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ABSTRACT

We propose ASTRO, a drone network that realizes three
key features: (i) networked drones that coordinate in au-
tonomous flight via software defined radios, (ii) off-grid
tetherless flight without requiring a ground control station
or air-to-ground network, and (iii) on-board machine learn-
ing missions based on on-drone sensor data shared among
drones. We implement ASTRO and present a suite of proof-
of-concept experiments based on a mission in which a net-
work of ASTRO drones must find and track a mobile spec-
trum cheater.

1. INTRODUCTION

In this paper, we present the design, implementation, and
experimental evaluation of ASTRO, Autonomous, Sensing,
and Tetherless netwoRked drOnes. ASTRO realizes the fol-
lowing three features not previously realized in a single de-
sign. First, in contrast to single-drone solutions [10, 17],
ASTRO realizes networked drones that communicate and
coordinate among themselves. They form a dynamic mesh
and employ software defined radios (SDRs) to enable pro-
grammability and advanced communication and networking
features. ASTRO exploits such capabilities to adapt carrier
frequency in order to realize longer range as needed to main-
tain connectivity with other drones, at the potential cost of
less bandwidth being available at lower frequencies. Like-
wise, ASTRO realizes adaptive network-layer routing im-
plemented on-drone to ensure that drones can communicate
with each other as required by the mission.

Second, ASTRO is tetherless, in that we do not employ
ground control stations for sending and receiving control sig-
nals and/or data. This contrasts with existing systems which
use either human or machine control from the ground [10,
12]. As a consequence of tetherless operation, we do not
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require any communication infrastructure, enabling flight in
areas not served by Wi-Fi or cellular networks. Nonetheless,
if network infrastructure is available, ASTRO can utilize it to
report back mission results while the mission is in progress
vs. after completion and landing.

Third, ASTRO realizes data-driven sensing missions via
on-line (without prior training) light-weight on-drone ma-
chine learning. By data-driven, we refer to the drone’s deci-
sions and flight paths being adapted in real-time according to
measured sensor data. Namely, in contrast to paths being a
pre-defined search pattern or adapted by a human or ground
control station, the drones themselves adapt the flight pat-
terns according to sensor data and mission goals. This is
realized via on-board machine learning driven by local sen-
sor data, data shared by other drones, and mission objectives
(e.g., to find and track a moving target).

To demonstrate ASTRO, we implement all of the afore-
mentioned aspects of ASTRO and report on over 500 hours
of test flights over 10 months. We deploy a scenario in which
the mission objective is to find and track a mobile spectrum
cheater. In particular, the cheater is a mobile device that
is transmitting on a frequency for which it lacks regulatory
permission. In an exemplary mission, all ASTRO drones are
launched from a common location outside of the range of
the cheater. Without any prior training data, the drones co-
ordinate with an initial search phase in which they cover the
largest possible area given their constraints of sensing capa-
bilities, inter-drone connectivity, battery life time, etc. Once
an ASTRO drone has identified the target, it requests that all
other drones aid it for the greatest possible tracking accuracy,
guided by ASTRO’s machine learning methods. Our exper-
iments show that ASTRO drones can collaborate to find and
track a target within approximately 10 m, even if the target
is mobile or placed among an angular several ton concrete
slab surrounded by buildings.

Related work. ASTRO compliments work on au-
tonomous flight for individual drones [6, 13] as our focus
is on multi-drone sensing missions. Likewise, prior appli-
cations of drones to wireless sensing employed “war driv-
ing” in which drone flight patterns were not adapted to sen-
sor data and employed only a single drone [10, 17]. Ma-
chine learning has been applied to wireless sensing including
learning regression tree [1], support vector machines [18],
neural networks [19], and k-nearest neighbors [8]. In con-



trast to ASTRO, they are all developed for indoor environ-
ments, employ static sensor nodes, and employ supervised
learning with a pre-labeled training dataset.

2. DESIGN AND IMPLEMENTATION

In this section, we describe ASTRO in the context of the
mission scenario of finding and tracking a mobile spectrum
cheater, highlighting the three innovative features.

2.1 Mission Scenario

Here, we describe an example mission that we use to moti-
vate both the design and evaluation of ASTRO. As illustrated
in Figure 1, we consider a rogue mobile node (which itself
can be a drone) that is transmitting without authorization.
In particular, the rogue node (i) transmits in a way that is
not authorized by spectrum regulations, e.g., by transmitting
on a frequency that is controlled by a government agency or
licensed to a commercial entity; or (ii) transmits in a disrup-
tive way, e.g., launching a denial of service attack in either a
licensed or unlicensed band.

Figure 1: Scenario for ASTRO drones to find and track a
spectrum cheater

We consider that the drone mission contains the targeted
illicit behavior of the rogue node. In our example, the illicit
behavior is any transmission between 563 and 568 MHz to
represent the case in which a mobile “spectrum cheater” is
transmitting in a prohibited band. The high level objective of
this mission is to find and track the mobile spectrum cheater.
Namely, ASTRO drones are launched from a location that
is assumed to be out of range of the cheater, and they must
coordinate to realize the mission without any ground control
(tetherless). The definition and realization of this mission
are described below.

2.2 On-Drone On-line Light-Weight Ma-
chine Learning

2.2.1 Overview

Data processing and control challenges of such a mis-
sion reside in (i) the lack of prior knowledge or training
data about the mission environment; (ii) the requirement for
real-time response despite the limited processing capability
of the on-board computer; and (iii) constrained drone flight
time due to battery weight constraints (∼10 minutes). As
such, the key of designing on-drone algorithms is to bal-
ance algorithm complexity and mission performance. To do

so, we make use of an on-board spectrum sensor, diverse-
spectrum drone-to-drone communications, a signal propaga-
tion model, and light-weight machine learning algorithms.

ASTRO operates in two phases: the search and learn
phase and the swarm and track phase, depending on whether
the target has been initially identified by any drone. Specif-
ically, ASTRO enables networked drones to be launched
from an initial arbitrary location that is not necessarily in
sensing range of the target. During the search and learn
phase, drones fly in accordance pre-computed partitioned
zones and planned paths obtained by solving a multiple trav-
eling salesman problem under the constraints of the number
of drones, flight time, on-board sensing range, and the tar-
get environment [4, 17]. In particular, the zone partition will
determine how to divide the target area into zones so that
each drone takes charge of one zone, and the planned paths
provide guidance for drones to fly within their correspond-
ing zones. Each ASTRO drone works independently during
this phase and learns the signal propagation model param-
eters while trying to identify a potential spectrum cheater
(§2.2.2). Once a drone is in range of a target, it informs
all other drones. Subsequently, all drones will swarm to the
target and switch to the tracking phase in which they work
collaboratively to locate and track the target (§2.2.3).

2.2.2 Search and Learn Phase

The goal of this phase is to independently learn model
parameters for sensing as well as to search for the target. It
therefore features both a machine learning algorithm and an
empirical propagation model for receive power at the drone
in the cheater’s target spectral band as a function of distance.

We select receive power to track the cheater in order to re-
alize it with a single-antenna drone, without any additional
hardware, and potentially encountering high vibrations and
mobility. Namely, compared to time of arrival, angle of ar-
rival, or time difference of arrival, our method is more suit-
able for drone based applications, considering drones’ mo-
bility and strict constraint on weight. However, locating
a transmitter solely based on receive power can encounter
high error, as this metric is highly affected by reflections and
other interactions of the radio signal with the environment.
We then employ a light-weight machine learning algorithm
to dynamically adapt model parameters in real-time, aiming
to achieve improved modeling and tracking accuracy while
maintaining low complexity and minimal hardware require-
ments.

At the beginning of the search and learn phase, both the
environment dependent propagation model and the target lo-
cation information are unknown. To tackle the challenges of
modeling the varied interactions between receive power and
corresponding environments and capturing the target posi-
tion in a short time, we formulate the problem via a machine-
learning framework using nonlinear regression [15], and use
a batch gradient descent algorithm to solve it. This approach
is well suited for the search phase as it is an effective yet
simple method for enabling the learning of the model pa-
rameters and locating the target simultaneously and in real-
time. In the basic radio propagation model, the received sig-



nal strength can be simplified as in [9] to:

P = αlog10(D) + η (1)

where P denotes the received power strength in dBm
and D is the distance between the spectrum sensor (i.e.,
drone) and the target (i.e., spectrum cheater), and α is
proportional to the environment and frequency dependent
path-loss exponent. Denoting the positions of the drone
and target (cheater) in the Cartesian coordinate system as
(x, y, z) and (xc, yc, zc) respectively, the distance is D =
√

(xc − x)2 + (yc − y)2 + (zc − z)2. Note that each AS-
TRO drone is equipped with an on-board RF receiver and
GPS receiver that can obtain P and (x, y, z), respectively.
Thus, the goal in the search and learn phase is to utilize these
measurements to learn the model parameters (α, η) and the
target position (xc, yc, zc).

ASTRO drones continuously sample their own position
(x, y, z) and the received signal strength P . In a batch
gradient descent algorithm, parameters are updated using
a batch of measured data at each step. We formulate the
estimation of the five parameters (i.e., α, η, xc, yc, zc) as
a nonlinear regression problem, in which a cost function
J(α, η, xc, yc, zc) can be defined as:

J(α, η, xc, yc, zc) =
1

2N

N
∑

i=1

(P e
i (α, η, x

c, yc, zc)− Pm
i )2

(2)
where N denotes the number of measurements in each batch,
Pm
i denotes the measured received signal strength in the i-th

measurement, and P e
i (α, η, x

c, yc, zc) denotes the i-th esti-
mated signal strength according to Eq. (1) using the esti-
mated path-loss propagation parameters and target location.
Essentially, J measures how close the calculated received
signal strength based on the estimated parameters and loca-
tion is to the corresponding measured signal strength. Math-
ematically, our approach aims to solve the following opti-
mization problem:

argmin
α,η,xc,yc,zc

J(α, η, xc, yc, zc) (3)

It is in general intractable to obtain a closed-form solu-
tion to Eq. (3). We instead employ a batch gradient descent
algorithm [2], which is simple and effective for solving non-
linear regression problems. Specifically, this algorithm iter-
atively searches possible model parameters and target loca-
tions that minimize the cost function in Eq. (2). To do so, it
first randomly assigns initial values for the parameters to be
learned, and then iteratively performs the following update:

θk+1 = θk − δ
∂

∂θk
J(αk, ηk, x

c
k, y

c
k, z

c
k) (4)

where θ represents one of the five parameters
(α, η, xc, yc, zc), δ denotes the learning rate, and k de-
notes the iteration index. Note that all five parameters need
to be updated simultaneously. The partial derivative term

∂J
∂θk

corresponding to α in Eq. (4) can be obtained as:

∂J
∂αk

= 1

N

∑N
i=1

[(P e
i (αk, ηk, x

c
k, y

c
k, z

c
k)− Pm

i )log10(Di)]

(5)
and similarly for other parameters (η, xc, yc, zc).

In summary, our approach for the search and learn phase
relies on a single learning model for both propagation pa-
rameters and target location based on measured data of each
drone independently. Its simplicity enables fast identifica-
tion of the target within each drone’s search area, maximiz-
ing the possible covered area and minimizing the mission
time, which is critical due to the constrained flight time.

2.2.3 Swarm and Track Phase

Once an ASTRO drone identifies the target, all N drones
switch to the collaborative tracking phase. The goal in this
phase is to collaboratively locate and track the target.1 Be-
cause the target may be moving, the key challenge lies in
ensuring that the tracking algorithm has low latency to real-
ize real-time tracking of the moving target, while at the same
time meeting the specified tracking accuracy. To handle this
challenge, we utilize a fast and effective tracking algorithm
that combines data from multiple drones at different loca-
tions to perform collaborative tracking, and a K-means clus-
tering algorithm to suppress potentially large errors that are
commonly observed in path-loss based propagation models
[14]. Due to space constraints, we sketch our solution in
the context of 2-D tracking; we extended to the 3-D tracking
case for our implementation.

Using multilateration, a unique solution of the target po-
sition (xc, yc) at each measured time instance from these N
nonlinear equations exists if there are at least three indepen-
dent measurements/equations, i.e., N ≥ 3. In other words,
this algorithm requires a minimum of three drones for 2-D
tracking and four drones for 3-D tracking. Additional drones
can further improve the tracking accuracy as noisy tracking
results can be ruled out.

As a direct solution to the multilateration location esti-
mation will incur high noise, we utilize a K-means clus-
tering algorithm [11] to improve localization and track-
ing accuracy. In particular, given a set of adjacent results
(L1, . . . ,LM ) obtained with Lm = (xc

m, ycm), K-means
clustering will partition the M results into K (K ≤ M ) sets
S = {S1, S2, . . . , SK} so as to minimize the within-cluster
sum of squares (i.e., variance). Mathematically, the objec-
tive is to find:

arg min
S

K
∑

k=1

∑

L∈Sk

‖L− ck‖
2 (6)

In our case, K = 3, i.e., the centroid of each M adjacent
set of results, is chosen as the estimated target location at
each time instance. We choose the size of the adjacent results

1For other mission objectives, e.g., multi-target missions, a
subset of drones can remain in the search phase. For sim-
plicity of exposition, we consider a single target here.








