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Abstract—WiFi serves as one of the key mechanisms for
wireless access for mobile devices whether at home, on travel, or
during normal day-to-day activities. Unfortunately, the perceived
high bandwidth and low cost of WiFi is often tempered with
varying degrees of quality. Compounding this further, existing
techniques for assessing network performance are often expensive
in terms of time, bandwidth, and energy making them ill-
suited for widespread, longitudinal deployment. In this paper,
we propose Fast Mobile Network Characterization (FMNC) to
address this shortcoming. FMNC uses sliced, structured, and
reordered packet sequences along with an awareness of frame
aggregation to rapidly characterize available bandwidth. FMNC
does this within the context of a single HTTP GET, consuming
less than 100 KB on the downlink with resolution of the
path characteristics typically occurring in under 250 ms. We
demonstrate the performance of FMNC through extensive lab
experiments under a variety of configuration scenarios.

I. INTRODUCTION

For most users, WiFi has become synonymous with high

speed, low cost wireless network access. Although cellular

access has gradually transitioned towards nearly unlimited

plans over the past few years, cellular data speeds often

pale in comparison to good WiFi. Unfortunately, good WiFi

can often be quite difficult to find. Despite most cellular

operators aggressively pushing users to join WiFi, the resulting

quality from said WiFi may not always be better. For many

users, the WiFi Quality of Experience (QoE) can often fall

woefully short versus slower but more consistent cellular

network access.

To that end, there exists a wide body of work on network

characterization with more recent work on leveraging multi-

path options spanning WiFi and cellular networks. Although

a mobile device has no control over user mobility, the mobile

device does have control with respect to choosing WiFi or

cellular and the extent to which particular WiFi network

(SSID) might be chosen. Hence, link and / or path charac-

terization could offer some insight as to the selection of the

right network to utilize. Critically, much of existing literature

fails though for the specific problem of WiFi choice in the

moment. Throughput tests such as iperf [1], Speedtest.net [2],

and others [3] are decidedly not timely, taking on the order

of seconds and consuming significant bandwidth and energy.

Crowd sourcing from past history may have some value [4]–

[6] but only if current network conditions are well modeled

by past performance though such results tend to be highly

time/event dependent. Finally, although lightweight techniques

exist for characterization [7]–[9], such techniques fare quite

poorly under modern WiFi approaches (802.11n, ac).

Thus, what is the user or mobile device left to do when

faced with trying to resolve the quality of WiFi quickly and

accurately? It is this dilemma that forms the motivation for

our paper. In our paper, we propose a scheme, Fast Mobile

Network Characterization (FMNC), for rapid, accurate, and

lightweight path characterization to advise with regards to

WiFi performance.

The foundation of FMNC is built on the notion of sliced,

structured, and reordered packet sequences that effectively

tease out bandwidth limitations by inducing frame aggrega-

tion on the WiFi link in tandem with the reflected packet

acknowledgment rates. We leverage RIPPS [10] for the idea

to slice packets across WiFi and TCP Sting [11] for packet re-

ordering to increase the effective measurement points, all the

while operating within a prototypical HTTP response inside of

normal TCP functionality. The end result is that we can rapidly

infer the available path bandwidth with a precise capture

between 1 to 10 Mb/s with accurate classifications for low (red

zone, < 1 Mb/s) and high (green zone, > 10 Mb/s) speeds.

Hence, the contributions of our paper are as follows:

• We describe Fast Mobile Network Characterization

(FMNC) and show how the scheme can aggressively and

accurately resolve path available bandwidth in under 250

ms while using less than 100 KB of data. Furthermore,

we accomplish this without modifications to the end client

operating inside a normal HTTP web fetch.

• We show how inducing frame aggregation (introduced by

802.11e) for 802.11n and 802.11ac networks can be used

to help infer available bandwidth.

• We demonstrate through lab experiments the accuracy of

FMNC across a variety of network speeds and bottleneck

locations (802.11g link, 802.11n link, broadband link).

We also show how FMNC can accurately recognize

severe uplink congestion to avoid link misclassification.

II. RELATED WORK

The area of network performance characterization has seen

extensive research ranging back over several decades of re-

search. Harkening back to the early days of TCP design, the

notion of how bandwidth is available or should be used on
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the path is a fundamental question for network researchers.

For this paper, we are concerned with two categories of

work: bandwidth estimation across an end-to-end path and

crowdsourcing of wireless measurements. The intuition behind

these two categories is that the first category provides the

toolset available to the second category. FMNC straddles both

areas by providing a new scheme for the first category coupled

with a large-scale deployment result that falls into the second

category.

Bandwidth Estimation: Foundationally, the notion of end-

to-end bandwidth estimation can be reduced to the problem of

trying to predict what performance can be achieved across said

path [7], [12]–[15]. Hence, the simplest form is to start a flow

and then to fully flex the speed until the path is characterized.

iPerf, Speedtest.net, and others [3] fall into the category of

Achievable Throughput (AT) measures.

Conversely, there is a large body of research that attempts

to divine network performance without conducting an actual

AT test. Nominally, most works in this category focus on

characterizing the Available Bandwidth (AB) which represents

the spare link capacity rather than the achievable throughput.

We further discuss the distinction of AT vs. AB later in

the paper. The PRM (Packet Racket Model) approach (ex.

PathLoad [14], PathChirp [7], and TOPP [16]) send traffic

with increasing rates to find the point where link congestion

starts in order to approximate the available bandwidth.

In contrast, the Packet Gap Model (PGM) approach (ex.

IGI [15], Spruce [8] and Abing [17]) estimate the available

bandwidth based on an analysis of the dispersion between

consecutive packets at a receiver. More recently, Wbest [9]

proposed a novel method explicitly for WiFi with a more

recent variation (WBest+ [18]) improving performance by

minimizing the frame aggregation introduced by 802.11e. For

FMNC, rather than avoiding frame aggregation as WBest+

attempts to do, we seek to induce frame aggregation and

then measure said aggregation to help identify the available

bandwidth.

Crowdsourcing: One alternative to direct observation is to

defer such efforts to the crowd. Given the widespread preva-

lence of WiFi on mobile devices, crowdsourcing network

performance would seem to be an excellent fit. In [4], the

authors proposed MCNet, a tool that allows users to crowd-

source Wi-Fi performance measurements. The authors in [19]

proposed a similar study at the city scale and revealed several

problems in WiFi deployments in public spaces. Furthermore,

in the context of MPTCP, the works of [6] and [20] explored

characterizing WiFi versus cellular networks. To the best of

our knowledge, our paper is one of the first works to present

a large-scale crowd-sourced deployment involving available

bandwidth. We intend following the publication of the paper to

anonymize and release all data via CRAWDAD which includes

both our core FMNC AB test as well as ground truth AT

observations.

Fig. 1. Sliced, Structured, and Reordered Packets

III. FMNC OVERVIEW

At a high level, the goal of FMNC is to quickly and

accurately determine the performance of a path with WiFi

that is available to a mobile device. Whether that link is being

evaluated as the exclusive link (ex. joining a public WiFi),

being used in a multipath manner (ex. MP-TCP), or is being

periodically monitoring, FMNC should provide significant

insight as to the expected performance of a given path inclusive

of WiFi. We define the following design principles for FMNC:

• Work within existing confines: No changes should be re-

quired to the client or network infrastructure. All requests

or operations should operate within existing networking

protocols.

• Focus on speed ranges that matter: Accurate path char-

acterization is essential when speeds are slow (< 10
Mb/s) but less essential when speeds high (> 10 Mb/s).

Bottlenecks may occur at any point on the path leading

to or coming from the WiFi serving the mobile device.

• Resolve quickly: Path characterization must happen on the

order of hundreds of milliseconds, not tens of seconds in

order to be actionable.

A. FMNC Architecture

We first begin by describing architecturally how FMNC is

set up and how the characterization techniques are broadly

structured. To start, the FMNC process begins when a client

initiates a TCP connection to make an HTTP request to the

FMNC server1. The normal TCP handshake occurs followed

by an HTTP GET message which contains settings for FMNC

embedded as parameters in the request. The libpcap-based

FMNC server then constructs a sliced, structured, and re-

ordered packet sequence (train) for conducting an Available

Bandwidth (AB) path characterization to the client.

Figure 1 presents an overview of the packet train as

constructed. In conjunction with the figure, we expand on

what we mean by the terms, sliced, structured, and reordered.

Critically, such an approach is necessary as a traditional

1The usage of a non-standard port may be desirable to avoid proxying
effects



pair-wise observation from a TCP flow would result in an

insufficient number of observations. Typical TCP behavior will

produce a ratio of data to ACK packets on the order of 2:1 or

beyond. To augment this number, we apply two techniques,

the slicing from RIPPS [10] and the reordering from TCP

Sting [11]. First, packets are sliced into smaller sizes with the

packet size being set to achieve a particular rate for a fixed size

window of packets (see later). Second, packets within a given

window are then reordered whereby the first packet is shuffled

to the end of the window. This effect as originally identified

by TCP Sting leverages TCP Fast Retransmit to yield a 1:1

ratio of data to ACK packets. In short, TCP Fast Retransmit

engages if the same ACK number is seen three times implying

a missing packet. By shuffling the packet to the end of the

window, the first packet appears to be missing (lost) and hence

we tease out additional ACKs thereby dramatically increasing

our observation opportunities. As we control the server via

libpcap, we are free to ignore the spurious ACKs.

The structured nature of the packets then comes from how

the packet train is transmitted to the client. Rather than waiting

as with a normal TCP sequence before transmitting packets,

we immediately transmit the packet train after receipt of the

HTTP GET. Packets are transmitted at a fixed interval with

the packet gap PG denoting the gap from when a packet is

transmitted to when the transmission of the next packet should

be started at the server. Within a given window of W packets,

the packet size can then be varied to target a specific rate. For

the purpose of this paper, we use five rate windows where our

rate windows are set to 1, 3.25, 5.5, 7.75, and 10 Mb/s with

a window size of 20 to cover the desired range of bandwidth

characterization (LAB = 100 total packets). The packet train

is transmitted quickly to the client whom then responds with

individual TCP ACKs for each downstream data packet. The

distilling of the available bandwidth from said ACK stream

forms the core novelty of our paper and is described in the

subsequent sections of the paper.

B. Link Characterization - AB vs. AT

For the purposes of FMNC, the AT approach is far too

heavyweight imposing a heavy burden with respect to time,

bandwidth, and energy. Furthermore, while such tests are

helpful for the client conducting the characterization, there

considerable ancillary effects imposed on other mobile devices

using the same WiFi network. In contrast, the Available Band-

width of a link is a metric that describes the spare or residual

capacity of the link during a certain period of time. For an end-

to-end path, AB refers to the available bandwidth of the narrow

link2 which has the minimum available bandwidth. Given a L-

hop end-to-end path, assume Ci is link capacity of i-th link,

and ui(t− τ, t) is the average utilization of the link from time

t − τ to t. Therefore, we define the instantaneous available

bandwidth ABt at time t for the path as:

ABt = min
i=1,...,L

Ci(1− ui(t− τ, t)) (1)

2It should be noted that narrow link is talking to available bandwidth, which
is different from a tight link where minimal capacity occurs.

Notably, while AB techniques can be exceptionally

lightweight, careful design of the AB mechanism must con-

sider key queuing properties of the underlying network path.

For WiFi, as we will demonstrate shortly in the paper, frame

aggregation imposes a deleterious effect on to the accuracy of

existing AB techniques. However, before we further discuss

frame aggregation, it is important to correctly distinguish what

AB captures versus what AB does not capture, particularly as

it relates to AT.

C. Elasticity

Effectively, AB represents the minimum throughput that

a TCP flow could achieve at that point in time while AT

represents what it would have actually achieved at that point

in time. We dub the difference between the two terms as the

elasticity of the link drawing from the fact that the flexibility

of a given link between AB and AT will be a function of the

existing flows (number, relative RTT, relative link qualities).

Although that information would be nearly impossible for

a mobile client to know, the concept of elasticity can be

helpful to illustrate the difference between AB and AT by

categorizing the key zones or cases where such differences

occur:

• AB = AT : AB will equal AT when either the link is

entirely open (no existing traffic) or all existing traffic

on the link is UDP-based (not TCP friendly). A newly

formed TCP flow would not be able to easily crowd out

the existing traffic and thus residual capacity represents

actual capacity. In practice, such a case would be quite

rare.

• AB < AT : The most common case will be where AB

represents the minimum bandwidth achievable at that

point in time.

• AB > AT : For cases where rate-limiting may be in

place, the lightweight nature of an AB test may not

trip the rate-limiting features of a link. Hence, AB may

actually exceed AT .

Finally, it is important to note before we continue with

our mechanism for computing AB that all network charac-

terizations are accurate for only that specific point in time

and will always represent a lagging indicator. When coupled

with the known dynamics of wireless and in particular WiFi,

there will be always cases where we will get the answer

wrong. However, we believe there are two important mitigating

factors for our work that make our approach intriguing. First,

our solution is extremely fast allowing one to run one or

more characterizations in a short period of time. Second, we

emphasize caution of optimism (part of the rationale for AB)

giving the server and mobile client the equivalent of a sniff

test as to quality.

D. Why WiFi and AB Mix Poorly

For many of the existing AB techniques, available band-

width is inferred through the observation of timing changes

amongst various packet trains. Techniques such as PathChirp



[7], Spruce [8], and others [9], [15], [17] leverage various char-

acteristics of said packets to infer link characteristics. Notably,

more recent WiFi protocols such as those that utilize frame

aggregation as introduced in 802.11e (802.11n, 802.11ac) play

havoc with the received timing characteristics. In short, frame

aggregation bundles together multiple frames with the same

destination address (MAC address) in order to reduce the

control overhead (PHY-layer ACKs) and to reduce the DCF

competition for the benefit of increased throughput. Ancillary

benefits also include improved energy efficiency.

While such an effect can significantly improve performance

over the last WiFi hop, the results are catastrophic for many

existing AB techniques as the timing variations that formed

the foundation for inference are now eliminated. As will be

shown later in our lab experiments and has also shown via

WBest+ [18], nearly all techniques that are unaware of said

frame aggregation provide wildly inaccurate results as the

links look dramatically more capable by virtue of the reduced

inter-packet times. While WBest+ attempts to eliminate the

presence of frame aggregation during measurement, FMNC

actively embraces frame aggregation.

E. Embracing Frame Aggregation for AB

Consider then the mechanics of how frame aggregation ends

up being applied to a sequence of packets. To start, consider

the unloaded link case and the degree to which frame aggre-

gation would exert an influence. Rather than demonstrating

a work conserving behavior as most AB techniques would

expect (if there is data to transmit, transmit any waiting data),

APs with 802.11e exhibit non-work conserving properties in

unloaded link cases for the purpose of introducing frame

aggregation.

Upon receipt of a packet P from an upstream link bound for

a WiFi client, a brief timer (hundreds of microseconds) is set

to allow another packet to arrive for the same client before the

transmission which we term TFAD (Frame Aggregation De-

lay). TFAD takes advantage of the natural behavior of TCP to

bundle small bursts of packets without requiring a significant

delay allowing for a wait on the order of microseconds rather

than milliseconds. For example, packets sent during TCP

slow start will be transmitted back-to-back by virtue of the

single ACK yielding two or more back-to-back data packets.

Similarly, downstream packets during congestion avoidance

tend to also be back-to-back as a single ACK frequently

acknowledges multiple packets resulting in a burst downstream

data transmissions from the server.

Conversely, when the link is reasonably well loaded (AB <

AT ), natural queuing effects will dominate rather than TFAD

as cross-traffic will block between successive frame aggre-

gations (via the MPDU) to a client but may not necessarily

block between successive packets to a client. Hence, we posit

that the presence of aggregation or lack thereof can be used

as an indication of congestion in regions of interest. However,

before we explore the usage of aggregation, we begin with the

mechanism to quantify said aggregation and its robustness with

respect to WiFi mechanism as well as our ability to distinguish

the presence (or lack thereof) with regards to cross-traffic.

We define a metric, Aggregation Index (AI), to measure the

degree of frame aggregation present within a given window

of packets. AI measures frame aggregation over a window of

N contiguous packets with TFAD representing the maximum

temporal spacing at which the uncongested wireless link would

exhibit minimal though non-zero aggregation3. For this metric,

let gi be the gap between the ith and i + 1-th packet. Then,

let AIA be the set of all packet gaps where gi < TFAD. The

computation of AI is:

AI =
|AIA|

|N − 1|
(2)

As AI trends towards 1, all packets have been aggregated

while as AI approaches zero, no packets have been aggre-

gated. Normal packet variations will push AI above zero in

most cases while limitations on the MPDU limit AI from truly

approaching 1.

To that end, we conduct a simple experiment to illustrate

TFAD shown in Figure 2. For this experiment, we construct a

simple WiFi network as used in the later lab experiments. A

single server sends a TCP flow utilizing the FMNC approach

(structured, sliced, reordered packets) across an 802.11n net-

work using a channel in 2.4 GHz at relatively uncongested

hours with varying time intervals (300 microseconds to 2000

microseconds). Aggregation events were confirmed through

packet capture utilizing an Airpcap adapter on a separate

notebook. The figure shows the Empirical PDF of all inter-

arrival times for ACKs as observed by the server. While

aggregation may still occur due to variations in the underlying

wireless medium at larger packet intervals, the dominant ag-

gregation occurs when packets are spaced exceptionally close

together. For the purposes of our paper, we use a TFAD of 400

microseconds gleaned through significant in-lab experiments

across a variety of APs (Cisco, Aruba, NetGear, etc.).

With TFAD = 400 microseconds, consider a similar ex-

periment comparing 802.11n and 802.11g as shown in Figure

3. For each data point, 20 runs were collected with each run

containing 100 packets. Minimum sized packet payloads are

sent with the spacing between the respective packets (spacing

defined as the separation between the start of each packet in

terms of passing to the network adapter at the server). In the

figure, the packet spacing is varied from 300 microseconds

(0.3 ms) to 2000 microseconds (2.0 ms). Notably, while the

802.11g level of AI followed a distinctively linear decrease

across the various settings (AI representing small wireless

‘burps), the 802.11n setup exhibited a much sharper charac-

teristic with respect to aggregation. At roughly 1.0 ms, much

of the link dynamics are removed leaving only wireless link

dynamics to occasionally incur frame aggregation. We observe

that a minimum packet spacing of 1.0 ms is strictly needed to

avoid unnecessary frame aggregation.

3Wireless and upstream network dynamics make the exclusion of all
aggregation effectively impossible
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Consider the same experiment now conducted with varying

levels of background traffic where the background traffic is

introduced by UDP traffic from additional wireless nodes

downstream from the access point. Residual capacity for each

setting (1 Mb/s to 11 Mb/s) was verified to be sufficiently

stable via iperf characterization. Figure 4 varies the available

bandwidth from 1 Mb/s to 11 Mb/s and then demonstrates

the resulting impact on AI as three separate spacing regimes

are applied (500 microseconds, 1200 microseconds, 2200

microseconds). The packet size is varied with each of the

respective spacing regimes to ensure that a constant 5 Mb/s

probing rate is applied. At a spacing of 500 microseconds

(0.5 ms), the aggregation index stays consistently quite high

even as additional capacity opens up demonstrating limited

window non-work conserving aspects of the AP. With a

spacing of 1200 microseconds, the additional capacity reduces

the aggregation index consistently once additional capacity

is freed (> 5 Mb/s, < 0.9) versus the congested case (<

5 Mb/s, ≥ 0.9). The 2200 microsecond spacing provides

an exceptionally clean signal at the cost of time for the

completion of the entire probing run and maximum testable

rate (5 Mb/s). The key takeaway from this set of figures

is that AI can be manipulated by varying rates. Hence, by

introducing a variety of rates across our probing waveform or

packet train, we can, therefore, manipulate the AI to determine

the inflection point at which congestion occurs for helping to

infer AB.

IV. FMNC PACKET TRAIN DESIGN

The key challenge from a design standpoint is to appropri-

ately design a timing waveform then to measure AB while

capturing the AI inflection point with a relative degree of

confidence and to do so with a minimal amount of time and

bandwidth cost. Moreover, our packet train should be able to

infer not only the AB itself but also the confidence in the final

result handling cases such as upstream congestion as well as

gracefully degrading in the presence of loss (see later results).

A. Available Bandwidth Train – AB

For the purposes of AB, our approach adopts a fixed packet

gap approach rather than a fixed packet size approach as

adopted by much of the prior work on AB techniques [7],

[8], [15]. Thus, for the AB phase, the gap, PG, represents the

distance between the start of successive packets as sent from

the FMNC server. Rate variations are achieved by varying

the size of the packet subject to a maximum packet size

constrained by the path MTU and allowing for sufficient inter-

packet gaps to avoid the frame aggregation delay (TFAD).

Such constraints afford an effective range between 0 and 12

Mb/s.

Each rate is probed for W = 20 packets representing both

the number of packets at a particular rate as well as the swap

window around which TCP Sting behavior is synchronized.

Each of the rate windows is oriented around a particular rate

(1,3.25,5.5,7.75,10). The packet size for each rate window

may then be computed by selecting a value for PG and then

computing the appropriate packet size to achieve the desired

rate. An increased PG necessitates larger packet sizes in order

to accomplish the same rate within the given window as well

as a longer time for completion. Given five rate windows of 20

packets within each rate window, the resulting AB test would

be just over 90 KB inclusive of the Layer 3 (IPv4) and Layer 4

(TCP) headers. The packet train (PG×5×20) would then take

120,000 microseconds (120 ms) for transmission with receipt

of the packets complete at the earliest at 120 ms + RTT.

B. Estimating AB

After transmission to the client, the packet train travels

across the network across various bottleneck links including

potentially the broadband link (link just before the AP), the

WiFi link itself, as well as any other link on either the upstream

or downstream link. For this section, we consider only the

downstream link as a bottleneck and further revisit identifica-

tion of an uplink bottleneck link in the next subsection (Section

IV-C).

As noted earlier, the intuition of our approach lies in deter-

mining the threshold at which the link changes to have signif-

icant congestive effects. We identify two potential observable

characteristics for determining when congestive effects have

occurred:

• High AI: The aggregation index has risen excessively high

(ex. AI > 0.9) likely denoting congestion on the WiFi

link itself.



• Rate mismatch: The received rate at the client and the re-

sulting acknowledgment rate is less or even significantly

less than the probe rate, likely indicating a congested link

on the path.

Based on the two criterion, given the packet sending and

ACK receiving timings at the server, we are able to identify

whether the sending packet(s) are congested (C) or uncon-

gested (U). Once all the packets are tagged with either C or

U, we can approximate the available bandwidth as the maximal

receiving rate of the uncongested packet(s). We break down

the procedure to three core steps: 1) Tagging with AI, 2) Rate

Matching 3) Returning the Result.

Tagging AI: Based on our packet design, a high AI maps to

a relatively certainty with regards to packet aggregation. In

order to compute the AI for each received packet, we devise a

metric, called local frame aggregation, where LAIi is for the

i-th received packet. The calculation of LAI is identical to

Eq 2. The difference is that, instead of computing among all

packets, LAI only computes on the subset of packets from i-

th packet to i+w-th packet, where w is the local window size.

Therefore, for an arbitrary i-th packet, i = 0, ..., LAB−w, we

can compute LAI . Then, based on the pre-defined threshold

value αAI , we tag all packets with LAIi > αAI as C. For the

rest of packets, further investigation is required.

Rate matching: The sending packet rate can be easily com-

puted with the packet size and packet gap, as observed by

the server. The assumption guiding the calculation of of the

receiving rate of the client at the server is that, when the

uplink is not congested (ACKs are sent back from the client

immediately after receiving the data packet), we can take the

packet gaps of received ACKs as the equivalent of the packet

gaps on the client. In the next section, we will introduce

a novel technique to rule out the cases whenever an uplink

bottleneck occurred.

Given the packet gap information, the challenge is to

compute the receiving rate under the presence of frame aggre-

gation. Similar to [18], we adopt the idea of a jumbo packet

that considers the packets sent within one MPDU as a jumbo

packet. Thus, we can compute the packet rate of the jumbo

packet as the packet rate of each packet within this jumbo

packet. If we recall the relatively stark distribution divide of

packet inter-arrival times from Figure 2, a jumbo packet can

be identified by packet gaps that are continuously less than

TFAD. Once we identify a jumbo packet, we can then compute

its sending rate and receiving rate by viewing the multiple

packets inside it as one large packet. Based on the receiving

rate Rrcv and sending rate Rsnd, we are able to tag the rest

of packets with the formula4 Rrcv +θ > Rsnd. If true, we tag

as U, because the receiving rate is fairly high. Otherwise, we

tag as C, since a decreasing receiving rate implies suppression

due to congestion. At last, among all uncongested packets, we

return the maximal receiving rate Rmax
rcv as the input fed into

the final step.

4θ = min(0.1×Rsnd, 0.5) where Rsnd is the sending rate. This formula
helps us be fair for low rate as well as high rate.

Returning the Result: Due to our method design that focuses

on specific range of rates from Rmin to Rmax, the final result

can vary depending on the Rmax
rcv that was returned from above

step. We adapt the rate matching formula used above classify

the final result:

• If Rmax
rcv +θ > Rmax, it implies the available bandwidth is

above our maximal rate (e.g., 10 Mb/s), then we classify

available bandwidth as Green.

• Similarly, if Rmax
rcv + θ < Rmin, it means the available

bandwidth is less than our minimal rate (e.g., 1 Mb/s)

and we classify available bandwidth as Red.

• Otherwise, the available bandwidth can be approximated

with Rmax
rcv as a explicit value from 1 to 10 Mb/s. From

the perspective the classification, we call the region as

Yellow and report an AB value. Later, we can also

break down the yellow zone into sub-zones for judging

classification accuracy.

C. Uplink Bottleneck Detection

As noted earlier, the techniques for FMNC assume that

the uplink is congestion free. However, as the FMNC server

only receives ACKs after a full round-trip time, congestion

on the uplink can present significant ambiguity for estimation.

With the completion of the AB phase and the use of TCP

timestamps, we are able to successfully determine when uplink

congestion has skewed the result. Although we cannot correct

for uplink congestion, we can correctly identify when said

congestion has occurred.

Similar to the earlier case where a local Aggregation Index

AI triggered examination of the probe rate versus the ACK

rate, a sufficient value of AI across a local window is then

examined for uplink congestion as the root cause. Notably,

TCP timestamp marking is conducted by the network stack,

not the device driver. Hence, despite the fact that we do not

control the actual timestamps themselves, we can use the

discrepancies between stamped spacing and actual spacing to

infer congestive uplink bottlenecks that resulted in frame ag-

gregation. We use the normed difference between two adjacent

packets as the metric to compute the Pearson correlation only

when the local AI is sufficient.

With the computed correlation, where 1 implies perfect

positive correlation and 0 implies no correlation, we are able

to detect the cases when uplink bottleneck encountered when

the correlation is well below a particular threshold PCUp as

the lack of correlation indicates discrepancies between the

timestamp marking and the actual packet timing. For the

purposes of this paper, we use PCUp = 0.55 as derived

through laboratory results.

V. EXPERIMENTAL EVALUATION

With the various properties of FMNC now defined, we

continue with controlled lab experiments to validate various

aspects of the FMNC architecture. The FMNC client was

written using a simple shell script (ex. curl requests) and was

executed on a laptop running Ubuntu 14.04 with an 802.11n

adapter (Ralink RT3950). The laptop, as well as the competing



background clients, were connected to a NetGear R7000 AP

(802.11ac capable AP). All connections were forced to operate

in 2.4 GHz to maximize congestive and interference effects

though experiments were conducted in the late evening to

avoid excessive non-experimental traffic. The access point

was connected through a local Gigabit Ethernet switch to a

computer providing NetEM-based emulation for the upstream

and downstream broadband link properties. The FMNC server

was run on a separate laptop using a multi-threaded libpcap-

based C++ application and was also connected to the NetEM

box via Gigabit Ethernet. Background traffic competition was

provided through a mix of laptops and Raspberry Pi nodes

also possessing 802.11n USB adapters (Edimax).

For the broadband link in the unconstrained case, a link

capacity of 100 Mb/s was used with a 40 ms round-trip time.

Background traffic through the experiment can be sourced

from the server or any of the intermediate links in order

to introduce congestion across the WiFi or broadband links.

Background traffic was generated by the Distributed Internet

Traffic Generator (D-ITG) [21] as we believe D-ITG allows

for a finer granularity of control than iPerf, particularly in

the lower available bandwidth ranges. Unless otherwise stated,

the settings for FMNC were as follows: TFAD = 400
microseconds,PG = 1200 microseconds, 5 rate windows, 100

total packets for AB.

A. Comparing Accuracy

To start, we begin by comparing the available bandwidth

accuracy computed by FMNC versus a subset of the more pop-

ular AB approaches (PathChirp [7], Spruce [8], and WBest+

[18]). We select these three approaches as PathChirp charac-

terizes a PRM (Packet Rate Method), Spruce characterizes a

PGM (Paket Gap Method), and WBest+ is aware of frame

aggregation in WiFi. All three algorithms were tuned as spec-

ified in the paper (ex. Spruce was informed of the bottleneck

capacity). We begin with a direct comparison by sweeping the

available from 1 Mb/s to 10 Mb/s across 802.11g, 802.11n,

and the broadband link where all bottlenecks are applied in the

downlink case. All bottleneck values were confirmed through

iperf characterization and TCP throughput testing. For the

purposes of this first set of experiments, constant rate UDP

packet streams were sent as cross traffic. Bottlenecks for the

broadband link were applied without crossing over the WiFi

link. Each method was run twenty times for each of the

respective sweep values. A summary of all results can be found

later in the paper in Table I.

We begin first with the comparison between the various

approaches on 802.11g. Notably, 802.11g does not have frame

aggregation and has only typical WiFi dynamics. As listed

in Table I, the available bandwidth estimation and standard

deviation of the various approaches are presented. For the

results, FMNC still does an excellent job of AB prediction

even without frame aggregation present demonstrating that

FMNC can still use the received rate of probe packets for

discerning AB. Spruce appears to fare the next best though

does not fare terribly well at the lower range. However, in
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terms of reaction to change of available bandwidth, Spruce

actually does a relatively poor job of inferring AB by contin-

ually converging to 9 Mb/s but that error is consistently better

than the relatively unbounded estimations of PathChirp and

WBest+. Most importantly, the coarse granularity of PathChirp

and WBest+ are highly evident in the estimation errors that

are consistently approaching 10Mb/s+.

Next, we continue by changing the underlying WiFi network

from 802.11g to 802.11n while still keeping in the 2.4 GHz

band. Figure 5 shows the estimation error for each of the four

approaches. In comparison to the 802.11g case, the amount

of error dramatically increases for PathChirp, Spruce, and

WBest+. Out of the three comparison schemes, Spruce has

the best average estimation error but that ‘best’ value should

be tempered with the fact that the link capacity is given a

priori to Spruce as required by the method. Despite knowing

the link capacity, Spruce still fares poorly though in terms

of the variations in its estimates. The introduction of frame

aggregation with 802.11n creates no issues for FMNC which

fares quite well across the entirety of the sweep.

Finally, we compare the performance of each of the three

schemes when the broadband link is constrained on the down-

link with a final 802.11n WiFi hop. While the error of FMNC

does increase, it still fares considerably better than each of

the three comparison schemes. Spruce again is the closest to

FMNC but does suffer from high variations in estimation due

in large part to frame aggregation issues.

One other approach to explaining the various results is to

examine the various levels of aggregation present across each

of the tests. Figure 6 plots the eCDF of the Aggregation Index

(AI) per test across all of the tests for all of the various

experiments as previously discussed in this section. Notably,

802.11g has next to zero aggregation present while the two

802.11n variations (802.11n bottleneck, 802.11g bottleneck)

each have significantly higher frame aggregation present.



TABLE I
RESULTS

Bottleneck
Ground Truth Bandwidth (Mbps)

Method 2 4 6 8 9

802.11g

FMNC
(R,G)

2.62± 1.78
(0.18,0.00)

4.58± 2.57
(0.15,0.00)

6.92± 2.05
(0.00,0.25)

7.60± 1.07
(0.00,0.35)

7.62± 2.14
(0.00,0.57)

Wbest+ 14.12± 3.04 16.73± 1.74 17.79± 1.85 19.21± 2.24 19.88± 1.70
Spruce 8.97± 0.90 8.76± 0.80 8.83± 1.23 9.43± 0.57 10.17± 0.82
PathChirp 13.96± 2.06 16.41± 1.16 17.68± 1.29 19.99± 0.92 17.27± 1.21

802.11n

FMNC
(R,G)

3.44± 2.29
(0.41,0.00)

3.94± 2.40
(0.23,0.03)

5.01± 2.11
(0.03,0.03)

6.34± 2.60
(0.05,0.08)

8.48± 2.30
(0.05,0.50)

Wbest+ 17.39± 9.12 15.16± 8.88 15.07± 5.06 18.76± 7.23 23.94± 8.64
Spruce 18.55± 11.37 16.32± 13.25 9.50± 9.33 5.39± 5.92 5.14± 6.03
PathChirp 26.10± 6.35 34.21± 4.78 30.14± 8.44 29.26± 7.62 24.58± 5.34

Broadband

FMNC
(R,G)

2.69± 1.68
(0.82,0.00)

5.12± 1.87
(0.41,0.05)

6.16± 2.72
(0.09,0.09)

6.68± 2.61
(0.00,0.19)

7.62± 1.79
(0.00,0.38)

Wbest+ 26.21± 4.43 28.45± 5.26 28.28± 5.75 28.28± 5.75 28.28± 5.75
Spruce 9.02± 9.10 8.94± 8.63 8.19± 8.16 8.75± 9.51 7.05± 9.20
PathChirp 21.05± 4.77 44.72± 7.46 46.80± 5.67 35.44± 7.63 36.56± 5.50
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B. Detailed Results: AB

As noted earlier, Tables I present detailed results with

respect to the performance and cost of the respective schemes.

Table I breaks out the individual values for each data point

from the aforementioned controlled AB tests. Each approach

provides the average AB value along with the standard devi-

ation for that particular data point. For FMNC, the result is a

bit more nuanced. If FMNC detects that a result falls within

the yellow range, an AB estimate is generated. If FMNC

detects that the bandwidth is too low (ABmax 0), that test

is classified into the red zone. In the table, that probability is

denoted by the R value in parentheses under the yellow zone

estimation. Similarly, for cases where FMNC detects that the

likely bandwidth is greater than 10 Mb/s, that test is marked as

green. That probability is reported in the G slot in parentheses.

C. Additional Evaluations

Tri-color classification: To expand upon the tri-color classi-

fication of FMNC, Figure 7 presents the classification result

as the bandwidth is varied from AB = 0 to AB = 20 Mb/s.
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For the purposes of improved discernment, the yellow region

is broken down into three categories, Yellow 1 through Yellow

3 with reach representing a particular range of bandwidth.

For the user perspective and the server perspective, the goal

is either to outright classify the bandwidth correctly or to

only slightly miss in terms of the bandwidth classification

knowing that short-term wireless dynamics may create tem-

porary uncertainty. Notably, FMNC fares quite well in terms

of classification accuracy which for all practical purposes is

the most important takeaway for the user.

Uplink congestion: To test the uplink congestion, we congest

the more difficult (for FMNC) broadband link using UDP

traffic. In Figure 8, the uplink utilization is varied from 0

to 100% with both the Aggregation Index (for the entire

test) and the Pearson correlation (entire test) also plotted.

Notably, the Pearson correlation hovers between 0.5 to 0.7

before drastically dropping to nearly 0.2 when the uplink is
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congested as predicted by FMNC.

VI. SUMMARY

In conclusion, we presented Fast Mobile Network Char-

acterization in this paper, a technique capable of rapid,

lightweight, and accurate WiFi path characterization. We

showed in our paper how we can leverage the detection of

aggregation in the reaction of probe packets in order to rapidly

characterize the available bandwidth. Through small, sliced,

and reordered packets, we demonstrated how intelligent packet

train construction can accurately characterize from 0 to 10

Mb/s, the area of most relevance for user QoE. We showed

through both lab experiments as well as larger real-world

studies the extent by which FMNC can yield accurate and

intriguing insight. Our future efforts include extending FMNC

to cellular networks and exploring the scaling properties of

FMNC.
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