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A ring with a cross-section that has a blunt inner and sharper outer edge can attain
an equilibrium orientation in a Newtonian fluid subject to a low Reynolds number
simple shear flow. This may be contrasted with the continuous rotation exhibited by
most rigid bodies. Such rings align along an orientation when the rotation due to fluid
vorticity balances the counter-rotation due to the extensional component of the simple
shear flow. While the viscous stress on the particle tries to rotate it, the pressure can
generate a counter-vorticity torque that aligns the particle. Using boundary integral
computations, we demonstrate ways to effectively control this pressure by altering
the geometry of the ring cross-section, thus leading to alignment at moderate particle
aspect ratios. Aligning rings that lack fore—aft symmetry can migrate indefinitely along
the gradient direction. This differs from the periodic spatial trajectories of fore—aft
asymmetric axisymmetric particles that rotate in periodic orbits. The mechanism for
migration of aligned rings along the gradient direction is elucidated in this work. The
migration speed can be controlled by varying the cross-sectional shape and size of the
ring. Our results provide new insights into controlling motion of individual particles
and thereby open new pathways towards manipulating macroscopic properties of a
suspension.
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1. Introduction

Most particles tumble continuously in a Newtonian fluid subject to a simple shear
flow at low Reynolds number because they respond more strongly to the vorticity
than to the extensional component of the flow (Bretherton 1962). However, rings with
certain cross-sectional shapes, as shown in figure 1(a), are shown to exhibit permanent
alignment at finite particle aspect ratios (Singh, Koch & Stroock 2013). The aspect
ratio (A = R/a) is defined as the ratio of the maximum extent of the particle in the
plane of the ring (2R) and the maximum extent of the particle along the axis of
symmetry (2a) as shown in figure 1(a). This finding is fascinating as the dynamics of
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FIGURE 1. For caption see next page.

the particle is not only affected by the particle shape on the larger length scale, but is
significantly influenced by the geometry of the smaller dimension to the point that it
can lead to a bifurcation in the dynamics. In this paper, we describe the mechanism
leading to alignment of rings with certain cross-sections. Using this mechanism, we
obtain cross-sectional geometries that allow rings to align at much smaller aspect
ratios (<10) than the previously reported minimum of 30 (Singh et al. 2013). This is
important from the standpoint of fabrication as a higher aspect-ratio ring will be more
prone to bending, buckling and breakage and thus, might not align. We also elucidate
the mechanism that leads to cross-stream migration of particles that lack fore—aft or
mirror symmetry. We show ways to control the magnitude of this migration or drift
velocity by appropriate choice of the cross-sectional geometry. We point out that this
ability to control dynamics of individual particles could allow for precise control over
the macroscopic properties of the suspension.

A simple shear flow is a good local approximation to a pressure driven flow, if
the channel size is much larger than the length scale of interest, which is the particle
dimension in our case. Thus, a simple shear flow could approximate processing flows
such as injection moulding, extrusion and spin casting in certain regions of the flow
field. Particles aligning in a simple shear flow provide unique opportunities in the
material processing industry to impart enhanced properties using current processing
technologies. Particles that align in a simple shear flow could be embedded in
composites during curing to impart anisotropic properties to the final product. For
instance, a composite material with aligned, rigid rings would have enhanced specific
stiffness. Aligned particles are also more effective at reinforcing composites prone
to plastic deformation (Bao, Hutchinson & McMeeking 1991). Aligned particles
with cross-stream migration have possible application as surface modifying agents
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FIGURE 1. (cntd). (Colour online) Ring-shaped particles that align in a simple shear flow.
(a) Schematic of a ring with a non-circular cross-section that is representative of the
geometry studied here. The cross-sections on the left and in the centre have mirror or
fore—aft symmetry about a plane normal to p. An orthogonal coordinate system defined
by the axis of symmetry (p), the projection of the flow direction (Us) in the plane of the
ring (n) and a vector b =p x n. The centre of this coordinate system is chosen such that
the centre of mass of the particle lies at the origin rcoy +p =0. The azimuthal angle (¢)
is defined relative to n. The inset also shows the one-dimensional (1-D) mesh and a 2-D
coordinate system (x, y) with the origin at the centre of mass (COM) of the particle. e, is a
unit radial vector in the plane perpendicular to p while e, is a unit vector along p. (b) The
stable fixed orientation p, (solid) and the unstable orientation p, (transparent), relative to
the flow field. Both p, and p, lie in the flow—gradient plane and make an angle of B
with the gradient direction (f %)- (c) Orientation trajectories for A= —1.1. The trajectories
move towards the stable nodes and away from the unstable nodes.

in polymer composite materials processed in mould filling flows. These particles
could be systematically deposited by the flow onto a surface to improve its scratch
resistance (Isla et al. 2003).

The motion of particles in a simple shear flow has been studied for over a century.
Einstein (1906) in his study of the effective viscosity of sheared suspensions showed
that a rigid sphere rotates steadily along the fluid vorticity in an unbounded simple
shear flow. Later, Jeffery (1922) demonstrated that spheroids rotate in periodic orbits
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in a simple shear flow slowing down but not stopping when the large dimension of
the particle is nearly perpendicular to the velocity-gradient direction. Four decades
later, Bretherton (1962) proved that this periodic tumbling was not restricted to
spheroids but spanned almost all axisymmetric particles, except for a few shapes
of extreme aspect ratio. This prediction of Bretherton about the tumbling behaviour
of axisymmetric particles has been tested by both theory and experiments for discs
and fibres (Trevelyan & Mason 1951; Anczurowski & Mason 1967; Stover & Cohen
1990). The particle tumbles in one of the infinitely many orbits depending on its
initial orientation. At dilute particle concentrations, there is a distribution of particle
orientations across various orbits due to secondary effects such as particle interactions
or Brownian motion (Leal & Hinch 1971; Rahnama, Koch & Shaqfeh 1995). This
distribution across orbits along with particle tumbling ensures a dispersion of
orientations in the suspension. An aligning particle, on the other hand, should always
move towards a stable orientation irrespective of the initial orientation of the particle.
Hence a sheared suspension of aligned particles should possess a micro-structure with
a high degree of anisotropy.

Bretherton (1962) was the first to propose a geometry that aligned in a simple shear
flow. The body was a thin rod with slightly non-spherical lobes attached at each end,
such that the lobe size was much smaller than the rod length. However, he showed
that the aspect ratio of the rod would need to be much larger than the exponential
of the ratio of the length of the rod and the diameter of the lobes for the particle to
align, leading to impractically low rigidity of the rod. Over half a century later Singh
et al. (2013), predicted the existence of rings with certain cross-sections that align at
finite particle aspect ratios. However, the cross-sectional shapes studied in Singh et al.
(2013) were limited to a very specific perturbation of a circular cross-section. In this
paper, we elucidate the mechanism of alignment by giving insight into the forces that
lead to particle alignment in a simple shear flow. In particular, we identify ways to
control rotation of a ring, by changing the cross-sectional shape.

An axisymmetric particle can also migrate in a simple shear flow if it lacks fore—aft
or mirror symmetry about a plane normal to the axis of symmetry. Brenner (1964) and
Nir & Acrivos (1973), showed that particles that lack fore—aft symmetry can possess
a cross-stream drift velocity. However, particles that tumble periodically undergo
no net migration. Curved fibres can break this periodicity and lead to a constant
cross-stream migration (Wang et al. 2012). However, such particles do not migrate
for all initial orientations and the drift velocity depends on the initial orientation of
the particle. Kim & Rae (1991) showed that screw-shaped particles migrate along
or opposite to the vorticity direction depending on the handedness of the particle.
However, the magnitude of the drift velocity of a screw shaped particle was shown
to depend on its initial orientation. In all the above studies, the translational motion
is either periodic with no net migration or the migration velocity depends on the
initial particle orientation. A ring that attains an equilibrium orientation in a simple
shear flow can possess a constant cross-stream velocity if it lacks fore—aft symmetry
about a plane normal to the axis of symmetry of the particle. The particle obtains
this constant drift velocity as it approaches the stable orientation in a time that scales
with the inverse of the strain rate. We describe the mechanism leading to this drift
and ways to control its magnitude by changing the cross-sectional geometry. We also
elucidate the effect of the equilibrium orientation of the particle on this drift velocity.

The rotation and migration of particles in an external flow field depends on the
stresses acting on the particle surface. We numerically obtain the stresses on the
particle surface using the boundary element method (BEM). BEM is usually used if
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the primary goal is to obtain the value of the variable on the boundary. However,
BEM can only be used if the fundamental solution of the governing differential
equations is known (Abramowitz & Stegun 1964). The flow field generated by a
point force is a fundamental solution to the governing equations at low Reynolds
number and thus we can use BEM to obtain the force per unit area exerted by the
fluid on the particle surface. In our case BEM not only reduces the dimensionality
of the problem, but also allows us to solve the problem in an unbounded domain.

In the following section, we solve the dynamical equations that describe the rotation
of the particle and obtain the necessary conditions for alignment in a simple shear
flow. In §3 we formulate the problem and set-up the equations necessary to obtain
parameters governing the motion of particles in a linear flow field. The equations
are numerically solved using the boundary element method. Section 4 describes
the mechanisms for alignment and cross-stream drift by visualizing the flow field
and stresses acting on the particle. We suggest shapes that align at low values of
aspect ratios using BEM calculations. We also elucidate the importance of particle
orientation on the particle drift. Section 5 presents the conclusion and implications
of the ability to control particle dynamics for manipulating macroscopic properties of
particle suspensions.

2. Particle dynamics in linear flows

The linearity of Stokes flow is used to obtain the functional form of the rate of
change of orientation (p) as well as the drift velocity (U,) of an axisymmetric particle
in an unbounded linear flow field. p and U, can be described fully by three scalar
parameters, A, n; and 7,, that depend on the particle geometry (Singh et al. 2013). The
rotation parameter, A, determines the rate of change of orientation of an axisymmetric
particle and depends purely on its geometry. The rate of change of orientation (p) of
the particle is given by

p=p-R*+AE”:-p—pp:E~p) 2.1

as shown by Jeffery (1922) and Bretherton (1962). Here p is the particle orientation.
R* and E* are the vorticity and straining tensor of a linear flow field respectively
and are given by

R>* = %(Vuo" — (Vu™)"), (2.2a)
E* = %(VuOO + (Vu>)T), (2.2b)

where u* is the fluid velocity in the absence of the particle. The migration parameters
n, and 7, determine the drift velocity of the particle relative to the fluid velocity at
its centre of mass (COM) which takes the form given by

U,=u"(rcom) + mE™ -p+n,(ppp : E™). (2.3)

Equation (2.3) indicates that a particle with mirror or fore—aft symmetry about a
plane normal to p, as shown in figure 1(a), will not drift as orientation p and —p
are equivalent. As per (2.3), this is true only when n; =n, =0. Absence of fore—aft
symmetry is the necessary condition for having a finite cross-stream drift. In this
section we obtain the necessary conditions for particle alignment and obtain this
orientation in terms of the rotation parameter, A.
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We use the orthogonal coordinate system, as shown in figure l(b) defined by the

flow (Uoo) the gradient (F %) and the negatlve of the vorticity (— SZOO) direction of a
simple shear flow. Equation (2.1) can have six nodes for a general axisymmetric shape
in a simple shear flow. There are two saddle nodes, independent of geometry, that

correspond to rotation of the particle about its axis of symmetry, wherein p - Q. ==+1.
Four other nodes, two stable (p,) and two unstable (p,), can exist in the system for
geometries that have |1| > 1. These nodes are shown in figure 1(b) for a ring-shaped
particle with 4 < —1. All four nodes lie in the flow—gradient plane and subtend an
angle of B, = 0.5acos(—1/1) with the gradient direction as shown in figure 1(b).

These nodes are mathematically given by p - 1700 = =sin((—1/2)acos(—1/1)),
p- I = Fcos((1/2)acos(—1/4)) and p - SZOO =0 with pp : E* < 0 corresponding
to the stable nodes, and pp : E* > 0 corresponding to the unstable nodes. When
the particle is aligned in the gradient direction (p = ) the rate of rotation due
to the straining component (Ap . E™) is higher than the rate of rotation due to
the rotational component (p - R*) for |A] > 1 as per (2.1). When the plane of the
ring lies in the extensional quadrant these two rotation rates can be equal since the
magnitude of rotation due to the straining flow is reduced. The plane of the ring
being in this orientation corresponds to the stable nodes and is mathematically given
by pp: E* <O.

Thus, |4] > 1 is the only requirement for an axisymmetric particle to attain an
equilibrium orientation in a simple shear flow. However, the dependence of A on the
geometry of the particle is non-trivial (Bretherton 1962). Most axisymmetric particles,
such as spheres, spheroids and cylinders, have |1] < 1 and thus constantly tumble in
a low Reynolds number simple shear flow (Bretherton 1962). The rod-shaped particle
with non-spherical lobes envisioned by Bretherton (1962) had A > 1, but the aspect
ratio of the rod was impractically large. A ring-shaped particle with a specified non-
circular cross-section was shown to have 4 < —1 at finite aspect ratios (Singh et al.
2013). The trajectories obtained from (2.1) for A < —1, as shown in figure 1(c), have
some resemblance to periodic orbits far from the nodes (Jeffery 1922). The four nodes
in the system are an additional feature for aligning particles that emerge for shapes
with || > 1. The particle orientation diverges away from the unstable nodes (p,) and
converges towards the stable nodes (pg). The particle approaches a stable node in
a time that scales with the inverse of the shear rate for any initial orientation. In
the following section, we formulate an approach for obtaining the three dynamical
parameters, namely, A, ; and 1, for any general axisymmetric particle.

3. Computational approach

We use the solution to the governing equations of fluid flow around a particle
in an unbounded domain along with the appropriate boundary conditions to derive
the dynamical parameters (4, 1y, n,) of the particle. The boundary element method
provides an elegant way of obtaining the stresses acting on the particle surface in an
unbounded domain by reducing the dimensionality of the problem. A two-dimensional
integral version of the creeping-flow equation is solved instead of a three-dimensional
spatial partial differential equation (Youngren & Acrivos 1975; Kim & Karilla 1991).
The integral representation of the flow around a rigid body used in this study is given
by

ulr) =u>) + L /J(r —r)-f(r)dA’, (3.1a)
8

where r is the position vector, u is the velocity of the fluid at the location r, u* is the
velocity of the imposed flow field at r, p is the fluid viscosity,f is the unknown force
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per unit area the particle exerts on the fluid, dA’ is the elemental area on the particle
surface and J is the Green’s function for the creeping-flow equations. The Green’s
function J is given by

I rr
J=7+—3. (3.1b)
ror

The axisymmetry of the particle accompanied by linearity of the governing
equations allows a further reduction in dimensionality of the problem if the imposed
flow is linear. The linear imposed fluid velocity (#°°) can be defined as

u®=uy+r-(E*°+ R, (3.2)

where uq is the velocity of the imposed flow at the centre of mass of the particle
(r=0). E* and R* represent the straining and vorticity tensor, respectively, defined
in (2.2). The force per unit area (f) at position r can depend on r, uy, E*, R* and
the boundary conditions on the particle surface. The boundary conditions are given in
terms of the linear velocity of the particle at its centre of mass (U,) and the angular
velocity (w,) of the particle. Solid body translation (#* =u,) and rotation (u® =e€:
R*°) of the particle and the fluid, where € is the permutation tensor, do not lead to
any stress on the particle and thus the choice of origin does not affect f. The origin
is chosen as the centre of mass of the particle without loss of generality. The position
on the particle surface (r =r,) can be decomposed into a component along the axis
of symmetry and a component in the plane of the ring, which is given by

r=(-pp+r-UI—pp). (3.3)

The azimuthal dependence comes only from the second term in (3.3). The vector e,
is defined normal to p at each azimuthal location. The projection of r along e, is
represented as r, =r-e,e, =r - (I —pp). Using these observations and the constraint
that the force per unit area (f) must be a real vector, one can deduce that f must be
linear in the relative translational velocity U = U, —u™(rcom) of the particle and the
fluid, the relative rotation rate @ =, — € : R* of the particle and fluid and the rate
of strain E* of the fluid. The azimuthal variation of force per unit area (f) is thus
given by

f=CU+GCpp-U+Csrury - U+ Cyryp-U+Cspry, - U+ Co(ry xp)(re xp)-U
+ G0 X p+ Csw X1y + Co(ry X p)ry - @+ Cio(ry X p)p - @
+ (Cii(@ xp) + Cia(@ X 1y)) X (ry X p) + Ci3(@ X 1) - pp + Cra(@ X p) 1y p
+ Cis(@ xry) +pri+ Cis(@ X p) 1.1 + Ci7ppp : E* + Cigprep : E™
+ Croprity t EX° + Cyop « EX + Coirypp : EX + Cootyyp : E® + Cysryryry s E®
4+ Coyry « EX + Cosp(ry X p) : EX(ry X p) 4 Cogri(re X p) : EX(ry X p)
+ Cor(ry X p)(ry X p) : EXp + Cog(ry X p)(re X p) : E%ry, (3.4)

where C;, C, ..., Cy are independent of the azimuthal position and thus only
depend on the cross-sectional shape of the axisymmetric body and the position on
the cross-sectional contour. The reference for the azimuthal angle (¢) can be chosen
relative to the line of intersection of a plane normal to p and the plane of the
imposed linear flow. This line of intersection is along nm as shown in figure 1(a)
for a simple shear flow. Equation (3.4), which is applicable to a general linear
flow field, can be used to obtain the variation of f with ¢ in the case of a simple
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shear flow. Using (3.4), equation (3.1a) can be integrated along ¢, using elliptic
integrals (supplementary material available at https://doi.org/10.1017/jfm.2018.20),
thus reducing the dimensionality of the problem. A one-dimensional (1-D) curved
mesh, as shown in figure 1(a), is enough to obtain the force per unit area acting
on the surface, instead of a 2-D surface mesh traditionally employed in a BEM
formulation. For the purpose of obtaining A, 1, 1y, it is sufficient to solve the
governing equations when the imposed flow is a simple shear flow and when p lies
in the flow—gradient plane where p # U, and pP# I.. The reference for the azimuthal
angle is chosen along the projection of the flow direction in the plane of the ring
(n) as shown in figure 1(a). Along with n, the orientation of the particle (p) and a
vector b =p x n define a coordinate system relative to the particle. In this case the
dependence of f on the azimuthal angle (¢) given by

S n=fo+ficos(¢) +f2cos(2¢) + f; cos(3¢), (3.5a)

S P =fi+fscos(®) +fs cos(2¢), (3.5b)

S +b=f;sin(}) + f3 sin(2¢) + fo sin(3¢), (3.5¢)

where the coefficients, [fy, fi,...,fo], depend on the contour of the ring cross-section,

size of the ring (R) and the position on the ring cross-sectional contour. The integral
in (3.1a) in the azimuthal direction can be performed analytically using f as given
in (3.5). The remainder of the integral is evaluated numerically by discretizing the
cross-sectional contour into a mesh of N elements as shown in figure 1(a). The left-
hand side of (3.1a), which is the fluid velocity on the ring surface, is known in
terms of the linear and angular velocity of the particle at each of the N mesh points.
Thus, we obtain 3 equations at each mesh point on the cross-section for a given ¢
giving a total of 3N equations for each value of ¢. We can obtain more equations
by choosing a different value of ¢. For this study, we need to evaluate (3.1a) at four
different values of ¢ so we have 10N equations to obtain [fy, fi, ..., fo] at each of the
N mesh points. If the linear and angular velocities of the particles are also unknown,
then an appropriate condition specifying the total force and torque on the body can
be applied to obtain 6 additional equations. This procedure along with the detailed
expression can be found in the supplementary material. The cross-sectional contour
is given by y; = y(x), where x is the normal distance from axis of symmetry, y is
the distance along the axis of symmetry and the subscript s represents the respective
values on the cross-sectional boundary. In this analysis, the reference for the position
along the axis of symmetry is chosen such that the plane of the ring, y =0, passes
through the centre of mass of the particle. This choice does not affect the value for the
cross-stream drift velocity (U,). The following problems are solved using the boundary
element method.

Mobility problem: The particle velocities (U, and ,), and thus the dynamical
parameters (A, n; and 1), are obtained by applying the force- and torque-free
conditions about the COM of the particle ((3.6) and (3.7)), when the particle is

oriented in the flow—gradient plane such that p # U, and P # I.

/ fr)dA' =0, (3.6)

/r/ x fr)dA =0. (3.7
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Resistivity problem for alignment mechanism: The direction of the torque exerted
by the fluid on the particle when it is kept stationary (U, = 0, @, = 0) with

p= I distinguishes between tumbling and aligning behaviour. If the fluid applies
a torque against the vorticity direction, then the particle is trying to rotate in the
counter-vorticity direction towards the stable node as shown in figure 1(b). A fluid
torque along the vorticity direction implies a tumbling behaviour. This resistivity
problem is used to understand the alignment mechanism through visualization of
stresses on the particle surface. It also gives insight into the cross-sectional geometry
necessary for alignment.

Resistivity problem for drifting mechanism: The scaling for cross-stream drift of the
particle (U,) can be obtained when the particle is oriented along the stable orientation
(p=p,) and held stationary (U, =0, @, =0). At this orientation, the force acting on
the particle drives its drifting motion. This problem will only be solved as a thought
experiment to predict the scaling for the drift velocity, which can be obtained by
equating this force to the force required for translating the particle in a quiescent fluid.

In this study, we try to understand the mechanism leading to alignment of particles
at much lower aspect ratios than the previously reported minimum of 30 (Singh et al.
2013). A family of 2-D contours is chosen based on previous insight into aligning
shapes. The family of shapes given by p = (1 4+ « cos(36)) was shown to achieve
permanent alignment at finite aspect ratios (Singh et al. 2013). Here p and 6 represent
the polar coordinates in the plane of the cross-section (x—y plane) and 6 is measured
relative to e,, as shown in figure 2(a). o changes the shape of the cross-section. Based
on this insight a three-lobed shape shown in figure 2(b) is used for studying fore—aft
symmetric shapes. This fore—aft symmetric shape can be described by 5 parameters:
‘l;’, length of arm 1; ‘ty’, thickness of arm 1; ‘/,’, length of arm 2 and arm 3; ‘1,
thickness of arm 2 and arm 3; and 1, angle made by arm 2 and arm 3 with arm 1.
Although this family of ‘Y-shaped’ cross-sections does not cover all shapes, it gives
insight into particle geometries that will lead to alignment. The choice of a Y-shaped
cross-section will be motivated in the next section, where results obtained from BEM
are used to describe the mechanism of alignment. Cross-sections shown in figure 2(c)
were also studied, but were found to align at higher aspect ratios. Cross-sections
A-8 to A-12 lack fore—aft symmetry and thus can possess cross-stream drift. We shall
also discuss the mechanism leading to cross-stream drift and show ways to control
the magnitude of drift by proper choice of cross-sectional shape. All cross-sections
shown in the remainder of the paper are in figure 1(a), where the left side of the
cross-section is the inner edge closer to the ring centre while the right side is the
outer edge of the ring.

We also solved for flow past a two-dimensional obstacle with the same shape as the
ring cross-section in a two-dimensional domain using a finite element method (FEM)
solver in COMSOL. This flow field qualitatively resembles the flow field around a
slender ring in the cross-sectional plane near the surface of the particle. This gives
a qualitative visualization of fluid velocity and stresses near the particle surface with
lower computational effort. This problem also removes the effect of the size (aspect
ratio) of the particle, and isolates the effect of the cross-sectional shape on the
stresses acting on the particle surface. The domain size L >> a, ensures that the fluid
velocity near the particle is not influenced by the shape of the box. The fluid velocity
varies logarithmically with radial distance, p, for a <« p < L, similar to the variation
for a < p < R near a ring with high aspect ratio (A > 1). The no-slip boundary
condition was applied at the particle surface, while the velocity at the domain
boundary far from the particle was a simple shear flow.


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.20

Downloaded from https://www.cambridge.org/core. Cornell University Library, on 25 Nov 2018 at 20:27:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2018.20

388 N. S. Borker, A. D. Stroock and D. L. Koch

(@)

(b)
Arm 3 v
() - Rotating Aligning \
| E————— —1
e —
R-1 R-2 R-3 A-1 A-2 A3
R-4 R-5 R-6 A-4 A-5 A-6
\_ A7 A-8 A-9 E A-10 A-11 A-12

FIGURE 2. (Colour online) Ring cross-sectional shapes studied here. (a) Shape given by
p =1+ acos(30) that was shown to lead to flow aligning rings by Singh er al. (2013).
(b) Y-shaped fore—aft symmetric shape inspired by (a). (¢) Some of the ring cross-sections
studied using BEM calculations. Rings with cross-sections R-i, for i=1, 2, ..., 6, rotate
in a simple shear flow, while rings with cross-sections A-i, for i=1,2, ..., 12, align in
a simple shear flow at finite aspect ratios.

4. Results and discussion

In this section, we present the results of BEM calculations for the mobility and
resistivity problems described earlier for cross-sectional shapes shown in figure 2(c).
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We also look at the flow field around the cross-section via the solution of the 2-D
Stokes flow problem by FEM. For characterizing the shape, a critical aspect ratio (A*)
was defined as the minimum aspect ratio at which a particle aligns. The objective,
in addition to understanding the alignment mechanism, is to obtain shapes that
align at low values of A*. This is important from the standpoint of fabrication as
a higher aspect-ratio ring will be susceptible to damage thereby losing the aligning
characteristics. For fore—aft asymmetric cross-sections, the focus is to understand the
mechanism of cross-stream drift (U, = |(U, — u*(rcom)) * I, w|) and thus control its
magnitude. It will be shown that the cross-stream drift also depends strongly on the
stable orientation of these particle, which in turn depends on aspects of the particle
geometry that influence rotation.

4.1. Fore—aft symmetric that align but do not drift

To gain insight into the mechanism that prevents tumbling, the resistivity problem was
solved for fore—aft symmetric cross-sections shown in figure 2(b) using BEM for p =
I - The geometric parameters, as shown in figure 2(b) were chosen as t,/l, = 0.1,
t/[Lb=0.1, l;/l, =3 and ¥ =0.657. These parameters were chosen because the value
of /;/l, and ¥ lie near their optima for these arm thicknesses. The fluid exerts a force
per unit area of —f on the particle surface. The force per unit area, —f; in the flow
direction contributes to the torque in the vorticity direction, while —fs is the force per
unit area along the axis of symmetry (p = I contributing to the torque in vorticity
direction. The torque exerted by the fluid forces in the vorticity direction (2), G, is
given by

G= / ds' (—2myfy + Txfs), 4.1)
Y=Vs

where ds’ represents the elemental length along the tangent to the cross-sectional
contour and s’ represents the position along the contour such that s =0 corresponds
to the point on the outer edge for which y;=0. A negative value of this torque, which
is the torque opposite to the vorticity direction, implies alignment. The moment arm
for forces along e, i.e. x, scales with the particle size (x ~ R), while the moment arm
for the forces acting along e, i.e. y, scales with the cross-sectional dimension (y ~ a).
Thus, at a sufficiently high aspect ratio, A, the torque due to the force along e, (—f5)
alone is important. Figure 3(a) shows the part of the force per unit area (f) acting
on the cross-section that contributes to the torque, at ¢ =0, such that f' - e, = —f; and
f -e,=—fs-f is decomposed into a normal force which is due to pressure (p) and
a tangential force which is due to the shear or viscous stress (7). Figure 3(a) shows
the variation of pressure along with the total pressure force and total viscous force
per unit circumference on each linear element of the cross-section ([ ds'p/(uy) and
J ds't/(uy) respectively, where y is the shear rate of the simple shear flow and u
is the viscosity of the fluid). This allows for the visualization of forces that lead to
a force along the positive e,. From figure 3(a), the pressure on average generates
a force in the positive I, which tries to rotate the particle towards the stable
orientation. On the other hand, the viscous stress generates a force along negative
I, which tries to tumble the particle in the vorticity direction. The viscous stress is
localized near the stagnation points, which are at the tip of each arm, and thus acts
on a smaller area. The pressure decays slowly along the arms due to small velocity
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FIGURE 3. (Colour online) Stresses on ring cross-section contributing to particle rotation
rate. (a) Plotting forces on the cross-section such that f' - e, = —f, and f’ - e, = —fs for
a particle with aspect ratio of 25.8. These forces are decomposed into the pressure (p)
and the viscous stress (7). The pressure (—, red) and viscous stress (—, green) variation
along the cross-section; total pressure force ( ﬁ SIZ ds'p/(uy)) (—, blue) and total viscous
force ( fs Slz ds't/(uy)) (—, yellow) per unit circumference on each face of each arm is
plotted. (b) Cumulative value of —fs along the cross-section from tip of arm 1 (s=0) to
a point s along arm 1. Here, y is the shear rate of the simple shear flow and p is the
viscosity of the fluid.

gradients (except for a small region near the stagnation point) and so it acts on a
larger area. The obtuse angle of arm 2 with the flow direction ensures the pressure

generates a force in the positive Iy, direction. Pressure on arm 1 also generates a
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FIGURE 4. For caption see next page.

force in the positive I v direction. Figure 3(b) shows the variation of fos ds'(—f5)
along the cross-section from the tip of arm 1 (s = 0) to the point of intersection
of arms 2 and 3. The pressure on each arm makes a positive contribution to (—fs),
while the viscous stress mainly near the tip of arm 2 and most of the windward side
of arm 2 makes a negative contribution to (—f5). While the viscous stresses try to
tumble the particle irrespective of the cross-sectional shape, the pressure force for
certain cross-sections leads to alignment.

Figure 4(a) shows the pressure, strain rate and streamlines obtained from the
solution of the 2-D Stokes flow problem near a Y-shaped cross-section. The strain
rate is defined as E= (0.5(Vu+ (Vu)") : (Vu+ (Vu)"))%, and gives a measure of the
viscous stress in the fluid. From symmetry of the particle and the simple shear flow,
it can be shown that f- U (x, —y) = —f - Uss(x, y) and f « [ (x, —y) =f - [ (x, y), f
being the force per unit area acting on the particle surface. The strain rate, as shown
in the bottom half of figure 4(a), is localized near the end of each arm and thus, acts
on a small area generating a small force. The low pressure, relative to the pressure
far away from the particle, on the right of arm 2 and top of arm 1, is created by
the presence of the stagnation point on the tip of arm 2. This low pressure due to
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FIGURE 4. (cntd). (Colour online) Pressure, strain rate contours and streamlines for
different cross-sections: (a) Y-shaped cross-section, (b) cross-section with a branched
load-bearing element and (c) cross-section with streamlined load-bearing element. The top
half shows the pressure (p/(yu)) contour, while the bottom half shows the strain rate
(E/y) contour.

the obtuse angle made by arm 2 about the flow direction and the presence of arm 1
is utilized to generate a force on the particle along e,. The obtuse angle made by
arm 2 ensures that the pressure force generates a positive force in the y-direction. It
can be easily envisioned that pressure generates a force in the negative y-direction if
arm 2 makes an acute angle with the flow direction. The presence of arm 1 helps
to further utilize this low pressure generated on the leeward (left) side of arm 2 by
providing more surface area on which the low pressure acts. It should be noted that
a cross-section which is the mirror image of this Y-shape (R-6 in figure 2¢) would
not be able to align, because the sign of the forces would reverse. The pressure on
top of arm 1 would generate a force in the negative y-direction while the acute angle
made by arm 2 with the flow direction would also make the pressure on it generate
a force in the negative y-direction.

The above information can be used to understand the requirements on the shape
of the cross-section of aligning rings. The cross-section should be asymmetric about
any plane normal to e, such that it has a blunt inner edge and a sharp outer edge.
This generates a load-bearing element (arms 1, 2 and 3) that thins out as one
approaches the outer edge utilizing the pressure to generate a counter-rotating torque.
Figures 4(b,c) show the contours for pressure and strain rate (E), along with the
streamlines obtained from the solution of the 2-D Stokes problem using FEM. As
illustrated by these figures, the viscous stress mainly acts in small regions around the
stagnation points on the tips of the arms, generating a smaller force in comparison to
the pressure force that acts on a larger projected area of the load-bearing element. The
viscous force on the front will be smaller if the flow is streamlined, and thus shapes
with branched load-bearing elements, as shown in figure 4(b), will tend to perform
poorly. Branching not only increases the area available for the viscous stress to act,
but also increases the moment arm of forces in the x-direction, thus increasing A*.
An unbranched load-bearing element, shown in figure 4(c), thus is ideal for alignment
at low A*. A Y-shaped cross-section, being the simplest shape with linear arms, was
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thus chosen for further analysis. A streamlined shape, as shown in figure 4(c), ensures
that the viscous stress is localized near the tip of the inner edge of the cross-section
and thus acts on a small area. Although optimization of the cross-section to minimize
A* is beyond the scope of this study, our results can be the starting point for this
search.

We can use these insights to rationalize the aligning or rotating nature of rings with
cross-sections shown in figure 2(c). A circular cross-section does not align due to
its symmetry. A pie shaped cross-section (A-1) breaks the symmetry about a plane
normal to e,, thus allowing pressure to generate a counter-rotating torque. A V-shaped
particle (A-5) aligns at a higher A* as the length of the load-bearing element is smaller
than for a Y-shaped particle. Thus, we have seen that the 2-D Stokes flow problem
solved using FEM can give the qualitative nature of the forces acting on rings with
the given cross-section.

The solution to the mobility problem gives the dynamical parameters of the particle
and thus A*. The dynamic parameters 7; and 17, are identically equal to zero for fore—
aft symmetric shapes, as orientations p and —p are equivalent. The rotation parameter,
A, obtained from BEM simulation of this mobility problem for p lying in the
flow—gradient plane is given by

1 Y (@) - 25 — 0.5 42
(p-T)?—05 "~

where y is the shear rate of the simple shear flow. Figure 5(a) presents predictions
for Y-shaped particles with i = /2, also referred to as T-shaped particles. Such
shapes are of practical interest due to ease of fabrication using multi-step lithography
(Foulds & Parameswaran 2006). The critical aspect ratio decreases with decreasing
arm thickness (#;/l, and 1,/l,) as seen in figure 5(a) for a fixed value of [/, = 3.
This is mainly due to reduction in the viscous stress acting on the particle, confirming
that viscous stress increases A*. Thus, arms of zero thickness can be assumed to be
better for all values of [/, and . Figure 5(b), shows the variation of the rotation
parameter, A, with aspect ratio, A. (1+ 1) rapidly decreases with increasing A, attains
a minimum value that is less than zero and then slowly returns to zero. When
(1+ 1) >0, the time period of rotation, which equals 47/(y+/1 — A?), increases as
A approaches —1. This period becomes infinite at A = —1 and the particle aligns for
the first time. Thus even though A < A*, due to the rapid increase in time period, the
particle will remain aligned for long time durations. Once A crosses —1, the particle
attains an equilibrium orientation. As shown in § 2, the angle made by p with gradient
direction is given by 0.5acos(—1/41). This angle attains a maximum value when 4+ 1
attains a minimum value. However, since the change in A is small after attaining this
minimum value the angle also changes slowly. Figure 5(c) shows the variation of A*
with v and [,/l, for t,/l, = t,/l, = 0.0125, which approximates the zero-thickness
limit. The contour is obtained by linear interpolation between data points using a
Delaunay triangulation. The optimal value is found to be A* ~9 for ¢ =0.657 and
li/l, = 2. There is a shallow valley near this optimum in which A* varies slowly.
Thus any imperfections in particle fabrication will not change the aligning behaviour
of the particle to a great extent. This also means that the particle dynamics is not
strongly affected by small changes at the small length scale, as long as the general
shape necessary for alignment is maintained.

Rings with Y-shaped cross-sections have suppressed rotation at all aspect ratios
in comparison to rings with circular cross-sections as evident in figure 5(d). This
primarily comes due to the strong counter-rotating pressure force, absent in rings
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FIGURE 5. For caption see next page.

with a circular cross-section. It should be noted that rings with cross-sectional shapes
studied in Singh ef al. (2013), as shown in figure 2(a), do not have suppressed
rotation at small aspect ratios. This is primarily because the magnitude of the
pressure force acting at the stagnation point is lower in comparison to a Y-shaped
cross-section with thin arms. The rings with Y-shaped cross-sections of aspect ratio,
A, somewhat smaller than A* could have a similar practical utility as aligning rings
because of the large increase in the time period of rotation of the ring at all aspect
ratios. Apart from alignment, the particle rotation rate can be significantly increased,
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FIGURE 5. (cntd). (Colour online) A and A* variation for different shapes. (a) Variation of
A* with thickness of one arm at a time for a Y-shaped cross-section shown in figure 2(b).
A* variation with #,/l, for t,/l, =0.1 (m, blue); with 1,/l, for t,/, =0.1 (@, red); and
with t,/l, for t;/l, =0.0125 (x). [;/l, =3 and ¢ = 0.5% for all three curves. (b) 1+ 1
variation with aspect ratio of the particle (A) for a Y-shaped cross-section with ¥ =0.57
and 1/l =1,/ =0.1. (c¢) Contour map of A* with ¢ and [;/l, for a Y-shaped cross-
section with t,/l, =t,/l, = 0.0125. (d) Variation of 1 + 1 with A for a Y-shaped cross-
section (Y =0.657, [, =20, t; =t, =0.0125/,), mirror image of the Y-shaped cross-section
(figure 2(c) R-6) with (y =0.657, [, =2, t; =1, =0.0125/,) and a circular cross-section
(figure 2(c) R-1).
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FIGURE 6. (Colour online) (a) Three types of cross-sectional shapes that can generate
different scaling of cross-stream drift. (b) Flow field near the cross-section decomposed
into a local uniform flow and a local simple shear flow that are O(yRsin(8;)) and O(ya)
respectively.

as shown in figure 5(d), by using a shape that is a mirror image of the Y-shaped
cross-section (R-6). This is because the pressure that was originally inducing a
counter-rotating torque is now generating a torque in the vorticity direction leading
to enhanced tumbling. Enhanced rotation of particles could increase the viscosity of
the suspension for the same volume fraction of the particles. At high enough particle
concentrations, enhanced rotation could lead to more frequent contacts between
particles leading to a larger increase in stress in the suspension. High-aspect-ratio
conducting particles with enhanced rotation could be embedded in composites during
curing to increase the thermal conductivity of the final material.

4.2. Fore—aft asymmetric particles that align and drift

Fore—aft asymmetric particles, in addition to aligning, also migrate in the cross-stream
direction. Alignment of the particle can be understood by observing the local flow
field around the particle when p = I %, as described earlier. Here, we describe the
mechanism leading to the cross-stream drift velocity of the particle (U;) once it is
aligned and ways of controlling it by manipulating the cross-sectional shape. Different
symmetries of cross-sectional shapes lead to different orders of magnitude of the drift
velocity (U; = |(U, — u™(rcom)) * I, %|) as shown in figure 6(a). The direction of the
cross-stream drift velocity depends on p and the cross-sectional shape of the particle.
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The stable orientation of the particle, p;, is chosen such that p, - U, > 0. This choice
is made after obtaining the direction of U, from BEM calculation without loss of
generality. A particle that is aligned along —p, would have a cross-stream migration in
the opposite direction. A general cross-sectional shape will have a drift velocity that
scales as yRsin(f;)/ In(A) (figure 6a D-II). However, a cross-section with rotational
and reflectional symmetry, as shown in figure 6(a) D-I, generates U, that scales as
ya sin(f;). On the other hand, fore—aft symmetry of the cross-section leads to no
cross-stream drift. The mechanism leading to cross-stream drift can be understood by
obtaining the lift force on the particle when it is held stationary and oriented along its
stable orientation (p =p,). At this orientation, the local flow field can be decomposed
into a uniform flow field and a simple shear flow as shown in figure 6(b). The
local uniform flow field due to the small angle B; of the particle with respect to the
gradient axis scales as yRsin(f,) over most of the ring. The scaling for the lift force
due to the local uniform flow can be understood from slender body theory (Batchelor
1970). Batchelor (1970) explains that the leading-order force per unit length acting
on a slender filament of high aspect ratio (A > 1) is independent of the shape of the
slender body and scales as uUy/In(A), Uy being the measure of the undisturbed fluid
velocity. Since the only direction in the problem is the flow direction, the slender
filament only experiences a drag force per unit length that scales as pwy Rsin(8;)/In(A)
for In(A) > 1. The details of the cross-section affect the force at a higher order in
In(A) and thus the lift force per unit length, if any, scales as w|Uy|/[In(A)]*. Thus,
the local uniform flow field generates a lift force per unit length at each azimuthal
location that scales as wyR sin(B,)/[In(A)]>. The local simple shear flow generates
a lift force per unit length that primarily arises due to the tilt about the gradient
direction (B,). This lift force per unit length scales as wyasin(f;)/In(A). The net lift
force for a general fore—aft asymmetric particle scales as uyR® sin(B,)/[In(A)]* and
thus the cross-stream drift velocity scales as yR sin(fs)/ In(A) at large aspect ratios
(A > 1). The contribution to drift from the local uniform flow becomes identically
zero if the cross-section has both reflectional and rotational symmetry. Shapes with
reflectional and rotational symmetry, shown in figure 6(a) (D-II), cannot generate a lift
force in a 2-D uniform flow along two different cross-sectional orientations, and thus
should have zero lift for all cross-sectional orientations by linear superposition. For
such cross-sections, the drift comes from the local simple shear flow alone and scales
as ya sin(B,). Thus, depending on the symmetry properties of the cross-sectional
shape the cross-stream drift scales differently. However, contributions from both the
mechanisms are important for particles with low aspect ratios. The angle made by the
particle with the gradient direction, B, =0.5acos(—1/1) ~[0.5|1+ 1|]°, also depends
on the particle geometry. The maximum value of B; depends on the capability of the
shape to generate the highest counter-rotating torque. To understand this variation,
consider a shape shown in figure 6(a) (D-II) and a fore—aft symmetric cross-section
obtained by adding a reflection of this cross-section in a manner that keeps the
particle aligned, as shown in figure 6(a) (A-6). The forces acting on the particle
when p = I, will be nearly the same for the asymmetric cross-section and the
top half of the fore—aft symmetric cross-section. Therefore, a fore—aft symmetric
shape, A-6, can generate approximately twice the counter-rotating torque of the
corresponding fore—aft asymmetric shape, D-II, at half the aspect ratio. The aspect
ratio for a A-6 shape halves because the cross-sectional dimension ‘2a’ is twice that
of the D-II shape. Consequently, the maximum S, is not only higher for the A-6 than
the D-II shape but also occurs at a smaller aspect ratio. Fore—aft symmetry does not
allow for migration, but rotating the cross-section breaks the fore—aft symmetry and
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allows for a finite drift. Shapes with rotational and reflectional symmetry, as shown in
figure 6(a) (D-I), have some resemblance to an equivalent fore—aft symmetric shape
(A-6) and some resemblance to a fore—aft asymmetric shape (D-II). The D-I shape
can align at a lower aspect ratio and have a higher g than a D-II shape and it could
have a maximum value of cross-stream drift that is larger than that for a D-II shape.
However, since the scaling of U, with aspect ratio is a factor of 1/A smaller than
that for a D-II shape, the drift velocity of the D-II shape becomes larger as A — oo.
This will be shown towards the end of this section by using specific examples.
Consequently, particle migration is intertwined with the orientational dynamics of the
particle and this intertwining is stronger for particles that align at low aspect ratios.
We now elucidate the dependence on geometry for certain cross-sectional shapes from
the solution of the mobility problem.

The alignment for rings with cross-section D-II can be understood from the previous
discussion. The load-bearing element as marked in figure 6(a), allows one to envision
the pressure forces that lead to alignment. For a general fore—aft asymmetric cross-
section, where a similar picture is non-trivial, observing the lift force through the
solution of a two-dimensional Stokes flow problem, as shown in figure 4, is a good
method of comparing geometries.

Aligning particles that lack fore—aft symmetry have non-zero values of the dynamic
parameters, n; and 1, and thus have a constant cross-stream drift (U,). This cross-
stream drift velocity as well as the dynamic parameters are obtained from the solution
of the mobility problem. The rotation parameter, A, is obtained by (3.2) while n; and
N, are given by

UI, n
= E 4.3
N (p-F?—0.5) @3
Up 4
Mm=-n+ (op 1 E®) (4.4)

Equations (4.3) and (4.4) can be obtained from (2.1) and (2.3) when the imposed flow
is a simple shear flow and p lies in the flow-gradient plane. The drift velocity in the
gradient direction for rings that align in a simple shear flow, i.e. 4 <—1, is given by

L+ m-"2) [A+1
) nTn 1 )

The proportionality with sin(8;) ~ B, &~ +/—0.5(1 4+ 1) can be seen from this equation.

The cross-section shown in figure 6(a) (D-II) was studied due to its resemblance
with the Y-shaped cross-section and because of ease of fabrication afforded by its
flat base. Figure 7(a) shows the variation of the non-dimensional drift velocity of
the particle (U; = U,;/(yR)) with aspect ratio for ¢ = 0.5 and nearly zero arm
thickness (t,/l, = t,/l, = 0.0125). Reducing arm thickness reduces the area available
for the viscous stresses to act as seen earlier. The variation of U, with respect
to aspect ratio shown in figure 7(a) is qualitatively similar across all shapes that
can migrate across streamlines. U, is small near the critical aspect ratio due to the
vanishingly small value of B;. U, rapidly increases to a maximum value and then
decays slowly thereafter. The maximum value occurs at an aspect ratio which is close
to that yielding the minimum value of A or the maximum value of B,. U, slowly
decays to zero with further increase in aspect ratio. Figure 7(b) shows the contour
map for the critical aspect ratio for alignment, A*, for varying values of ¥ and [,/l,

Uj=U-Ty= . 4.5)
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FIGURE 7. For caption see next page.

for t;/l, =1,/ =0.0125. The optimal value of A* is 20.6 and occurs approximately
at ¥ = 0.65% and [,/l, = 3. This minimum value of A* is more than double the
value obtained for a Y-shaped cross-section. This cross-section represents the top half
of the Y-shaped cross-section with nearly the same forces acting on it. Thus, the
cross-sectional dimension ‘2@’ is half that of a Y-shaped cross-section, which leads
to the near doubling of A*. Additional viscous stresses acting on the bottom part of
arm 1 make A* more than double the value for an equivalent Y-shaped cross-section.
As shown in figure 7(b), A* varies slowly in a large region near the optimum,
which suggests that the particle dynamics varies slowly for slight changes in the
cross-sectional shape. Figure 7(c) shows the contour for the maximum value attained
by U, with Y and ;/l,. U, attains a maximum value when v ~ 0.67 and [,/ ~ 1.
However, this maximum does not coincide with parameters that give the lowest A*.
Thus, an appropriate shape should be chosen based on the relative importance of
attaining a high drift velocity and maintaining particle rigidity by restricting to a low
aspect ratio. Parameters highlighted by the dotted region in figure 7(b,c) suggest a
region that has a balance between alignment at low aspect ratio and attainment of a
high drift velocity.

We considered two cross-sections with reflectional and rotational symmetry as
shown in figure 8(a,b), where 6, is the angle of rotation about e,. The parameters
that gave the least value of A* for 6, = 0 were chosen for each of the shapes. The
parameters are o = 0.55 for the shape in figure 8(a) and /;/, =1 and ¥ = 0.6 for
the shape in figure 8(b). If 6, = £7/6, these cross-section becomes symmetric about
a plane normal to e, and thus cannot generate a force in the gradient direction when
p= I, because of the equivalence of the problem in flow reversal (#*™ = —u™). As
seen in figure 8(c), U, =U,/(yR) is an order of magnitude lower for the three-lobed
cross-section in figure 8(a) in comparison to an equivalent D-II shape. U, follows
a similar trend of rapidly increasing to a maximum and slowly decaying to zero at
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FIGURE 7. (cntd). (Colour online) Variation of cross-stream drift velocity (U,) for shapes
shown in figure 6(a) (D-II). (a) Variation of non-dimensional drift velocity, U, = U,/(yR),
with the ring aspect ratio and ratio of arm lengths (/,/l,) with #,/l, =1/, =0.0125 and
Y =0.5m. (b) Contour of A* with v and [,/l, for D-II shape with t,/l, =1,/l, =0.0125.
(c) Contour of (U,/(yR)) x 10* with ¥ and [, /1, for D-II shape with t,/l, =t,/I,=0.0125.

large aspect ratios. The drift velocity for the rotated Y-shape cross-section, i.e. D-I b
shape, has values comparable with the D-II shape because rings with D-I b shaped
cross-sections align at a smaller aspect ratio. Thus, rings with D-I b cross-sections
generate a higher counter-rotating torque leading to a higher value of S, than the
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corresponding D-II shape. This increases the drift velocity of rings with D-I b shapes
at lower aspect ratios. However, at higher aspect ratios rings with D-II shapes will
increase U; due to a stronger scaling of U, with the particle aspect ratio, A. The
three-lobed cross-section, i.e. D-I a shape, in figure 8(a) aligns around the same
aspect ratio as an equivalent D-II shape leading to similar values of g;. Thus, the
drift velocity is a factor of 1/A smaller than an equivalent D-II shape as per the
scaling argument. The aligning angle of the particle, B,, is a crucial factor, and the
drift velocity can be augmented by increasing B,. Thus, as observed above, to control
particle migration, it is pertinent to consider particle alignment as well.

We considered a cross-sectional shape, shown in figure 9(a), whose degree of
asymmetry could be controlled systematically. This family of shapes allows another
way of analysing the importance of particle symmetry in controlling the magnitude
of U,. This shape is fore—aft symmetric for /3/l, = 1 and the degree of fore—aft
asymmetry increases as I3/l changes from 1 to 0. Figure 9(b,c) show the variation
of B, and U, with particle aspect ratio (A) for varying lengths of arm 3 (l3/l;) for
Li/l,=1, ¥, =v3=0.651 and t; =1, =13 =0.0125],. B increases as (l3/l,) — 1, but
the particle approaches a fore—aft symmetric shape (i.e. n; — 0 and 1, — 0) which
has no drift. The highest drift is obtained for a particle that has a balance between
aligning at a low aspect ratio while still deviating sufficiently from fore—aft symmetry
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FIGURE 8. (cntd). (Colour online) Variation of cross-stream drift velocity (U,) for shapes
with reflectional and rotational symmetry (D-I shapes). (@) A cross-section given by p =
(14 cos(3(6 —6))), which is the cross-section studied in Singh et al. (2013) rotated by
an angle 6, relative to e,. (b) D-I shape with rotational and reflectional symmetry. The
angle 6, of one of the arms with e, controls the degree of fore—aft asymmetry. (¢) Non-
dimensional drift velocity (U;/(yR)) for shape in (a) for « =0.55. (d) U,;/(yR) for shape
shown in (b) with [=1 and r=0.0125.
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(i.e. 0 <3/l < 1) as seen in figure 9(b) for I3/, =0.25 and A =25.14. Such a shape
could be used as a starting point to obtain the shapes that generate the highest drift
(Uy/(yR)). It should be noted that at high aspect ratios, A > 100, S, is nearly the
same for all cross-sectional shapes at a given A. Thus, at sufficiently high aspect
ratios the drift is higher for the shape that possesses the highest degree of fore—aft
asymmetry, as seen in figure 9(c).

The drift velocity obtained by scaling arguments earlier are verified by BEM
results at large aspect ratios of the particle (A). The variation of drift velocity
(U;) non-dimensionalized with the appropriate scaling velocity (U;), depending on
the mechanism of drift, is used to verify the scaling arguments presented earlier.
Figure 10 shows the variation of U,;/U; for various shapes studied here. U, =
ya sin(B,) for shapes that possess reflectional and rotational symmetry (D-I shape),
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FIGURE 9. (cntd). (Colour online) Drift velocity variation with varying degree of fore—aft
asymmetry of a cross-section D-II a. (a) D-II a shape that generates varying cross-stream
drift as the deviation from fore—aft symmetry is adjusted by changing length of arm 3
relative to arm 2 (i.e. [3/l;). (b) Parametric variation of B; with particle aspect ratio (A)
and relative length of arm 3 (l5/1,) for (D-II a) shape. (c) Parametric variation of U, =
U;/(yR) with A and (I3/l;) for (D-II a) shape. In both these plots, I;/L =1, Y =113 =
0.657 and t,/l, =1/, =13/, = 0.0125.

and U; =y Rsin(f;)/In(A) for fore—aft asymmetric cross-sections that lack reflectional
and/or rotational symmetry (D-II shape). Figure 10 shows that at moderately high
aspect ratios, U,/U, attains a constant value, thus verifying the scaling and the
mechanism for cross-stream migration mentioned earlier.

5. Conclusion

In conclusion, our calculations show that the rotational and translational dynamics
of rings can be controlled by appropriately manipulating the cross-sectional shape. We
elucidated the mechanism that leads to permanent alignment of particles in a simple
shear flow: it is the pressure acting on the particle surface that leads to alignment.
Rings with cross-sections that possess a blunt inner edge and a sharp outer edge, as
shown in figure 4, acquire an equilibrium orientation in a simple shear flow. Rings
with a streamlined cross-sectional shape, such as a Y-shaped cross-section shown in
figure 2(b), align at lower aspect ratios than blunter shapes due to localization of the
viscous stress at any extending elements of the cross-section. The optimal shape in
the family of Y-shaped particles was shown to be ¢ =0.65x, t,/l, — 0, #;/l, — 0 and
[/l =2. This might not be the globally optimal shape, but provides a starting point
to search for shapes that align at lower aspect ratios. Rings with certain geometries,
such as Y-shaped cross-sections shown in figure 2(b), have suppressed rotation in
comparison to rings with circular cross-sections (torus) at similar aspect ratios. This
is an important finding as these rings remain aligned for longer periods of time than
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FIGURE 10. (Colour online) Drift velocity non-dimensionalized with the velocity obtained
by scaling arguments (U;). D-I a shape (figure 8a) with « =0.55 and 6, = nn/24; D-1 b
shape (figure 8b) with 6, =1 /24 and #/1=0.0125; A-8 shape (L-shape) with [/;/l, =2 and
ti/lhb =1/, =0.0125; and D-II a shape with [,/l, =1, l3/l, =0.25, ¥, =3 =0.65n and
ti/h=t/l, =t/ =0.0125. The scaling for velocity for D-I a and D-I b shapes is U, =
(ya) sin(B;), while the scaling for the remaining two shapes is U; = (yR) sin(B;)/ In(A).

an equivalent torus and thus from a practical standpoint could mimic aligning particle
dynamics.

For fore—aft asymmetric cross-sections, we elucidated the mechanism leading
to cross-stream drift which could be controlled by altering the symmetry of the
cross-section. Particles with fore—aft symmetric cross-sections have no drift. Particles
with cross-sections that possess rotational and reflectional symmetry have drift that
scales as ya sin(f;) while those that lack this symmetry have a drift that scales as
yR sin(B;)/ In(A). We explained the important role that the aligning angle (8;) plays
in determining the magnitude of the drift. In particular, certain shapes can possess a
higher drift due to a higher aligning angle. Both alignment and migration of rings
depends on the lift force generated by pressure and thus engineering the geometry
to effectively utilize pressure and localizing the viscous stresses should be a starting
point to tune motion of particles in shear flows.

A T-shaped (A-7) and an L-shaped (A-8) cross-section, studied in this work, are
of practical interest due to ease of fabrication. These particles could be fabricated
using multi-step photolithography (Foulds & Parameswaran 2006). Techniques such as
direct-ink writing (Raney & Lewis 2015) or optofluidic fabrication (Paulsen, Di Carlo
& Chung 2015) could be used to fabricate more complicated geometries studied in this
work. Fabrication of these particles, would not only allow for the verification of our
results, but also pave the way for practical utility of these particles. The macroscopic
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properties of a particle suspension differ depending on tumbling or aligning behaviour
of individual particles. Usually anisotropic tumbling particles cannot fully impart
their anisotropy to the suspension due to orientational dispersion. On the other
hand, aligning rings would lead to a high degree of anisotropy due to particle
alignment near the flow—vorticity plane. Materials processed with aligning particle
suspension should have a high degree of anisotropy in properties such as elastic
modulus; specific stiffness; and thermal, electric and magnetic conductivity. Migrating
particles could be used to impart surface properties such as scratch resistance by
systematically depositing particles near the surface (Isla et al. 2003). The viscosity of
these suspensions should also be lower due to alignment along the lamellae improving
the ease of processing. These materials could be manufactured on a large scale using
existing material processing technologies such as injection moulding, spin casting
and extrusion. Consequently, these aligning particles provide a unique opportunity
to design particle suspensions with tuneable structure using existing manufacturing
techniques.
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