 
the rest as in the proof of Theorem 1. �
Corollary 1. Assume algorithm RMDS is run on a graph G =
(V , E) and a subset X ⊂ G when the set X is not a dominating 
set of graph G. Starting from an arbitrary system state, RMDS 
will terminate in at most O (n2) steps (Theorem 2 still applies 
here as before), but at termination, the set S is not a minimal 
dominating set of the graph G (Theorem 3 does not apply).

4. Two disjoint minimal dominating sets

In this section, we develop a self stabilizing algorithm 
to compute two disjoint minimal dominating sets of a 
graph of n nodes, n > 1. While most of the self-stabilizing 
distributed algorithms for graph predicates related to dom-
inance and independence have considered computation of 
a single subset of the graph with the desired property [6], 
authors in a recent paper [2] have provided an interesting 
(and the only one as far as we know) self-stabilizing al-
gorithm that can compute two mutually disjoint minimal 
dominating sets in a graph, provided the graph does not 
have any isolate; this algorithm has been designed based 
on the famous Ore’s theorem in [1] that says “In a graph 
having no isolated nodes, the complement of any minimal 
dominating set is a dominating set”. The algorithm in [2]
has a complexity of O (n4) using state sharing model and 
assuming nodes with unique IDs, as is usual in almost all 
such algorithms [6]. We show that the simple MDS algo-
rithm (Fig. 2) to compute a single minimal dominating set 
and the RMDS algorithm (Fig. 3) can run concurrently in 
an interleaving manner to compute two mutually disjoint 
minimal dominating sets of an arbitrary graph with no iso-
lates (n > 1) in O (n3) time using unique IDs of nodes and 
an arbitrary central daemon as in [2].

Data structures: Each node i ∈ V has two binary vari-
ables xi and yi . A node with xi = 1, (yi is either 0 or 
1) is called an S1-node and a node with xi = 0, yi = 1
is called a S2-node. In any configuration (global system 
state), {i ∈ V : xi = 1} denotes the current candidate set 
S1 and {i ∈ V : xi = 0, yi = 1} denotes the current candi-
date set S2. In addition, each node i has two pointers px

i
and py

i each of which can point to any of its neighbors 
j ∈ N(i) or can be null; for a given node i, we call px

i its 
S1-pointer and py

i its S2-pointer respectively.

Remark 4. In any arbitrary global system state (configu-
ration), S1 ∩ S2 = ∅ and a node i ∈ V − (S1 ∪ S2) (xi =
0, yi = 0), does not belong to either S1 or S2; similarly, 
V − S1 = {i ∈ V : xi = 0}.

Approach: Starting from an arbitrary initial state, we 
run algorithm MDS on graph G to compute S1 and algo-
rithm RMDS (where the set X = V − S1) on graph G to 
compute S2, we will call them MDS1 and MDS2, concur-
rently in an interleaved fashion. Initially, the sets S1 and 
S2 are arbitrary depending on the arbitrary initial system 
state. Algorithm MDS1 reads the variables xi and px

i of a 
node i and writes only on xi and px

i of a node i. Algorithm 
MDS2 reads variables xi , yi and py

i of a node i and writes 
only on yi and py

i . The goal is, when the combined pro-
tocol terminates, S1 is an MDS of the graph G = (V , E)), 
computed by MDS1, and S2 ⊆ V − S1 is an MDS of the 
graph G = (V , E), computed by MDS2. Note that the ex-
ecution of MDS2 does not affect the state variables that 
are read by MDS1, but the reverse is not true, i.e., execu-
tion of MDS1 affects the state variables that are read by 
MDS2. We begin by making some observations and defin-
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M1: 

⎧⎨
⎩

if �1A(i) ∨ �1B (i) then{
(M1.1) if �1A(i) then {xi = 1 and px

i = null};
(M1.2) if �1B (i) then {yi = 1 and py

i = null};

M2: 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

if �2A(i) ∨ �2B (i) then⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(M2.1) if �2A(i) then{
xi = 0;
if ∃! j ∈ N(i) : x j = 1 then px

i = j else px
i = null;

(M2.2) if �2B (i) then{
yi = 0;
if ∃! j ∈ NĀ(i) : y j = 1 then py

i = j else py
i = null;

P1: 

⎧⎪⎨
⎪⎩

if �3A(i) ∨ �3B (i) then{
(P1.1) if �3A(i) then px

i = null;
(P1.2) if �3B (i) then py

i = null;

P2: 

⎧⎪⎨
⎪⎩

if �4A(i) ∨ �4B (i) then{
(P2.1) if �4A(i) then px

i = j else px
i = null;

(P2.2) if �4B (i) then py
i = j else py

i = null;

Fig. 4. The Algorithm 2-MDS at Node i, 1 ≤ i ≤ n.
ing a few predicates to facilitate the stepwise development 
of the proposed protocol.

Definition 1. The local state of a node i ∈ G is defined 
by the state variables {xi, yi, px

i , p
y
i }. Algorithm MDS1 can 

read only node variables {px
i , xi, ∀i ∈ V } = RS1 (Read set of 

MDS1), and can write on only node variables {px
i , xi, ∀i ∈

V } = W S1 (Write Set of MDS1) Similarly, algorithm MDS2
can read node variables {py

i , xi, yi, ∀i ∈ V } = RS2 (Read Set 
of MDS2) and can write on node variables {py

i , yi, ∀i ∈
V } = W S2 (Write Set of MDS2).

Lemma 4. W S2 ∩ RS1 = ∅, i.e., execution of MDS2 does not 
change the state variables of nodes, read by MDS1, as long as 
MDS1 does not execute. Note: membership moves of MDS1 may 
change the state variables of nodes, read by MDS2.

Proof. The proof directly follows from the Definition 1. �
Definition 2. In a system state, a node i can locally com-
pute each of the following Boolean predicates:

(a) For a node i, a Boolean predicate �1A(i) = 1 iff node 
i /∈ S1 and none of its neighbors are in S1 (i.e., node 
i is privileged to enter S1), and �1B(i) = 1 iff node 
i /∈ S1 ∪ S2 and none of its neighbors are in S1 ∪ S2.

�1A(i)
def= (xi = 0) ∧ (∀ j ∈ N(i) : x j = 0),

�1B(i)
def= ((xi = 0) ∧ (yi = 0)(∀ j : x j = 0∧ y j = 0)

Note: In any system state, if �1A(i) = 1, node i is priv-
ileged to enter S1; similarly, if �1B(i) = 1, node i is 
privileged to enter S2.

(b) For a node i, a Boolean predicate �2A(i) = 1 iff node 
i ∈ S1, there exists a neighbor of i in S1, and there 
does not exist a private neighbor of i, and �2B(i) = 1
iff node i ∈ S2, there exists a neighbor k of i in S2 and 
there does not exist a private neighbor of i in (V −S1).
�2A(i)
def= (xi = 1) ∧ (� j ∈ N(i) : px

i = i)

∧ (∃k ∈ N(i) : xk = 1),

�2B(i)
def= (xi = 0) ∧ (yi = 1)

∧ (� j ∈ N(i) : xi = 0∧ py
j = i)

∧ (∃k ∈ N(i) : xi = 0∧ yk = 1)

Note: If �2A(i), node i is privileged to exit S1; simi-
larly, if �2B(i), node i is privileged to exit S2.

(c) For a node i, a Boolean predicate �3A(i) = 1 iff i ∈ S1

and its S1-pointer is not null; and, �3B (i) = 1 iff i ∈
S2 and its S2-pointer is not null.

�3A(i)
def= (xi = 1) ∧ (px

i �= null),

�3B(i)
def= (xi = 0) ∧ (yi = 1) ∧ (py

i �= null)

Note: If �3A(i), node i ∈ S1 is privileged to correct its 
px
i pointer; similarly, if �3B(i), node i ∈ S2 is privi-

leged to correct its py
i pointer.

(d) For a node i, a Boolean predicate �4A(i) = 1 iff i /∈
S1 and there exists a single neighbor j ∈ S1, but i’s 
S1-pointer is not j; �4B(i) = 1 iff i /∈ S1∪S2 and there 
exists a single neighbor j ∈ S2, but i’s S2-pointer is 
not j.

�4A(i)
def= (xi = 0) ∧ (∃! j ∈ N(i) : (x j = 1∧ px

i �= j)),

�4B(i)
def= (xi = 0) ∧ (yi = 0)

∧ (∃! j ∈ N(i) : (y j = 1) ∧ (py
i �= j)

Note: If �4A(i), node i /∈ S1 is privileged to correct its 
px
i pointer; similarly, if �4B(i), node i /∈ S2 is privi-

leged to correct its py
i pointer.

The complete pseudocode of the complete algorithm 
2 − MDS is shown in Fig. 4; we make a few observations 
in Remark 5 that further illustrate the approach underlying 
the algorithm.
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Definition 3. In any system state when no node is privi-
leged by any one of the moves in the algorithm 2 − MDS, 
we say the system has stabilized, i.e., has reached in a le-
gitimate state.

Remark 5.

1. Steps M1.1, M2.1, P1.1 and P2.1 constitute algorithm 
MDS1 and steps M1.2, M2.2, P1.2 and P2.2 constitute 
algorithm MDS2. Note that M1.1, M2.1 are member-
ships moves and P1.1 and P2.1 are pointer moves for 
algorithm MDS1; similarly, M1.2, M2.2 are member-
ships moves and P1.2 and P2.2 are pointer moves for 
algorithm MDS2 (similar to Remark 1, 2).

2. In any illegitimate state the central daemon arbitrarily 
selects any privileged node; rules are executed atomi-
cally. When a node i is privileged, it can be privileged 
by both MDS1 and MDS2 or by either one of them. 
Thus, when a privileged node is selected by the dae-
mon, it executes a step for either or both of the algo-
rithms.

Lemma 5. The pointer adjustments in the algorithm 2 − MDS
are such that, in a legitimate state, (1) each node i ∈ S1 has 
px
i = null; (2) each node i /∈ S1 has px

i = j iff node i has exactly 
one neighbor in S1 and px

i = null, otherwise; (3) each node i ∈
S2 has py

i = null; (4) each node i /∈ S2 has py
i = j iff node i has 

exactly one neighbor in S2 and py
i = null, otherwise.

Proof. By Straightforward generalization of Lemma 1. �
Lemma 6.

1. Pointer moves of algorithm MDS1 do not affect the Read Set 
RS2 of algorithm MDS2.

2. Membership moves of MDS1 affect the read set RS2 of al-
gorithm MDS2.

3. No moves (either membership or pointer) of MDS2 affect 
the RS1 of algorithm MDS1.

Proof. (1) A pointer move of algorithm MDS1 changes 
only the pointer px

i of a node i which is never read by 
any move of algorithm MDS2 (Lemma 4). (2) A member-
ship move of algorithm MDS1 changes the xi variable of 
a node i which is read by the moves of algorithm MDS2
(Lemma 4). (3) Any move of algorithm MDS2 changes the 
variables py

i and yi of a node i and moves of algorithm 
MDS1 reads yi of a node i (Lemma 4). �
Lemma 7. When algorithm 2 − MDS executes (concurrent in-
terleaving execution of two component algorithms MDS1 and 
MDS2), there can be at most O (n2) moves of algorithm MDS2
and n Pointer moves of algorithm MDS1 between two consecu-
tive Membership moves of algorithm MDS1.

Proof. Consider a time interval t between two consecutive 
Membership moves of algorithm MDS1. During the interval 
t , the set S1 = {i ∈ V : xi = 1 ∧ yi = 0} does not change; 
while algorithm MDS1 can make at most n pointer moves 
during interval t , these pointer moves does not change S1

(Remark 1, 2 hence, the set S1 does not change. Thus, only 
algorithm MDS2 (algorithm RMDS with X = V − S1) will 
execute and terminate in O (n2) moves in the worst case 
(Theorem 2). �
Theorem 4. Starting from an arbitrary illegitimate state, the al-
gorithm 2 − MDS terminates in O (n3) steps (moves).

Proof. By Lemma 2 algorithm MDS1 can make 2n Mem-
bership moves in the worst case before termination and in 
between two such moves there can be at most (n2 + n) 
moves by algorithm MDS2 (Lemma 7). Thus the algo-
rithm 2 − MDS terminates in O (2n × n2) or O (n3) steps 
(moves). �
Theorem 5. When the algorithm 2-MDS terminates, the two 
sets S1 and S2 denote two mutually disjoint minimal dominat-
ing sets of the graph G, i.e., S1 ∩ S2 = ∅.

Proof. By definition, the two sets S1 and S2 are always 
mutually disjoint (Remark 4). When the component algo-
rithm MDS1 has stabilized during the execution of 2-MDS, 
S1 is a minimal dominating set of G (Theorem 1); the set 
S1 does not change until 2-MDS terminates. When the 
component algorithm MDS2 terminates, the resulting S2
is a minimal dominating set of G (Theorem 3). �
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