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Abstract—Unmanned aerial vehicles (UAVs) can supplement
the existing ground-based HetNets by replacing/supporting dam-
aged infrastructure, providing real-time video support at the site
of an emergency, offloading traffic in congested areas, extending
coverage, and filling coverage gaps. However, it is challenging
to tune the parameters of these UAV-HetNets to maximize
network performance and spectral efficiency. In this paper, we
introduce distributed algorithms that leverage UAV mobility,
enhanced inter-cell interference coordination (ICIC), and cell
range expansion (CRE) techniques defined in 3GPP Release-
10 and 3GPP Release-11. Through Monte-Carlo simulations,
we compare the system-wide Sth percentile spectral efficiency
(5pSE) while optimizing the performance using a brute force
algorithm, a heuristic-based sequential algorithm, and a deep Q-
learning algorithm. The autonomous UAVs jointly optimize their
location, ICIC parameters, and CRE to maximize SpSE gains and
minimize the outage probability. Our results show that the ICIC
technique relying on a simple heuristic outperforms the ICIC
technique based on deep Q-learning. Taking advantage of the
multiple optimization parameters for interference coordination,
the heuristic-based ICIC technique can achieve SpSE values that
are reasonably close to those achieved with exhaustive brute
force search techniques, at a significantly lower computational
complexity.

Index Terms—Deep Q learning, drone, FelCIC, HetNets, inter-
ference management, LTE-Advanced, range expansion, UAYV.

I. INTRODUCTION

A heterogeneous cellular network (HetNet) comprises
ground-based fixed macro base stations (MBS) and small cells
such as ground-based base station, unmanned aerial vehicles
(UAVs), and cells on wheels [1]. Due to the mobile and agile
nature of UAVs, they have found application for public safety
communication during an emergency by restoring damaged
infrastructure, addressing network congestion, and handling
high traffic during a large public event such as music concerts
and sports events.UAVs were used as base stations practically
for the first time in Puerto Rico in November 2017: after the
ground base stations were destroyed by hurricane Maria in
2017, AT&T used UAVs to temporarily restore wireless voice,
text, data, and multimedia services [2].

The concept of a UAV HetNet is depicted in Fig. 1, which
also shows how adding unmanned aerial base stations (UABSs)
can complement existing MBSs by serving user equipments
(UEs) that are far away from the MBS. While UABSs give
their connected UEs a larger share of the spectrum, UABSs
also cause interference to the UEs served by the MBSs.
Research problems in UAV HetNets include deciding the best
position and trajectory of the UABSs to optimize various per-
formance metrics, reducing interference between the UABSs
and MBSs, managing handovers, adapting to the UE mobility,
and adapting to the changes in the demand for cellular service.
UAV HetNets also have their own unique constraints. As
UABSs operate on battery and have limited computational
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Fig. 1. A UAV assisted HetNet composed of UABSs and
an MBS, where certain UEs are offloaded to UABSs for
improving coverage and fairness.

capabilities, the solutions should be computationally feasible
and energy efficient. The solutions should also have low time
complexity to allow the UABS to respond quickly to changes
in demand. Further, solutions that involve communication
between the UABSs and MBSs should consider the impact
of the overhead.

The integration of UAVs with cellular networks has been
attracting the attention of researchers. While [3] and [4]
provided interference reduction techniques to calculate the
best UABS position and trajectory, they did not leverage LTE
3GPP interference management techniques. Novel approaches
to optimally partition a geographical area into UABS and MBS
cells were proposed in [5] and [6], using optimal transport
theory and neural-based cost functions, respectively, without
explicitly tackling interference mitigation challenges. Interfer-
ence mitigation using 3GPP Release-10 enhanced inter-cell
interference coordination techniques (eICIC) and Release-11
further enhanced inter-cell interference coordination (FeICIC)
techniques in HetNets were studied in [7]-[10]. While [7]
jointly optimized the ICIC parameters, UE cell association
rules, and the spectrum resource sharing between the macro
and pico cells, it did not use 3GPP Release-11 FelCIC nor
cell range expansion (CRE) techniques. Moreover, [7] only
studied LTE HetNets and not UAV HetNets. In [8], the authors
developed a stochastic geometry based framework to study and
compare the effectiveness of 3GPP FelCIC techniques and
elCIC techniques, but [8] also did not study UAV HetNets.
The use of 3GPP Release-10/11 techniques along with UABS
mobility in UAV HetNets was evaluated in [10]. However, this
study did not individually optimize the 3GPP ICIC parameters,
but rather applied the same ICIC parameter values to each
MBS and UABS, which is suboptimal, as we will demonstrate
later in this paper. To the best of our knowledge, distributed
and low complexity approaches to optimize 3GPP Release-
10/11 interference management parameters in UAV HetNets
have not been studied in literature.
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Fig. 2. Tllustration of a UAV HetNet where the ICIC parameters
of all MBSs and UABSs, and location of UABSs are optimized
individually. This approach is in contrast to some existing
work, such as [10], which, while optimizing locations for each
UABS individually, assigns the same ICIC parameters to all
UABSs and MBSs.

Our contribution is that we propose a custom sequential
algorithm and a deep Q learning based algorithm, to individu-
ally optimize 3GPP Release-10/11 interference coordination
parameters and UABS position in order to maximize the
fifth percentile spectral efficiency (5pSE). Taking into account
the constraints of UAV-Hetnets, we attempt to minimize the
computational and time complexity. We also compare these
two computationally efficient algorithms with an optimal but
computationally complex brute force algorithm.

The rest of this paper is organized as follows. Section II
presents the system model and 3GPP Release 10/11 interfer-
ence management techniques, and sheds light on the large size
of our parameter space, hence motivating the use of com-
putationally simpler, heuristic based approaches. Section III
explains brute force and sequential algorithms for optimizing
UABS positions and 3GPP Release-10/11 parameters, while
Section IV presents the proposed machine learning techniques.
Section V presents our results and finally Section VI concludes
our paper.

II. SYSTEM MODEL

We consider a two tier HetNet with MBSs and UABSs
within a simulation area of [ x [ square meters as shown
in Fig. 2. We assume that MBSs and UEs are randomly
distributed in this area using a Poisson point process with
intensities Apps and Ay, respectively. The number of MBSs
and UEs in the simulation are given by Npps = Ambs X 12
and Ny, = Ay X [2, respectively. The 3D locations of all
the MBSs, UABSs, and UEs are captured in the matrices
Xmbs € RNmbsX?’ Xoyabs € RNVuabsX3 and Xue € RNuex3,
respectively. We assume that all MBSs transmit at a power
of Pups and the UABSs transmit at a power of Paphs. We
assume antenna gains of the MBS and UABS to be K and
K, respectively. Therefore, the effective transmit power for the
MBS and UARBS are PI’nbg = KPnps and P, - = K'Pyaps,
respectively.

We assume that the UABSs and MBSs exchange informa-
tion over the X2 interfaces. Furthermore, we consider that, the
bandwidth available to an MBS or a UABS, in the downlink,
is divided equally amongst all the UEs served by that MBS or
UABS. The downlink data is always assumed to be present for
the UE, i.e., the downlink UE traffic buffers are always full.
For an arbitrary UE n, where n € {1,2,..., Ny}, we define
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Fig. 3. 3GPP Release-11 FelCIC with reduced power almost
blank subframes, and different power reduction factors for each
MBS, for the scenario in Fig. 2

the macro-cell of interest (MOI) as the nearest MBS, and the
UAV-cell of interest (UOI) as the nearest UABS. For example,
in the specific scenario shown in Fig 2, MBS 1 is the MOI,
and UABS 1 is the UOI of UE 4. MBS 1 is also the MOI for
UEs 1, 2 and 3, while UABS 1 is the UOI for UEs 1, 2, 3, 4, 6
and 7. We denote the reference symbol received power (RSRP)
of the nth UE from the MOI and the UOI as Spps(d;ny,) and
Suabs (dun ), respectively, where d,,,, is the distance from the
nearest MOI, and d,,,, is the distance from the nearest UOI
for the nth UE. In this system model, we use Okumura Hata
suburban propagation model without any Rayleigh or Rician
fading.

A. Spectral Efficiency with 3GPP Rel.-10/11 ICIC Techniques

In a HetNet, the MBSs transmit at higher powers and have
higher ranges compared to the lower power UABSs. Never-
theless, the UABSs can extend their coverage and associate a
larger number of UEs by using the cell range expansion (CRE)
technique defined in 3GPP Release-8. The CRE of a UABS
is defined as the factor by which UEs are biased to associate
with that UABS. For example, in Fig. 2, UABS 1 uses a CRE
of 15 dB to force UE 4 to associate with itself. The use of
CRE, however, results in increased interference to those UEs
in the extended cell regions.

This interference from MBSs to UEs near the edge of
range-extended UABS cells can be mitigated using time-
domain based ICIC techniques defined in 3GPP Release-
10/11. These techniques require the MBS to transmit with
reduced power during specific subframes on the physical
downlink shared channel (PDSCH). Radio subframes with
reduced power are termed coordinated subframes (CSF), and
those with full power are termed uncoordinated subframes
(USF). We denote this power reduction factor by a where
0 < a < 1. We note that « = 1 implies no ICIC, while
elCIC techniques use o = 0, and FeICIC techniques allow a
to vary between 0 and 1. We use (8 to denote the USF duty
cycle, and hence, the CSF duty cycle is given by (1 — §).
Fig. 3 shows, for the scenario depicted in 2, how MBS 1 and
MBS 2 use power reduction factors, a;; and a respectively, to
reduce interference to UE 4. We note that or; < ap, as MBS 2,
being farther away from UE 4, can transmit at a higher power
without degrading the performance of UE 4.

Individual MBSs or UABSs can schedule their UEs in USF
or CSF based on scheduling thresholds p and p’, respectively.



Then, a UE may be served either by an MOI or UOI, and
by the CSF or USF resources of the MOI/UOI, resulting in
four different association categories. Let I' denote the signal
to interference ratio (SIR) at the MOI-USF, I denote the
SIR at the UOI-USF, and 7 denote the CRE that positively
biases the UABS SIR to expand its coverage. Then, the four
different resource categories where a UE may be scheduled
can be summarized as follows. If I' > 71", we associate the
UE with the MOI, else we schedule it with the UOIL. The
intuition behind this condition is straightforward: associate the
UE with the nearest base station that gives the best SIR, takrng
into account CRE. On the other hand, if ' > por IV < p’ , we
schedule the UE in CSF, and otherwise in USF. This condition
is based on the following intuition: scheduling a UE in the
CSF of an MOI degrades that UE’s SIR, whereas scheduling
a UE in the CSF of a UOI improves that UE’s SIR. So, the
“stronger” UEs that have sufficiently high SIRs and are close
to the MBS should be scheduled in the CSFs of that MBS, as
these “stronger” UEs can take the performance hit. Similarly,
the “weaker” UEs that have low SIRs and are close to the
cell edge of a UABS, should be scheduled in the CSF of that
UABS, as they need to be protected on priority.

Using this framework of eICIC and FeICIC and following

an approach similar to that of [8], [10] for a HetNet, the SIR
(@, Tes, TV, TV) and the SE (Cmbs, Cmbs, ngfba Cluabs)
experienced by an arbitrary UE n can be defined for four

different scenarios as follows:
1) UE associated with MOI and scheduled in USF:

Smbs(dmn) Cmbs o ﬁlogg(l + P)
Q  (d L7 usf = T armbs
Suabs(dun) + Z N
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2) UE associated with MOI and scheduled in CSF:
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In (1)-(4), Z and Z' are, respectively, the interference at a UE
from all the MBSs and the UABSs except the UOI, and except
the MOI. They have the same meaning, but different values.

B. Performance Metric

Our chosen performance metric is the SpSE, which repre-
sents the performance of the UEs that are performing poorly,
e.g. UEs at the cell edge. 5pSE is also one of the metrics used
by ITU to specify the performance requirements of IMT-2020
(5G).

The objective of our study is to design algorithms to
calculate the best FeICIC and eICIC parameters individually
for all MBSs and UABSs, and the positions of the UABSs,
S0 as to maximize our performance metric, the S5pSE. The
algorithm should find the best state, S’, out of all possible
states S such that:

S’ = arg max Csn(S), 5
S

TABLE 1. Size of the multi dimensional parameter space

Parameter| Range Search space | Applicable
size to
a 0, Ay, 2Aq, ...1 1/Aq +1 Each MBS
B 0, A5, 284, .1 T/As +1 Each MBS
P Plow s plow+Ap7 plow+ (phi?th_lleW) Each MBS
p---Phigh
(Phigh —Plow)
/ / / ! /
) +A7, + | Each
g SIEZ, .[.)}Zfigh o2 Plow (&%) UABS
T 0,Ar,2A7, ... Thigh % Each
T UABS
X coor- | —1/2,—-1/2 + Ag, AL Each
dinate of | —1/2+ 2A,,...[/2 * UABS
UABS
Y coor- | —1/2,—-1/2 + Ay, Ai Each
dinate of | —1/2+2A,,...1/2 Y UABS
UABS
where Chin(.) denotes the function that calculates

5pSE over the whole network area for a given state
S = [XuabS,SIrSgS,ngiC} First, we calculate the SE
for each UE as per Eqns (51) 4). Then we calculate the
S5pSE as the value of SE such that 5% of the UEs have a
value equal to or less than the SpSE. As defined previously,
Xuabs 1S the matrix representmg the location of the Nyaps
UABSs in three dimensions, SI5C = [a, B, p] € RNmbax2
is a matrix that ¢ Cptures 1nd1v1dual ICIC parameters for
each MBS, and SICIC = [1,p'] € RMu=*2 js a matrix
that captures individual ICIC parameters for each UABS.
The vectors « = [ay,...,an, |7 and p gph' ,mebcl
capture the power reduction factors and schedu ing threshol
respectively, of each MBS. On the other hand, for each
UABS, 7 = [11, ..., TN, ] T and p’ = [pf, ..., ply., ]* denote
the CRE and scheduling threshold, respectively.

C. Parameter Optimization

The 5pSE is a function of «, B, 7, p, p’ and Xyaps,
which are our optimization space. Either these parameters can
be optimized for individual MBSs and UABSs, or the same
value of each parameter can be used for all MBS and UABS,
which is suboptimal but computationally less complex.

To show that optimizing the above parameters individually
for each MBS and UABS gives a better performance than
optimizing the ICIC parameters jointly, we consider the hypo-
thetical situation depicted in Fig. 2. Here, UE 4 is the critical
UE to be protected from interference. Intuitively, as MBS 1 is
closer to UE 4 compared to MBS 2, it is desirable for MBS 1
to transmit at a lower power during CSFs. Mathematically,
a; = 0.3 < as = 0.7. Also, as UE 5, that is served by
UABS 2, is farther away from all the MBSs, UABS 2 does not
have to use a large CRE to encourage UE 5 to associate with
itself. In contrast, UABS 1 would have to use a larger CRE
to encourage UE 4 to associate with itself. Mathematically,
71 = 15 dB > m™ = 0 dB. Therefore, optimizing the
parameters individually for each MBS and UABS gives better
performance.

The large size of the search space can be appreciated by re-
ferring to Table I, which gives the range and size of the param-
eters to be optimized. In this table, A, Ag, A, Ay, Ay,
and A, denote the step sizes for o, 3, p, p’,x coordinate of
a UABS s location, and y coordmate of a UABS’s location,
respectrvely, while pjo, and pj,, denote the lower bounds
for p and p/, respectively. Slmllarly, Phigh and p; on denote

the upper bounds for p and p’, respectively. The actual size
of the parameter space is depicted in Fig. 4, which shows
the number of possible states in S, over which the individual
or joint optimization algorithms have to search, in order to
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Fig. 4. Increase in the parameter search space size as a function
of the total simulation area.

find the best state, S’. Fig. 4 shows that, as the geographical
area and correspondingly the number of MBSs and UABSs
increase, the size of the search space increases much more
rapidly for individual optimization than for joint optimization.
This behaviour can be understood by calculating the number
of possible permutations of o for 2 MBSs considered by joint
and individual optimization approaches, assuming that a can
take 4 different values from 0 to 1. While the joint optimization
approach will only compare the 5pSE at these 4 values of «,
the individual optimization approach will need to compare the
5pSE for 42 = 16 different permutations of « values of the 2
MBSs. We also observe that, for the individual optimization
approach, the size of the state space exceeds a googol (10'%7)
states as the simulation area increases beyond 15 km?.

III. UAV LOCATION AND INTERFERENCE MANAGEMENT

We considered and compared the performance of 3 algo-
rithms for FeICICs - a brute force algorithm, a sequential
algorithm, and deep Q learning algorithm. In this section,
we present the brute force and sequential algorithms, while
Section IV will present the deep Q learning algorithm.

A. Brute Force Algorithm

The brute force algorithm investigates the entire search
state space of all possible values of UABS locations and
individual eICIC and FeICIC parameters, and returns the state
with the best SpSE. This is illustrated in Algorithm 1. Since
it individually searches for all possible parameter values, it is
computationally infeasible for large areas and large number of
MBSs and UABSs. This is evident from its time complexity,
which is exponential in the number of MBSs and UABSs:

O((Aal+1)NMBS % (1/Ag + ]_)NMBS X ((Phig(;hA—pf))mw))NMBS X

((p;“g(hA_;?{OW))NUABS % (ALI)NUABS % (Aiy)NUABs)

B. Sequential Algorithm

In order to reduce the time complexity, we utilized a
heuristic algorithm that initially assumes that there is only
one UABS in the system and finds the best location, eICIC
and FelCIC parameters for this UABS. It then considers that
there are two UABSs in the system, with the parameters of
the first UABS set to those found earlier, and finds the best

Algorithm 1 Brute force algorithm

1: Best state, S’ + NULL
2: besthpSE +— —1
3: for all State S do

4 current5pSE + Csn(S)

5. if currentbpSE > bestbpSE then
6: bestbpSE < currentbpSFE

7: S« S

8: end if

9: end for

parameters for this second UABS. Similarly, it then finds the
best parameters for the third UABS considering the first two
UABSS to be at their earlier determined states. The algorithm
continues this procedure for the given number of UABSs. A
similar approach is used to optimize parameters of MBSs. This
algorithm is summarized in Algorithm 2. As we will see in
the simulation results, this algorithm, somewhat surprisingly,
performs close to the brute force search, and outperforms
the DQN algorithm, to be discussed in the next section. A
main reason for this is that the large number of parameters
in Table 1 allows to compensate for non ideal selection of
parameters in earlier stages. E.g. by tuning the scheduling
thresholds and CRE, non-ideal location of a UABS can still
result in good SpSE. We also note that the sequential algorithm
has linear time complexity, unlike the brute force algorithm,
which has exponential time complexity. The sequential al-
gorithm’s time complexity, ignoring the constant terms, is:
O(Nmgs) + O(Nuags)

Algorithm 2 Sequential algorithm

1: for all UABS do

2:  Assume all previous UABS to be at their best location
and best ICIC parameters.

3:  Find best location and FeICIC parameters for current

UABS.

4: end for

5: for all MBS do

6:  Assume all previous MBS to be at their best ICIC
parameters.

7. Find best ICIC parameters for current M BS.

8: end for

IV. MACHINE LEARNING TECHNIQUES FOR UAV ICIC
AND PLACEMENT

A. Q Learning

The Q learning algorithm is one of the commonly used
reinforcement learning algorithms [11]. In reinforcement learn-
ing, an agent interacts with an environment by taking actions
in different states and observing the costs or rewards of
the actions. The agent starts out with random actions and
eventually, by observing the rewards and by exploring different
states, it learns the best action to take in each state in order to
optimize the cumulative reward.

Fig. 5 shows the interaction of the MBS and the UABS
agent with the UAV HetNet environment considered in this
paper. Q learning allows the agents to act and learn as follows:
being in a state s after selecting action a, and receiving
the immediate cost ¢, a UABS or MBS agent n updates its
knowledge @), (s, a) for the particular state-action pair through
the following operation:

Qn(s,a) «+ (1 —=n)Qn(s,a)+ H[Cn + )\Htin Qn(sla a)} )
(6)
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Fig. 5. Interaction of the MBS or the UABS agent with the
UAV HetNet environment for Q-learning.

where 7 , the learning rate, is the agent’s willingness to learn
from the UAV HetNet environment, \ is the discount factor,
and s is the next state. Lower values of A give more importance
to immediate rewards. We note that, conventionally, «, rather
than 7, is used to denote the agent’s learning rate. We use 7,
as, in our work, we have already used « to denote the ICIC
power reduction factor.

For our scenario, each MBS and each UABS is an
agent. The state space is a sufficient representation of the
environment at a point in time, containing all the information
required by the agent to choose its next action. In our case,
all MBS and UABS agents share the same state space, which
is the set [Xye, Xinbss Xuabs, SIGLC, SICIC] " that captures the
value of each ICIC parameter for each UABS and MBS, and
also the location of each MBS, UABS and UE. However,
the UABS and MBS agents have different action spaces. At
each state, a UABS agent may choose any value for its ICIC
parameters, 7, and p’. Additionally, the UABS agent may
choose to move in any of the eight directions to change its
location, or, alternately stay at its current location. An MBS
agent, similarly, may choose any value for its ICIC parameters,
«, [ and p. Specifically, an MBS’s action space is the set
{a, B, p} | @ € {0,A,2A,,...1}, 8 € {0, Ap, 244, ...1},

P € {piow, Prow + Dp, ...pnign}, and a UABS’s action space
is the set {7,p',04,0,} | 7€ {0, A7, ... Thigh + Ar, Thigh }»
p/ € {Pfowa P;(,w + Ap’7 ---p%igh}a 5:1: € {Oa A:In TSz,

é, € {0,A,,—A,}. 6, and ¢, represent the change in
the X and Y coordinate, respectively, of the UABS, as a result
of the action. All the agents act one by one, in turn, changing
the state of the UAV HetNet with their action. Our chosen
reward function is the difference in SpSE between two states.

As conventional @) learning algorithms maintain a () table,
with states as rows and actions as columns and with each cell
representing the () value of a specific action in a specific state,
they cannot handle infinite state spaces, as the size of the
() table would become infinite. The () table would take an
extremely long duration to converge. Conventional () learning
suffers from issues of memory complexity, computational
complexity, and sample complexity [12]. As illustrated in
Fig. 4, the parameter space for our scenario can get extremely
large and therefore, a conventional Q learning approach is not
feasible. Deep learning, relying on the powerful functional ap-
proximation and representational learning properties of deep
neural networks, provides us with the tools for overcoming
these problems [13].

B. Deep Q Learning

Deep @ learning (DQN) came to the forefront of machine
learning when it was used by DeepMind and Google to train an
agent to achieve professional level scores on 49 different Atari
2600 games [14]. DQN extends () learning by using a neural
network to model the ) function, instead of using the simple
@ table. One approach is to design the network to accept the

Q value of the Q value | | Q value Q value
specific state - of of - of
action pair (s, a) action 1| | action 2| | action n
T i 1 1
Neural Network Neural Network
State s of UAV| | Action a of
State s of
HetNet UABS | MBS UAV HetNet
environment agent environment

(a) (b)

Fig. 6. (a) Naive formulation of deep Q network. (b) Evolved
architecture of deep Q network

TABLE II. Neural network architecture.

Layer Number of neurons | Activation
Tnput Tayer Size of state space ReLU
Fully connected 1 24 ReLU
Fully connected 2 24 ReLU
Output Layer Size of action space | Linear

state and action as the inputs, and provide the corresponding
@ value as the output. Another approach is for the network to
accept the current state as the input and provide the ) value
of each possible action as the output. Fig. 6 depicts these 2
approaches. The latter approach, used in [14], is found to be
better as only a single forward pass through the network is
needed when we want to do a () value update or pick the
action with the highest @ value [15]. This 1s the architecture
that we use as well.

This neural network can handle infinite state spaces, and
also recognize common patterns between similar states. An-
other advantage of deep Q learning is experience replay - the
neural network is retrained after each action step, enabling the
agent to adapt to changes in the environment. Thus, the deep
Q learning agent can learn from its experience continuously.

In our simulations, we use a neural network with an input
layer, two hidden layers and an output layer, as summarized
in Table II. We update the network weights using the Adam
optimization algorithm [16]. As explained in Algorithm 3, we
allow the agents to explore the environment for a given number
of steps and then choose the best state encountered so far.

Algorithm 3 Deep Q learning for UAV HetNets

1: while (Realization < numRealizations) do
2:  Intialize a new realization of the environment
3:  while (NumberO fSteps < numSteps) do

4: Each UABS agent acts, observes the reward and the
new state.

5: Each MBS agent acts, observes the reward and new
state

6 Each agent learns by updating its neural network.
7:  end while

8:  Choose the best state encountered so far

9:  Preserve the neural network weights

0

10: end while

V. SIMULATION RESULTS

In this section, using Matlab and python-based computer
simulations, we compare the SpSE observation of the wireless
network, while using the three algorithms presented in Sec-
tion IV. The system parameters used in these simulations are
summarized in Table III.

Fig. 7 shows the CDF of 5pSE, obtained by using the
three algorithms in 30 different realizations, with two UABSs.
In each realization, UEs and MBSs were placed randomly.
We observe that the CDF of the sequential approach is close
to the CDF of the brute force approach, implying that the



TABLE III. Simulation parameters.

Parameter Value
MBS and UE intensity 8 pZer km? and 100 per
km

MBS and UABS transmit powers 46 dBm and 30 dBm
Path-loss exponent 4
Altitude of UABSs 121.92 m (400 feet)

Simulation area 0.5 x 0.5 km?
Range expansion bias in dB 0 to I5

Power reduction factor for MBS during (o) | O to T

Duty cycle for the transmission of USF () | Oto I

Scheduling threshold for UEs served by | 35 dB or 45 dB

MBSs (p)

Scheduling threshold for UEs served by | —20 dB to —5 dB
UABS:s (p/)

Downlink frequency 763 MHz
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Fig. 7. CDF of 5pSE with sequential algorithm, brute force
algorithm, and DQN algorithm with different number of steps.

performance of sequential approach is close to the optimal.
The sequential approach, moreover, is much faster and, on
an average, takes under a second. The brute force approach,
on the other hand, takes 4-4.5 days to complete when run as
a single process, i.e. without multi-threading. Both algorithms
show improved performance compared to the case without any
UABS in the system - showing that using UABSs improved
the 5pSE.

Fig. 7 also shows that, if the deep Q learning agent
is allowed to take more steps and explore the environment
thoroughly, its performance improves. With fewer steps, the
agent is unable to explore the environment properly and learn
patterns. We also note that allowing the agent to run for more
steps increases the execution time. Hence, a trade-off exists
between the execution time and performance. We also note
an interesting observation that, for our scenario, an algorithm
based on a simple heuristic outperforms the intelligent DQN
algorithm, possibly due to overfitting, as a result of the small
sample space. To validate this, we compared the performance
of the DQN and the sequential algorithm with more UABSs,
and hence, with a larger sample space. Fig. 8 shows that the
simple heuristic based algorithm consistently performs better
than the DQN algorithm, for larger parameter spaces as well.
This result implies that the particular optimization problem
for maximizing 5pSE of FelCIC has a large number of local
optima, that result in close performance to the global optima,
and can be solved using the proposed sequential heuristic-
based algorithm.

VI. CONCLUSION AND FUTURE WORK

We quantified and presented three algorithms for interfer-
ence management in UAV HetNets, compared their perfor-
mance and provided some interesting insights. We observed
that a simple heuristic based ICIC technique performs better
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Fig. 8. CDF of 5pSE with sequential algorithm and DQN
algorithm, for different number of UABSs.

than a more complex DQN based ICIC technique, while still
being close to the optimal brute force ICIC technique. As a
future work, we are investigating the performance of other
multi-agent techniques like game theory, as well as developing
more heuristics for ICIC. We will also explore the use of DQN
for updating the parameter space after some disturbance to an
initial FeICIC configuration.
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