Information Processing Letters 147 (2019) 38-43

www.elsevier.com/locate/ipl

Contents lists available at ScienceDirect

Information Processing Letters

Self-stabilizing algorithm for two disjoint minimal dominating

sets

Pradip K. Srimani *, James Z. Wang

School of Computing, Clemson University, Clemson, SC 29634, USA

Check for
updates

ARTICLE INFO

ABSTRACT

Article history:

Received 19 July 2018

Received in revised form 4 March 2019
Accepted 11 March 2019

Available online 15 March 2019
Communicated by Krishnendu Chatterjee

We propose a new self stabilizing algorithm to compute two mutually disjoint minimal
dominating sets in an arbitrary graph G with no isolates (this is always possible due
to famous Ore’s theorem in [1] that says “In a graph having no isolated nodes, the
complement of any minimal dominating set is a dominating set”). We use an unfair central
daemon and unique ids of the nodes. The time complexity of our algorithm is O(n?), an

improvement by a factor of n from that of [2], that uses same assumptions to design an

Keywords:

Self-stabilizing algorithm

Minimal dominating set

Mutually disjoint minimal dominating sets
Graph algorithms

0 (n*) algorithm, where n is the number of nodes in G. The algorithm uses the concept of
running two copies of an algorithm in an interleaving manner such that the state spaces
of the two copies are always kept mutually disjoint. We expect our approach will prove
useful in designing algorithms for other mutually disjoint predicates in a network graph.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The paradigm of self stabilization, as a tool for de-
signing fault tolerant localized distributed algorithms for
networks, was first proposed by Dijkstra in 1974 [3]. It is
an optimistic way of looking at system fault tolerance and
scalable coordination, because it provides a built-in safe-
guard against transient failures that might corrupt the data
in a distributed system. An algorithm is self-stabilizing iff
it reaches some legitimate state starting from an arbitrary
state. The promise of self-stabilization, as opposed to fault
masking, is to recover from failure in a reasonable amount
of time and without intervention by any external agency.
Since the faults are transient (eventual repair is assumed),
it is no longer necessary to assume a bound on the num-
ber of failures. The participating nodes communicate only
with their immediate neighbors and require minimal stor-
age to keep the local knowledge and yet a desired global
objective is achieved. Since no communication is needed

* Corresponding author.
E-mail address: srimani@clemson.edu (PK. Srimani).

https://doi.org/10.1016/].ipl.2019.03.007
0020-0190/© 2019 Elsevier B.V. All rights reserved.

beyond a node’s immediate neighborhood, communication
overhead scales well with increase or decrease in the net-
work size.

Self-stabilization: In a self-stabilizing algorithm, each
node maintains a set of local variables; the set of these
variables constitutes the local state of the node. The union
of the local states of all nodes constitutes the global system
state. A self-stabilizing algorithm is usually specified as a
set of rules at each node; each rule consists of a condition
and an action and is written as “if condition then action”.
A condition is a boolean predicate involving the local states
of the node and those of its immediate neighbors. A node,
at any step of execution, is called privileged iff at least one
condition is true. The daemon (runtime scheduler) selects
node(s) from among the privileged nodes to take an ac-
tion (also called move) at each step. The central daemon
selects exactly one privileged node to move at each step;
the distributed daemon selects a non-empty subset of the
privileged nodes to move at each step; the synchronous
daemon selects all the privileged nodes to move at each
step. The daemon is called fair if it prevents a node being
continuously privileged without performing local actions.
Otherwise, the daemon is called unfair.

https://doi.org/10.1016/j.ipl.2019.03.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:srimani@clemson.edu
https://doi.org/10.1016/j.ipl.2019.03.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2019.03.007&domain=pdf

PK. Srimani,].Z. Wang / Information Processing Letters 147 (2019) 38-43 39

Distributed systems and graph algorithms: Many es-
sential services in large scale networked distributed sys-
tems (ad hoc, wireless or sensor) involve maintaining a
global predicate over the entire network. Each participating
node has limited resources (computing, storage, energy)
while the networked system needs to achieve a global task.
The global task is usually specified by some invariance re-
lation on the global state of the network comprised of
the local states of all participating nodes. In addition, in-
dividual nodes cannot keep track of the global network
state due to limited communication capability and stor-
age. Graph algorithms play important roles in networked
and distributed systems. Self stabilizing algorithms for var-
ious graph domination problems and their variations like
connected dominating sets and weakly connected domi-
nating sets have been widely used for clustering in mobile
ad hoc networks [4,5]. Most of the self-stabilizing dis-
tributed algorithms for graph predicates related to domi-
nance and independence have considered computation of
a single subset of the graph with the desired global prop-
erty [6]. A big majority of them have assumed an unfair
serial (central) daemon (scheduler). The concept of domi-
nating set has been used in clustering networks by choos-
ing the dominating set members of the graph to be the
cluster heads for the other nodes it dominates. Such sets
have also been used for resource placement centers in net-
work graphs in a similar way [5]. Another important issue
in computer network design is effective utilization of avail-
able edge bandwidths in the network over all edges of the
network graph. Consider placement of resource allocation
centers where there are multiple types of resources that
cannot be transmitted in parallel along the same network
edge. If a single dominating set is used, some of the net-
work edges will be overburdened while many others will
be idle; two disjoint dominating sets would more evenly
distribute the bandwidth requirement over a larger num-
ber of edges; two dominating sets are used for two dif-
ferent resources. Two disjoint dominating sets would be
very useful when it is inconvenient to place resources of
multiple types at the same node. There are already much
theoretical research on existence of multiple disjoint pred-
icates in graphs [7-9] including disjoint dominating sets,
disjoint dominating and paired-dominating sets and oth-
ers. No fault tolerant algorithms exist to compute such sets
efficiently in arbitrary network graphs; such algorithms are
required especially in mobile networks that allow nodes to
enter and exit networks at times. Very recently, authors [2]
have provided a self-stabilizing algorithm to compute two
mutually disjoint minimal dominating sets of an arbitrary
graph, provided the graph does not have any isolate. The
correctness of the algorithm in [2] is based on the famous
Ore’s theorem in [1] that says “In a graph having no iso-
lated nodes, the complement of any minimal dominating
set is a dominating set”. The algorithm in [2] has a com-
plexity of 0(n*) using state sharing model and the usual
assumption that nodes have unique IDs and that each node
stores complete information about its adjacent nodes.

Our contribution: In this brief paper, we propose a new
self stabilizing algorithm to compute two mutually dis-
joint minimal dominating sets in an arbitrary graph with
no isolates. We employ the concept of running two copies

(1) () ()
\l/ \l/ \l/
O O (6)
N N N

Fig. 1. A graph with 6 nodes.

of an algorithm in an interleaving fashion such that mu-
tual disjointness of the two minimal sets is maintained
throughout the convergence process. We use the same as-
sumptions as in [2], i.e., we use unfair central daemon and
unique ids of the nodes. The time complexity of our algo-
rithm is O (n), an improvement by a factor of n from that
of [2]. We expect the idea of running two copies of an al-
gorithm concurrently to compute two disjoint subsets of
interest in a graph will be useful to design self-stabilizing
algorithms for other applications in a network graph.

2. Model and terminology

A network or a distributed system is modeled by an
undirected graph G = (V, E), where V is the set of nodes,
and E is the set of edges. For a node i, N(i), its open
neighborhood, denotes the set of nodes adjacent to node i;
N[i] = N(i) Ui denotes its closed neighborhood. For a node i,
N2(i) = UjeniiiN(j) — {i}, its 2-hop open neighborhood, de-
notes the set of nodes that are at most distance of 2 from
node i. Each node j € N(i) is called a neighbor of node i
and each node j e N2(i) is called a 2-neighbor of node i.
We assume G to be connected and n > 1.

Consider any connected graph G = (V, E), where |V|=
n and |[E| =m. A set S C V is a dominating set (DS) if each
node i € {V — S} is adjacent to at least one node in S, i.e.,
N@{@) NS #@. A node i is dominated if it has neighbor(s)
in S, and undominated otherwise. A dominating set S is
called a minimal dominating set (MDS) iff there does not
exist a node i € S such that § — {i} is a dominating set.

An example graph is shown in Fig. 1, where n =6,
m =_8. {1, 6} is a minimal dominating set; so are {3, 4} and
{2, 5}. Consider any arbitrary MDS, say {2, 5}; the nodes
V —{2,5} ={1,3,4,6} contains at least one MDS of the
graph G, e.g, {1,4,3}.

The execution of the protocol at each node is managed
by a central scheduler (daemon), that selects one privi-
leged node in a system state to move in each step. A node
is privileged in a given system state iff it is enabled to
move by at least one rule of the protocol. The protocol
terminates in a system state when no node is privileged
(legitimate global system state). The protocol assumes a
shared-memory model and each node knows only its own
state and the local states of its immediate neighbors as is
customary in self-stabilizing algorithms. The proposed al-
gorithm does not need to know the size of the network
graph.

3. Minimal dominating set

In order to design the algorithm for 2 disjoint MDS for
an arbitrary graph G of n nodes n > 1, we use an earlier

40 PK. Srimani,].Z. Wang / Information Processing Letters 147 (2019) 38-43

then { X =0;

P1:if (x; =1 A p} # null) then p} = null;

M1:if (x; = 0) A (Vj € N(i) : x; = 0) then set x; = 1 and p} =null
M2:if(xi=1)A(ﬁjeN(i):p’jfzi)/\(E!keN(i):xk:l)

if3!j € N(i) : x; = 1 then p} = j else p} = null;

P2:if (xi = 0) A (3!j € N(i) : x; = 1) A (p} # j) then p} = j else p} = null

Fig. 2. The Algorithm MDS at Node i, 1 <i <n.

self-stabilizing algorithm to design a single MDS of a graph
[10]. We briefly describe the algorithm below in a slightly
different form to facilitate the development of our new al-
gorithm in the next section.

Data structure: Consider an undirected graph G =
(V, E) with n nodes. Each node i € V has a binary flag x;;
a node i with x; =1 is called an MDS node while a node
with x; = 0 is a non MDS node. In any system configura-
tion (global system state), the current candidate minimal
dominating set (MDS) is given by S ={i € V : x; = 1}. Each
node i also has a pointer variable p} that can point to any
of its neighbors (j € N(i)) or can be null.

We call a node i € S an essential iff 3j € N[i] such that
N(j) NS ={i} (node j is dominated only by node i); note
that each node i € S is essential when S is an MDS (legit-
imate system state); the node j is called private neighbor
of node i in [10]. The algorithm starts in an arbitrary ini-
tial state and we assume a central (serial) daemon. The
pseudocode of the protocol is shown in Fig. 2. We reiterate
a few observations in Remark 1 and 2 that illustrate the
approach underlying the algorithm and state a few lem-
mas and a theorem; we sketch the proofs (adjusting for
our modified notations) from [10]) for ready reference.

Remark 1.

1. At termination of the algorithm, we call the system
state legitimate (stable) since no node is privileged by
any of the rules of the algorithm.

2. Steps M1 and M2 are called Membership Moves (a
node changes its membership in the set S in only ei-
ther of these moves) and steps P1 and P2 are called
Pointer Moves (a node changes its pointer variable
and does not change its membership in the set S in
either of these moves).

3. When a node i ¢ S executes rule M1, it enters into S
and sets its pointer p*(i) to null.

4. When a node i € S executes rule M2, it exits from S
and sets its pointer p} to its neighbor j e S if j is
its only such neighbor or to null, otherwise; note that
node i has at least one neighbor j € S by the predicate
of the rule.

5. A node i € S, enabled by rule P1 sets its pointer p*(i)
to null; note that node i can be enabled by rule P1
iff it has not been enabled by any other rule before
during the execution.

6. A node i ¢ S, enabled by rule P2, sets its pointer p*(i)
to j if j is its only S-neighbor and null, otherwise.

Lemma 1. When the algorithm terminates, we have (a) a node
i € S has p*(i) =null; (b) anode i ¢ S, has either p*(i) = j, iff
node i has exactly one neighbor j € S or null, otherwise.

Proof. (a) If anode i € S (i.e., x; = 1) has p*(i) # null, then
node i is privileged by rule P1, a contradiction. (b) If a
node i ¢ S and p*(i) is neither null or j where j is its
only S-neighbor of i, then node i is privileged by rule P2,
a contradiction. 0O

Lemma 2. (a) During execution, if a node ever makes a M1
move, it will not make another membership move; (b) starting
from an arbitrary initial state, a node can make at most 2 mem-
bership moves until termination.

Proof. (a) If a node i makes a M1 move at time t, then
none of its neighbors are in S at time t. For i to later use
M2 there must be a neighbor k for which x(k) = 1. But no
k will be able to use M1 because x(i) = 1. (b) If a node’s
first membership move is M1, it will not make a member-
ship move again. f its first membership move is M2 then
any next membership move must be M1; it cannot make
another membership move afterwards. O

Lemma 3. There can be at most n consecutive pointer moves.

Proof. Any pointer move by node i leaves i unprivileged.
No pointer moves made by other nodes can make i priv-
ileged. Therefore, in a sequence of consecutive pointer
moves, each node can move at most once. O

Theorem 1. (a) The algorithm MDS, starting from an arbitrary
initial state, can make at most (2n+ 1)n or O (n®) moves before
termination; (b) at termination, the set S is a minimal dominat-
ing set of the graph G.

Proof. By Lemma 2, there are at most 2n membership
moves. Before and after each membership move there can
be, by Lemma 3, at most n consecutive pointer moves. 0O

Remark 2 ([10]). The algorithm MDS can stabilize with any
arbitrary minimal dominating set of the given graph de-
pending on the arbitrary initial state and the behavior of
the daemon during the convergence process.

3.1. Restricted minimal dominating set

Again, consider an arbitrary given graph G = (V, E) and
a subset X C G. X is given to be a dominating (not neces-
sarily a minimal dominating) set of G. Our goal is to design

PK. Srimani,].Z. Wang / Information Processing Letters 147 (2019) 38-43 41

then { X =0;

RM1:if (x € X) A ((x,- =0)A(VjeN(@) :x; :0)) then set x; = 1 and pj‘:null
F{M2:if(x¢X)\/((ieX)/\(xi:1)/\(39]6N(i):p’}f:i)/\(HkEN(i)ﬁX:xkzl))
if3!j e N(i) N X : x; =1 then p} = j else p} = null;

RP1:if (x; =1 A pf # null) then p§ = null;
RP2:if (x; =0) A (3!j € N(i) : xj = 1) A (p] # j) then p} = j else p} = null

Fig. 3. The Algorithm RMDS at Node i, 1 <i<n.

an algorithm that will generate an MDS that is contained
in X, i.e.,, S C X; note that this is always possible since
X is known to be a dominating set (Lemma 2). We mod-
ify the algorithm MDS to get an MDS S of G such that
S C X. We design the Restricted Minimal Dominating Set
algorithm RMDS, by adding two simple clauses in the two
membership moves in MDS: we force each node i ¢ X to
unconditionally set x; =0 and a node i is allowed to con-
ditionally set x; =1, iff i € X (identical to step M1 of algo-
rithm MDS). Note that the pointer moves remain the same
as in algorithm MDS. Nodes have the same data structure
as in algorithm MDS. Fig. 3 shows the complete algorithm
RMDS.

Remark 3. The previous Lemmas 1, 2 and 3 equally apply
to the algorithm RMDS; the proofs are identical to proofs
of those three lemmas.

Theorem 2. The algorithm RMDS, starting from an arbitrary
initial state, can make at most (2n + 1)n or O (n%) moves be-
fore termination.

Proof. Proof of Theorem 1(a) applies here just like for Al-
gorithm MDS). O

Theorem 3. At termination, the set S is a minimal dominating
set of the graph G.

Proof. To see this, we simply need to show that at termi-
nation S is a dominating set (the rest is the same as the
proof of Theorem 1(b)). Assume there is a node j € V that
is not dominated by any S-node. If j eV — X, j has at
least one neighbor in X, since X is a given dominating set;
the rest as in the proof of Theorem 1. O

Corollary 1. Assume algorithm RMDS is run on a graph G =
(V, E) and a subset X C G when the set X is not a dominating
set of graph G. Starting from an arbitrary system state, RMDS
will terminate in at most O (n?) steps (Theorem 2 still applies
here as before), but at termination, the set S is not a minimal
dominating set of the graph G (Theorem 3 does not apply).

4. Two disjoint minimal dominating sets

In this section, we develop a self stabilizing algorithm
to compute two disjoint minimal dominating sets of a
graph of n nodes, n > 1. While most of the self-stabilizing
distributed algorithms for graph predicates related to dom-
inance and independence have considered computation of
a single subset of the graph with the desired property [6],

authors in a recent paper [2] have provided an interesting
(and the only one as far as we know) self-stabilizing al-
gorithm that can compute two mutually disjoint minimal
dominating sets in a graph, provided the graph does not
have any isolate; this algorithm has been designed based
on the famous Ore’s theorem in [1] that says “In a graph
having no isolated nodes, the complement of any minimal
dominating set is a dominating set”. The algorithm in [2]
has a complexity of O(n*) using state sharing model and
assuming nodes with unique IDs, as is usual in almost all
such algorithms [6]. We show that the simple MDS algo-
rithm (Fig. 2) to compute a single minimal dominating set
and the RMDS algorithm (Fig. 3) can run concurrently in
an interleaving manner to compute two mutually disjoint
minimal dominating sets of an arbitrary graph with no iso-
lates (n > 1) in O (n3) time using unique IDs of nodes and
an arbitrary central daemon as in [2].

Data structures: Each node i € V has two binary vari-
ables x; and y;. A node with x; =1, (y; is either 0 or
1) is called an Si-node and a node with x; =0,y; =1
is called a S;-node. In any configuration (global system
state), {i € V : x; = 1} denotes the current candidate set
Sy and {i € V:x; =0, y; =1} denotes the current candi-
date set Sp. In addition, each node i has two pointers p}
and p?’ each of which can point to any of its neighbors
j € N(@) or can be null; for a given node i, we call pf its
S1-pointer and p,.y its Sy-pointer respectively.

Remark 4. In any arbitrary global system state (configu-
ration), S NS =0 and anode i e V — (51 USY) (X =
0, y; = 0), does not belong to either S; or Sy; similarly,
V-8 ={ieV:xj=0}.

Approach: Starting from an arbitrary initial state, we
run algorithm MDS on graph G to compute S; and algo-
rithm RMDS (where the set X =V — &) on graph G to
compute S, we will call them MDS1 and MDS2, concur-
rently in an interleaved fashion. Initially, the sets S; and
S, are arbitrary depending on the arbitrary initial system
state. Algorithm MDS1 reads the variables x; and p} of a
node i and writes only on x; and p} of a node i. Algorithm
MDS?2 reads variables x;, y; and pl?' of a node i and writes
only on y; and pf’. The goal is, when the combined pro-
tocol terminates, S is an MDS of the graph G = (V, E)),
computed by MDS1, and S, €V — &7 is an MDS of the
graph G = (V, E), computed by MDS2. Note that the ex-
ecution of MDS2 does not affect the state variables that
are read by MDS1, but the reverse is not true, i.e., execu-
tion of MDS1 affects the state variables that are read by
MDS2. We begin by making some observations and defin-

42 PK. Srimani,].Z. Wang / Information Processing Letters 147 (2019) 38-43

if W14 (i) vV W1p(i) then
M1: {(M1.1)

if Wys (i) v Wy (i) then
(M2.1) if Wy, (i) then

(M2.2) if W,p(i) then
yi=0;

’ if W34 (i) v W3p(i) then
P1

if Wya (i) vV Wyp (i) then
P2

if W14 (i) then {x; = 1 and p} = null};
(M1.2) if Wy(i) then {y; = 1and p} =null};

X =0;
M2: { if 3!j € N(i) : x; =1 then p} = j else p =null;

if 31j e N (i): yj =1then p! = j else p} =null;

(P1.1) if W34 (i) then p} = null;
(P1.2) if W3(i) then p! =null;

(P2.1) if Wyu(i) then pf = j else p} =null;
(P2.2) if Wyp(i) then p! = j else p} = null;

Fig. 4. The Algorithm 2-MDS at Node i, 1 <i <n.

ing a few predicates to facilitate the stepwise development
of the proposed protocol.

Definition 1. The local state of a node i € G is defined
by the state variables {x;, y;, p}, pf’}. Algorithm MDS1 can
read only node variables {pf,x;,Vi e V} = RSy (Read set of
MDS1), and can write on only node variables {p}, x;, Vi €
V} = WS, (Write Set of MDS1) Similarly, algorithm MDS2
can read node variables {p,?', Xi, ¥i, Vi € V} = RS, (Read Set
of MDS,) and can write on node variables {p?’,y,-,Vi €
V}= WS, (Write Set of MDS2).

Lemma 4. WS, N RS =, i.e., execution of MDS2 does not
change the state variables of nodes, read by MDS1, as long as
MDS1 does not execute. Note: membership moves of MDS1 may
change the state variables of nodes, read by MDS2.

Proof. The proof directly follows from the Definition 1. O

Definition 2. In a system state, a node i can locally com-
pute each of the following Boolean predicates:

(a) For a node i, a Boolean predicate Wy4(i) =1 iff node
i ¢ S1 and none of its neighbors are in S; (i.e., node
i is privileged to enter S1), and Wi (i) = 1 iff node
i ¢ S1 US, and none of its neighbors are in §1 U S;.

wiaG) & (4 = 0) A (V) € N(i) 12, = 0),
W) (i =0) A (1 =0)(Vj:x;=0Ay;=0)

Note: In any system state, if W14(i) = 1, node i is priv-
ileged to enter Sy; similarly, if Wqp(i) =1, node i is
privileged to enter S,.

(b) For a node i, a Boolean predicate W,4(i) =1 iff node
i € 81, there exists a neighbor of i in &7, and there
does not exist a private neighbor of i, and Wy (i) =1
iff node i € Sy, there exists a neighbor k of i in S, and
there does not exist a private neighbor of i in (V —&jy).

Vo) E =1 A @jeNG):pl =)
A@GFkeNG) :x=1),

Uos() L =0 A(yi=1)
/\(ﬂfGN(i):x,-:O/\pjy,:i)

AEFkeN@) :xi=0Ay=1)

Note: If W,4(i), node i is privileged to exit S7; simi-
larly, if W,p(i), node i is privileged to exit Sy.

For a node i, a Boolean predicate W34(i) =1 iff i € &7
and its Si-pointer is not null; and, W3p(i) =1 iff i €
S, and its S;-pointer is not null.

—
(gl
~

W34(i) & (xi =1) A (p} #null),

W) & (x = 0) A (i = 1) A (p) # null)

Note: If W34(i), node i € St is privileged to correct its
p;.‘ pointer; similarly, if W3p(i), node i € Sy is privi-
leged to correct its p,?' pointer.

For a node i, a Boolean predicate W44(i) =1 iff i ¢
S1 and there exists a single neighbor j € S1, but i's
Si-pointer is not j; Wup(i) =1 iff i ¢ S;US, and there
exists a single neighbor j € Sy, but i's Sy-pointer is
not j.

=
A

Waa () E (i =0) A @ e NG) : (xj = 1A P} #).

Wi () i =0) A (i = 0)
A@eNG):(yj=1DAP] #))

Note: If Wy4 (i), node i ¢ Sy is privileged to correct its

p{ pointer; similarly, if W4p (i), node i ¢ Sy is privi-
leged to correct its p?’ pointer.

The complete pseudocode of the complete algorithm
2 — MDS is shown in Fig. 4; we make a few observations
in Remark 5 that further illustrate the approach underlying
the algorithm.

PK. Srimani,].Z. Wang / Information Processing Letters 147 (2019) 38-43 43

Definition 3. In any system state when no node is privi-
leged by any one of the moves in the algorithm 2 — MDS,
we say the system has stabilized, i.e., has reached in a le-
gitimate state.

Remark 5.

1. Steps M1.1, M2.1, P1.1 and P2.1 constitute algorithm
MDS1 and steps M1.2, M2.2, P1.2 and P2.2 constitute
algorithm MDS2. Note that M1.1, M2.1 are member-
ships moves and P1.1 and P2.1 are pointer moves for
algorithm MDSH1; similarly, M1.2, M2.2 are member-
ships moves and P1.2 and P2.2 are pointer moves for
algorithm MDS2 (similar to Remark 1, 2).

2. In any illegitimate state the central daemon arbitrarily
selects any privileged node; rules are executed atomi-
cally. When a node i is privileged, it can be privileged
by both MDS1 and MDS2 or by either one of them.
Thus, when a privileged node is selected by the dae-
mon, it executes a step for either or both of the algo-
rithms.

Lemma 5. The pointer adjustments in the algorithm 2 — MDS
are such that, in a legitimate state, (1) each node i € Sy has
p} =null; (2) each node i ¢ Sy has p} = j iff node i has exactly
one neighbor in S1 and p} = null, otherwise; (3) each node i
Sy has p,?’ =null; (4) eachnode i ¢ S, has piy = jiffnodei has
exactly one neighbor in S, and piy = null, otherwise.

Proof. By Straightforward generalization of Lemma 1. O

Lemma 6.

1. Pointer moves of algorithm MDS1 do not affect the Read Set
RS> of algorithm MDS2.

2. Membership moves of MDS1 affect the read set RS> of al-
gorithm MDS2.

3. No moves (either membership or pointer) of MDS; affect
the RS1 of algorithm MDS1.

Proof. (1) A pointer move of algorithm MDS1 changes
only the pointer p} of a node i which is never read by
any move of algorithm MDS2 (Lemma 4). (2) A member-
ship move of algorithm MDS1 changes the x; variable of
a node i which is read by the moves of algorithm MDS2
(Lemma 4). (3) Any move of algorithm MDS2 changes the
variables p,?' and y; of a node i and moves of algorithm
MDSH1 reads y; of a node i (Lemma 4). O

Lemma 7. When algorithm 2 — MDS executes (concurrent in-
terleaving execution of two component algorithms MDS1 and
MDS2), there can be at most O (n*) moves of algorithm MDS2
and n Pointer moves of algorithm MDS1 between two consecu-
tive Membership moves of algorithm MDS1.

Proof. Consider a time interval t between two consecutive
Membership moves of algorithm MDS1. During the interval
t, the set S ={ieV :x;=1A y; =0} does not change;

while algorithm MDS1 can make at most n pointer moves
during interval t, these pointer moves does not change Sp

(Remark 1, 2 hence, the set S; does not change. Thus, only
algorithm MDS; (algorithm RMDS with X =V — S&7) will
execute and terminate in O (n?) moves in the worst case
(Theorem 2). O

Theorem 4. Starting from an arbitrary illegitimate state, the al-
gorithm 2 — MDS terminates in O (n3) steps (moves).

Proof. By Lemma 2 algorithm MDS1 can make 2n Mem-
bership moves in the worst case before termination and in
between two such moves there can be at most (n% + n)
moves by algorithm MDS2 (Lemma 7). Thus the algo-
rithm 2 — MDS terminates in O(2n x n?) or 0(n%) steps
(moves). O

Theorem 5. When the algorithm 2-MDS terminates, the two
sets 81 and S, denote two mutually disjoint minimal dominat-
ing sets of the graph G, i.e, S1 NSy = 0.

Proof. By definition, the two sets S; and S; are always
mutually disjoint (Remark 4). When the component algo-
rithm MDS1 has stabilized during the execution of 2-MDs,
&1 is a minimal dominating set of G (Theorem 1); the set
&1 does not change until 2-MDS terminates. When the
component algorithm MDS2 terminates, the resulting S;
is a minimal dominating set of G (Theorem 3). O

Acknowledgements

We are grateful to the reviewers for their comments to
improve the presentation. We acknowledge partial support
from NSF Grant DBI 1759856.

References

[1] O. Ore, Theory of Graphs, Amer. Math. Soc. Collog. Publ., 1962.

[2] S.T. Hedetniemi, D.P. Jacobs, K.E. Kennedy, A theorem of ore and self-
stabilizing algorithms for disjoint minimal dominating sets, Theor.
Comput. Sci. 593 (2015) 132-138.

[3] E.W. Dijkstra, Self-stabilizing systems in spite of distributed control,
Commun. ACM 17 (11) (Nov. 1974) 643-644.

[4] B. Han, W. Jia, Clustering wireless ad hoc networks with weakly
connected dominating set, J. Parallel Distrib. Comput. 67 (6) (2007)
727-737.

[5] J. Yu, N. Wang, G. Wang, Constructing minimum extended weakly-
connected dominating sets for clustering in ad hoc networks, J. Par-
allel Distrib. Comput. 72 (1) (2012) 35-47.

[6] N. Guellati, H. Kheddouci, A survey on self-stabilizing algorithms for
independence, domination, coloring, and matching in graphs,]. Par-
allel Distrib. Comput. 70 (4) (2010) 406-415.

[7] Justin Southey, Michael A. Henning, A characterization of graphs with
disjoint dominating and paired-dominating sets, J. Comb. Optim. 22
(2011) 217-234.

[8] W. Klostermeyer, M.E. Messinger, A. Ayello, Disjoint dominating sets
with a perfect matching, Discrete Math. Algorithms Appl. 9 (2017).

[9] Michael A. Henning, Iztok Peterin, A characterization of graphs with
disjoint total dominating sets, Ars Math. Contemp. 16 (2) (2019)
359-375.

[10] S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani, Self-
stabilizing algorithms for minimal dominating sets and maximal in-
dependent sets, Comput. Math. Appl. 46 (2003) 805-811.

http://refhub.elsevier.com/S0020-0190(19)30057-2/bib6F726531393632s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib68656465742D326D6473s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib68656465742D326D6473s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib68656465742D326D6473s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib44696A373466697273745353s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib44696A373466697273745353s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib48616E32303037s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib48616E32303037s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib48616E32303037s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib597532303132s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib597532303132s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib597532303132s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib474B31306772617068737572766579s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib474B31306772617068737572766579s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib474B31306772617068737572766579s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib48656E6E696E6732303131s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib48656E6E696E6732303131s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib48656E6E696E6732303131s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib4B6C6F7374657232303137s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib4B6C6F7374657232303137s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib48656E6E696E6732303139s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib48656E6E696E6732303139s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib48656E6E696E6732303139s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib686564657432303033s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib686564657432303033s1
http://refhub.elsevier.com/S0020-0190(19)30057-2/bib686564657432303033s1

	Self-stabilizing algorithm for two disjoint minimal dominating sets
	1 Introduction
	2 Model and terminology
	3 Minimal dominating set
	3.1 Restricted minimal dominating set

	4 Two disjoint minimal dominating sets
	Acknowledgements
	References

