
Empirically Assessing Opportunities
for Prefetching and Caching in Mobile Apps

Yixue Zhao, Paul Wat, Marcelo Schmitt Laser, Nenad Medvidovic
University of Southern California

Los Angeles, California, USA

{yixue.zhao,pwat,schmittl,neno}@usc.edu

ABSTRACT

Network latency in mobile software has a large impact on user expe-

rience, with potentially severe economic consequences. Prefetching

and caching have been shown effective in reducing the latencies

in browser-based systems. However, those techniques cannot be

directly applied to the emerging domain of mobile apps because of

the differences in network interactions. Moreover, there is a lack

of research on prefetching and caching techniques that may be

suitable for the mobile app domain, and it is not clear whether such

techniques can be effective or whether they are even feasible. This

paper takes the first step toward answering these questions by con-

ducting a comprehensive study to understand the characteristics

of HTTP requests in over 1,000 popular Android apps. Our work

focuses on the prefetchability of requests using static program anal-

ysis techniques and cacheability of resulting responses. We find

that there is a substantial opportunity to leverage prefetching and

caching in mobile apps, but that suitable techniques must take into

account the nature of apps’ network interactions and idiosyncrasies

such as untrustworthy HTTP header information. Our observations

provide guidelines for developers to utilize prefetching and caching

schemes in app development, and motivate future research in this

area.

CCS CONCEPTS

• Software and its engineering→ Software performance;Mes-

sage oriented middleware;

KEYWORDS

prefetching, caching, mobile apps, network latency, empirical study

ACM Reference Format:

Yixue Zhao, Paul Wat, Marcelo Schmitt Laser, Nenad Medvidovic. 2018.

Empirically Assessing Opportunities, for Prefetching and Caching in Mobile

Apps. In Proceedings of the 2018 33rd ACM/IEEE International Conference on

Automated Software Engineering (ASE ’18), September 3–7, 2018, Montpellier,

France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3238147.

3238215

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’18, September 3–7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238215

1 INTRODUCTION

There are over 5 billion mobile phone users and millions of mobile

apps today [22]. The latency in mobile apps has been shown to have

a large impact on user experience and potentially severe economic

consequences [43]. The main cause of user-perceived latency is

the network, since the majority of mobile apps fetch data from the

Internet regularly [33].1 Moreover, mobile devices rely on wireless

networks, which can exhibit intermittent connectivity and low

bandwidth [21].

Optimizing network performance has long been studied in dis-

tributed systems, and prefetching and caching techniques have been

shown as a high-rewardway to reduce network latency: they can by-

pass the performance bottleneck (network speed) and mask latency

by returning a response to a request from a local cache immedi-

ately [21]. While prefetching makes use of built-in caching schemes,

caching-only techniques are also widely employed (e.g., [31, 46]). In

this work, we study the two related phenomena separately: prefetch-

ability involves prefetching plus caching, while cacheability in-

volves only caching.

The research on prefetching and caching techniques in the web

browser domain has yielded a large body of work [12, 26, 28, 34, 36,

38, 40, 43]. However, the resulting techniques cannot be applied to

mobile apps due to their different root causes of network latency. In

the browser domain, the bottleneck for latency is resource loading

since a large number of resources—usually files such as images—are

needed within each HTTP request [42]. In the mobile app domain,

each request only fetches a single response, and additional requests

need to be issued explicitly to fetch further resources [23, 49]. Thus,

prefetching and caching techniques in the browser domain tar-

get subresources within a single request [26, 34, 40, 43], while the

research in the mobile app domain focuses on separate HTTP re-

quests [46, 49].

Mobile users currently spend more than 80% of their time in

mobile apps, rather than using mobile browsers [14]. Aside from a

couple of exceptions, there has been a lack of research on prefetch-

ing and caching techniques that may be suitable for the mobile

app domain. In fact, it is currently not clear whether such tech-

niques can be effective or whether they are even feasible in practice.

CacheKeeper [46] made an initial effort to study the redundant web

traffic in mobile apps and proposed an OS-level caching service.

However, the resulting service was only evaluated on 10 apps. Fur-

thermore, CacheKeeper’s performance highly depends on the flaws

in the web caching strategies employed in the original app, and

its broader utility is unclear. Our previous work PALOMA [48, 49]

used program analysis to identify HTTP requests that should be

1In this context, we define latency as the response time of an HTTP request.

ASE ’18, September 3–7, 2018, Montpellier, France Yixue Zhao, Paul Wat, Marcelo Schmitt Laser, Nenad Medvidovic

prefetched in mobile apps. We highlighted several program analy-

sis challenges that can improve prefetching if addressed. However,

PALOMAwas evaluated on 32 apps. It is thus unclear to what extent

PALOMA will be effective at a larger scale, and whether addressing

the identified program analysis challenges is worthwhile.

The dearth and shortcomings of previous work motivated us to

conduct a more extensive empirical study that aims to understand

the characteristics of HTTP requests in mobile apps. In this paper,

we report our results from the automated analysis of 1,687 most

popular Android apps, spread across 33 app categories. Our work fo-

cuses on the prefetchability of requests (PALOMA’s problem space)

and cacheability of resulting responses (CacheKeeper’s problem

space). We found that a large number of HTTP requests used in real

apps are prefetchable and the responses to those requests cacheable.

This has the potential for significant reductions in user-perceived

latency, which would, in turn, render the use of certain mobile apps

even more attractive.

At the same time, our study highlighted the need to carefully con-

sider which requests should be prefetched and which data cached,

for two reasons. First, we empirically demonstrated the frequent

lack of discipline with which developers use the relevant HTTP

headers in mobile (specifically, Android) apps, making those head-

ers misleading. Second, we showed that responses to certain HTTP

requests that seem like good candidates for caching may yield

incorrect app behaviors due to cache staleness.

Our study is the first to provide extensive empirical evidence

regarding the opportunities for prefetching and caching in mobile

apps. It is also the first to identify concrete shortcomings in the

current app development practices that are guaranteed to hinder

solutions that may otherwise seem easy and intuitive. As a result,

the study has the potential to motivate significant future research

in this area. In this paper, we have identified several promising

research directions.

The remainder of the paper is organized as follows. Section 2

overviews the HTTP protocol and its use in the mobile app domain.

Section 3 motivates and states our research questions. Section 4

describes our collection and processing of the subject apps. Section 5

discusses our findings and Section 6 describes the threats to their

validity. A discussion of related work and conclusions round out

the paper.

2 BACKGROUND

In this section, we overview aspects of the HTTP protocol that

are relevant to prefetching and caching. We then illustrate with

concrete examples of how developers perform network operations

in mobile apps, with a particular focus on Android.

2.1 HTTP Protocol

Previous studies have shown that mobile apps spend between 34%

and 85% of their time fetching data from the Internet [33]. The

majority of apps run over HTTP [15], where requests are sent by

clients and responses returned by servers.

An HTTP request consists of an HTTP method, the destination

of the resource to fetch (i.e., the URL), and request headers and

body, both of which are optional. The HTTP method—GET, POST,
DELETE, etc.—needs to be specified by developers when sending a

request. Optional request headers allow the client to pass additional

information to the server [17], such as Accept-Language: en-US.
The request body contains the resource to send to the server, but is

only needed for “write” HTTP methods, such as POST.
HTTP 1.1 [18] defines eight methods. Some of them, such as

DELETE, are not suitable for prefetching because they may change
the server’s state contrary to the user’s intention. Only the GET
and HEAD methods are considered “safe”, in that they result in the
retrieval of data and do not have any side-effects on the server [19,

20]. The HEAD method is similar to GET, except that its response
does not contain a message body [19]. Thus, GET requests are of
particular interest in our study.

An HTTP response consists of a status code, a status message,

and response headers and body, both of which are optional. The

status code and status message indicate whether the request was

successful or not, and why. The response body contains the fetched

resource from the server. Response headers contain additional infor-

mation that is often used by developers to decide on their caching

strategies. For example, the Expires header specifies when the re-
sponsewill become stale, while Cache-Control header contains the
information pertaining to caching mechanisms such as no-cache
and max-age. Interestingly, as observed in our study (see Section 5),
those headers cannot always be trusted by developers, and some-

times they are missing altogether.

1 URL url = new URL("http://www.ase.com/post");
2 URLConnection conn = url.openConnection();
3 conn.setRequestMethod("POST");
4 conn.setRequestProperty("Accept-Language", "en-US");
5 OutputStreamWriter wr = new OutputStreamWriter(conn.getOutputStream());
6 wr.write("post_data_to_send");
7 wr.flush();
8 InputStream responseStream = conn.getInputStream();
9 Map headerMap = conn.getHeaderFields();

Listing 1: Sending a POST request using the URLConnection

library

1 OkHttpClient client = new OkHttpClient();
2 Request request = new Request.Builder()
3 .url("http://www.ase.com/post")
4 .addHeader("Accept-Language", "en-US")
5 .post("post_data_to_send")
6 .build();
7 Response response = client.newCall(request).execute();
8 Headers headers = response.headers();

Listing 2: Sending a POST request using the OkHttp library

2.2 HTTP Libraries Used in Mobile Apps

In Android apps, developers use off-the-shelf HTTP libraries to

interact with servers. Listing 1 and Listing 2 demonstrate how

developers send HTTP requests and receive responses using the

two most popular HTTP libraries for Android: URLConnection and
OkHttp.
When sending HTTP requests, developers need to specify the

URL of the resource to be fetched (Listing 1: line 1, Listing 2: line 3),

HTTP method (Listing 1: line 3, Listing 2: line 5), request headers

(line 4 in both Listings), and request body (Listing 1: line 6, Listing 2:

line 5). Only the URL is mandatory and GET method will be used
by default if the HTTP method is not specified (e.g., if line 3 in

Listing 1 and line 5 in Listing 2 are removed). When receiving HTTP

Empirically Assessing Opportunities

for Prefetching and Caching in Mobile Apps ASE ’18, September 3–7, 2018, Montpellier, France

responses, developers can retrieve the response body (Listing 1:

line 8, Listing 2: line 7) as well as the response headers (Listing 1:

line 9, Listing 2: line 8) that may contain caching information.

3 RESEARCH QUESTIONS

The goal of this paper is to understand whether prefetching and

caching can be applied to the mobile app domain effectively, in

order to reduce user-perceived latency.We formulated nine research

questions (RQs) to this end. These RQs target the prefetchability of

HTTP requests, cacheability of HTTP responses, and redundancies

among HTTP requests.

3.1 Prefetchability of HTTP Requests

Our objective is to assess the extent to which requests in mobile

apps are prefetchable. Prefetchable requests are read-only requests

that have no side-effects on the server state. As discussed above

(Section 2.1), in the context of the HTTP protocol these are GET
requests [19]. Furthermore, we study whether the prevalence of

prefetchable requests varies across different app categories. Such

variations may allow identifying app categories that are particularly

suitable for prefetching.

We formulate three research questions to this end:

• RQ1 – What is the number of GET requests per app?
• RQ2 – What is the percentage of GET requests among all
HTTP requests in mobile apps?

• RQ3 – How prevalent are GET requests across different app
categories?

3.2 Cacheability of HTTP Responses

A prefetchable request may not be cacheable if the response to the

request changes over time (e.g., in the case of weather data). In such

cases, the cached response may be stale and serving it would lead

to incorrect app behavior. To determine when a response becomes

stale, or whether a request is cacheable at all, developers have to rely

on the header information specified in the response, specifically,

Expires and Cache-Control (recall Section 2.1). However, there
are no standard rules for developers to follow when constructing a

response, leaving open the possibility that header information may

be unreliable or even missing.

To investigate this, we formulate four additional research ques-

tions:

• RQ4 – How prevalent are Expires headers?
• RQ5 – Are Expires headers trustworthy?
• RQ6 – How prevalent are Cache-Control headers?
• RQ7 – Are Cache-Control headers trustworthy?

3.3 Identifying Truly Redundant HTTP

Requests

Caching is only effective when there exist redundant requests for

the same resource. An HTTP request is redundant if a previous

request specified the same HTTP method and URL, and yielded

the same response; the later request is redundant because the origi-

nal response could have been stored locally and reused. Previous

work [46] suggests an opportunity for mobile app-based caching

techniques, in that it identified the presence of redundant HTTP

traffic and showed that implementations of web caching are inade-

quate for mobile apps. Our work goes beyond identifying redundant

HTTP requests and tries to assess the intent behind them. A set of

ostensibly redundant requests could be generated on purpose (e.g.,

to retrieve updated weather information), and thus may not be truly

redundant. If a caching scheme fails to consider this, it will lead

to cache staleness. We thus consider the actual responses to the

candidate redundant requests, aiming to distinguish among them

and provide better insights for future caching techniques in mobile

apps.

With this in mind, we formulate the last two research questions:

• RQ8 – How prevalent are redundant HTTP requests?

• RQ9 – Are the identified ostensibly redundant requests truly

redundant?

4 DATA COLLECTION

This section details (1) the workflow we used for data collection,

(2) the criteria behind our selection of subject apps, (3) app instru-

mentation, (4) our collection of data via runtime testing, and (5)

the reasons for eliminating certain apps from the subject set be-

fore conducting further analysis. All of the raw data regarding our

subject apps and the corresponding code are publicly available [9].

4.1 Data Collection Workflow

Figure 1 illustrates the workflow we implemented for collecting the

data needed to answer the nine research questions stated above.

The initial subject apps were downloaded from the Google Play

Store (Section 4.2). The apps were automatically instrumented based

on the information extracted from HTTP library documentation

and the decompiled code of several sample apps (Section 4.3). The

instrumented apps were automatically tested using randomly gen-

erated inputs to produce logs that contain the information needed

to answer RQ1–RQ4, RQ6, and RQ8 (Section 4.4). We manually ex-

amined the apps that could not be tested due to problems such as

installation failures and runtime crashes, to identify the root causes

of the problems (Section 4.5). Finally, we automatically sent GET
requests to the subject apps at different time intervals, to answer

RQ5, RQ7, and RQ9 (Sections 5.2 and 5.3).

4.2 Initial Set of Subject Apps

We downloaded 1,687 top-ranked apps across 33 categories from

the Google Play Store in the United States. 1,308 of the apps could

be processed by Soot [37], a state-of-the-art tool for instrumenting

Android apps, as further discussed in Section 4.3. The sizes of those

1,308 apps vary between 16 KB and 103.4 MB. The total number of

HTTP requests per app varied between 0 and 1,243 in our tests, as

described in Section 4.4.

Table 1 summarizes the information about the 1,308 subject apps.

The table shows the maximum and average numbers of HTTP

requests per app for each category; the minimum number of HTTP

requests in every category is 0 and we thus omit it from the table.

Finally, the right-most column shows the number of apps in each

category that sent at least four HTTP requests in our tests, as well

as the percentage of such apps compared to the total number of

apps in the given category. The reason behind highlighting this

subset of the 1,308 subject apps will be explained in Section 4.5.

ASE ’18, September 3–7, 2018, Montpellier, France Yixue Zhao, Paul Wat, Marcelo Schmitt Laser, Nenad Medvidovic

Figure 1: Our data collection workflow. The App Profiling, App Instrumentation, App Testing, and Send GET Requests compo-

nents perform automated tasks.

4.3 App Instrumentation

Each subject app went through an automated instrumentation pro-

cess offline that used Soot [37] to insert code that captures infor-

mation about HTTP requests and responses. This information is

primarily located in the HTTP headers. Capturing such information

in the browser domain is straightforward because HTTP requests

Table 1: App information for each category among initial

subjects

Category #Apps Max #Req Avg #Req #Apps (#Req≥4)
1. Art & Design 11 14 2.27 3 (27.27%)

2. Auto & Vehicles 29 6 1.07 4 (13.79%)

3. Beauty 11 1243 120.82 6 (54.55%)

4. Books & Reference 40 108 11.58 16 (40%)

5. Business 55 87 5.71 17 (30.91%)

6. Comics 55 319 20.84 19 (34.55%)

7. Communications 40 96 3.98 8 (20%)

8. Dating 16 334 29.94 6 (37.5%)

9. Education 55 62 4.98 17 (30.91%)

10. Entertainment 28 134 12.36 11 (39.29%)

11. Events 8 53 14.13 5 (62.5%)

12. Finance 61 150 15.97 27 (44.26%)

13. Food & Drink 28 188 16.43 13 (46.43%)

14. Games 37 59 12.59 25 (67.57%)

15. Health & Fitness 41 14 3.44 15 (36.59%)

16. House & Home 25 149 17.96 8 (32%)

17. Libraries & Demo 45 22 0.6 1 (2.22%)

18. Lifestyle 21 82 12.48 12 (57.14%)

19. Maps & Navigation 54 206 8.37 8 (14.81%)

20. Medical 59 63 2.8 10 (16.95%)

21. Music & Audio 43 44 5.47 14 (32.56%)

22. News & Magazines 49 802 37.71 26 (53.06%)

23. Parenting 24 28 2.54 5 (20.83%)

24. Personalization 31 288 29.61 11 (35.48%)

25. Photography 43 58 7.72 14 (32.56%)

26. Productivity 68 119 8.31 24 (35.29%)

27. Shopping 46 198 21.54 22 (47.83%)

28. Social 48 108 10.4 23 (47.92%)

29. Sports 43 146 19.42 18 (41.86%)

30. Tools 54 130 6.44 16 (29.63%)

31. Travel & Local 63 208 14.33 27 (42.86%)

32. Video Players & Editors 47 134 5.89 8 (17.02%)

33. Weather 30 123 14.7 12 (40%)

Total 1308 1243 50.20 451 (34.48%)

and responses are managed in a unified way. On the other hand,

mobile apps presented a challenge: we first had to identify how

the HTTP requests and responses are handled in different HTTP

libraries (recall Section 2.2); only then could we instrument the

corresponding code to capture this information automatically.

It was thus necessary to determine what libraries most apps use

to send HTTP requests. We first identified a set of popular HTTP

libraries, including URLConnection [7], OkHttp [4], Volley [8],

and Retrofit [5]. We then analyzed a sample of the subject apps’
bytecodes and checked the package names against the libraries.

For example, the presence of the string “java.net.URLConnection”

generally indicates the use of the URLConnection library.
The data gathered from our analysis point to URLConnection

and OkHttp as the most popular HTTP libraries used in the subject
apps. This is unsurprising: URLConnection is the standard built-in
library of the Android framework, and it has been augmented with

OkHttp since Android v.4.4 (KitKat). We thus decided to focus on
URLConnection and OkHttp in our study.
We then performed a more detailed analysis of how our subject

apps use these two libraries. We recorded the runtimes of those

methods that are imported from URLConnection and OkHttp, and
narrowed our focus to methods that are most time-consuming. The

rationale is that those are most likely to be the methods related to

sending requests and receiving responses over the network.

In addition, we inspected the decompiled code of the subject

apps, as well as the documentation and source code of the HTTP

libraries used in the apps, to identify the actual usage of HTTP

requests and responses. The reason for this additional inspection

is that developers send requests and receive responses in various

ways, even when using the same HTTP library. Listings 1 and 2

in Section 2 only demonstrate one common way of using each of

the two HTTP libraries. While recommended in the libraries’ docu-

mentation, there is no requirement or guarantee that developers

will follow this guidance in their apps. Furthermore, the examples

in the documentation are at the source code level, while our in-

strumentation using Soot [37] is at the bytecode level. This meant

that we needed to understand the actual usage of those two HTTP

libraries at the bytecode level. With the additional inspection, we

Empirically Assessing Opportunities

for Prefetching and Caching in Mobile Apps ASE ’18, September 3–7, 2018, Montpellier, France

were able to identify the actual methods used for sending requests

and receiving responses in the apps, allowing us to instrument the

code to capture the precise information needed for our study. For

example, line 9 in Listing 1 defines headerMap that contains all of
the header information; our instrumentation then inserts a method

after line 9 to capture the headers relevant to our study, such as

Expires header. It is important to note that the instrumented apps’
primary functionality is left unchanged in this process.

4.4 App Testing

After the instrumentation, each app was subjected to random input

testing through Android Debug Bridge (adb) [1]. We used the UI/Ap-

plication exerciser tool Monkey [6] to generate random streams of

user events, such as clicks, touches, and swipes. We used random

events in this study for two reasons: (1) to avoid bias introduced

by particular user behaviors and (2) to generate large volumes of

runtime requests automatically, which would not be practical if

we relied on a human user. This is further discussed in Section 6.

The apps were run on the NoxPlayer Android emulator [3]. Each

test consisted of 3,000 events under WiFi network settings. We also

explored testing with 1,000, 5,000, and 10,000 events. We found that

3,000 was the smallest number of events that yielded a represen-

tative number of HTTP requests triggered at runtime across the

subject apps; neither 5,000 nor 10,000 events resulted in a significant

increase in HTTP requests, while 1,000 events proved to be too few

to adequately exercise the relevant functionality in the apps.

All tests were preceded by a fresh installation of the given subject

app, and the app was removed from the emulator after each test’s

conclusion. This minimized the chances of errors caused by any

interference between apps or by previously saved settings.

4.5 Final Set of Subject Apps

The objective of our study is to determine whether and when HTTP

requests should be prefetched and their responses cached. In some

cases, the number of HTTP requests triggered in our tests was very

low, suggesting that prefetching and caching in such apps would

not be beneficial. To determine the nature of “low network usage”

apps and the underlying reasons behind the data we obtained, we

manually inspected each app, starting with those that do not trigger

any requests.

A total of 623 out of the 1,308 subject apps triggered no requests.

We identified six recurring reasons behind this:

(1) The app’s installation failed.

(2) The app crashed upon launching.

(3) The app’s version was incompatible with the NoxPlayer

Android emulator [3].

(4) The app was obfuscated so that the methods relevant to

HTTP requests were not captured by our instrumentation.

(5) The app required external information before it could be

used, such as a bank PIN (commonly required in the Finance

category) or a vehicle license plate (commonly required in

the Auto & Vehicles category).

(6) The app only contained static content and did not rely on

the network.

Note that, while we could not automatically test the above apps,

many of them may, in fact, trigger HTTP requests at runtime. The

only exception are apps from the last category. The automated

nature of our app testing prevented us from determining the exact

numbers of apps that fell in each of the above six categories. A

manual inspection of a random sample of the apps suggests that,

with a 95% confidence level, no more than 50% of the 623 apps

contained only static content.

An additional 234 of the 1,308 subject apps triggered 1-3 requests

at runtime. We observed a common pattern among these apps.

Namely, regardless of the type of app, those requests tended to be

one or more of the following:

(1) Load an application-specific configuration file.

(2) Log in with Facebook using Facebook GraphRequest.
(3) Use monitoring services, such as Crashlytics or Google

Analytics.

Further manual testing of these apps yielded no additional HTTP

requests beyond the above three. This finding shows a common

usage of popular third-party services in mobile app development,

whose impact on app performance should also be taken into account

in terms of overhead, data usage, and energy consumption.

Wewere unable to identify any patterns such as the above in apps

that trigger any other number of requests. Thus, the below analysis

of prefetchability and cacheability is based on 451 of our subject

apps that trigger four or more requests at runtime, corresponding

to the right-most column of Table 1.

5 RESULTS AND DISCUSSION

This section describes the results of our analysis, framed by the

nine research questions from Section 3, and discusses the lessons

learned from the results. Table 2 summarizes the information about

the final set of 451 subject apps in each category that are analyzed

in this section. Note that the app categories are numbered 1-33, to

aid the depiction and understanding of the figures in the remainder

of this section. Among the 451 apps, the number of HTTP requests

ranged between 4 (the cut-off number for our analysis, as discussed

above) and 1,243, with the average slightly above 35 requests per

app.

5.1 Prefetchability of HTTP Requests

Recall from Section 3 that we try to answer three research questions

regarding the prefetchability of HTTP requests. Specifically, we are

interested in GET requests, which are the primary candidates for
prefetching.

• RQ1 – What is the number of GET requests per app?
• RQ2 – What is the percentage of GET requests among all
HTTP requests in mobile apps?

• RQ3 – How prevalent are GET requests across different app
categories?

To answer the above questions, we instrumented and tested our

subject apps using the procedure described in Section 4. We calcu-

lated the total number of GET requests observed during our testing,
and the percentage of GET requests among all HTTP requests trig-
gered at runtime in each app. We subsequently grouped the results

by app category. Figure 2 depicts the minimum, maximum, and

average numbers of GET requests per app (RQ1) across the differ-
ent categories (RQ3). Figure 3 depicts the minimum, maximum,

ASE ’18, September 3–7, 2018, Montpellier, France Yixue Zhao, Paul Wat, Marcelo Schmitt Laser, Nenad Medvidovic

and average percentages of GET requests as compared to all HTTP
requests (RQ2) in each app category (RQ3).

Our data indicate that GET requests are pervasive across all 33 app
categories. As shown in Figure 2, seven categories contained apps

that sent 150 or more GET requests. On average, an app sent 28 GET
requests, and those requests comprised 68% of all HTTP requests

sent by the app. As shown in Figure 3, several categories—Beauty

(94%), Comics (87%), Entertainment (88%), and Events (87%)—had

very high percentages of GET requests. Only two categories—Dating
(43%) and Tools (44%)—had slightly fewer than 50% of GET requests.
These results suggest that there is a significant opportunity to

exploit prefetching among the 451 subject apps that sent 4 or more

HTTP requests. It was surprising to see that 102 apps, spanning

29 of the 33 categories, sent only GET requests. Certain categories
are potentially more suitable for prefetching than others. This is

a by-product of the types of functionality that are typical in a

given category. The nature of apps in “stable” domains, such as

Art & Design or Libraries & Demo, is such that they may be able

to operate with less remotely accessed data than apps in more

“dynamic” domains such as News & Magazines or Shopping. This

suggests that prefetching and caching techniques may benefit from

leveraging knowledge regarding an app’s domain.

Figure 2: Minimum (bottom edges), maximum (top edges),

and average (horizontal dashes) numbers of GET requests in

apps across the 33 app categories. Apps in 7 categories had

maximums higher than 150 (numbers displayed beside the

corresponding bars). Note that the average for app category

3 is also higher than 150, and thus not shown.

Figure 3: Minimum (bottom edges), maximum (top edges),

and average (horizontal dashes) percentages of GET requests

in apps across the 33 app categories.

Table 2: App information for each category among final sub-

jects

Category #Apps Min. #Req Max. #Req Avg. #Req

1. Art & Design 3 4 14 8.33

2. Auto & Vehicles 4 4 6 4.75

3. Beauty 6 4 1243 220.33

4. Books & Reference 16 4 108 27.94

5. Business 17 4 87 17.24

6. Comics 19 4 319 59.58

7. Communications 8 4 96 19

8. Dating 6 5 334 78.83

9. Education 17 4 62 15.06

10. Entertainment 11 6 134 30.73

11. Events 5 11 53 22.2

12. Finance 27 5 150 35.59

13. Food & Drink 13 4 188 33.46

14. Games 25 4 59 18

15. Health & Fitness 15 4 14 8.13

16. House & Home 8 4 149 55.38

17. Libraries & Demo 1 22 22 22

18. Lifestyle 12 4 82 21

19. Maps & Navigation 8 8 206 54.88

20. Medical 10 4 63 14

21. Music & Audio 14 5 44 16.14

22. News & Magazines 26 4 802 70.88

23. Parenting 5 4 28 12

24. Personalization 11 6 288 82.73

25. Photography 14 4 58 23

26. Productivity 24 4 119 22.67

27. Shopping 22 4 198 44.14

28. Social 23 4 108 20.35

29. Sports 18 7 146 45.67

30. Tools 16 4 130 21.44

31. Travel & Local 27 4 208 32.11

32. Video Players & Editors 8 4 134 33.63

33. Weather 12 7 123 36.17

Total 451 4 1243 35.28

5.2 Cacheability of HTTP Responses

As discussed in Section 3, the cacheability of HTTP responses is

a function of the presence of Cache-Control and Expires head-
ers, and their trustworthiness. To that end, we try to answer the

following four research questions.

• RQ4 – How prevalent are Expires headers?
• RQ5 – Are Expires headers trustworthy?
• RQ6 – How prevalent are Cache-Control headers?
• RQ7 – Are Cache-Control headers trustworthy?

To answer the above questions, we instrumented the subject apps

to capture response headers (recall Section 4.3) and calculate the

numbers of occurrences of the two relevant headers. To determine

whether the header of a given request is trustworthy, we made each

request 4 times: at initial time t , t + 10, t + 30, and t + 60 seconds.
This allowed us to determine whether later responses reflect what

is specified in the header of the original response.

For example, let us assume that the original request is sent at

time(t) and that the response header contains Expires: time(exp).
We will mark the header as untrustworthy if it falls into any of the

following three cases, where x is the time period after the original
request is sent:

(1) time(exp) <= time(t)

Empirically Assessing Opportunities

for Prefetching and Caching in Mobile Apps ASE ’18, September 3–7, 2018, Montpellier, France

Figure 4: Minimum (bottom edges), maximum (top edges),

and average (horizontal dashes) numbers of Expiresheaders
in each app category. Apps in 11 categories had maximums

higher than 30 (numbers displayed beside or above the cor-

responding bars).

Figure 5: Minimum (bottom edges), maximum (top edges),

and average (horizontal dashes) percentages of the Expires
headers for each app category.

Figure 6: Minimum (bottom edges), maximum (top edges),

and average (horizontal dashes) percentages of trusted

Expires headers in each app category.

(2) (time(t) < time(exp) ≤ time(t+x))
∧ (response@(t) = response@(t+x))

(3) (time(exp) > time(t+x))
∧ (response@(t) � response@(t+x))

In our case, x is any of 10s , 30s , or 60s . The first case indicates
a scenario where the response expires before the request is even

sent. The second case indicates a scenario where the response is

Figure 7: Minimum (bottom edges), maximum (top edges),

and average (horizontal dashes) numbers of Cache-Control
headers in each app category. Apps in 14 categories hadmax-

imums higher than 30 (numbers displayed beside or above

the corresponding bars).

Figure 8: Minimum (bottom edges), maximum (top

edges), and average (horizontal dashes) percentages of

Cache-Control headers in each app category.

Figure 9: Minimum (bottom edges), maximum (top edges),

and average (horizontal dashes) percentages of trusted

Cache-Control headers in each app category.

supposed to have expired, but it has remained unchanged. Finally,

the third case indicates a scenario where the response should have

remained the same, but it changed.

We use the analogous algorithm to determinewhether the Cache-
Control header is trustworthy, based on the max-age field specified
within the header.

ASE ’18, September 3–7, 2018, Montpellier, France Yixue Zhao, Paul Wat, Marcelo Schmitt Laser, Nenad Medvidovic

Figure 4 shows the minimum, maximum, and average numbers

of the Expires headers included in HTTP responses for each app
category (RQ4). Figure 5 shows the minimum, maximum, and av-

erage percentages of the Expires headers among all the response
headers in each app category (RQ4). Figure 6 shows the percent-

ages of the trustworthy Expires headers among all the Expires
headers (RQ5). Figures 7, 8, and 9 show the analogous information

for the Cache-Control header (RQ6, RQ7).
From the results, we can conclude that the Expires headers and

Cache-Control headers are not always included in the responses,
and they are not always trustworthy. The Cache-Control header
tends to be used more reliably than the Expires header. Across the
33 app categories, 53% of the response headers contain Expires
on average, while 65% contain Cache-Control. Only an average
of 25% of the Expires headers are trustworthy, while 77% of the

Cache-Control headers are trustworthy.While there are individual

apps among our subjects where each of the two headers was used

in a completely trustworthy manner (100%), there were an even

greater number of apps where the opposite was true (0%).

These results strongly suggest that developers should not de-

pend on the response headers to determine their caching schemes.

Unfortunately, there are currently no reliable alternatives for the

mobile app domain. However, this presents a research opportunity

to investigate more intelligent approaches. One strategy that sug-

gests itself based on our study would involve learning the correct

information to include in the headers based on historical data. Such

a technique could then automatically suggest app modifications, in

order to fix the “buggy” headers.

5.3 Identifying Truly Redundant HTTP

Requests

As discussed in Section 3, redundant HTTP requests are good candi-

dates for prefetching and caching. However, certain HTTP requests

are only ostensibly redundant in that they seem identical but actu-

ally yield different responses. Our final two research questions aim

to shed light on this issue.

• RQ8 – How prevalent are redundant HTTP requests?

• RQ9 – Are the identified ostensibly redundant requests truly

redundant?

In our analysis, we have specifically focused on GET requests, as
discussed previously.

To answer the above questions, upon completion of testing a

given app (by executing the 3,000 events as explained in Section 4.4),

we identify the ostensibly redundant requests in each app. We then

run a script that executes the app by sending each identified request

four times: at initial time t , t + 10, t + 30, and t + 60 seconds. We
check whether the responses change during this interval. This helps

to identify HTTP requests that are truly redundant; the responses

to those requests are thus suitable candidates for caching.

Figure 10 shows the minimum, maximum, and average percent-

ages of the identified ostensibly redundant requests as compared to

the total number of requests in each app category (RQ8). Figure 11

shows the minimum, maximum, and average expiration times for

the identified requests (RQ9). A request’s expiration time is the

time at which its response is different from the response received

for the initial request at time t . Finally, Figure 12 shows the mini-
mum, maximum, and average percentages of the truly redundant

requests (RQ9).

As Figure 10 shows, redundant requests comprise a significant

proportion of all HTTP requests across most of the app categories.

In certain apps, nearly 100% of the requests are redundant, while

the average across all apps is ≈20%. By themselves, these results
would suggest considerable cacheability potential.

This is further bolstered by some of the results in Figure 11,

which points to several apps in which the HTTP requests did not

Figure 10: Minimum (bottom edges), maximum (top edges),

and average (horizontal dashes) percentages of ostensibly re-

dundant requests in each app category.

Figure 11: Minimum (bottom edges), maximum (top edges),

and average (horizontal dashes) expiration times for the re-

dundant requests in each app category.

Figure 12: Minimum (bottom edges), maximum (top edges),

and average (horizontal dashes) percentages of truly redun-

dant requests in each app category.

Empirically Assessing Opportunities

for Prefetching and Caching in Mobile Apps ASE ’18, September 3–7, 2018, Montpellier, France

expire even after the full 60s. However, this is somewhat deceptive:

The average request expiration time was 12s across the 33 app

categories; it was exactly 10s for several of the categories; and only

two categories—Food & Drink and House & Home—had average

expiration times over 20s. Since 10s was the shortest interval used

in our study, these results suggest that most redundant requests

expire within a relatively short time period. This should be taken

into account when devising caching schemes for mobile apps.

Finally, Figure 12 shows that, on average, an overwhelming ma-

jority of ostensibly redundant requests are truly redundant across

the 33 app categories. This means that the ostensibly redundant

request did not expire at one or more of the 10s, 30s, and 60s check-

points. In a number of individual apps, all ostensibly redundant

requests are truly redundant (the maximum value of 100%), while

their average for app categories is as high as 92%. This observation

shows a large opportunity for caching redundant requests in mobile

apps.

5.4 Implications

Our study provides evidence that prefetching and caching can

be beneficial in a large number of mobile app scenarios. At the

same time, we came across several apps in which prefetching and

caching are unlikely to have significant, or any, benefits. At the

least, these include the several hundred apps from our original

set of subjects that only provide static content or make very few

(1-3) HTTP requests. In fact, it is possible that the number of these

apps surpasses the 451 apps that do rely on the network and that

we included in our final set of subjects (recall the discussion in

Section 4.5). This outcome was at least somewhat surprising, given

the long history of research on data prefetching and caching in

distributed systems, of which mobile apps are only a more recent

example.

A deeper analysis helps to identify several reasons behind this.

For example, in hindsight it may have been expected that apps from

the Libraries & Demo or Video Players & Editors categories provide

static content, such as PDF viewers, organizers, digital books, and

video players. On the other hand, we did not expect to find almost

as much static content in Auto & Vehicles. We already discussed in

Section 4.5 that a number of apps from this category required login

by suppling a license plate number. An additional, large number

of apps also contained purely static content, such as instructions

on how to perform car maintenance. This is reflected in our data:

under 14% of the Auto & Vehicles apps made it into our final set of

451 subjects (recall Table 1).

Another issue was presented by apps that used network com-

munication that was either not based on HTTP or extensively used

HTTP methods other than GET. For example, a number of apps in
the Communications category provide instant messaging capabil-

ities (including VoIP), while others actually implement browsers.

Maps & Navigation provide GPS applications that differ significantly

from typical HTTP services. Yet another example are Finance apps.

Even though 44% of these apps made it into our final set of sub-

jects, a lot of them are banking apps that predominantly perform

push-type operations, making them ill-suited for prefetching.

Even within the 451 final subject apps, there are clearly some

for which the benefits of prefetching and caching may be marginal.

Games presented an interesting case. Over 2
3 of the apps in this

category made it into our final set of subjects since they used suffi-

ciently large numbers of HTTP requests. These apps also exhibited

very high Cache-Control trustworthiness. On the other hand, as
expected, their requests tended to expire very quickly and to have

little redundancy. Therefore, while a game app may be identified as

a candidate for prefetching, the resulting cached data would become

stale very quickly. In turn, this would possibly lead to incorrect

app behavior or, just as bad, constant thrashing of the prefetching

facilities that would cripple the app’s performance.

These issues can be further illustrated with a somewhat crude

analysis of an average app from our subject set. The average app

sent 28 GET requests (recall Section 5.1) as a result of the 3,000

automatically generated UI events. 20% of those requests were truly

redundant (recall Section 5.3). That means that up to 6 GET requests
were prefetchable. Our previous work PALOMA [49] measured the

processing of a single HTTP request to take slightly over 800ms

under network conditions similar to ours. This would mean that

an average app among our subjects would save only 4s by caching

and reusing the results of the original request, assuming that the

cache does not become stale.

While we must be cognizant of apps, such as those above, that

are not especially amenable to prefetching and caching, several sce-

narios in our study paint a much more favorable picture. Consider

the app from category 3 (Beauty) that issued 1,243 GET requests
(recall Figure 2), all of which are truly redundant (corresponding

to the maximum value for app category 3 in Figure 12). Even if we

assume that the result of each redundant request can only be reused

once before it expires (recall from Figure 11 that the expiration time

for app category 3 is 10s), that still yields 621 requests for which the

results can be reused from the local cache. Assuming once again

the same execution conditions as PALOMA’s, this would result in

massive execution-time savings, totaling 497s or 8.5 minutes.

In summary, there is a notable opportunity for prefetching and

caching in the mobile app domain. At the same time, the resulting

techniques must take into account the characteristics of different

app categories and different HTTP requests. Otherwise, the em-

ployed techniques may yield undesired outcomes, such as cache

staleness, non-trivial performance overhead, and incorrect app be-

haviors.

6 THREATS TO VALIDITY

Our study is based on top-ranked, free Android apps. Therefore, our

results may not hold for paid apps or lower-ranked apps. However,

over 90% of the Android apps in the Google Play Store are free [2].

Furthermore, top-ranked apps are used most widely. This suggests

that our results should have broad applicability.

We excluded from our numerical analysis the apps that trigger

fewer than four HTTP requests at runtime. However, part of the ob-

jective of our study was to explore this problem space. Specifically,

we identified the reasons behind the apps’ low numbers of requests

(recall Section 4.5). Furthermore, we acknowledged explicitly that

the exclusion of these apps from the final set of subjects limits the

applicability of our findings (recall Section 5.4).

Our study is based on apps that use the HTTP protocol and

two HTTP libraries (URLConnection and OkHttp). Our findings

ASE ’18, September 3–7, 2018, Montpellier, France Yixue Zhao, Paul Wat, Marcelo Schmitt Laser, Nenad Medvidovic

are unlikely to be directly applicable to other protocols for net-

work communication, and they may not carry over to other HTTP

libraries. However, most mobile apps, and in particular Android

apps, rely on HTTP [15]. Furthermore, our focus is on the funda-

mental characteristics of HTTP requests and responses, and those

characteristics do not change across different HTTP libraries. In-

cluding other libraries would naturally result in the inclusion of

greater numbers of subject apps. However, given the popularity

of the HTTP libraries we selected, our results should be widely

representative among Android apps.

In our process for answering RQ5, RQ7, and RQ9, we sent out

sets of four requests, at times t , t + 10, t + 30, and t + 60 seconds
(recall Sections 5.2 and 5.3). As shown in Figure 11, redundant

requests tend to expire at t + 10 or soon thereafter. This indicates
that t + 60 is a sufficiently long period to identify truly redundant
requests in most cases. Furthermore, mobile users tend to use an

app for relatively short periods, so that prefetching and caching far

in advance is not necessary and is likely to yield cache staleness.

While choosing different time intervals would likely not lead to

different results, finer-grained intervals may give us tighter bounds

on request expiration times.

Finally, our app usage information was obtained via automated

generation of UI events, as opposed to logging real user events. This

may result in numbers and sequences of HTTP requests that are not

representative of actual app use. However, the purpose of our study

was to analyze all possible HTTP requests that could be potentially

triggered at runtime, and 3,000 random events were shown to be

able to generate representative HTTP requests, as discussed in

Section 4.4. Given the nature of the study and the large number

of apps we aimed to analyze, it would have been unreasonable to

attempt to find actual users for each app, while our results would

potentially suffer from user-specific biases and idiosyncrasies in

engaging the app. On the other hand, mimicking actual users with

humans who are unfamiliar with the apps in question, which would

have been a more likely alternative, would have suffered from the

same potential problem as our automated testing. Furthermore,

all of our research questions focus on individual HTTP requests

rather than their sequences. Thus, real user traces would not lead

to different results compared to random orders of runtime events.

Finally, neither actual nor novice human users would have been

able to repeatedly and reliably generate large numbers of events

(3,000 per app execution in the main portion of our study, and up

to 10,000 per execution in the preliminary analysis).

7 RELATEDWORK

Web prefetching and caching are entrenched techniques to reduce

network latency since the Internet was born and have attracted

a large body of work in browser domain, including measurement

studies to understand web performance and identify performance

bottlenecks [16, 24, 30–32, 42], literature reviews and quantita-

tive studies to compare fundamental prefetching and caching al-

gorithms [12, 39, 43], leveraging prefetching and caching tech-

niques at different levels, such as studying user browsing behav-

iors [25, 36], providing API support for developers [26], restructur-

ing page load process [28, 40], providing server or infrastructure

support [10, 13, 34, 35, 47].

The recent surge of mobile devices has attracted researchers to

study prefetching and caching techniques in the context of mobile

browsers and mobile apps. With the foundation of the traditional

research in browser domain, mobile browser performance soon

became a crowded research area [24, 27, 35, 40, 41, 43], but the

research on mobile apps is still in its infancy. This is unfortunate

because mobile users currently spend more than 80% of their time

in mobile apps rather than mobile browsers [14]. In mobile app

domain, Cachekeeper [46] studied the redundant HTTP traffic and

proposed an OS-level caching service for HTTP requests on smart-

phones. PALOMA [49] used program analysis to address “what” and

“when” to prefetch certain HTTP requests in mobile apps. However,

those techniques were only evaluated on a small number of apps

and the performance depends on the flaws of web caching schemes

employed in the original apps, thus it is not clear to what extent

those techniques will be effective in practice. Those shortcomings

of existing approaches motivated us to conduct an in-depth study

that aims to understand the characteristics of HTTP requests in

order to guide future research in mobile apps. Other existing works

that focus on mobile app performance are complementary to our

focus, such as pre-launching mobile apps [29, 44, 45], balancing

Quality-of-Service (QoS) to suggest “howmuch” to prefetch [11, 21],

identifying performance bottlenecks [33].

8 CONCLUSION

In this paper, we presented the results of an extensive empirical

study aimed at understanding the characteristics of HTTP requests

and responses in mobile apps. We formulated nine research ques-

tions with the focus on the prefetchability of HTTP requests and

cacheability of HTTP responses. Our overarching objective is to

fill in the gap between the well-studied browser domain and com-

paratively less-explored mobile app domain, by motivating and

providing guidelines for future research in this area.

Our results suggest that prefetching and caching can be useful

across a wide range of mobile apps and scenarios, but they are

not universally applicable and their benefits will vary. Certain app

categories aremore amenable for prefetching and caching. However,

there is a non-trivial amount of variation even among different apps

within a single cateogry. While our analysis reported in this paper

does not provide definitive answers to questions of what, when, and

how much to prefetch/cache, it provides a process, tools, and data

that form a foundation for answering those questions much more

precisely than has been possible thus far.

ACKNOWLEDGMENT

The authors thank William G.J. Halfond, Jiaping Gui, and the rest

of their research group at the University of Southern California

for providing us with the APKs for our subject apps. This work is

supported by the U.S. National Science Foundation under grants

no. CCF-1618231 and CCF-1717963, U.S. Office of Naval Research

under grant no. N00014-17-1-2896, and by Huawei Technologies

Co., Ltd.

Empirically Assessing Opportunities

for Prefetching and Caching in Mobile Apps ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] 2018. Android Debug Bridge. https://developer.android.com/studio/

command-line/adb
[2] 2018. Distribution of free and paid Android apps in the

Google Play Store. https://www.statista.com/statistics/266211/
distribution-of-free-and-paid-android-apps/

[3] 2018. NoxPlayer. https://www.bignox.com/
[4] 2018. OkHttp Documentation. http://square.github.io/okhttp/
[5] 2018. Retrofit Documentation. http://square.github.io/retrofit/
[6] 2018. UI/Application Exerciser Monkey. https://developer.android.com/studio/

test/monkey.html
[7] 2018. URLConnection Class Documentation. https://docs.oracle.com/javase/7/

docs/api/java/net/URLConnection.html
[8] 2018. Volley overview. https://developer.android.com/training/volley/
[9] 2018. The website of the raw data and the code of our analysis. https://github.

com/felicitia/PALOMA-Analysis/tree/empirical
[10] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben Green-

stein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bolian Yin.
2015. Flywheel: Google’s Data Compression Proxy for the Mobile Web.. In NSDI,
Vol. 15. 367–380.

[11] Paul Baumann and Silvia Santini. 2017. Every Byte Counts: Selective Prefetching
for Mobile Applications. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
1, 2, Article 6 (June 2017), 29 pages. https://doi.org/10.1145/3090052

[12] Christos Bouras, Agisilaos Konidaris, and Dionysios Kostoulas. 2004. Predictive
Prefetching on the Web and Its Potential Impact in the Wide Area. World Wide
Web 7, 2 (June 2004), 143–179. https://doi.org/10.1023/B:WWWJ.0000017208.
87570.7a

[13] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V Madhyastha, and Vyas
Sekar. 2015. Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices.. In NSDI, Vol. 1. 2–3.

[14] Dave Chaffey. 2018. Mobile Marketing Statistics compilation. https:
//www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/
mobile-marketing-statistics/

[15] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn Song.
2013. Networkprofiler: Towards automatic fingerprinting of android apps. In
INFOCOM, 2013 Proceedings IEEE. IEEE, 809–817.

[16] Jeffrey Erman, Alexandre Gerber, Mohammad Hajiaghayi, Dan Pei, Subhabrata
Sen, and Oliver Spatscheck. 2011. To cache or not to cache: The 3G case. IEEE
Internet Computing 15, 2 (2011), 27–34.

[17] Roy Fielding. 1999. RFC 2616, part of Hypertext Transfer Protocol – HTTP/1.1.
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

[18] Roy Fielding. 1999. RFC 2616, part of Hypertext Transfer Protocol – HTTP/1.1.
https://tools.ietf.org/html/rfc2616#section-5.1.1

[19] Roy Fielding. 1999. RFC 2616, part of Hypertext Transfer Protocol – HTTP/1.1.
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

[20] Roy Fielding. 1999. RFC 2616, part of Hypertext Transfer Protocol – HTTP/1.1.
https://tools.ietf.org/html/rfc2616#section-9

[21] Brett D Higgins, Jason Flinn, Thomas J Giuli, Brian Noble, Christopher Peplin,
and David Watson. 2012. Informed mobile prefetching. In Proceedings of the
10th international conference on Mobile systems, applications, and services. ACM,
155–168.

[22] SIMON KEMP. 2018. Digital in 2018. https://wearesocial.com/blog/2018/01/
global-digital-report-2018

[23] Ding Li, Yingjun Lyu, Jiaping Gui, and William GJ Halfond. 2016. Automated
energy optimization of http requests for mobile applications. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). IEEE, 249–260.

[24] X. Liu, Y. Ma, Y. Liu, T. Xie, and G. Huang. 2016. Demystifying the Imperfect
Client-Side Cache Performance of Mobile Web Browsing. IEEE Transactions on
Mobile Computing 15, 9 (Sept 2016), 2206–2220. https://doi.org/10.1109/TMC.
2015.2489202

[25] Dimitrios Lymberopoulos, Oriana Riva, Karin Strauss, Akshay Mittal, and Alexan-
dros Ntoulas. 2012. PocketWeb: Instant Web Browsing for Mobile Devices. In
Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XVII). ACM, New
York, NY, USA, 1–12. https://doi.org/10.1145/2150976.2150978

[26] James WMickens, Jeremy Elson, Jon Howell, and Jay R Lorch. 2010. Crom: Faster
Web Browsing Using Speculative Execution.. In NSDI, Vol. 10. 9–9.

[27] Javad Nejati and Aruna Balasubramanian. 2016. An in-depth study of mobile
browser performance. In Proceedings of the 25th International Conference on World
Wide Web. International World Wide Web Conferences Steering Committee,
1305–1315.

[28] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016.
Polaris: Faster Page Loads Using Fine-grained Dependency Tracking.. In NSDI.
123–136.

[29] Abhinav Parate, Matthias Böhmer, David Chu, Deepak Ganesan, and Benjamin M
Marlin. 2013. Practical prediction and prefetch for faster access to applications
on mobile phones. In Proceedings of the 2013 ACM international joint conference
on Pervasive and ubiquitous computing. ACM, 275–284.

[30] Feng Qian, Junxian Huang, Jeffrey Erman, Z Morley Mao, Subhabrata Sen, and
Oliver Spatscheck. 2013. How to reduce smartphone traffic volume by 30%?. In
International Conference on Passive and Active Network Measurement. Springer,
42–52.

[31] Feng Qian, Kee Shen Quah, Junxian Huang, Jeffrey Erman, Alexandre Gerber,
Zhuoqing Mao, Subhabrata Sen, and Oliver Spatscheck. 2012. Web caching on
smartphones: ideal vs. reality. In Proceedings of the 10th international conference
on Mobile systems, applications, and services. ACM, 127–140.

[32] Feng Qian, Subhabrata Sen, and Oliver Spatscheck. 2014. Characterizing resource
usage for mobile web browsing. In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services. ACM, 218–231.

[33] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan, Ian Ober-
miller, and Shahin Shayandeh. 2012. AppInsight: Mobile App Performance
Monitoring in the Wild.. In OSDI, Vol. 12. 107–120.

[34] Sanae Rosen, Bo Han, Shuai Hao, Z Morley Mao, and Feng Qian. [n. d.]. Push or
request: An investigation of http/2 server push for improvingmobile performance.
In Proceedings of the 26th International Conference on World Wide Web. 459–468.

[35] Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha V. Mad-
hyastha. 2017. Vroom: Accelerating the Mobile Web with Server-Aided Depen-
dency Resolution. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’17). ACM, New York, NY, USA, 390–
403. https://doi.org/10.1145/3098822.3098851

[36] N. Swaminathan and S. V. Raghavan. 2000. Intelligent prefetch in WWW using
client behavior characterization. In Proceedings 8th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(Cat. No.PR00728). 13–19. https://doi.org/10.1109/MASCOT.2000.876424

[37] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In
Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collabo-
rative Research (CASCON ’99). IBM Press, 13–. http://dl.acm.org/citation.cfm?
id=781995.782008

[38] Haoyu Wang, Junjun Kong, Yao Guo, and Xiangqun Chen. 2013. Mobile web
browser optimizations in the cloud era: A survey. In 2013 IEEE 7th International
Symposium on Service Oriented System Engineering (SOSE). IEEE, 527–536.

[39] Jia Wang. 1999. A Survey of Web Caching Schemes for the Internet. SIGCOMM
Comput. Commun. Rev. 29, 5 (Oct. 1999), 36–46. https://doi.org/10.1145/505696.
505701

[40] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016. Speeding
up Web Page Loads with Shandian.. In NSDI. 109–122.

[41] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2011. How
effective is mobile browser cache?. In Proceedings of the 3rd ACM workshop on
Wireless of the students, by the students, for the students. ACM, 17–20.

[42] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2011. Why
are web browsers slow on smartphones?. In Proceedings of the 12th Workshop on
Mobile Computing Systems and Applications. ACM, 91–96.

[43] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2012. How far
can client-only solutions go for mobile browser speed?. In Proceedings of the 21st
international conference on World Wide Web. ACM, 31–40.

[44] Ye Xu, Mu Lin, Hong Lu, Giuseppe Cardone, Nicholas Lane, Zhenyu Chen, An-
drew Campbell, and Tanzeem Choudhury. 2013. Preference, context and commu-
nities: a multi-faceted approach to predicting smartphone app usage patterns. In
Proceedings of the 2013 International Symposium on Wearable Computers. ACM,
69–76.

[45] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. 2012. Fast
app launching for mobile devices using predictive user context. In Proceedings
of the 10th international conference on Mobile systems, applications, and services.
ACM, 113–126.

[46] Yifan Zhang, Chiu Tan, and Li Qun. 2013. CacheKeeper: a system-wide web
caching service for smartphones. In Proceedings of the 2013 ACM international
joint conference on Pervasive and ubiquitous computing. ACM, 265–274.

[47] Bo Zhao, Byung Chul Tak, and Guohong Cao. 2014. Mobile web browsing using
the cloud. Springer.

[48] Y. Zhao. 2017. Toward Client-Centric Approaches for Latency Minimization in
Mobile Applications. In 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft). 203–204. https://doi.org/10.
1109/MOBILESoft.2017.34

[49] Yixue Zhao, Marcelo Schmitt Laser, Yingjun Lyu, and Nenad Medvidovic. 2018.
Leveraging Program Analysis to Reduce User-Perceived Latency in Mobile Ap-
plications. In Proceedings of the International Conference on Software Engineering
(ICSE).

