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Abstract—Network-on-Chips (NoCs) are the de facto choice for designing the interconnect fabric in multicore chips due to their
regularity, efficiency, simplicity, and scalability. However, NoC suffers from excessive static power and dynamic energy due to transistor
leakage current and data movement between the cores and caches. Power consumption issues are only exacerbated by ever
decreasing technology sizes. Dynamic Voltage and Frequency Scaling (DVFS) is one technique that seeks to reduce dynamic energy;
however this often occurs at the expense of performance. In this paper, we propose LEAD Learning-enabled Energy-Aware
Dynamic voltage/frequency scaling for multicore architectures using both supervised learning and reinforcement learning
approaches. LEAD groups the router and its outgoing links into the same V/F domain and implements proactive DVFS mode
management strategies that rely on offline trained machine learning models in order to provide optimal V/F mode selection between
different voltage/frequency pairs. We present three supervised learning versions of LEAD that are based on buffer utilization, change in
buffer utilization and change in energy/throughput, which allow proactive mode selection based on accurate prediction of future
network parameters. We then describe a reinforcement learning approach to LEAD that optimizes the DVFS mode selection directly,
obviating the need for label and threshold engineering. Simulation results using PARSEC and Splash-2 benchmarks on a 4 x 4
concentrated mesh architecture show that by using supervised learning LEAD can achieve an average dynamic energy savings of
15.4% for a loss in throughput of 0.8% with no significant impact on latency. When reinforcement learning is used, LEAD increases
average dynamic energy savings to 20.3% at the cost of a 1.5% decrease in throughput and a 1.7% increase in latency. Overall, the
more flexible reinforcement learning approach enables learning an optimal behavior for a wider range of load environments under any
desired energy vs. throughput tradeoff.

Index Terms—Dynamic Voltage and Frequency Scaling (DVFS), Machine Learning (ML), Ridge Regression, Reinforcement Learning
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1 INTRODUCTION AND MOTIVATION

HE immense number of transistors that are packed onto

multicore chips as transistor feature size continues to
shrink into the sub-nanometer region has caused many new
and unique power problems to emerge. With the increase in
the number of cores, the underlying communication fabric
called the Network-on-Chip (NoC) has become critical for
data communication between the cores and the memory
hierarchy. Two critical power problems facing Network-on-
Chips are high static power and dynamic energy. Excess
dynamic energy is the result of storing and switching data
within routers and links. NoC size increases proportionally
with core count to accommodate the increased data com-
munication demands, only further exacerbating the high
dynamic energy cost of the NoC. Dynamic Voltage and Fre-
quency Scaling (DVES) is the focus of much prior research
and may be used to reduce dynamic energy. Excessive static
power is a result of transistor leakage current and will
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only increase as greater numbers of transistors are packed
onto chips. Power-gating is one useful and well researched
method to reduce static power, however new challenges
arise when applying this method to the NoC such as high
wakeup delay, long break even times, and router blocking
[16], [17], [18], [19], [20], [21], [22].

A vast amount of research exists on DVFS with the
main goal of reducing dynamic energy at runtime while
meeting strict performance criteria [1], [2], [3], [4], [5], [6],
[26], [27], [28], [29], [34], [35], [36], [37]. Although static
power continues to rise as transistor size shrinks, it is often
not considered for these designs because static power is
not affected by changes in clock frequency. However, it
should be noted that in multi-supply voltage designs it is a
change in supply voltage that leads to a subsequent change
in clock frequency; therefore static power can be impacted
by an increase/decrease in clock frequency. An optimal
DVES algorithm should operate at the lowest supply voltage
allowable without causing significant performance degra-
dation. This may be accomplished by measuring various
network metrics and determining which metric is the best at
capturing network traffic. These metrics vary widely, some
have used Voltage Frequency Island (VFI) utilization [5] and
buffer utilization [2], others have used round-trip time (RTT)
[4] or newer metrics such as network slack [6].

Accurately capturing network traffic is undoubtedly an
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important part of any DVFS scheme; similarly, it is hard
to dispute the impact of the mode selection logic. V/F
mode selection logic determines when to increase/decrease
the supply voltage and is a critical design parameter. In-
creasing the supply voltage during times of low network
utilization will consume excess power whereas decreasing
the supply voltage during times of high network utilization
will affect the throughput of the network. Decisions that
affect how to tune the voltage/frequency can significantly
affect the performance of the NoC as well as applications
running on multicores. While older DVFS schemes relied
on data-driven reactive mode selection, newer designs have
begun to incorporate proactive techniques based on ma-
chine learning. Reactive techniques change the frequency
or voltage after observing a relevant event, such as a change
in buffer utilization. In contrast, proactive techniques based
on machine learning determine the appropriate mode by
predicting the future buffer utilization (supervised learning)
or by maximizing an expected long term reward that trades
off energy and throughput (reinforcement learning).

In this paper, we present Learning-enabled Energy-
Aware Dynamic voltage/frequency scaling (LEAD), a col-
lection of DVFS techniques based on linear regression and
reinforcement learning (RL) models that are trained offline.
The proactive DVFS mode management strategies based on
linear regression were originally introduced in our work
from [45]. In that supervised learning setting, a linear re-
gression model uses the buffer utilization, the change in
buffer utilization and the change in energy/throughput in
the current time window to estimate the value of network
parameters for the next time window. A DVFS mode is
then selected to be used in the next time window by
comparing the predicted parameter against a set of tuned
thresholds. In this work, we propose reinforcement learning
with Deep Q Networks to directly optimize the desired
energy/performance trade-off. RL algorithms are designed
for optimizing control tasks; as such they are a natural fit
for DVFS, which is by definition a control problem.

When using supervised learning, we had to identify
or engineer a network parameter to use as a prediction
target, such as buffer utilization in LEAD-7; DVFS decisions
were then made solely based on the predicted parameter
value. However, this is likely to be sub-optimal, as making
the best DVFS decision depends on more than just buffer
utilization, which is empirically confirmed by the superior
results achieved by the RL version of LEAD. In addi-
tion, the supervised LEAD models require setting multiple
thresholds to achieve a desired energy/throughput tradeoff.
These thresholds were tuned via a brute force grid search
procedure, which is time consuming and not scalable. In
contrast, the RL approach can more easily combine metrics
and control the tradeoff of throughput vs. energy via a single
hyper-parameter in the reward function. Therefore, with an
effective reward and an appropriate RL model, the effort
required from a system designer is significantly reduced.

The main contributions of this work are as follows:

1) Supervised Learning: We trained linear regression
models to predict future network parameters. V/F
modes for the next time window are then chosen
proactively based on the predicted network parame-
ters. LEAD-7 predicts future input buffer utilization
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and selects future modes accordingly. LEAD-A pre-
dicts future change in input buffer utilization and in-
creases/decreases voltage level accordingly. LEAD-G
incorporates energy and throughput directly into the
algorithm in the attempt to use explorative logic to find
the mode that minimizes energy consumption.

2) Reinforcement Learning: LEAD-RL uses recent state-
of-the-art RL techniques such as Deep Q Networks
(DQNs) and variants of DQNs to select the V/F mode
that maximizes an expected long term reward capturing
a desired energy vs. throughput tradeoff. This creates
a model that prioritizes actions leading to maximal
energy savings with minimal throughput loss by con-
sidering all possible voltage level selections for the next
time window.

3) Performance Evaluation: For a 4 X 4 concentrated
mesh architecture, our simulation results show that
the supervised LEAD-7 achieves an average dynamic
energy savings of 15.4% for a loss in throughput of
only 0.8% with no significant impact on latency. In the
reinforcement learning setting, LEAD-RL can achieve
20.3% dynamic energy savings at the cost of 1.5%
less throughput and 1.7% increase in latency. We fur-
ther perform sensitivity studies on the main hyper-
parameters used by the RL model to evaluate their
impact on the energy-efficiency and performance of
NoCs.

2 RELATED WORK

Prior research has focused on applying DVFS to individual
on-chip components such as the processor, caches, memory
or to the links and routers of the NoC. Voltage scaling has
also been applied at various granularities: a coarse grained
scheme might scale all routers at the same time while a
fine grained scheme would scale each router individually.
The trade-offs between various levels of granularity come
in terms of design complexity, area overhead, and maximal
energy savings [6]. Fine-grained DVFS schemes have greater
potential for energy savings when applied to multi-core
processors, however there is concern that the overhead
associated with providing separate voltage domains for
each router/link would offset any potential savings. This
is because the power delivery network must be split N
ways corresponding to the number of voltage domains
which results in N times higher resistance. However this
extra overhead is largely dependent on the voltage drop
of inefficient on-chip voltage regulators. Newer voltage
regulator frameworks have alleviated this concern using
a hierarchy of on-chip and off-chip voltage regulators and
many modern approaches can achieve 90% energy efficiency
or greater [53].

Accurately capturing network bandwidth requirement
is another key aspect to any DVFS design. Prior research
has used many different performance metrics, such as VFI
utilization [5], buffer utilization [2], round-trip-time [4],
cache coherence properties [26], and network slack [6].
There is also research that focuses solely on the impact
of the mode selection logic. This research compares the
energy/performance trade-offs associated with using var-
ious logical models or algorithms to determine when to
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increase/decrease supply voltage [5]. One technique to en-
sure a improved energy/performance trade-off when ap-
plying DVEFS to the NoC is to scale the router and its’
links together. Links that operate at higher voltage levels
than their associated routers may consume excess energy
in an idle network. On the other hand, links that operate
at lower voltage levels may not meet network bandwidth
requirements, thus leading to performance degradation.

RL has been used in [54] and [9] for the optimization of
the energy vs. throughput trade-off. In [54], RL was applied
to NoC, LLC, and other uncore components, whereas our
work only looks at energy savings in the NoC. In [9], RL
was applied to multi-tasking systems in order to achieve
better voltage and frequency settings for DVFS of the core.
In section 8 we present a detailed comparison with the
results from these papers. RL has also been applied to
improve performance metrics that are different than those
used in this paper. We have seen low-overhead RL applied
to multi-processor systems were temperature, performance,
and power were balanced to save energy while meeting
stringent performance requirements [12]. Other research
with many-core processors seeks to reduce high power
density with RL based task allocation using core and router
temperature predictions [52]. Some research has even fo-
cused on applying reinforcement learning to the voltage
regulator hierarchy to enable more energy efficient volt-
age switching [53]. There has also been considerable work
with reinforcement learning that does not pertain to energy
management or DVFS. One such work seeks to reduce
packet latency by using RL based NoC arbitration of shared
resources such as cores, caches, and memory instead of
traditional round robin approaches [50]. Another work uses
online reinforcement learning to enable Q-routing, which
can lower packet delivery times compared to traditional
non-adaptive shortest path routing algorithms [51].

Previous work has shown that linear regression and re-
inforcement learning can be applied to the CPU or other on-
chip components. Our design will apply linear regression
and RL specifically to the NoC in order to achieve optimal
dynamic energy savings while meeting strict performance
requirements. The proposed LEAD models are trained of-
fline, greatly reducing the overhead traditionally associated
with online algorithms, especially in the RL setting. LEAD
also applies DVFS to both the router and its outgoing links
ensuring that we meet bandwidth requirements at times of
high network traffic while still allowing dynamic energy
savings at times of low network traffic.

3 LEAD ARCHITECTURE

This section will discuss our proposed LEAD router mi-
croarchitecture, the network topology, linear regression and
RL DVFS implementation.

3.1 Router Microarchitecture

LEAD is built upon a concentrated mesh topology that uses
on-chip voltage regulators. This network has a concentra-
tion factor of 4 and consists of 16 routers, 64 cores, and 48
unidirectional links. Each router and its” outgoing links are
scaled together allowing energy efficient per router DVFS.
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Fig. 1: Network Topology: LEAD is built on a concentrated
mesh with 16 routers, 48 unidirectional links, and 64 cores.
On-chip voltage regulators allow router level DVFS gran-
ularity with five separate V/F pairs ranging between 0.8V
and 1.2V. A simple VR schematic is shown in the legend.

The network topology is shown in Figure 1. Because LEAD
is built upon a concentrated mesh, routers consist of 8 input
ports and 8 output ports with 4 virtual channels per port.
Cores have individual L1 caches while the L2 cache is shared
among concentrated cores. After a packet is generated it
sits in the input buffer where it waits for the route to be
computed using XY dimension order routing (DOR) during
the router computation (RC) stage of the router pipeline.
After the route has been computed, a virtual channel is
allocated and the head flit competes for the output chan-
nel in the switch allocation (SA) stage. Once the head flit
has been awarded an output channel, it moves across the
crossbar to the destination port where it waits for the rest
of the body flits and the tail flit during switch traversal
(ST). The router microarchitectures vary slightly between
the linear regression models and the RL models in that
they require the addition of several similar units. The router
microarchitecture to enable linear regression based models
LEAD-7, LEAD-A, and LEAD-G are shown in Figure 2.
While the router microarchitecture for LEAD-RL is the same,
it requires one less component and the Label component
behaves slightly different. This will be explained in greater
detail in the following section.

3.2 DVFS implementation

All LEAD models are built on a simple voltage regulator
scheme that allows per router DVFS and the selection of
five different voltage levels. LEAD-7, LEAD-A, and LEAD-
G routers contain the addition of four new units that enable
linear regression based proactive mode selection. The first
unit is called Feature Extract and its function is to gather
local router information and supply it to the next unit.
The second unit, Non-ML Model can select modes directly
using gathered information such as buffer utilization or link
utilization and is only necessary for gathering training data.
This unit is not used during testing. The third unit is Label
and it multiplies each gathered feature by a pre-trained
weight and sums the results to generate a label. The final
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Fig. 2: Router Microarchitecture: The router architecture as
well as the four additional units required to enable linear
regression or RL based model selection; Feature Extract, La-
bel, Non-ML Model, and ML Model. For Linear Regression,
all four units are required but for RL only Feature Extract,
Label, and ML Model are necessary and Label behaves
slightly differently.

unit is ML Model. This unit selects an appropriate voltage
level based on the value of the generated label.

LEAD-RL routers use many of the same components
with slightly different functionality. LEAD-RL routers con-
tain the addition of three units enabling RL based proac-
tive mode selection. The first unit is the same as linear
regression’s first unit, Feature Extract. This unit gathers local
router features and supplies them to the next unit. The
second unit, Label, now implements five weighted sums of
the gathered features through a series of parallel additions
and multiplications, one sum per each Label value. Then a
comparator is used to select the label value corresponding
to the largest weighted sum. The third and final unit, ML
Model, uses the highest scoring label to select the appropri-
ate voltage level for the router and its outgoing links.

3.2.1 Qperating Modes

We assume a simple voltage regulator design that allows
for five voltage/frequency pairs (modes) similar to those
proposed in our own prior work as well as other research
[26]. The supply voltage changes in small 100 mV steps with
proportional changes in clock frequency. These five V/F
pairs include {0.8 V/1 GHz, 0.9 V/1.5 GHz, 1.0 V/1.8 GHz,
1.1 V/2 GHz and 1.2 V/2.25 GHz}. The voltage regulator
setup is shown in Figure 1 where each voltage regulator can
be switched into one of the five modes of operation on a
per router granularity. We could have increased the number
of modes, but this leads to increased design complexity and
overhead with no guarantee of increased energy savings.

3.2.2 DVFS Models

This work focuses on measuring the impact that RL-based
mode selection can bring on dynamic energy and perfor-
mance in NoC for multi-core designs. We propose LEAD-
RL (Figure 4), a reinforcement learning model, and compare
it against three linear regression based models described in
prior work: LEAD-7, LEAD-A, and LEAD-G (Figure 3).
Baseline: The baseline model does not apply DVES to the
network; instead it operates all routers in the highest mode
of and acts an upper bound on performance and dynamic
energy consumed by the NoC.

LEAD-7: LEAD-7 starts by initializing all routers to operate
at the lowest mode of operation. Feature values are gathered
every epoch and a label is generated. The label (predicted
future input buffer utilization) is used to proactively select
modes by comparing against a theoretical maximum. If the
predicted future input buffer utilization is less than 5% of
the theoretical maximum, then mode 1 is selected; between
5% and 10%, then mode 2 is selected; between 10% and 20%,
then mode 3 is selected; between 20% and 25%, then mode
4 is selected; greater than 25%, then mode 5 is selected.
This model emphasizes the importance of optimal mode
selection and allowing the model to transition from any
mode directly into the most optimal mode, which other
designs do not allow, with the goal of maintaining as much
performance as possible in relation to the baseline while still
enabling dynamic energy savings.

LEAD-A: LEAD-A starts by initializing all routers to op-
erate at the highest mode of operation. At each epoch the
router transitions one voltage level up or down based on the
label (predicted future change in buffer utilization). If the
buffers are predicted to decrease by at least 3-5%, then the
router decreases voltage level. If the buffers are predicted to
increase by at least 6-10%, then the router increases voltage
level. We ensure that the model puts greater emphasis on
energy savings than performance by making the transition
thresholds to move up greater than the threshold to move
down. This model is designed to exploit gradually changing
traffic patterns where adjacent mode transitions are optimal.
LEAD-G: LEAD-G [5], [28] seeks to find the mode that
minimizes predicted future 5"t This model adds
explorative logic and directly introduces dynamic energy
and throughput into the label. LEAD-G starts by initial-
izing all routers to the highest mode of operation with
downwards exploration. Next the label (predicted change
in %) is calculated; if the label is negative, then the
router transitions one more adjacent mode in the current
explorative direction as this is predicted to result in greater
energy savings for the next epoch. If the label is positive the
router is put into a hold phase as the router has moved in a
direction with less energy savings than the previous epoch.
During the hold phase the router may not change voltage
levels, we keep the hold phase at 2 epochs as was proposed
in [5]. Once the hold phase expires, the explorative direction
is flipped and the model explores in the opposite direction.
This model is used strictly for comparative purposes and
highlights a model that prioritizes energy savings above
performance loss. Because this model may only transition
into adjacent modes, it rarely operates in the mode with the
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Fig. 3: DVFS Models: LEAD-7 predicts future input buffer utilization as a label and compares it to a theoretical maximum
to select the optimal V/F mode. LEAD-A predicts the change in input buffer utilization between the current and future
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Fig. 4: RL Model: LEAD-RL generates long term expected
rewards for each mode and selects the mode that is pre-
dicted to lead to the greatest long term reward over the next
time window.

LEAD-RL: LEAD-RL utilizes Deep Reinforcement Learning
techniques to determine an optimal mode selection action
at every time window. During training, the agent observes
transitions, the current state, the action taken, the reward
received, and the resulting state. The goal of the agent is
to maximize a long term expected reward that trades off
dynamic energy vs. throughput. By measuring the differ-
ence between the reward observed at every state and the
reward actually received, the agent trains a neural network
to closely approximate an action-value function defined as
the long term expected reward for taking each action in a
given state. LEAD-RL utilizes a set of features to represent
the NoC state, and the trained action-value function to select
the action that maximizes the long term expected reward at
every time window. The logic behind LEAD-RL is further
explained in Figure 4.

4 LINEAR REGRESSION MODELS

In this section, we briefly present linear regression and
explain how it is used to train the supervised learning LEAD

energy
throughput? "

models. We also describe the feature set and discuss the
labels predicted by each LEAD model.

Ridge regression is used to train each of the three su-
pervised LEAD models, which refers to a version of linear
regression that uses L2 regularization during training. The
same feature set is used in all LEAD models, with only
the predicted label being different. A training example is
represented as a feature vector x,, and target label ¢,,. The
algorithm learns a vector of weights w = [wy, wa, ..., wk]
that when multiplied with the features in x,, results in a
system prediction y(x,,w) = w’x,, that should be close
to the target label t,,. The weights are scalar values that
represent the significance of each feature with respect to the
label. If a weight is zero, then the corresponding feature has
no impact on calculating the label and that feature may be
removed. The ridge regression equation used by our linear
regression is shown below:

1Y Pyt
E(’U}) = §Z{y(xn,w) _tn}2+§zw]2’ (1)
n=1 Jj=1

In the above equation, the sum of squared errors between
the predicted label y(x,,w) and the actual label ¢, is
minimized. We train the model weight vector w offline
using the vectors x,,n = 1, N of gathered features and
their labels t,,. We apply L2 regularization to the trained
model in order to minimize model complexity and alleviate
over-fitting. We tune the regularization hyper-parameter A
by trying multiple values until the best fitting solution is
found on the validation part of the data. After the model
has been trained, the weights are exported and used by
the network simulator during testing. All LEAD models are
trained on 6 different traces, tuned on 3, and tested on the
remaining 5.

An example x,, is represented as a vector of K = 39
features that capture relevant network parameters such as
current input buffer utilization, link utilization, and number
of requests sent/received. Features are extracted every time
window using reactive versions of each model that rely on
the current network parameter values to select V/F modes.
The size of the feature set is kept small to avoid unneces-
sary computational overhead. All features are local router
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parameters and do not need global coordination. These
features are further described in [45]. LEAD trains/validates
various models using supervised learning. This means that
the feature set as well as a corresponding target label are
supplied during training and tuning. The label varies based
on the LEAD model. For LEAD-7, the label is the future
input buffer utilization of the router for the next time
window. For LEAD-A the label is the difference between
the routers’ current and future input buffer utilization. For
LEAD-G the label is the difference between the routers’

current and future 2479V
throughput

5 REINFORCEMENT LEARNING BACKGROUND

In this section, we introduce reinforcement learning (RL)
and a number of modern techniques that we used in our
LEAD-RL models to optimize their performance.

RL is a subset of Machine Learning (ML) that is con-
cerned with problems in which no explicit label is provided
during training. This is different from supervised learning,
the method by which other LEAD models are trained, where
labels are supplied during training. In LEAD-RL, the agent
instead aims to maximize a cumulative reward in order
to find an optimal policy for selecting actions, where the
reward is a scalar value describing progress toward a goal
after each action. The prevailing setting for RL is the Markov
Decision Process (MDP); an MDP can be represented as
a tuple, (S, A, P,v). S is the set of all states s, A is the
set of all possible actions a the agent can take, R is the
reward function, P(s’,7|s,a) is the probabilistic transition
function/dynamics model of the environment describing
the probability of transitioning into a new state s’ and
observing a reward 7 when action «a is taken from state s,
and v is the discount factor. The agent aims to learn an
optimal policy 7% : § — A that maps states to actions such
that the long term expected reward is maximized. We can
model this problem as an agent which learns the optimal
action-value function Q*(s, a) defined as:

Q" (s,a) = mngp[rt + e, + Vripo + sya~w (2)

which is the expected sum of rewards r;, discounted at each
timestep t by a positive discounting factor v < 1, when
actions are taken according to policy m, maximized over all
possible policies [49]. It can be shown that the optimal policy
is m* = arg max Q*(s, a), where the optimal Q* satisfies the

Bellman opiclimality equation [49]:

Q(s,0) = 3 P rls,a)(r + maxQu(s',d) ()

s'r

When the state space is discrete, the tabular Q-learning
algorithm and its numerous variants can be used to find
the optimal Q-value function Q*(s, a) using a state-action
table for storing the () values. At each timestep, the Q-
learning algorithm chooses actions based on the current @,
and updates () using the observed reward according to a
temporal difference rule [49]. The actions need to be chosen
such that, over many timesteps, all actions are taken in all
states. This poses a central conflict between exploration and
exploitation. At any timestep, there is at least one action
whose estimated value is the greatest; we call the greedy
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selection of this action exploiting; if instead one of the non-
greedy actions is selected, we say the agent is exploring
[38]. Exploitation will allow the agent to maximize its return
in the short term; however, more exploration may allow
the agent to better estimate the true value function and
lead to a greater long term return [38]. The most common
approaches to addressing the tradeoff between exploration
and exploitation are e-greedy methods. At every timestep
t, the agent selects the greedy action a;, = argmax Q(s,a)

with probability 1 — €. With probability € the ag?ent selects a
random action instead.

5.1 Deep Q Networks with Experience Replay

In many cases the state space, the action space, or both, are
too large to create a state-action () table. One solution is to
represent the states as a vector of possibly continuous fea-
tures and use function approximation techniques to estimate
the value of each state. However RL algorithms are known
to be unstable when the action-value function Q(s,a;6) is
computed by some parameterized function approximator,
such as a Neural Network [39]. The primary causes of
this instability were found to be the sample correlation of
sequential observations, and the correlation between the
current approximate action-value Q(s,a;6) and the target
action value r; + Q(s',d’;0). Deep Q Networks (DQN)
address these issues via target networks and experience replay
[39].

Target networks attempt to alleviate the correlation be-
tween the approximate action value under the current policy
and the target action value by calculating the target ac-
cording to a different set of network parameters 6, which
are updated only periodically. By doing this, the network
training slows down somewhat, and training instability due
to bootstrapping is alleviated [39].

Experience replay is a mechanism by which state tran-
sitions e; = (S¢, a¢, 7, Se+1) are stored in a replay buffer,
D; = (e1, €2, ..., 1), of finite size. During training, gradient
descent updates are performed on minibatches of samples
(8¢, ae, 74, 8¢41) ~ U(D), which are drawn uniformly at
random from the replay buffer. Gradient descent updates
with a learning rate o can then be performed on the loss
function L(0), as shown below:

yi = ritymaxQ(sjer,a’s07) 4)
1

L(O) = 5~ Qlsjra;:0)° (5)

0 = 0—aVeL(0) ©)

0+ a(y; — Q(sj,a;:0)) VeQ(s;, a;;0)  (7)
where r; is the reward observed at the current timestep j,
0 is the current set of network parameters, and 0~ are the
saved copy of target parameters which are updated only
periodically. By randomly sampling from the replay buffer,
the correlation between sequential samples is removed and
the changing distribution introduced by policy changes is
smoothed over. Ultimately, the data looks more stationary,
leading to an increase in performance [39].

5.2 Prioritized Replay

Sample correlation violates the identically and indepen-
dently distributed assumption of stochastic gradient de-
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scent algorithms. While experience replay was introduced
to eliminate sample correlation, sampling from the replay
buffer uniformly at random is not the most efficient way to
sample [43]. Ideally, we would want to sample transitions
which maximally reduce the global loss function; however,
a more practical approach is to give transitions with higher
Temporal Difference (TD) error more priority [43], where TD
error is given by:

0 = ly; — Q(s5,a50)] ®)

= rj+maxQ(s;11,0';67) — Q(s5, a5 )|

Also, the samples are sampled stochastically according to
their priority, p; = §;, in order to prevent transitions

with initially low TD error from being forgotten [43]. The
probability of a transition being sampled is:

. Py
P(j) = =

©)

where « is a hyper-parameter which controls how much
priority is given to each transition.

Estimating the action value function depends on up-
dates corresponding to the same distribution as the expec-
tation. However, prioritized replay introduces bias because
it changes that distribution in an uncontrolled manner [43].
This is fixed by using importance sampling weights:

w; = (N - P(j))™" (10)

where 3 is annealed linearly from Sgtqr+ to 1 by the end of
learning, Bstqrt is @ hyper-parameter, and N is the size of
the replay buffer. The required steps for Prioritized Replay
can be seen in lines 16 and 22-23 of Algorithm 1.

5.3 Multi-Step Learning

While in one-step Q-Learning the agent observes a single
reward then uses a greedy action selection at the next state
to approximate the return thereafter, agents using multi-step
returns instead observe multiple rewards before computing
the approximation [46], as follows:

n—1
R =5 b ay
k=0
yj = B + 9" max Q(sn, a’s07) (12)

Multi-step target returns with a well-tuned value for n will
often lead to faster learning [38]. The required steps for
multi-step learning can be seen in lines 11-15 and 18-19 of
Algorithm 1.

5.4 Double Deep Q Learning

Q-learning involves maximization in the approximation of
the return, as shown in Equation 4, copied below:

yj =71 +ymaxQ(s;1,a’507) (13)
Due to the maximization step, state-action values suffer
from a maximization, or overestimation, bias. In many cases,
overestimating the value of states can have a significant
negative impact on performance [40].

7

In order to alleviate maximization bias, the tabular Dou-
ble Q Learning algorithm instead uses two independent
action-value functions that are updated with equal proba-
bility [40]. The maximizing action is selected according to
the action-value function which is not being updated. In
order to combine Double Q-Learning with DQNs, rather
than declare two networks and two target networks, Double
Deep Q Learning uses only the online network for ) and the
target network for () already present in Deep Q Learning
and constructs the target y; according to Equation 14 below:

yj =15 +7Q(s541, arg max Q(sj+1,0:0);67)  (14)
While using the target network as the second Q function
does allow for some correlation between the two Q net-
works, in practice it is sufficient to alleviate maximization
bias [41]. The required steps for Double Deep Q Learning
can be seen in lines 18-19 of Algorithm 1.

5.5 Noisy Networks for Exploration

With engineered annealing schedules, e-greedy methods
can be very effective; however, these totally random, local
changes to the policy are unlikely to lead to large-scale
behavioral patterns needed for exploration in most environ-
ments [42].

Consider a normal linear layer in a neural network, ¥ =
60X + b. An alternative approach to exploration when using
neural networks to approximate the action-value function is
Noisy Networks for Exploration [42] that replace the linear
layer with a noisy linear layer:

Yy ¥ s o enx + (ot o) (5
where ¢ = (€, ") are are randomly sampled, zero mean
noise matrices with fixed statistics, and 1 = (u*, u’), and
o = (0™, 0%) are matrices of learnable parameters [42]. The

set of parameters is now ¢ d:ef {p,o}.

Instead of selecting actions according to an e-greedy pol-
icy, the agent can now act greedily according to a network
using noisy linear layers in place of all linear layers. Ulti-
mately, this allows the agent to learn exploration strategies
unique to the task at hand, while automatically annealing or
increasing the magnitude of noise parameters to sufficiently
explore complex state spaces. Most of the necessary changes
are to the architecture of the Neural Network used to ap-
proximate the action-value function. However, initialization
is handled differently, seen in line 3 of Algorithm 1, noise
must be sampled, seen in lines 8, 17, and 20, and the actions
are selected greedily with respect to the noisy network, seen
in line 9 of Algorithm 1.

6 THE LEAD-RL ARCHITECTURE

We used a deep Q network architecture that contained 2
hidden layers and an output layer with one node for each
V/F mode; all layers are fully connected. The first hidden
layer consisted of 16 ReLU units, and the second hidden
layer contains 16 ReLU units. The output layer contains 5
linear units, one corresponding to each action.
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6.1 Training and Testing the LEAD-RL Agent

Each router is allocated a different RL agent during training,
leading to 16 unique policies. This means that 16 neural
networks are trained offline with 16 replay buffers. The
reasoning was that the optimal policy for a corner router
may be vastly different from the optimal policy of a router
in the center of the mesh; empirically, this has been con-
firmed as 16 independent agents significantly outperformed
a single agent making decisions for each router. This design
choice adds no computational overhead at test time; the
parameters of each neural network can be stored and used
to evaluate each action-value at the beginning of each new
time window. The Q network for each router uses as input a
vector of features that are collected for that router. Table
1 shows the features that are collected every each time
window, scaled to be between 0 and 1.

TABLE 1: Reduced Feature set used for LEAD-RL. The
size of the feature set as well as computational overhead
is drastically reduced with no significant impact on agent
performance/energy savings.

Reinforcement Learning Feature Set

Feature 1: Current Input Buffer Utilization

Feature 2: Outgoing Link Utilization All Directions

Feature 3: Incoming Link Utilization All Directions

Feature 4: Requests Sent by All Cores

Feature 5: Requests Received by All Cores

The LEAD-RL agents are trained offline using Algorithm
1, and tested using Algorithm 2 which stops learning in
order to eliminate the significant overhead that learning
entails; as a result, the overhead added at test time is only
the overhead introduced to evaluate the neural network.

While multi-step learning, double learning, and prior-
itized replay used in Algorithm 1 were found to increase
convergence speed, thus speeding up the training process,
only noisy networks were found to have a significant impact
on the final performance of LEAD-RL. As higher training
speeds can enable tuning over a larger space of architec-
tures, all these techniques were used in our experiments. In
addition, all of the improvements to DQN add no additional
overhead to the model at test time, thus the increased
training speed came at no additional cost.

6.2 Reward Function Engineering

Unlike benchmark environments in RL such as Atari games
or walking challenges, there is no intrinsic reward function
in this application, so it had to be engineered from scratch.
Ideally, we would use optimization target values calculated
at the end of each trace file: throughput per cycle, latency
per packet, and total energy. However, one reward only at
the end of each trace would make the rewards very sparse,
which introduces numerous challenges in the RL setting.
Instead, it was necessary to engineer a reward which could
provide a non-zero value at most timesteps. A simple linear
combination of the number of packets sent in the previous
RW window, p;, and the dynamic energy consumed in the
previous RW, ¢; seems to be an obvious solution:

T =D — Aeg (16)

Algorithm 1: Multi-Step Double Deep Q Learning with
Prioritized Experience Replay and Noisy Networks for
Exploration

1: Initialize Prioritized Replay Memory D to capacity N

2: Initialize n-Step Buffer M to capacity n

3: Initialize online Q parameters ¢ = (u, o), p at random and o; ; = .047
4 Initialize target Q parameter ¢~ = ¢

5. for each episode do

6. Observe and scale state vector s

7: fort=1,T do

8 Sample zero mean noise £

9 Select action a; using a greedy policy on Q(s¢, -; ¢, £)

10: Execute a; then observe reward r; and next state s¢ 1
11: Store (s¢, at, r¢) at the end of M
12: Pop (St—n41,0t—n+1,Tt—n41) from the front of M
13: Calculate Ri’i)n+1
14: Store transition (S¢—p41, Gt—n41, Rii)nJrl, S¢41)inD
15: Sample a prioritized minibatch of transitions
Cas R .
(Sﬂv aj, Rj 7sj+n) from D
16: Calculate the IS weights w; for all sampled transitions j
17: Sample zero mean noise &’
18: Select each a; such that a); = arg max Q(s;4n,a;¢,E")
a

19:
if terminal

R
Yi = fn,) n A R
Rj + Q(Sj+n7aj;< ,E') else

20: Sample zero mean noise £’
21: Calculate the TD error &; = (y; — Q(s;,a;;¢,E"))?
22: Update the priorities of each sampled transition j using §;
23: Perform a gradient descent step on (w ® ¢) with
respect to the network parameters ¢
24: Every C stepsset (~ = ¢
25 end for
2: end for

Algorithm 2: Using the Trained Policy at Test Time

1: Load weights ¢ = (u, o) for action-value function Q
2 Setallo; ; =0

3: Observe and scale state vector sy
4: fort=1,T do
5
6:
7

Select action a¢ using a greedy policy on Q(s¢, -; ¢)
Execute a; then observe next state s;41
. end for

where ) is a tunable hyper-parameter to control the tradeoff
between throughput and energy consumption.

However, there appears to be a flaw in the reward
function; the data being run through the simulator was
generated in advance of the simulation. This means that
the total number of packets in each trace file is constant
with respect to the simulation. Unlike the throughput per
cycle metric that needs to be optimized, the number of
packets p; used in the reward is not divided by the total
number of cycles in the simulation, because this number is
not known at timestep ¢ during the simulation. This could
be an issue in an undiscounted reward setting, where the
packet term in the cumulative reward would be the same, no
matter what policy is used. However we are operating in the
discounted setting in which the value of the next state and
action Q(s’, a’) is multiplied by a discount factor, v € [0, 1].
Therefore, if v < 1 the agent perceives sending packets
sooner as more rewarding. Nevertheless, this leads to a
relatively complicated relationship between the discount
factor, v, and A, which makes tuning difficult. Instead, we
chose to formulate the reward as:

re = —(bt + )\et) (17)

where b, is the buffer utilization of the previous timestep.
While we are no longer directly optimizing throughput
per cycle, including —b; in lieu of p; in the reward makes
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Fig. 5: Performance of LEAD-RL and LEAD-7 as a percentage of the baseline model

both terms dependent on the actions selected by the agents.
When trained with Algorithm 1, the agent using the reward
described by Equation 17 was able to outperform agents
using reward described by Equation 16. All results in this
paper used the reward formulation from Equation 17.

7 EXPERIMENTAL EVALUATION

Multi2sim [30], a cycle accurate full system simulator, is
used to generate trace files using industry standard bench-
marks such as blackscholes and FFT. A total of 14 trace files
are generated using both PARSEC 2.1 [31] and SPLASH?2
[32] benchmarks. Our in house network simulator uses the
generated traces as input for real traffic patterns. It is crucial
that LEAD be trained and tested using real traffic patterns
because they are more indicative of real world performance
than synthetic workloads. LEAD uses six benchmarks for
training, three for validation, and five for testing. All LEAD
models and the Baseline use the same five test traces, to
allow for a fair experimental comparison. The main results
in terms of dynamic energy, throughput, and latency are
shown in Figure 5 and summarized below:

1) LEAD-7 achieves an average dynamic energy savings
of 15.4% for a loss in throughput of 0.8% with no
significant impact on latency, relative to the baseline.

2) LEAD-RL saves 20.3% dynamic energy relative to the
baseline model, at the cost of a 1.5% decrease through-
put and a 1.7% increase in latency.

a) Relative to LEAD-7, RL enabled the saving of an
additional 4.9% energy at the cost of an additional
0.7% decrease in throughput and an additional 1.5%
increase in latency.
Note that because all features are local to the router, if
more routers/cores were added to the network all LEAD
models could be easily scaled to the new architecture with
no change in the algorithms.

7.1 Linear Regression Training and Evaluation

All three linear regression based LEAD models are trained
separately on the same extracted features but with different
labels. After the regression models have been trained and
validated, they are exported back into our network simula-
tor where they are used to predict labels. These labels are
then used to select the appropriate modes, based on a set of
tuned thresholds. In order to determine the optimal buffer
utilization thresholds for the LEAD-7 model, we performed
an exhaustive threshold study. Figure 6 shows the results

BASEUNE
=]

5/10/20 5/10/15 10/15/2 10/15/2 10/15/2 15/20/2 15/20/2 15/20/2
[25 /30 025 030 035 5(30 5/35 5/40

® Energy Savings 15.51% 15.73% 16.51% 16.83% 17.04% 17.57% 17.81% 18.11%

mThroughput loss -5.35%  -5.50%  -B20%  -8.32%  -B11%  -1147% -1..14% -11.52%

THROUGH PUT LOSS/ENERGY
SAVINGS WHEN COMPAREDTO

Fig. 6: Throughput loss/dynamic energy savings across
multiple Threshold selections for the lu trace with a window
size of 100.

of tuning the threshold on the barnes benchmark. The x-
axis has 4 values which correspond to the four thresholds
used to determine what mode a router should operate in
for the next epoch. For example, 5/10/20/25 implies that
when the buffers are predicted to be less than 5% full for the
next epoch, the router should operate in mode 1 for the next
epoch. When the routers are predicted to be between 5%
and 10% full, the routers should operate in mode 2. When
the routers are predicted to be between 10% and 20% full
it should operate in mode 3. When the router is predicted
to be between 20% and 25% full it should operate in mode
4. Finally, when a router is predicted to be more than 25%
full it should operate at the highest mode for the next epoch.
The tuning results show that the best threshold combination
was 5/10/20/25, yielding 15.51% energy savings for a 5.35%
throughput loss on the barnes benchmark. Therefore we use
this threshold combination for our LEAD-7 model on the 5
test traces.

A breakdown of the time spent in each mode for all
LEAD models is shown in Figure 8. This breakdown is
measured as a percentage of the total cycles all routers in
the network operated at each of the five different voltage
levels compared to the total number of simulation cycles. A
comparison of the throughput, dynamic energy, and energy
delay product (EDP) is shown in Figure 7 where the data
is normalized against a baseline that does not apply DVES.
We used the best performing thresholds 5/10/20/25 from
Figure 6 and due to space constraints only show various
time window sizes for LEAD-7. LEAD-7 performed very
similar for both 500 and 1000 cycles, resulting in 16-17%
energy savings at the cost of 3-4% less throughput. LEAD-
A saved 34-35% dynamic energy, far more that LEAD-7,
however at a cost of 40-43% loss in throughput. LEAD-G is
similar to LEAD-A in that it achieved even greater energy
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savings than LEAD-A of 42% for an almost equal loss in
throughput of 42%. Figure 7(c) shows that the EDP for all
models follows the same trend as total dynamic energy. A
more detailed discussion of the supervised LEAD models is
presented in [45].
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Fig. 8: Breakdown of time spent in each mode by routers
during testing for various LEAD models.

7.1.1  Overhead for Linear Regression

Because training is performed offline, the overhead incurred
by the linear regression based LEAD models reduces to the
runtime energy/area/timing cost to generate predictions
and select corresponding V/F levels on a per router basis.
Runtime overhead can be simplified to the cost of making
predictions, which requires gathering local router features
and multiplying them by their trained weights. Then these

values are all summed to calculate the prediction. Other
work [29] has already calculated the energy and area over-
head to perform many different types of operations. A
single 16 bit floating point addition consumes 0.4 pJ with
an area cost of 1360um?. A single 16 bit multiply consumes
1.1 pJ] with an area cost of 1640um?. We use 39 features
for label generation for all linear regression based LEAD
models which leads to 39 multiplies and 38 additions. The
total energy overhead is 58.1 p] with a total area overhead
of 0.12mm?. Using Synopsys we also estimate the timing
overhead to be 3-4 cycles. Predictions are made on a per
router basis but only need to be generated once per time
window, thus we can simply increase the epoch size to
decrease the energy overhead. Units can be shared to reduce
area overhead at the expense of increased timing costs.

7.2 RL Agent Training

The agents are trained using the Barnes, Bodytrack, Dedup,
Ferret, Ocean, and Swaptions benchmarks, which were sam-
pled randomly from the 9 training and validation traces. The
remaining 3 benchmarks, FFT, Raytrace, and Black, were
used for tuning the hyper-parameters. Because learning
is offline, the policy is static at test time. To ensure the
agent was converging to the optimal solution for any given
trace file, the replay buffer had to be sufficiently large to
store traces from every training benchmark simultaneously.
Therefore, the agent was trained for at least 100K timesteps,
which typically amounts to approximately 2-3 passes over
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TABLE 2: Hyperparameters

Hyperparameter Value
Replay Buffer Size 100K
Train Start Size 10K
Minibatch Size 64

Learning Rate 0.0001

Target Net Update Freq. 128

Priority, o 0.6
Bstart 0.4
Cinit 0.047
n steps 3
A 0.1
¥ 0.9

the training traces. To ensure that a sufficient number of
samples are in the replay buffer to avoid de-correlation
at the beginning of training, no gradient updates are per-
formed until the replay buffer is filled with at least Train
Start Size = 10K samples.

The actual stopping condition also depends on the pa-
rameters of the noisy networks. For these experiments,
training was considered complete when the noise param-
eters o stopped changing to a significant degree. The o
variance parameters can be interpreted as the agent’s uncer-
tainty with respect to the true state of the NoC environment
and the optimal action to take in that state. Empirically, we
have observed that rewards that are highly non-stationary
are correlated with high values of o. With this in mind, the
behavior of the o parameters was also used to tune hyper-
parameters such that the reward function shows a more
stationary view of the expected return. Table 2 shows the
values of all the hyper-parameters used during the training
of the LEAD-RL model. Because the space of possible hy-
perparameters is very large, hyperparameters were selected
by performing a greedy, hyperparameter-wise sequential
search: starting from default values, the hyperparameters
were each tuned one-by-one until values which appeared to
perform best were found. The significance of A, y, and o on
final performance is discussed in depth in section 8.

7.3 RL Agent Evaluation

The RL agents are trained offline, which means that at
test time learning is stopped, no experience is appended
to the Replay Buffer, and no gradient descent steps are
performed. The policies for all of the agents remain static
and deterministic and proceed according to Algorithm 2.
This only requires querying the trained neural network to
select actions. Online training instead would use lines 8-24
of Algorithm 1 at test time, which would require maintain-
ing a prioritized replay buffer at each router, keeping noisy
parameters (more than doubling the number of parameters),
estimating gradients with respect to all of these parameters
for each update, and hardware to enable these functions.
Correspondingly, the computational cost at test time would
be orders of magnitude higher than for offline training.
However, by stopping training at test time, the agents lose
some flexibility in adapting to non-stationary environments.
This challenge was largely overcome by tuning the mini-
batch size, the replay buffer size, introducing Prioritized
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Experience Replay, and using a diverse set of benchmarks
for training.

7.3.1 Architecture and LEAD-RL Overhead

As with the other LEAD models, the additional overhead
incurred by LEAD-RL can be reduced to the runtime en-
ergy/area/timing cost to compute the state-action value for
each mode and switch to the corresponding V/F levels on
a per router basis. This overhead must be considered in
terms of the number of agents which is heavily dependent
on network topology. LEAD-RL is applied to a mesh with a
concentration factor of four in order to reduce the number of
agents and create a smaller neural network so that compu-
tational overhead is minimized. If LEAD-RL were applied
to a mesh with concentration factor of 1, the number of
agents would equal the network size. This would result in a
larger neural network with the potential for increased power
savings at the cost of increased computational overhead.
LEAD-RL uses a neural network with two hidden layers
with 16 neurons each and an output layer with 5 nodes. The
three layers must be computed in sequential order, e.g. layer
one must gather features and compute its values before the
next layer can be computed. We could flatten the network
but area overhead would increase. With our current design
it is possible to parallelize all units and operations within
each layer. For layer one we have a total of 80 multiplies, 64
additions, and 16 comparisons. For layer two we have a total
of 256 multiplies, 240 additions, and 16 comparisons. For
the third layer we have a total of 80 multiplies, 75 additions,
and 5 comparisons. This equates to a total of 416 multiplies,
379 additions, and 37 comparisons to gather the features,
compute state-action values, and to select the V/F mode
with the largest action value. The total energy cost is a result
of the total number of operations performed and does not
change with parallel components; however we can reuse
components between layers to reduce area overhead. The
total energy overhead is 609.2 pJ and the total area overhead
is 0.746 mm?, which can be further reduced to 94.5 p] and
0.081 mm?, respectively, by reducing the precision from 16
bit to 8 bit. The total timing overhead is 11-12 cycles. State-
action values are calculated on a per router basis and only
need to be generated once per time window. Once again,
we can reduce the energy overhead simply by increasing
the time window. We could reduce area overhead by shar-
ing more units, however timing overhead would increase.
Additionally, we can make algorithmic improvements to
reduce the number of parameters in the neural network,
thus reducing the number of necessary operations. Recent
work [47] shows that significant redundancy exists in neural
networks and weak connections can be pruned reducing
the number of parameters by as much as a factor of 10.
Additionally, model compression using distilled knowledge
from a larger neural network can be used to train a smaller
neural network [48]. In other words, we can use the trained
neural network from this paper to train a smaller equivalent
network with less energy and area overhead.

8 DiscussioN oF LEAD-RL

The RL architecture presented here for DVES led to a
better energy vs. throughput tradeoff compared to linear
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regression based LEAD, in addition to providing significant
design benefits such as scalability. On the other hand, the
architecture needed at test time is more complex. In this
section, we discuss several key insights regarding the RL
approach to DVFS and compare with results from related
work.

Model behavior of RL vs. supervised models: From Figure
8 we can see that LEAD-7 routers spend the majority of their
time in the highest mode of operation in order to meet strict
performance demands. However, we see that this model can
still effectively transition into lower modes in order to ex-
ploit low network traffic and save energy. LEAD-A has the
most equal mode distribution due to its” gradually changing
nature. However, this does not equate to the best energy
savings and performance trade-off as it is never allowed to
transition directly into the optimal mode, only into the di-
rection of the optimal mode. We see that LEAD-G spends the
majority of its” time in the lowest mode of operation in order
to maximize energy savings, but this also leads to massive
performance degradation. In contrast, LEAD-RL routers
spend the majority of their time in lower modes of oper-
ation, with a much more even distribution of time spent in
higher modes when network-loads shift. This more gradual
change in voltage mode as load shifts can be thought of as a
blend of LEAD-7 and LEAD-A and showcases the improved
energy savings of LEAD-RL. Because LEAD-T routers must
meet strict performance requirements, this model is best
in a high-load environment. LEAD-A routers react slowly
to changing traffic patterns, therefore this model would
be best suited to low-medium load environments with lax
performance requirements. LEAD-G routers focus solely on
energy savings; therefore, this model would be best suited to
low-load environment with no performance requirements.
The flexibility of the RL approach enables the LEAD-RL

agents to effectively learn an optimal behavior for any load
environment, under arbitrary performance requirements.
Thus, LEAD-RL routers can maintain strict performance
requirements while still gradually changing voltage levels
as load shifts.

Advantages over supervised learning: LEAD-RL brings
several benefits over previous LEAD models; the first being
improved overall energy vs. throughput tradeoff. Control-
ling the energy vs. throughput tradeoff can be done through
a single hyper-parameter A in the reward function, as shown
in Figure 9. Larger values result in more energy saving at
the cost of throughput, while smaller values result in less
throughput loss at the cost of more energy. This allows
easy application specific tuning by a designer. Furthermore,
generalizing the agent to use more than 5 DVFS modes is
simple, as it requires only adding more output nodes in
the router’s deep Q network. In contrast, increasing the
number of modes in the supervised LEAD models requires
increasing the number of corresponding thresholds, which
in turn increases the time complexity of the grid search
procedure for threshold tuning.

RL vs. supervised learning based policies: As seen in
Figure 8, the policies learned by LEAD-RL agents are much
more diverse than LEAD-7, while reducing dynamic energy
and maintaining high throughput, unlike LEAD-A where
added diversity does not translate into a good energy vs.
throughput tradeoff. Whereas LEAD-7 looks almost bi-
modal, spending greater than 90% of cycles in modes 1 and 5
in 4 out of 5 test traces, LEAD-RL was able utilize modes 2, 3,
and 4 effectively to reduce the energy cost of each workload.
Per router learning and exploration: The noisy network o
parameters are expected to converge to a value representing
the stochasticity of the action-value function estimation.
Figure 11 shows the behavior of the o parameters during
training for a subset of the routers. It can be seen that each
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agent develops its own exploration strategy in order to find
its optimal policy: router 12, for instance, converges much
faster and requires less exploration than the other routers.
This lends credence to the idea that the problem, or at least
the representation of the problem, for each agent differs to
some degree. In addition, the different final values for the
average o parameter magnitude indicates that an optimal
solution requires a separate policy for each router.
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Fig. 11: Average o Parameter Magnitude vs Time: To reduce
clutter, the figure shows only 8 randomly selected routers.

Non-stationarity and static policy: Due to the highly non-
stationary nature of the observations, which arise from
differences in workloads across both sections of traces and
different traces, in combination with static policies being
implemented at runtime, learning a general policy for the
problem proved challenging. To overcome this, the size of
the replay buffer needed to be sufficiently large to hold
transitions from multiple trace files, otherwise the value
function would continue to vary significantly. Additionally,
the size of minibatch sampled from the replay buffer had
to be large enough to capture a good estimate of the true
gradient; using minibatches that were too small also re-
sulted in a less stable policy. Minibatches of size 64 were
sufficient when prioritized replay was used, though without
prioritized replay minibatches needed to be significantly
larger. Finally, as more data was added to the training
set, performance improved, hence the importance of using
many training traces. In practice, data could potentially be
accumulated and used to continuously train better models.
Noisy network initialization: The initialization of the noisy
parameters o was found to be of significant importance in
this problem. When the initial values were too small, the
agent tended to converge to sub-optimal policies. When
the initial values were too large, the noisy parameters
converged to larger values, which in turn caused the mean
parameters j. to also converge to larger values. The resulting
more complex model subsequently had poor generaliza-
tion performance, i.e. a lower average reward (energy vs.
throughput tradeoff) at test time.

Sensitivity to discounting factor: When tuning +, values
which were too small were found to cause convergence
to policies which are only locally optimal. In other words,
the agent prioritizes actions which maximize reward over
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intervals which are too short. Conversely, values of gamma
that were too large resulted in the agent considering future
states which were not significantly affected by the current
action. As a result, the expectation of the return is more non-
stationary leading to slow or non-convergence of the value
function estimation. Results for 3 values of v are shown in
Figure 10.

Better reward function: Due to simulator limitations, we
could not get a true measure of throughput at every time
window. While a significant improvement in performance
was achieved using Algorithm 1 with the reward in Equa-
tion 17, replacing —b; with a true measure of throughput
could lead to further improved results. In our experiments
the agent was accurate estimating value functions, evi-
denced by an average loss per transition at every update
of 5% 1075, and a flattening of the average o parameter
magnitudes, seen in Figure 11, indicating that the state-
action space has been sufficiently explored. If a true measure
of throughput were used in place of —b,, it may be possible
to more closely optimize for the end goal of maximum
energy savings and minimum throughput loss.
Comparison with related work: In [54], RL achieved 33%
dynamic energy savings when DVFS was applied to NoC,
LLC, and other uncore components, at a cost of 2.5% de-
crease in throughput. In contrast, in our work DVEFS is
applied only to the NoC. We expect that using LEAD-
RL with these additional chip components would further
improve energy savings. In [9], RL was applied in a multi-
tasking environment to do DVES of the core. However, to
achieve the 20.3% energy savings reported in our work,
their approach would result in a greater loss in throughput,
of 4.5% to 13.5%. In [26], cache coherence properties were
used to optimize voltage and frequency settings, leading
to energy savings of 40% at a cost of 3% in throughput.
However, the RL agents in our work do not have access
to cache coherence information, as such the results are not
comparable.

9 CONCLUSION

We presented LEAD Learning-enabled Energy-Aware Dy-
namic voltage/frequency scaling for multicore architec-
tures, a collection of machine learning approaches that are
trained to proactively switch among a predefined set of
DVES modes in order to reduce energy consumption in
NoCs, with minimal impact on throughput and latency. In
the new LEAD-RL approach, a DVES selection model is
trained for each router in a mesh architecture, using modern
reinforcement learning (RL) techniques such as deep Q-
networks, noisy networks, replay buffers, and prioritized
replay. The new RL approach is more scalable than the
previously introduced supervised learning models, does
not require expensive threshold tuning, and allows for an
easier adjustment of the dynamic energy vs. throughput
tradeoff. All models are trained offline in order to minimize
energy and area footprint at runtime. Simulations on a 4 x 4
concentrated mesh architecture using PARSEC and Splash-
2 benchmarks show that the supervised learning LEAD
models can achieve an average dynamic energy savings of
15.4% for a loss in throughput of 0.8% with no significant
impact on latency. When reinforcement learning is used,
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LEAD increases average dynamic energy savings to 20.3%
at the cost of a 1.5% decrease in throughput and a 1.7%
increase in latency. Ultimately, LEAD-RL serves as a model
which can be easily tailored to the needs of the workload,
is trained automatically without much human engineering,
and is scalable to large networks with many cores/routers
and an arbitrary number of DVFS modes.

ACKNOWLEDGMENTS

This research was partially supported by NSF grants
CCF-1054339 (CAREER), CCF-1420718, CCF-1318981, CCF-
1513606, CCF-1703013, CCF-1547034, CCF-1547035, CCEF-
1540736, and CCF-1702980. We thank the anonymous re-
viewers for their excellent feedback.

REFERENCES

[1] A. Mishra K., R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan,
and C. Das R., “A case for dynamic frequency tuning in on-chip
networks,” in (MICRO), 2009, pp. 392-303.

[2] R.David, P. Bogdan, and R. Marculescu, “Dynamic power manage-
ment for multicores: Case study using the intel scc,” in Internationa
Conference on VLSI and System-on-Chip (VLSI-SoC), October 2012, pp.
147-152.

[3] P. Bogdan, R. Marculescu, S. Jain, and R. Gavila, “An optimal
control approach to power management for multi-voltage and
frequency islands multiprocessor platforms under highly variable
workloads,” in International Symposium on Networks on Chip (NoCS),
May 2012, pp. 35-42.

[4] L. Shang, L. Peh S, and N. Jha, “Power-efficient interconnection
networks: Dynamic voltage scaling with links,” in Computer Archi-
tecture Letters, 1(1), January 2002.

[5] S. Herbert and D. Marculescu, “Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors,” in (ISLPED), Au-
gust 2007.

[6] S. Eyerman and L. Eeckhout, “Fine-grained DVFS using on-chip
regulators,” in ACM Transactions on Architecture and Code Optimiza-
tion (TACO), April 2011.

[7] S. Yeng, R. Shafik A., G. Merrett V., E. Stott, J. Levine M., J. Davis,
and B. Al-Hash M., “Adaptive energy minimization of embedded
heterogeneous systems using regression-based learning,” in 25th
International Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS), September 2015.

[8] R. Jain, P. Panda R., and S. Subramoney, “Machine learned ma-
chines: Adaptive co-optimization of caches, cores, and on-chip
network,” in (DATE), April 2016.

[9] G.Dhiman and T. Rosing S., “Dynamic voltage frequecy scaling for
multi-tasking systems using online learning,” in (ISLPED), August
2007.

[10] H. Richard, “Machine learning based DVFS for energy efficient
execution of multithreaded workloads,” in Dissertations and Theses
Technical Reports-Computer Science, November 2014.

[11] X. Chen, Z. Xu, H. Kim, P. Gratz V., J. Hu, M. Kishinevsky,
U. Ogras, and R. Ayoub, “Dynamic voltage and frequency scaling
for shared resources in multicore processor designs,” in (DAC), July
2013.

[12] H. Shen, J. Lu, and Q. Qiu, “Learning based DVFS for simul-
taneous temperature, performance and energy management,” in
(ISQED), March 2012.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and S. R.,
“Dropout: A simple way to prevent neural networks from over-
fitting,” in Journal of Machine Learning Research 15, June 2014, pp.
1929-1958.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Computer Vision and Pattern Recognition
(CVPR), 2016.

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML,
2015.

[16] L. Chen, D. Zhu, M. Pedram, and T. Pinkston, “Power punch:
Towards non-blocking power-gating of NoC routers,” in (HPCA-
21), July 2015, pp. 378-389.

14

[17] H. Bokhari, H. Javaid, M. Shafique, ]. Henkel, and
S. Parameswaran, “darkNoC: Designing energy-efficient Network-
on-Chip with Mult-Vt Cells for Dark Silicon,” in (DAC-51), June
2014, pp. 1-6.

[18] L. Chen, L. Zhao, R. Wang, and T. Pinkston, “MP3: Minimizing
performance penalty for power-gating of Clos Network-on-Chip,”
in (2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA)), February 2014, pp. 296-307.

[19] L. Chen, and T. Pinkston, “NoRD: Node-Router Decoupling for
effective power-gating of On-Chip routers,” in (2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture), December
2012, pp. 270-281.

[20] A.Samih, R. Wang, A. Krishna, C. Maciocco, C.Tai, and Y. Solihin,
“Energy-Efficient interconnnect via router parking,” in (2013 IEEE
19th International Symposium on High Performance Computer Architec-
ture (HPCA)), February 2013, pp. 508-519.

[21] R. Das, S. Narayanasamy, S. Satpathy, and R. Dreslinski, “Catnap:
Energy proportional multiple Network-on-Chip,” in (Proceedings of
the 40th Annual International Symposium on Computer Architecture
(ISCA-13)), June 2013, pp. 320-331.

[22] R. Parikh, R. Das, and V. Bertacco, “Power-aware NoCs
through routing and topology reconfiguration,” in (2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC)), June 2014

[23] L Vaisband and E. Friedman, “Dynamic power management with
power Network-on-Chip,” in IEEE 12th International New Circuits
and Systems Conference (NEWCAS), October 2014.

[24] M. Manda, S. Pakala and P. Furth, “A multi-loop low-dropout
FVF voltage regulator with enhanced load Rrgulation,” in IEEE 60th
International Midwest Symposium on Circuits and Systems (MWSCAS),
August 2017.

[25] T. Bai, V. Lee and E. Ipek, “Voltage regulator efficiency aware
power management,” in Proceedings of the 22nd International Con-
ference on Architectural Support for Programming Languages and Oper-
ating System (ASPLOS), April 2017.

[26] R.Hesse and N. Jerger, “Improving DVFS in NoCs with coherence
prediction,” in NOCS 15, September 2015.

[27] S. Son, K. Malkowski, G. Chen, M. Kandemir, and P. Raghavan,
“Integrated link/CPU voltage scaling for reducing energy con-
sumption of parallel sparse matrix applications,” in Proceedings
20th IEEE International Parallel and Distributed Processing Symposium,
April 2006.

[28] G. Magklis, P. Chaparro, ]J. Gonzalez, and A. Gonzalez, “Indepen-
dent front-end and back-end dynamic voltage scaling for a GALS
microarchitecture.” in (ISPLED), 2006.

[29] M. Horowitz, “1.1 computing’s energy problem (and what we can
do about it),” in 2014 (ISSCC), February 2014, pp. 10-14.

[30] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim:
A simulation framework for CPU-GPU computing,” in PACT 12,
2012, pp. 335-344.

[31] C. Bienia and K. Li, “ PARSEC 2.0: A new benchmark suite
for chip-multiprocessors ,” in Proc. of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation, June 2009.

[32] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological consid-
erations,” in ISCA-22, June 1995.

[33] C. Sun, C.-H. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-
S. Peh, and V. Stojanovic, “Dsent - a tool connecting emerging
photonics with electronics for opto-electronic networks-on-chip
modeling,” in Networks on Chip (NoCS), 2012, pp. 201-210.

[34] A. Bianco, P. Giaccone, and N. Li, “Exploiting Dynamic Voltage
and Frequency Scaling in networks on chip,” in 2012 IEEE 13th
International Conference on High Performance Switching and Routing,
June 2012, pp. 229-234.

[35] S. Usman, S. U. Khan, and S. Khan, “A comparative study of
voltage/frequency scaling in NoC,” in IEEE International Conference
on Electro-Information Technology, May 2013, pp. 1-5.

[36] ]J. Zhan, N. Stoimenov, J. Ouyang, L. Thiele, V. Narayanan, and
Y. Xie, “Optimizing the NoC slack through Voltage and Frequency
Scaling in hard real-time embedded systems,” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, Novem-
ber 2014, pp. 1632-1643.

[37] D. Zoni, F. Terraneo, and W. Fornaciari, “A DVFS cycle accurate
simulation framework with asynchronous NoC design for power-
performance optimizations,” in Journal of Signal Processing Systems,
June 2016, pp. 357-371.

[38] R. Sutton and A. Barto, “Reinforcement learning: An introduc-
tion”, 1st ed. Cambridge, Mass.: MIT Press, 1998.



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JUNE XXXX

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Belle-
mare, A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Pe-
tersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg and D. Hassabis, “Human-level control through
deep reinforcement learning”, Nature, vol. 518, no. 7540, pp. 529-
533, 2015.

[40] H. V. Hasselt, “Double Q-learning,” in Advances in Neural Informa-
tion Processing Systems, pp. 26132621, 2010.

[41] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” in Thirtieth AAAI Conference on
Artificial Intelligence, 2016

[42] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves,
V. Mnih, R. Munos, D. Hassabis, O. Pietquin, et al., “Noisy networks
for exploration,” arXiv preprint arXiv:1706.10295, 2017.

[43] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized expe-
rience replay,” in International Conference on Learning Representations,
(Puerto Rico), 2016.

[44] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for
partially observable MDPs,” CoRR, abs/1507.06527 (2015).

[45] M. Clark, A. Kodi, and R. Bunescu, “LEAD: Learning-enabled
Energy-Aware Dynamic Voltage/frequency scaling in NoCs,” in
DAC-55 , June 2018.

[46] R.Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine learning 3 (1988), no. 1, 944.

[47] S.Han, ]. Pool, J. Tran, and W. ]. Dally, “Learning both weights and
connections for efficient neural networks,” emphProceedings of the
28th International Conference on Neural Information Processing
Systems - Volume 1 (Cambridge, MA, USA), NIPS15, MIT Press,
2015, pp. 11351143

[48] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model com-
pression”, in Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD 06.
New York, NY, USA: ACM, 2006, pp. 535 541. [Online]. Available:
http:/ /doi.acm.org/10.1145/1150402.1150464

[49] C Watkins and P. Dayan, “Q-learning”, Machine learning 8 (1992),
no. 3-4, 279292.

[50] J. Yin, S. She, M. Oskin, and G. H. Loh, “Toward more efficient
NoC arbitration : A deep reinforcement learning approach,” in
Conference Proceedings, 2018

[51] J. A. Boyan and M. L. Littman, “Packet routing in dynami-
cally changing networks: A reinforcement learning approach,” in
NIPS’93 Proceedings of the 6th International Conference on Neural
Information Processing Systems, November 1993, pp. 671-678.

[52] S. J. Lu, R. Tessier and W. Burleson, “Reinforcement Learning
for Thermal-aware Many-core Task Allocation,” in GLSVLSI "15
Proceedings of the 25th edition on Great Lakes Symposium on VLSI, May
2015, pp. 379-384.

[53] Y. Bai, V. W. Lee and E. Ipek, “Voltage regulator efficiency aware
power management,” in ASPLOS 17 Proceedings of the Twenty-
Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems, April 2017, pp. 825-838.

[54] X. Chen, Z. Xu, H. Kim, P. Gratz, J. Hu, M. Kishinevsky and
U. Ogras, “In-network monitoring and control policy for DVFS
of CMP Networks-on-Chip and Last Level Caches,” in 2012
IEEE/ACM Sixth International Symposium on Networks-on-Chip, June
2012.

Quintin Fettes received his B.S. in Computer
Science from Ohio University, Athens in 2017.
He is currently pursuing his M.S. in Computer
Science at Ohio University. His research inter-
ests are in the general field of Deep Reinforce-
ment Learning with a focus on applications in dy-
namic voltage and frequency scaling (DVFS) in
network-on-chips (NoCs), and theoretical work
on policy gradient methods and attention net-
works.

15

Mark Clark received his B.S. in Computer En-
gineering from Ohio University, Athens in 2016
and is currently pursuing his M.S. in Electri-
cal Engineering at Ohio University. His research
interests include network-on-chips (NoCs), dy-
namic voltage and frequency scaling (DVFS),
and power-gating.

Razvan Bunescu received the PhD degree in
Computer Science from the University of Texas
at Austin in 2007, with a thesis on machine learn-
ing methods for information extraction. He is cur-
rently an Associate Professor in Computer Sci-
ence at Ohio University. His research interests
lie in the general area of machine learning, with
a focus on applications in computational linguis-
tics, biomedical informatics, computer architec-
ture, software engineering, and music analysis.
His research has been funded by grants from the
National Science Foundation and the National Institutes of Health.

Avinash Karanth received the Ph.D. and M.S.
degrees in electrical and computer engineering
from the University of Arizona, Tucson, AZ, USA,
in 2006 and 2003, respectively. He is currently a
Professor of electrical engineering and computer
science with Ohio University, Athens, OH, USA.
His current research interests include computer
architecture, optical interconnects, chip multipro-
cessors (CMPs), and network-on-chips (NoCs).
Dr. Karanth is a member of the ACM. He was
a recipient of the National Science Foundation
CAREER Award in 2011, the Best Paper Award at the ICCD 2013
conference and his papers have been nominated for best paper at the
IEEE Symposium on NoCs in 2010 and the IEEE Asia and South Pacific
Design Automation Conference (ASP-DAC) in 2009.




IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JUNE XXXX

Ahmed Louri is the David and Marilyn Karl-
gaard Endowed Chair Professor of Electrical and
Computer Engineering at the George Washing-
ton University, which he joined in August 2015.
He is also the director of the High Performance
Computing Architectures and Technologies Lab-
oratory. Dr. Louri received the Ph.D. degree in
Computer Engineering from the University of
Southern California, Los Angeles, California in
1988. From 1988 to 2015, he was a professor
of Electrical and Computer Engineering at the
University of Arizona, and during that time, he served six years (2000
to 2006) as the Chair of the Computer Engineering Program. From
2010 to 2013, Dr. Louri served as a program director in the National
Science Foundation’s (NSF) Directorate for Computer and Information
Science and Engineering. He directed the core computer architecture
program and was on the management team of several cross-cutting
programs, including: Cyber-Physical Systems; Expeditions in Comput-
ing; Computing Research Infrastructure; Secure and Trustworthy Cy-
berspace; Failure-Resistant Systems, Science Engineering and Edu-
cation for Sustainability; and Cyber-Discovery Initiative, among others.
Dr. Louri conducts research in the broad area of computer architecture
and parallel computing, with emphasis on interconnection networks,
optical interconnects for scalable parallel computing systems, reconfig-
urable computing systems, and power-efficient and reliable Network-
on-Chips (NoCs) for multicore architectures. Recently he has been
concentrating on: energy-efficient, reliable, and high-performance many-
core architectures; accelerator-rich reconfigurable heterogeneous archi-
tectures; machine learning techniques for efficient computing, memory,
and interconnect systems; emerging interconnect technologies (pho-
tonic, wireless, RF, hybrid) for NoCs; future parallel computing models
and architectures (including convolutional neural networks, deep neural
networks, and approximate computing); and cloud-computing and data
centers. He has published more than 160 refereed journal articles and
peer-reviewed conference papers, and is the co-inventor on several
US and international patents. Dr. Louri is a Fellow of the Institute of
Electrical and Electronics Engineers (IEEE), a member of IEEE Com-
puter Society (CS) Technical Committee on Computer Architecture, the
IEEE CS Technical Committee on Parallel Processing, the IEEE CS
Technical Committee on Microprocessors & Microcomputers, and the
Optical Society of America.

16



