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ABSTRACT: Weak interactions have a critical role in accurately por-
traying conformational change. However, the computational study of
these often requires large basis electronic structure calculations that are
generally cost-prohibitive within ab initio molecular dynamics. Here,
we present a new approach to efficiently obtain AIMD trajectories in
agreement with large, triple-ζ, polarized valence basis functions, at
much reduced computational cost. For example, it follows from our
studies that AIMD trajectories can indeed be constructed in agreement
with basis sets such as 6-311++G(2df,2pd) with computational effort commensurate with those from much smaller basis sets
such as 6-31+G(d), for polypeptide systems with 100+ atoms. The method is based on molecular fragmentation and allows a
range-specified repartitioning of intramolecular (and potentially intermolecular) interactions where noncovalent interactions are
selectively assembled using a piece-wise reconstruction based on a set-theoretic inclusion−exclusion principle generalization of
ONIOM. Through a simplex decomposition of molecular systems the approach efficiently provides the necessary many-body
interactions to faithfully represent noncovalent interactions at the large basis limit. Conformational stabilization energies are
provided at close to the complete-basis limit at much reduced cost, and similarly AIMD trajectories (both Born−Oppenheimer
and Car−Parrinello-type) are obtained in agreement with very large basis set sizes, in an extremely efficient and accurate man-
ner. The method is demonstrated through simulations on polypeptide fragments of a variety of sizes.

I. INTRODUCTION
Classical molecular dynamics has proved to be a major workhorse
in the study of complex chemical and biochemical problems.1−9

But, the use of experimentally parametrized force fields in clas-
sical MD deeply limits its applications to mostly nonreactive, equi-
librium systems. Exceptions include the empirical valence bond
theory (EVB)10−13 and reactive-force-fields such as ReaxFF14

where potentials are tailored for specific reactive applications,
and it is in the sense of providing a general protocol for reac-
tive systems that ab initio molecular dynamics (AIMD)15−22

has had the greatest impact. With the application of density func-
tional theory to quantum chemistry23,24 moderate sized systems
have been readily studied with AIMD.25−31 Here, the electronic
structure calculations are performed at every time step, and
this greatly limits the routine use of AIMD for complex chemi-
cal problems, with DFT being the only practical and affordable
choice. However, despite great progress, several challenges
remain for use of DFT methods.23,32−34 In this regard, we have
recently developed new methods that employ molecular fragmen-
tation35−37 and geometric networks38 to perform AIMD calcu-
lations with MP235,36,38 and CCSD37 accuracy at DFT cost.37,38

While these methods may influence computational chemical
modeling of complex problems, it is also clear from Figure 1a
that accurate quantum chemical and AIMD calculations are
only possible if we also simultaneously consider basis set size
effects. For example, hybrid functional DFT methods formally
scale as N( )4 , with the size of the electronic basis set, N, and
this scaling is effectively reduced in larger systems to N( )3.5

due to reuse of two-electron integrals;39 this critically affects

the size of basis sets that can be routinely employed in large-
scale computational simulations. Indeed, as noted in Figure 1,
the gold standard for electronic structure theory resides on the
two-dimensional space of basis set size and electron-correlation
methods, with the correct answer on the top-right corner of
Figure 1a. Ab initio molecular dynamics methods may need
this accuracy to be computed in a dynamical fashion, as repre-
sented in Figure 1b, which enormously complicates the prob-
lem due to the sheer number of such calculations to be per-
formed. In this paper we extend our fragment-based dynamics
methods,35−38 both extended Lagrangian21,22,36,37 and Born−
Oppenheimer17,18,35,37,38 versions, to provide accurate dynam-
ics in the larger basis-set limit, at much reduced computational
cost. In fact, a critical hallmark of the study here is that we are
able to perform AIMD trajectory calculations with accuracy compar-
able to large triple-ζ basis functions that include polarization and
dif fuse functions using much smaller basis functions deeply reducing
computational cost and scaling. We utilize a graph-theoretic ada-
ptation38 of the generalization to the well-known ONIOM40

method that uses the set-theoretic inclusion−exclusion prin-
ciple35−37 to construct AIMD trajectories that are accurate in
the large basis set limit. With this work we advance a larger
goal of combining basis set fragment-based extrapolation with
electronic structure fragment-based extrapolations to obtain
greater AIMD accuracy at reduced computational costs. This
compound extrapolation will, in the future, be used to propagate
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the nuclear degrees of freedom forward, the overall vision
presented in Figure 1b.
This paper is organized as follows: In Section II we examine

the effects of basis set choice in obtaining conformational sta-
bilization energy between various conformers of polyalanine.
In Section III we discuss our approach for “on-the-fly” basis set
extrapolation, which is then benchmarked in Section IV to yield
accurate stabilization energies at much cheaper cost as compared
to the larger basis set limit. We also discuss our dynamical
simulations in Section V, and in Section VI we present our
conclusions.

II. BASIS SET CONTRIBUTIONS TO WEAK
INTERACTIONS THAT DEFINE CONFORMATIONAL
CHANGE

In this section, we gauge the effect of basis set composition on
conformational stabilization energy. We conduct a survey of
B3LYP level conformational stabilization energies for a range
of polyalanine systems (Ala4−Ala12) using a set of Gaussian
basis functions. The starting structures were obtained from
optimization at the B3LYP/6-31++G(d,p) level of theory to
obtain the β-strand and 310 helical structures shown in Figure 2
for Ala12. The β-strand is characterized by peptide dihedral
angles, ϕ = −160° and ψ = 160°, and represents one strand of
a β-sheet, while the 310 helix is characterized by ϕ = −60° and
ψ = −20° with hydrogen bonding between amino acids
indexed (i → i + 3). The conformational stabilization energy
between these structures is defined here as the difference in
electronic energies for the 310 helical system and the β-strand
system. We approximated the stabilization energy at the com-
plete basis set limit through the exponential extrapolation
scheme41 of Dunning style basis sets.42 Figure 3a shows the
conformational stabilization energy calculated with B3LYP on
smaller bases, many of which are commonly used for dynamics
and structural calculations in biochemical systems.43,44 The
inclusion of polarized and diffuse functions significantly contrib-
utes to the stability in these structures; the addition of polarized or
diffuse functions on the heavy atoms marked an improvement of

3−5 kcal/mol toward the complete basis set limit. In general,
all of the basis sets in Figure 3a show great discrepancy with
respect to the CBS limit.
Next we considered fully polarized double-ζ (Figures 3b,c)

and triple-ζ (Figure 3d) bases with increasing number of dif-
fuse functions that are generally cost-prohibitive to utilize for
AIMD simulations of biochemically relevant problems. Here, as
we add diffuse functions to the Pople style Gaussian basis sets,46

we observe monotonic convergence toward the CBS limit with
the exception of a small deviation where 6-31++G(2df,2pd) is
marginally closer to the CBS limit as compared to 6-31++G-
(3df,3pd) (by a few tenths of a kcal/mol). From this analysis we
would consider double and triple ζ basis sets with (2df,2pd) or
(3df,3pd) diffuse functions as fair approximations to the CBS
limits shown here. But these calculations present a steep com-
putational cost for AIMD. Density functional methods, such as
the B3LYP functional that we employ here, formally scale as

N( )4 and hence a choice of more exhaustive basis would
significantly hinder the feasibility as system size grows.
We also conducted studies similar to those in Figure 3, but

with dispersion corrected45 B3LYP, and observed similar basis
set dependent trends as those in Figure 3. The associated results
are summarized in Figure 4 using the B3LYP-D3 functional45

with the Grimme dispersion correction with additional details
in Appendix A (see Figures A-1 and A-2). Inclusion of disper-
sion corrections significantly increase the stability of the helical
conformations relative to the β-strand. In the next section, to
retain the quality afforded by use of a larger basis set, but with
much reduced computational expense, we propose the use of
molecular fragmentation to obtain AIMD trajectories and
conformational stabilization energies.

III. GRAPH-THEORETIC AND SET-THEORETIC
GENERALIZATIONS TO ONIOM FOR BASIS SET
EXTRAPOLATION AND AB INITIO MOLECULAR
DYNAMICS

When nonorthogonal atom-centered Gaussian basis sets are
used, the basis functions localized on one atom are

Figure 1. Gold standard for electronic structure is shown in part (a) which becomes critical for systems with weak interactions where both large
basis sets and electron-correlation are needed to obtain accurate results. Part (b) adds nuclear degrees of freedom to the problem, where our
previous work (Frag-BOMD and ADMP-pHF)35−38 and this publication are depicted. The red ellipse represents a future goal.

Figure 2. 310 helical (a) and β-strand (b) conformers for Ala12. In part (a), the stabilizing (i → i + 3) hydrogen bonds are shown.
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supplemented by contributions from basis functions that are
localized on neighboring atom centers while representing the
local region. As a result, one encounters the so-called “electron

density leakage” problem where electron density is said to
“leak” from the basis functions that belong to one atom to the
basis functions on neighboring atoms.47 This leakage leads to

Figure 4. Errors in stabilization energy of the 310 helical structure with respect to the β-strand compared to similar stabilization energy from triple ζ
basis set calculations. Parts c and d include Grimme’s dispersion corrections45 while parts a and b do not include these corrections. Parts (b) and
(d) are, however, very similar because the Grimme corrections45 only depend on nuclear positions and not on the electronic structure. Hence the
effect of these corrections is much reduced when differences are computed with respect to the CBS limit. More details can be found in Appendix A.

Figure 3. Stabilization energy dependence on the choice of basis. The energy differences between the 310 helical and β-strand conformers are shown
for a range of polyalanine systems with increasing basis set coverage. Parts (a) and (b) show the smaller basis sets commonly used in electronic
structure calculations and AIMD. Part (c) shows the stabilization energy for double ζ basis sets with increasing number of diffuse functions. Part (d)
shows triple-ζ basis sets with polarization functions and increasing number of diffuse functions. The basis sets, 6-311++G(2df,2pd) and 6-311+
+G(3df,3pd), are treated as good target approximations for the remaining part of the paper. The errors for these with respect to CBS limit are
presented in Figure 4 with similar results for the B3LYP-D3 functional.45 All CBS extrapolations were constructed using the cc-pVDZ, cc-pVTZ, and
cc-pVQZ basis sets through the exponential extrapolation scheme41 of Dunning style basis sets.42
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an extension of the basis function space used to represent
molecular wave functions. Basis set extension is beneficial as it
expands the functional space for each atom. But from this
additional expansion of the available basis set functional space
arises the weakness that the availability of this expanded space
is dependent on the relative atomic positions which leads to
the well-known basis set superposition error (BSSE)47−49 for
reaction energies and in dynamics calculations.50 These errors
arise from the difference in the effective basis function space
available between the composite system (e.g., A-B), the con-
stituents considered separately (A and B), or for some inter-
mediate separation between A and B, which may be encoun-
tered during dynamics calculations or during a reaction path
calculations. In the composite system the vector space avail-
able to A is expanded from the basis sets centered on B and
vice versa. But when the distance between A and B changes the
available extension to the vector space for both systems are
perturbed. This leads to changes to the quality of the effective
basis set. Although BSSE is often associated with interaction
energies, this concern appears in other studies as well. In ab
initio molecular dynamics,50 each time step modifies the dis-
tance between atoms which would in turn present a different
linear vector space for determination of the electronic wave
function at every instant in time during dynamics.50 Such per-
turbations lead to artifacts in the potential energy surface sam-
pled by the system during dynamics by introducing additional
oscillations that represent in the electronic energies and wave
functions that bear the signature of nuclear motion. However,
as the quality and size of the basis set is increased, these arti-
facts disappear and hence larger basis sets are more desirable
for electronic structure and “on-the-fly” dynamics, especially
when weak interactions are involved.
As a result of the above discussion and the improved results

found in Section II with increasing quality and size of basis
sets, we propose to adapt the principle of inclusion exclusion
generalization of ONIOM35−37 and the graph-theoretic/geo-
metric analogue of the same,38 to enhance the quality of basis
functions used in AIMD at reduced computational cost.
Although the formalism here is derived from ONIOM,58 it also
has close connections to other methods including the Multi-
centered QM:QM formalism,59,60 the molecular tailoring
approach (MTA),61,62 the ONIOM-XO method,63 and the
molecules-in-molecules (MIM) methodology.64−67 Indeed
there are several other fragmentation methods68−73 available,
but the approaches in refs 35−38, 59, and 62−66 include long-
range electronic effects through a full-system low level calcu-
lation, much in the same vein as the ONIOM58 method. Fur-
thermore, some of the fragmentation methods have been used
for basis set extrapolations60,62,74 and for AIMD.35−38,75−81

We have noted in ref 38 that the approach studied here is also
closely related to many-body expansions82−84 and double many-
body expansions.82 At this point, it is also critical to note that
other complementary approaches for basis set extrapolation
include the dual basis methods85 and multistep basis set par-
titioning86 scheme.
In the method discussed in this publication, we partition our

systems into orthogonal units, which will be referred to as
monomer units. In ref 38, these monomer units are referred to
as CG-nodes in a graph, since in a sense these units together
represent a “coarse-grained” form of the system. These mono-
mers are then connected to obtain dimer units that are repre-
sented as edges in a graph or a geometric network, the elements
of which are a union of the elements within the two connected

monomer units. In ref 38 we have used two edge-construction
techniques. (a) In one case, the Delaunay triangulation
method87−92 was used, which allows for an orthogonal parti-
tioning, or “tiling”, of the molecular space. Delaunay trian-
gulation is a dual-representation of Voronoi diagrams87,88 and
has been employed in a variety of other applications.93−95

In ref 38, Delaunay triangulation provides the edges that con-
nect monomers to obtain a simplicial complex96 or a con-
nected graph that depicts the molecular framework in a coarse-
grained fashion. These edges are then used to construct dimer
fragments, and potential higher order fragments to construct a
molecular fragmentation procedure. (b) In the second approach
introduced in ref 38, we have the flexibility to include all
possible many-body interactions inside a local neighborhood
which does not lead to an orthogonal partitioning (as in
Delaunay triangulation) but is found to be numerically supe-
rior in ref 38. In essence, we define a local (chemically con-
nected and spatial) neighborhood represented by a parameter,
η, over which all possible edges (and hence second-order
many-body interactions) are included, a pictorial illustration
for which is provided in Appendix B. However, within this
approach, higher-order interactions may also be included and
these are for example represented through the contributions
from faces and tetrahedrons, or simplexes of ranks-0 (nodes),
rank-1 (edges), rank-2 ( faces), and rank-3 (tetrahedrons). In prin-
ciple, this manner of defining fragments will allow us to sys-
tematically and adaptively obtain a many-body expansion and
create an isomorphism between fragment definitions and the
geometric coarse-graining algorithm described in ref 38.
The parameter η, discussed above,38 refers to the spatial

extent over which many-body interactions are included. For
example, for η = 2, interaction between adjacent monomer
units are included. When η = 3 additional interactions are
considered between the monomer units (nodes) that are part of
edges that intersect at one node, and so on. (see Appendix B
and also Figure 5 for an illustration of the interactions included
from the parameter η). Below we present the energy expression
from both set-theoretic and graph-theoretic decompositions.
Using the PIE-ONIOM scheme from ref 35, we may construct
a fragment-based treatment of a partitioned system where the
full system is treated with a smaller basis (NB,S), while each fra-
gment (such as the edges and nodes in Appendix B) is
considered with a larger (NB,L) and smaller (NB,S) basis:

E E i i j

i j k

n

( ) ( )

( )

( 1) (1 )

PIE ONIOM N

i

n

i j n

i j k n

n

1 1

1

1

B S, ∑ ∑

∑

∑

= + − ∩

+ ∩ ∩ − ···

+ − ∩ ··· ∩

−

= ≤ < ≤

≤ < < ≤
−

(1)

Here, ENB,S is the energy for the full system with a smaller basis
set for any level of electronic structure theory. The indices i, j,
k, ···, n are the dimer units represented as ellipses and as edges
in Appendix B and are referred to as primary fragments. The
overlapping fragments are formed by the intersection (∩) of
the primary fragments and lead to the nodes in Appendix B.
In this publication, we use the monomer units to represent
single amino acid units, but this is not a hard and fast require-
ment; furthermore higher-order many-body interactions can be
easily included as will be seen below. (More precisely, the
monomer units are chosen as CHR−NH−CO peptide units to
retain the partial double bond character97 of the peptide bond.
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But these details are considered in Section IV.A.) The terms
( )··· are corrections to the fragment energy obtained as in

refs 35−37, in the spirit of ONIOM,40 according to

i E i E i( ) ( ) ( )N NB L B S, ,= − (2)

Alternatively, the graph-theoretic method leads to the
expression:

E E r p( 1) ( , ) ( 1)graph theoretic N

r

R
r

m r

R
m r m

1

,B S, ∑ ∑ ∑α= + − −
α

α
‐

= =
(3)

where the quantity “α” in the second term in eq 3 represents a
summation index over all rank-r simplexes embedded within
the geometric network decomposition shown in Appendix B,
with R being the largest rank simplex considered for electronic
structure treatment. The quantity r( , )α is a difference in
energy, analogous to i( ) in eq 2, and defined as

r E r E r( , ) ( , ) ( , )N NB L B S, ,α α α= − (4)

Thus, r( , )α is the difference in energy between the larger
and smaller basis set treatment of the αth simplex of rank r.
The second term, in eq 3, is the summation of the energy
contributions of progressively higher rank simplexes. As in eq 1,
ENB,S is the energy for the full system with a smaller basis set. The
square bracketed term contains the overcounting correction
from ref 38 for these simplexes, where pα

r,m is the number of
times the αth rank-r simplex appears in simplices of rank-m
(R ≥ m ≥ r). If only edge (dimer) interactions are considered
(as is done in numerical tests in this paper), R = 2 and eq 3 is
truncated at the edge-contribution level; hence,

E E p p( , 2) ( , 1)R
graph theoretic N

2
1,2 1,1B S, ∑ ∑α α= + − [ − ]

α α
α α=

‐

(5)

where pα
1,2 is the number of times node α appears in an edge

and pα
1,1 is 1 as each node is unique.

While eqs 3 and 5 are complementary ways of performing
the computation in eq 1, eqs 3 and 5 provide a numerical
approach that is much more efficient as discussed in ref 38.
Equation 1 is closely related to previous fragmentation meth-
ods, MIM65 and MTA,61 but places fragmentation within the

context of the well-known ONIOM approach. But the starting
point for eq 3 shows a much deeper connection to many body
expansions,82 where N-body terms can be selectively added to
the expression in a systematic fashion within a graphical repre-
sentation.
In summary, there are essentially two dimensions where

accuracy can be systematically improved and fragmentation
can grow. (a) For a given truncation order of the generalized
graph-theoretic version in eq 3, η is an expansion coefficient
that allows us to spatially “tune-in” many-body interactions.
In this paper, we exhaustively study all interactions up to η = N,
that is the maximum number of two-body large basis cor-
rections (including long-range interactions) to the small basis
calculation. (b) The other dimension where fragmentation
may be improved is through introducing energy contributions
from faces, tetrahedrons and other embedded simplexes within
the geometric network that depicts the molecule (see
Appendix B) as outlined in eq 3. This will allow including
three, four and higher number of monomers that are again
required to be expanded using a generalized form of η, but we
do not benchmark this generalization in this paper and find
that the η-dependent edge interactions sufficiently describe the
systems considered here.
For the remaining part of this paper, we employ the network

decomposition in eq 5 to construct on-the-fly basis set extrap-
olation.

IV. BASIS SET EXTRAPOLATION FOR POLYALANINE
SYSTEMS USING EQUATION 5

In Section IV.A we present a brief description of monomer
(or node) selection and associated fragmentation. Figure 5
provides a complementary illustration that highlights the extent
to which two-body basis-set contributions are captured. The
fragmentation ideas in Section IV.A complement the corre-
sponding discussion in ref 38 and hence the description is
brief. In Section IV.B, we probe the accuracy in computing
DFT level electronic conformational stabilization energies in
close agreement with large basis sets using the formalism
discussed in Section III. We consider polypeptide chains of
lengths in the range (Ala4−Ala12) and evaluate the stabilization
energies between helical and straight chain conformations as
done in Section II but now with basis-set extrapolation

Figure 5. An illustration of the parameter η for a 310 helical Ala6 structure. Monomer units (or nodes) are shown in part (b), and these were used to
form dimer fragments according to the geometric network in part (c). Examples for the various interactions captured are shown in parts (d)−(g).
However, note that these interactions are cumulative in the sense that η = 4 captures interactions all the way from η = 1 through η = 4.
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(described in eqs 1, 3, and 5). The efficiency gain from this
method is discussed in Section IV.C. Helical stability98 in
polyalanine relies on nonbonding interactions,99−101 which are
prone to basis set superposition error,50,102,103 and is hence
chosen as part of our studies.
We introduce an extended Lagrangian generalization to

basis-set-extrapolated-AIMD using the energy functional in eq 5,
and this done in Section V. We evaluate the associated quality,
accuracy, and efficiency of AIMD (Born−Oppenheimer and
extended-Lagrangian) trajectories in Section VI. It follows f rom
our results in Sections IV.C and VI that AIMD trajectories can
indeed be constructed in agreement with larger basis set calcu-
lations (such as 6-311++G(2df,2pd)) with computational expense
commensurate with those f rom much smaller basis sets (such as
6-31+G(d)).
IV.A. Fragmentation Protocols for Polyalanine Sys-

tems. Here we consider the conformational stability of AlaN
between its linear and helical conformations. Details of these
structures were discussed in Section II and are illustrated in
Figure 2. The comparison of accuracy of conformational
stability between the linear and 310 helical structures allows us
to gauge the accuracy of the methods discussed in Section III
toward potentially capturing dynamical nonbonded interac-
tions.
Before proceeding with our evaluation of the method for the

extrapolation of basis sets, the monomers would need to be
defined. Here we chose to partition the polyalanine structures
by breaking the bond connecting the Cα atom and the carboxyl
carbon atom, thus forming monomers of the kind, CHR-NH−
CO. The carbon−carbon bond is broken instead of the peptide
bond, NH−CO, as the latter is known to have a partial bond
character.97 When these monomers are defined, bonds are
broken creating dangling valencies. These dangling valencies
are saturated by use of hydrogen link atoms, consistent with
the ONIOM40 methodology. Inline with refs 30, 104, and 105,
the forces on link atoms are transformed back to the real sys-
tem atoms using the appropriate Jacobians. Next, key inter-
actions between monomers are considered, these interactions
are represented by dimer fragments. The interaction distance
here is quantified by the sequential displacement between the
Cα along the backbone of the peptides considered. The param-
eter η allows us to tune in the extent of nonbonded inter-
actions considered. For example, η = 2 implies that only
covalently connected dimer units are considered. For η = 3,
noncovalent interactions between, for example, monomer units
numbered “1” and “3” are also included, when units “1” and
“2” are covalently connected, and “2” and “3” are also cova-
lently connected. (See Figure 5.) Similarly η = 4 captures a
longer range nonbonded interaction, and so on. Most calcu-
lations in this paper include nonbonded interaction up until
η = 4 and in some cases η = 5. In this fashion we are able to
tailor-in critical nonbonding interactions. Hence η = n implies
that there are a total of (n − 1) intervening amino acid mono-
mers that are chemically connected en route to form the dimer
fragment and thus depicting the extent of through space non-
bonding interaction captured in the study. An example of this
scheme applied to a 6-alanine helix is seen in Figure 5, where
Figure 5a shows the partition of the full system into mono-
mers, Figure 5d−g shows one example dimer which is added to
the overall set of dimers with the increase in η. Arising from
the graph-theoretic description in ref 38, it is possible to
generalize this same idea to trimers, tetramers, etc., but this

was not found to be necessary for the applications discussed in
this paper.

IV.B. Isomer Stabilization Energies from Equation 5.
We begin with a test set of five smaller Pople style basis sets,
namely, 3-21G, 6-31G, 6-31+G, 6-31G(d), and 6-31+G(d),
and use the results from these basis sets to extrapolate, using eq 5,
to much larger basis functions such as 6-311++G(2df,2pd) and
6-311++G(3df,3pd). As noted in Figure 3c,d, the accuracy
from these larger basis set calculations is generally within
1 kcal/mol with respect to the corresponding CBS limit.
In Tables 1 and 2 we apply eq 5 to obtain the error in the
conformational stabilization for transitions between the 310
helix and the β-strand conformations. The error is computed as

E E E

E E

( )

( )

error helix
graph theoretic

strand
graph theoretic

helix
N

strand
N

3

3
B L B L

10

10

, ,

Δ = −

− −
β

β

‐
‐

‐
‐

‐ ‐ (6)

where ΔEerror is reported in Tables 1 and 2 and in Figures 3c,d.
The quantity, Egraph‑theoretic, is the system energy obtained from
eq 5, and ENB,L is the energy computed using the large basis,
NB,L. These benchmarks presented here are performed with the
B3LYP density functional, using all possible dimer fragments
(η = N, see discussion in Section III). The errors in basis set
extrapolations from the lower basis sets (NB,S) to larger basis
sets (NB,L) are shown in Table 1 for larger double-ζ basis sets
and in Table 2 for larger triple-ζ basis sets. Based on these
tables, it may be concluded that the treatment presented here

Table 1. Errors in Conformational Stabilization Energy,
Equation 6, for All-Dimer (η = N) Calculations, with
Respect to Double-ζ Basis Functionsa

NB,L

NB,S

6-31+
+G(d,p)

6-31+
+G(df,pd)

6-31+
+G(2df,2pd)

6-31+
+G(3df,3pd)

aug-cc-
pVDZ

Ala4
3-21G 0.782 0.784 0.842 0.875 0.874
6-31G 0.38 0.383 0.441 0.473 0.472
6-31+G −0.05 −0.048 0.011 0.044 0.042
6-31G(d) 0.559 0.562 0.62 0.653 0.652
6-31+G(d) 0.012 0.014 0.073 0.105 0.103

Ala6
3-21G 2.979 3.005 2.978 3.145 2.921
6-31G 1.586 1.611 1.584 1.751 1.528
6-31+G −0.213 −0.187 −0.215 −0.048 −0.271
6-31G(d) 2.098 2.124 2.096 2.264 2.041
6-31+G(d) 0.009 0.035 0.007 0.174 −0.048

Ala8
3-21G 4.946 4.976 4.835 5.138 4.830
6-31G 2.344 2.375 2.234 2.536 2.229
6-31+G −0.480 −0.449 −0.590 −0.288 −0.596
6-31G(d) 3.344 3.374 3.233 3.536 3.228
6-31+G(d) 0.036 0.065 −0.076 −0.180 0.497

Ala10
3-21G 5.939 5.961 5.756 6.076 5.482
6-31G 3.233 3.255 3.050 3.370 2.776
6-31+G −0.823 −0.802 −1.006 −0.686 −1.281
6-31G(d) 4.507 4.529 4.324 4.644 4.050
6-31+G(d) 0.142 0.164 −0.041 0.279 −0.316
aAll errors are in kcal/mol. The columns represent the target basis set,
NB,L, whereas the rows represent the lower level basis, NB,S. Rows in
bold show significantly lower errors, and the corresponding NB,S are
used later for AIMD simulations.
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shows significant accuracy when the smaller basis contains
additional diffuse functions on heavy atoms (NB,S = 6-31+G),
which then is further improved when polarization functions are
included (NB,S = 6-31+G(d)). Polarization functions without
diffuse functions struggle to capture the stabilization energy.
As one would expect, the choice of the smaller basis size pri-
marily affects the extrapolations for the 310 helical structure
rather than β-strand. This is because the diffuse and polarized
functions would aid in capture of nonbonded, hydrogen-
bonding interactions that stabilize the helix. The β-strand struc-
tures would primarily have electron density leakage to adjacent
atoms in the amino acid chain, which would suffer less pertur-
bation during conformational change and dynamics.
The above analysis shows that within the chosen test set,

6-31+G(d) offers adequate chemical accuracy toward extrap-
olations to the larger basis sets. The addition of polarization
functions at the lower level generally refines the extrapolation,
but without the diffuse functions at the low level, the extrap-
olation remains inaccurate in almost all cases. The combina-
tion of polarization and diffuse functions, on the heavy atoms,
allows extrapolations to subkcal/mol accuracy to the basis calcu-
lations up to basis sets such as 6-311++G(3df,3pd).
We next restrict the extent of long-range interactions by

reducing the size of η. We consider η = 4, 5 (see Figure 5), to
tailor the nonbonded interactions. A new test set of lower basis
sets was also chosen, namely, 6-31+G, 6-31++G, 6-31+G(d),
6-31++G(d), 6-31+G(d,p), and 6-31++G(d,p), based upon
our discussion above. Due to the quality of conformational sta-
bilization energies seen in Section II and the previous extrap-
olation accuracy, 6-311++G(2df,2pd) was selected as the
target larger basis set. Figure 6 illustrates the calculated stabi-
lization energy for extrapolations to 6-311++G(2df,2pd) for
η = 4 and 5. Consistent with the above studies, the inclusion of
polarization functions on heavy atoms offers additional

Figure 6. Conformational stabilization energy approximated to the 6-311++G(2df,2pd) basis (black line) using eq 5. Parts (a) and (b) show the
stabilization energy (difference in energy between the 310-helix and β-strand conformers). Parts (c) and (d) show the corresponding error from
using eq 5, in comparison with the larger basis calculation, as defined by eq 6. The errors extrapolating to 6-311++G(2df,2pd), 6-31++G(2df,2pd),
and 6-311++(3df,3pd) using dispersion corrected DFT are presented in Figures A-3, A-4, and A-5. Based on these calculations it appears that the
pair 6-31+G(d) → 6-311++G(2df,2pd) provides the best choice for extrapolation and hence will be pursued as a part of the AIMD studies.

Table 2. Errors in Conformational Stabilization Energy,
Equation 6, for All-Dimer (η = N) Calculations, with
Respect to Triple-ζ Basis Functionsa

NB,L

NB,S

6-311+
+G(d,p)

6-311+
+G(df,pd)

6-311+
+G(2df,2pd)

6-311+
+G(3df,3pd)

cc-
pVTZ

Ala4
3-21G 0.782 0.772 0.830 0.818 0.349
6-31G 0.381 0.37 0.429 0.416 −0.052
6-31+G −0.048 −0.060 −0.001 −0.013 −0.482
6-31G(d) 0.56 0.549 0.608 0.596 0.127
6-31+G(d) 0.013 0.001 0.061 0.048 −0.421

Ala6
3-21G 2.857 2.793 2.981 2.832 1.134
6-31G 1.464 1.400 1.588 1.439 −0.260
6-31+G −0.336 −0.398 −0.211 −0.360 −2.059
6-31G(d) 1.976 1.912 2.100 1.951 0.253
6-31+G(d) −0.114 −0.176 0.012 −0.137 −1.837

Ala8
3-21G 4.66 4.558 4.848 4.64 1.769
6-31G 2.058 1.957 2.246 2.039 −0.833
6-31+G −0.765 −0.867 −0.577 −0.785 −3.657
6-31G(d) 3.057 2.956 3.246 3.038 0.167
6-31+G(d) −0.250 −0.353 −0.062 −0.270 −3.141

Ala10
3-21G 5.464 5.317 5.763 5.498 1.852
6-31G 2.759 2.612 3.057 2.792 −0.853
6-31+G −1.298 −1.445 −1.000 −1.264 −4.910
6-31G(d) 4.032 3.885 4.331 4.066 0.420
6-31+G(d) −0.333 −0.480 −0.034 −0.299 −3.945
aAll errors are in kcal/mol. The columns represent the target basis set,
NB,L, whereas the rows represent lower level basis, NB,S. Rows in bold
show significantly lower errors, and the corresponding NB,S are used
later for AIMD simulations.
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refinement for the fragment-based extrapolations. The addition
of diffuse and polarization functions to hydrogens did not offer
significant improvement, except for addition of the hydrogen
diffusion functions to 6-31+G basis. Increasing the number of
fragments from η = 4 to η = 5 offers additional refinement to
the extrapolation as it includes the (i → i + 4) interactions
necessary for stability of the 310 helical conformer. Overall the
large basis set 6-311++G(2df,2pd) can be effectively captured
by fragmentation-based extrapolations by basis sets that con-
tain less than half the number of basis functions.
IV.C. Computational Gain. One significant limitation in

electronic structure theory arises from the intrinsic steep alge-
braic scaling of its methods with number of basis functions.
Density functional theory is the most commonly used class of
electronic structure methods and formally scales as N( )4 ,
which is effectively reduced in larger systems to N( )3.5 due to
reuse of two-electron integrals.39 Higher level methods in the
post-Hartree−Fock regime scale much more rapidly. Due to
this scaling the choice of basis set becomes critical to the
computational cost of the calculations, thus limiting the uti-
lization of higher quality electronic structure methods. Since ab
initio molecular dynamics requires energy and forces at each
time step, increased costs for energy and forces would accu-
mulate to result in cost prohibitive scaling with system size.
Other methods have been developed to reduce this time step
costs in AIMD, such as dual-basis dynamics85 and multiple

time-step basis set partitioning.86 Here we aim to approximate
larger basis calculations using the fragmentation-based extrap-
olation scheme discussed above to achieve scaling cost asso-
ciated with smaller basis sets.
To derive a formal scaling for the extrapolation techniques

depicted by eqs 5 and 3, we assume that the size of the larger
basis is NB,L per monomer and similarly the size of the smaller
basis is NB,S per monomer. Thus, for a system with N mono-
mers (i.e., in this case, the length of AlaN) the expected compu-
tational effort for the larger basis calculations is approximately

N N( )B L,
4[ × ], where we have accounted for the formal

fourth order scaling of DFT with basis-set size and have
ignored negligible modifications to CPU times due to presence
of link atoms. Hence, the computational effort for the scheme
outlined through eq 5 is

N N N N

N N

( 1)/2 (2 ) (2 )

( )

B S B L

B S

,
4

,
4

,
4

[ × − × { × + × }
+ × ] (7)

when all possible dimer interactions are considered in eq 5 and

N N N

N N

( 1) (2 ) (2 )

( )

B S B L

B S

,
4

,
4

,
4

η[ × − × { × + × }
+ × ] (8)

when only η edges (dimers) are considered for each node
(monomer). Both equations above approach N N( )B S,

4[ × ]
scaling in the large N limit; that is, the method scales as the
small basis calculation in the large basis limit. In Figure 7, we

showcase the computational scaling advantage from this fra-
gmentation scheme and compare it to the cost incurred in
computing the full system energy and forces with a larger basis
set calculation. The costs in Figure 7 are reported as the ratio
of the CPU times required to perform calculations for AlaN
with respect to those for Ala4:

T Ala
cputime Ala
cputime Ala

( )
( )
( )N

N

4
=

(9)

where the quantity, cputime(AlaN), is the total CPU time
required for AlaN calculations and, similarly, cputime(Ala4) is
the corresponding time for Ala4. The ratio T(AlaN) is reported
on the left vertical axis of Figure 7 and allows us to study the
relative change in system size and corresponding change in
CPU time. The proposed scheme offers significant cost savings
as the system size grows as seen from Figure 7 and also from

Table 3. Energy Conservation Properties for Dynamical
Simulations (micro-canonical)

initial config. NB,S
a sim. timeb TAve (K)

c Δ d
Drift

e

Ala3
BOMD 310 helix 7.79 ps 336.73 ± 35.62 0.02 −0.01
Frag-BOMD 310 helix 6-31+G 7.32 ps 339.06 ± 37.72 0.06 0.18

Frag-BOMD 310 helix 6-31+G(d) 3.67 ps 338.20 ± 36.99 0.05 0.09

Frag-ADMP 310 helix 6-31+G(d) 4.32 ps 316.76 ± 33.03 0.03 −0.05
BOMD β-sheet 8.44 ps 328.11 ± 39.02 0.02 0.03

Frag-BOMD β-sheet 6-31+G 6.37 ps 334.29 ± 41.12 0.10 0.29

Frag-BOMD β-sheet 6-31+G(d) 2.03 ps 327.92 ± 45.30 0.03 0.05

Frag-ADMP β-sheet 6-31+G(d) 3.82 ps 295.87 ± 36.43 0.07 −0.04
Ala4

BOMD 310 helix 4.80 ps 337.27 ± 31.75 0.03 0.02

Frag-BOMD 310 helix 6-31+G 6.59 ps 337.00 ± 31.40 0.04 −0.01
Frag-BOMD 310 helix 6-31+G(d) 2.87 ps 337.31 ± 31.31 0.02 0.03

Frag-ADMP 310 helix 6-31+G(d) 4.73 ps 310.26 ± 28.81 0.07 0.04

BOMD β-sheet 6.13 ps 310.16 ± 31.32 0.02 0.01

Frag-BOMD β-sheet 6-31+G 6.15 ps 311.80 ± 31.74 0.08 0.23

Frag-BOMD β-sheet 6-31+G(d) 2.90 ps 311.97 ± 32.99 0.03 −0.01
Frag-ADMP β-sheet 6-31+G(d) 4.91 ps 305.21 ± 34.82 0.07 −0.15

Ala12
Frag-ADMP 310 helix 6-31+G(d) 1.25 ps 308.49 ± 24.86 0.06 0.00

Frag-ADMP β-sheet 6-31+G 2.99 ps 300.75 ± 20.53 0.07 −0.10
aSmaller basis set used in extrapolation to 6-311++G(2df,2pd).
bTotal simulation time in picoseconds. cBy use of the equipartition
theorem, N( 1)kT3

2
− , we convert the kinetic energy into average and

RMS temperatures. Here temperature is a measure of the available
energy to sample the conformational space. The initial kinetic ener-
gies were randomly distributed along the nuclear degrees of freedom.
These random velocities were chosen such that the initial temper-
atures were 658 K (62.75 kcal/mol) for Ala3, 627 K (78.44 kcal/mol)
for Ala4, and 656 K (238.45) for Ala12.

dRMS deviation of the total
energy in kcal/mol. eThe drift in the Hamiltonian (total energy) is
computed as the difference between the average for the first 100 fs
and last 100 fs. In kcal/mol.

Figure 7. Computational cost for the fragment based basis-set
extrapolation (for η = 5). The scaling costs are presented here with
respect to that for Ala4. (See eq 9.) The CPU times used are average
of those obtained for the β-strand and 310 helical forms.
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eq 8. Furthermore, since the fragment calculations are inde-
pendent, further computational gain is afforded through the
use of MPI-parallelization. [Parallelism is not taken into
account in constructing Figure 7 but is used in the AIMD sim-
ulations conducted later in this paper.]
The discussion above uses dimer fragments, which is the

implementation in eq 5. When higher order many-body inter-
actions are necessary, then eq 3 must be used. In this case the
scaling could be more steep; for example, if many-body inter-
actions of the order M are necessary for accuracy, the corre-
sponding scaling then becomes

N
l

l N l N N N( ) ( ) ( )
l

M

B S B L B S
2

,
4

,
4

,
4∑ × { × + * } + ×

= (10)

But, as seen in the previous section, dimer fragments with
reasonable choice of η are sufficient to maintain good accuracy,
and as seen in Figure 7 the scaling is much reduced from use of
eq 5.

V. EXTENDED LAGRANGIAN BASED AB INITIO
DYNAMICS CONSTRUCTED USING EQUATION 5

As the system size grows, the number of basis functions used
for the full system (NB,S) increases and determines the overall
computational effort. This aspect is already clear from eq 8,
where it is shown that the scaling of the extrapolation is con-
strained only by the full system lower basis calculations. Thus,
this full system calculation could potentially become a bottle-
neck for a larger-sized systems. It is possible to reduce this
complexity by introducing an additional layer of basis func-
tions, or by introducing linear scaling methods106−111 with
SCF parallelism106,112 for the full system smaller basis calcu-
lation. But in this paper we also introduce an extended Lagrang-
ian113,114 implementation where the electronic parameters that
depict the energy for the full system smaller basis calculation,
ENB,S in eq 5, are treated as dynamical variables. Specifically
here, the electronic parameters that determine ENB,S are prop-
agated along with the nuclear degrees of freedom through an
adjustment of the relative time scales between the full system,
small basis calculation and nuclear degrees of freedom. This is
essentially a Car−Parrinello-style method,21 but is implemented

using the atom-centered Gaussian basis functions and single
particle density matrices that determine ENB,S and hence follow
the atom-centered density matrix propagation (ADMP)22,115−117

protocol. This methodology, thus, is in similar spirit to the
recently developed Atom-centered Density Matrix Propagation
with post-Hartree−Fock accuracy (ADMP-pHF).36,37 Other
complementary methods include the dual basis methods85 and
multistep basis set partitioning.86 The associated multibasis
extended Lagrangian is

V

E

W

R P Tr P P

1
2
Tr MV

1
2
Tr ( )

( , ) ( )

T
N N N

R
graph theoretic

N N N S N

1/4 1/4 2

2 ,
2

B S B SB S

B S B S B B S

, , ,

, , ,

μ μ

Λ

= [ ] + [ ]

− − [ − ]=
‐

(11)

Here the parameters R and V represent the classical nuclear
positions and velocities, with masses, M. The single particle
density matrix PNB,S

represents the full system, at the lower level
of basis, and is propagated to determine ENB,S, which is part of
ER=2
graph‑theoretic in eq 11 (see eq 5). This density matrix dynamics is

tempered by a fictitious velocity, WNB,S
(in the spirit of Car−

Parrinello,21 ADMP115 and ADMP-pHF36,37), with fictitious
inertia tensor μNB,S

. Velocity Verlet118 integration is used to

evolve the dynamic parameters of the full system {R, V; PNB,S
,

WNB,S
}. The choice of the fictitious inertia tensor, μNB,S

, deter-
mines deviations from the Born−Oppenheimer surface. These
precise deviations from the Born−Oppenheimer surface have
been discussed in Appendix A of ref 36. (Also see refs 115,
117.) There are additional nuclear forces that arise as a result
of this propagation, and these forces are proportional to the
commutator of the single particle description of the full system,
i.e., the associated Fock matrix using the smaller basis and the
density matrix PNB,S

. Based on these criteria the values for the

fictitious inertia tensor, μNB,S
, are chosen as discussed in refs 36,

37, and 115. As a result, the time-scales for the orbitals within
PNB,S

are adjusted based on the respective diagonal Fock matrix
values, so as to provide greater inertia to the core orbitals over
the valence orbitals, as outlined in ref 37. This then adjusts the
time scales such that there is simultaneous propagation for

Figure 8. Vibrational density of states calculated for B3LYP/6-311++G(2df,2pd) dynamics for 310 helical initial conformation for Ala3 (a) and Ala4 (b).
The full system at 6-311++G(2df,2pd) is presented with a positive amplitude and the fragment dynamics with a negative amplitude for ease of
comparison. In the case of the latter, the smaller basis used for extrapolation is noted. The correlation coefficient (ρ from eq 13) is presented to
quantify the comparison of the spectra.
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both the nuclear, in R, and electronic degrees of freedom repre-
sented within PNB,S

, through eq 11. However, the use of the

parameter μNB,S
in extended Lagrangian schemes37,116,119−121

couples the electron density to the Born−Oppenheimer sur-
face leading to oscillations which perturb the nuclear motion

quadratically.37 A scaling factor is thus introduced here, as per
the prescriptions of ref 36 to obtain the observable vibrational
frequencies. As shown in ref 37, this scaling factor is system
independent, and we use the same scaling factor in previous
studies.36,38 (These are listed in Section VI).

Figure 9. Vibrational density of states calculated from B3LYP/6-311++G(2df,2pd) dynamics for β strand initial conformations of Ala3 (a) and
Ala4 (b). As in Figure 8, we present the full system with a positive amplitude, and each of the fragment-based dynamics results are presented with a
negative amplitude for ease of comparison. The smaller basis used for extrapolation is noted along with the correlation coefficient from
eq 13.

Figure A-1. Conformational stabilization energy dependence on the choice of basis, with dispersion corrected B3LYP,45 to complement Figures 3
and 4.
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The Lagrange multiplier matrix, ΛNB,S
, conserves the

N-representability22,115,122 of PNB,S
. This is done by (a) con-

serving the idempotency of PNB,S
through an iterative pro-

cedure36,37,115 and (b) by conserving the particle number.
Thus, to assemble the full energy in eqs 11 and 5, we utilize the
propagated density matrix, PNB,S

, to obtain ENB,S, and the
remaining parts of ER=2

graph‑theoretic in eq 5 are obtained through full
SCF on the fragments with small and large basis sets yielding

( , 1)α{ } and ( , 2)α{ }. The gradients, nuclear and density
matrix, were found as described in ref 36. In Section VI, we
present both extended Lagrangian and Born−Oppenheimer
versions of AIMD.

VI. AB INITIO MOLECULAR DYNAMICS
TRAJECTORIES INCLUDING BASIS SET
EXTRAPOLATION: BORN−OPPENHEIMER AND
EXTENDED LAGRANGIAN IMPLEMENTATIONS

In this section, we use our basis set extrapolation scheme to
efficiently compute classical trajectories in poly peptide sys-
tems. We employ Born−Oppenheimer molecular dynamics
where the gradients associated with the system energy in eq 5
are used at every step to propagate the nuclei using the velocity
Verlet scheme.118 The full-system gradients are assembled
from those obtained from the nuclear gradients from the full
system low level as well as fragment calculations, with appro-
priate coefficients from eqs 1, 2, 3, and 5. Link atom gradients,

are transformed back to the atoms in the full system using the
standard Jacobians outlined in refs 30 and 35−37.
When the system size is increased, the basis set for the full

system dominates the scaling of the calculations, becoming the
bottleneck for dynamics. As was discussed in Section V, this
obstacle is alleviated here by the propagation of the electronic
density matrix for the full system basis using the extended
Lagrangian treatment introduced in eq 11. The fictitious inertia
tensor choice provides a bound for the maximum time step for
the extended Lagrangian formalism with larger values allowing
larger time steps. For the production simulations presented
here, we chose the fictitious inertia tensor based on past stud-
ies on hydrogen bonded systems,31,36,116,123−127 where that the
valence orbitals have an inertia of 180 au (0.1 amu·bohr2) and
the core orbitals are weighted as per their respective diagonal
Fock matrix value as discussed in refs 36, 37, and 115.
Here we consider four benchmark AIMD studies with initial

conditions including β-strand and 310-helical forms of Ala3 and
Ala4. In these cases we were also able to perform BOMD
calculations for the target level of theory with large basis
(B3LYP/6-311++G(2df,2pd)), thus allowing detailed compar-
isons. In addition, as a demonstration of the power of our
approach, we also present a trajectory for Ala12 where the start-
ing geometry is chosen as a β-strand conformation. The target
basis BOMD calculations are cost prohibitive for this case.
The initial structures in all cases are optimized in the gas

phase at B3LYP/6-31++G(d,p) level of theory as discussed in

Figure A-2. Stabilization energy difference with respect to the CBS limit for the studies shown in Figure A-1, with dispersion corrected B3LYP.45

The results here are a complement to Figures 3, 4, and A-1. Part (d) here is identical to Figure 4d for the same reason as that highlighted in the
caption of Figure 4.
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Section IIIA. Both 6-31+G and 6-31+G(d) are used as lower
level basis sets for extrapolation toward 6-311++G(2df,2pd)
with the B3LYP density functional. The initial nuclear veloc-
ities were randomly assigned such that the total kinetic energy
was 658 K (62.75 kcal/mol) for Ala3, 627 K (78.44 kcal/mol)
for Ala4 and 656 K (238.45) for Ala12. Simulation details are
shown in Table 2. All trajectories were computed with a veloc-
ity Verlet integration scheme118 with a time step of 0.25 fs. The
trajectories were microcanonical in the gas phase, and energy
conservation was used as a critical gauge of the integration
scheme and smoothness of the energy functional and is quan-
tified by the total energy drift ( Drift) and standard deviation
of total energy (Δ ). For all trajectories considered here,
η was set to 4, with the monomers defined as described in
Section VI.A. For Ala3 and Ala4 this choice of η provides all-
dimer interactions, while for Ala12 this choice captures the
essential spatial interactions that signify the 310-helical
interaction and also gives a modest number of fragments. All
dynamics calculations are done using MPI-parallelism. In Table 3
the dynamics details are provided for fragment-based dynamics
and full system dynamics, respectively. All calculations con-
serve the total energy to within 0.10 kcal/mol and have drifts
of the order of 0.10 kcal/mol or less.
VI.A. Comparison of Vibrational Density of States

from AIMD Trajectories. In order to gauge the veracity of
the extrapolated dynamics, the vibrational densities of states
were computed for both the fragment-based trajectories and
the full basis benchmark trajectories. We compute the density

of states by use of the Fourier transform of the velocity auto-
correlation123,124,128−130 function. The velocity autocorrelation
function, which is simplified by use of the convolution
theorem131 and determines the vibrational density of states
(IV(ω)) from the nuclear velocities, is as follows:

t t tI V V

V V V

( ) lim d exp( ) (0) ( )

( ) ( ) ( )
T t

t T

V
0

2

∫ω ω

ω ω ω

= −ı ⟨ · ⟩

= ̃ · ̃ = | ̃ |
→∞ =

=

(12)

Equation 12 also provides a spectral representation of the tra-
jectory, that is the partitioning of velocities, and hence distri-
bution kinetic energy, as a function of frequency. Here V(t) is a
vector of nuclear velocities at time t, whereas, Ṽ(ω) are the
associated Fourier transforms. In essence, IV(ω) is roughly
related to the amount of energy present in the specific AIMD
trajectory at a given frequency and we compare here the spec-
tral densities between the full basis trajectories and the extrap-
olated trajectories. Figure 8 shows the spectral results for the
fragment-based dynamics (Frag-BOMD) and the full system
BOMD. In order to quantitatively probe the agreement between
each pair of trajectories we compute the Cosine similarity
index132 between the density of states for the fragment based
trajectories (IV,Frag) and those obtained from BOMD simu-
lations that employ the larger (6-311++(2df,2pd)) basis (IV):

I I
I I

I I
( , )V V frag

V V Frag

V V Frag
,

,

,
ρ =

·

(13)

Figure A-3. This figure complements Figure 6 and presents the error in stabilization energy for the target basis set of 6-311++G(2df,2pd) with
dispersion corrected B3LYP functional.45 As in Figure 4b,d, Figure 6c is identical to part (c) here. Similarly Figure 6d and part (d) here are also
identical. Furthermore, η = 5 marginally improves over η = 4.
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The Cosine similarity index treats the spectral densities as
vectors (in frequency) and computes the cosine of the angle
between these vectors as indicated in eq 12. This quantity is
generally chosen to gauge similarity between positive definite
spaces, and since eq 13 is positive definite, we have used the
quantity in eq 13 to gauge the similarity here. Furthermore, the
quantity in eq 13 is also complementary to Pearson correlation,
which has a similar form, but the similarity in that case would
be computed by removing the average values of IV and IV,Frag.
In all cases, a perfect replication of the spectra would have a
coefficient (ρ) of identity.
The spectra in Figures 8 and 9 are the trajectories that begin

at the helical and β-strand conformations, respectively. The
Amide I and II peaks on the lower frequency end of the spectra
are apparent, which are often used in the characterization of
polypeptide conformations.133,134 The methyl and α-carbon−
hydrogen stretch regime (about 3100 cm−1 to 3200 cm−1) are
prominent within these spectra as well. Based on the similarity
index in eq 13, the fragment-based trajectories for Ala3 and
Ala4 quantitatively show close agreement with the benchmark
trajectories.

VII. CONCLUSION
In this paper, we have discussed a new approach to perform
large basis ab initio molecular dynamics calculations at much
reduced computational overhead. The method is based on mole-
cular fragmentation through the adaptation of ONIOM using
the set-theoretic inclusion−exclusion principle. Here, a large
system is fragmented into monomers or nodes in a graph, and
these individual units are allowed to interact up to arbitrary

orders based on a truncated many-body expansion. At each
level of many-body truncation, the energy and gradients are
computed at both the target high-level basis and a specific
lower level basis. In addition, the full system energy and gra-
dients are computed using the lower level basis, and these
together provide a very good estimate for the high level basis
calculations when the individual components are assembled in
a fashion consistent with ONIOM. In this sense, the method is
related to several previous methods. On the one hand the
approach is trivially related to many fragmentation methods.
On the other hand, the approach is also related to the well-
known double many body expansion popularized by Varandas
and co-workers82 but is now constructed through ONIOM on-
the-fly. In all cases, the computational implementation greatly
benefits from a geometric network interpretation which reduces
computational cost.
We show that basis set choice may gravely affect the

determination of conformational stability in peptide secondary
structures. These effects grow drastically as the system size
grows. To rectify this problem without adversely affecting the
computational scaling, we utilize the approach discussed in
the previous paragraph for the extrapolation of energy and
gradients at a complete basis set using modest levels of
computation. Thus, we represent the full system with a smaller
basis but include localized many-body interactions with a
larger basis representation through an ONIOM-like method
with fragment contributions determined by the inclusion−
exclusion principle.135 The method is shown to approach the
complete basis accuracy at significantly lower computa-
tional cost. In these calculations we note that the inclusion

Figure A-4. These figures complement Figure 6 and present the error in stabilization energy for the target basis set of 6-31++G(2df,2pd) with
dispersion corrected B3LYP functional.45
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of diffuse functions, in the chosen smaller basis set, are
necessary to capture the quintessential character of the
electronic density needed to determine stabilization energy in
the fragmentation scheme. These extrapolations from a
smaller basis set can achieve subkcal/mol accuracy. By var-
ying the lower basis sets used in the extrapolations we note
that polarization functions on the heavy atoms are needed to
correctly capture the target energy. But the addition of polari-
zation functions on the hydrogen atoms does not lead to a
significant gain. This fragmentation method offers a significant
cost scaling advantage over the full system calculation. But
as system size grows, the expenses are dominated by the
lower level full system. To address this, we also introduce
an extended Lagrangian scheme, where the full system, lower
basis density matrix is propagated with the nuclear degrees
of freedom using an extended-Lagrangian formalism.
The approach has the potential for accurate AIMD in large
systems.

■ APPENDIX A: MORE DETAILS ON BASIS SET
DEPENDENCE AND EXTRAPOLATION FOR
DISPERSION CORRECTED DENSITY FUNCTIONALS

The conformational stabilization B3LYP energies including the
Grimme45 dispersion correction in Figure A-1 are analogous to
Figure 3 but includes dispersion corrections. The extrap-
olations presented in Figure 6 in the main text are supple-
mented here through Figures A-3, A-4, and A-5 with dispersion
corrections for all calculations. Clearly the basis set effects are

similar for the dispersion corrected and uncorrected calcu-
lations.

■ APPENDIX B: AN ILLUSTRATION OF THE
ISOMORPHISM BETWEEN THE SIMPLEX
DECOMPOSITION AND SET-THEORETIC
INCLUSION−EXCLUSION PRINCIPLE

The simplex decomposition in ref 38 is isomorphic to the set-
theoretic decomposition.35−37 Consider a set-theoretic decom-
position of polyalanine, a portion of which is shown below.

Using the inclusion exclusion principle generalization of
ONIOM,35,36,38 the energy expression is
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The following geometric network, or simplex decomposition,
captures the same interactions in a more efficient way:38

Figure A-5. These figures complement Figure 6 and present the error in stabilization energy for the target basis set of 6-31++G(3df,3pd) with
dispersion corrected B3LYP functional.45
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Considering dimer interactions (edges) leads to
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The expression above is similar to eq 5 truncated at the level of
edges. A more general expression that includes all embedded
simplexes yields a generalized (geometric) description of many-
body interactions
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and this expression is similar to eq 3. The square bracketed
term contains the overcounting correction from ref 38, where
pα
r,m is the number of times the αth rank-r simplex appears in
simplexes of higher rank. This last expression has close
connections to the well-known many body expansions.51−57
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